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Abstract

Clustering is a fundamental problem in unsupervised machine learning with many
applications in data analysis. Popular clustering algorithms such as Lloyd’s al-
gorithm and k-means++ can take 2(ndk) time when clustering n points in a
d-dimensional space (represented by an n x d matrix X) into k clusters. In ap-
plications with moderate to large k, the multiplicative k factor can become very
expensive. We introduce a simple randomized clustering algorithm that provably
runs in expected time O(nnz(X) + nlogn) for arbitrary k. Here nnz(X) is the
total number of non-zero entries in the input dataset X, which is upper bounded by
nd and can be significantly smaller for sparse datasets. We prove that our algorithm
achieves approximation ratio O(k?) on any input dataset for the k-means objective.
We also believe that our theoretical analysis is of independent interest, as we show
that the approximation ratio of a k-means algorithm is approximately preserved
under a class of projections and that k-means++ seeding can be implemented in
expected O(n log n) time in one dimension. Finally, we show experimentally that
our clustering algorithm gives a new tradeoff between running time and cluster
quality compared to previous state-of-the-art methods for these tasks.

1 Introduction

Clustering is an essential and powerful tool for data analysis with broad applications in computer
vision and computational biology, and it is one of the fundamental problems in unsupervised machine
learning. In large-scale applications, datasets often contain billions of high-dimensional points.
Grouping similar data points into clusters is crucial for understanding and organizing datasets.
Because of its practical importance, the problem of designing efficient and effective clustering
algorithms has attracted the attention of numerous researchers for many decades.
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One of the most popular algorithms for the k-means clustering problem is Lloyd’s algorithm [52]],
which seeks to locate k centers in the space that minimize the sum of squared distances from the
points of the dataset to their closest center (we call this the “k-means cost”). While finding the centers
minimizing the objective is NP-hard [3|], in practice we can find high-quality sets of centers using
Lloyd’s iterative algorithm. Lloyd’s algorithm maintains a set of k centers. It iteratively updates them
by assigning points to one of k clusters (according to their closest center), then redefining the center
as the points’ center of mass. It needs a good initial set of centers to obtain a high-quality clustering
and fast convergence. In practice, the k-means++ algorithm [6], a randomized seeding procedure,
is used to choose the initial k centers. k-means++ achieves an O(log k)-approximation ratio in
expectation, upon which each iteration of Lloyd’s algorithm improves|'| Beyond their effectiveness,
these algorithms are simple to describe and implement, contributing to their popularity.

The downside of these algorithms is that they do not scale well to massive datasets. A standard
implementation of an iteration of Lloyd’s algorithm needs to calculate the distance to each center for
each point in the dataset, leading to a ©(ndk) running time. Similarly, the standard implementation
of the k-means++ seeding procedure produces k samples from the so-called D? distribution (see
Appendix [A] for details). Maintaining the distribution requires making a pass over the entire dataset
after choosing each sample. Generating & centers leads to a © (ndk) running time. Even for moderate
values of k, making k passes over the entire dataset can be prohibitively expensive.

One particularly relevant application of large-scale k-means clustering is in approximate nearest
neighbor search [66] (for example, in product quantization [44] and building inverted file indices [L6]).
There, k-means clustering is used to compress entire datasets by mapping vectors to their nearest
centers, leading to billion-scale clustering problems with large k& (on the order of hundreds or
thousands). Other applications on large datasets requiring a large number of centers may be spam
filtering [61. 65], near-duplicate detection [42], and compression or reconciliation tasks [[62]. New
algorithmic ideas are needed for these massive scales, and this motivates the following challenge:

Can we design a simple, practical algorithm for k-means that runs in time roughly
O(nd), independent of k, and produces high-quality clusters?

Given its importance in theory and practice, a significant amount of effort has been devoted to
algorithms for fast k-means clustering. We summarize a few of the approaches below with the pros
and cons of each so that we may highlight our work’s position within the literature:

A. Standard k-means++: This is our standard benchmark. Plus: Guaranteed to be an O(log k)-
approximation [[6]; outputs centers, as well as the assignments of dataset points to centers. Minus:
The running time is O(ndk), which is prohibitively expensive in large-scale applications.

B. Using Approximate Nearest Neighbor Search: One may implement k-means++ faster using
techniques from approximate nearest neighbor search (instead of a brute force search each
iteration). Plus: The algorithms with provable guarantees, like [26]], obtain an O (log k)-
approximation. Minus: The running time is O(nd + (nlog(A))'*¢), depending on a dataset
dependent parameter A, the ratio between the maximum and minimum distances between input
points. The techniques are algorithmically sophisticated and incur extra poly-logarithmic factors
(hidden in O(+)), making the implementation significantly more complicated.

C. Approximating the D2-Distribution: Algorithms that speed up the seeding procedure for
Lloyd’s algorithm or generate fast coresets (we expand on this below) have been proposed in
[8, 7, 1LO]. Plus: These algorithms are fast, making only one pass over the dataset in time
O(nd). (For [8,[7], there is an additional additive O(k*d) term in the running time). Minus: The
approximation guarantees are qualitatively weaker than the approximation of k-means clustering.
They incur an additional additive approximation error that grows with the entire dataset’s variance
(which can lead to an arbitrarily large error; see Section [3). These algorithms output a set of

k centers but not the cluster assignments. Naively producing the assignments would take time
O(ndk)

! Approximation is with respect to the k-means cost. A c-approximation has k-means cost, which is at most ¢
times larger than the optimal k-means cost.

One may use approximate nearest neighbor search techniques to improve on the O(ndk) running time.
However, as discussed above, approximate nearest neighbor search adds a significant layer of complexity (and
approximation).



Coresets. At a high level, coresets are a dataset-reduction mechanism. A large dataset X of n
points in R¢ is distilled into a significantly smaller (weighted) dataset Y of m points in R%, called
a “coreset” which serves as a good proxy for X, i.e., the clustering cost of any k centers on Y is
approximately the cost of the same centers on X. We point the reader to [9}135] for a recent survey on
coresets. Importantly, coreset constructions (with provable multiplicative-approximation guarantees)
require an initial approximate clustering of the original dataset X . Therefore, any fast algorithm for
k-means clustering automatically speeds up any algorithmic pipeline that uses coresets for clustering
— looking forward, we will show how our algorithm can significantly speed up coreset constructions
without sacrificing approximation.

Beyond those mentioned above, many works seek to speed up k-means++ or Lloyd iterations by
maintaining some nearest neighbor search data structures [38,154, 146, 45, 1331160, 40, 59, [71} 130} 29,
131155 128} 18], or by running some first-order methods [[64]]. These techniques do not give provable
guarantees on the quality of the k-means clustering or on the running time of their algorithms.

Theoretical Results. We give a simple randomized clustering algorithm with provable guarantees
on its running time and approximation ratio without making any assumptions about the data. It has
the benefit of being fast (like the algorithms in Category C above) while achieving a multiplicative
error guarantee without additional additive error (like the algorithms in Category B above).

* The algorithm runs in time O(nd + nlogn) irrespective of k. It passes over the dataset once
to perform data reduction, which gives the nd factor plus an additive O(nlogn) term to solve
k-means on the reduced data, producing k centers and cluster assignments. On sparse input datasets,
the nd term becomes nnz(X'), where nnz(X) is the number of non-zero entries in the dataset. Thus,
our algorithm runs in O(nnz(X') + nlog n) time on sparse matrices.

* The algorithm is as simple as the k-means++ algorithm while significantly more efficient. The
approximation ratio we prove is poly(k), which is worse than the O(log k)-approximation achieved
by k-means++ but it is purely multiplicative (see the remark below on improving this to O(log k)).
It does not incur the additional additive errors from the fast algorithms in [8, [7, [10].

Our algorithm projects the input points to a random one-dimensional space and runs an efficient
k-means++ seeding after the projection. For the approximation guarantee, we analyze how the
approximation ratio achieved after the projection can be transferred to the original points (Lemma[2.5).
We bound the running time of our algorithm by efficiently implementing the k-means++ seeding in
one dimension and analyzing the running time via a potential function argument (Lemma[2.4). Our
algorithm applies beyond k-means to other clustering objectives that sum up the z-th power of the
distances for general z > 1, and our guarantees on its running time and approximation ratio extend
smoothly to these settings.

Improving the Approximation from poly (k) to O(log k). The approximation ratio of poly (k)
may seem significantly worse than the O(log k) approximations achievable with k-means++. How-
ever, we can improve this to O(log k) with an additional, additive O(poly(kd) - logn) term in the
running time. Using previous results discussed in Appendix (specifically Theorem[A.2), a multi-
plicative poly (k)-approximation suffices to construct a coreset of size poly(kd) and run k-means++
on the coreset. Constructing the coreset is simple and takes time poly(kd) - logn (by sampling
from an appropriate distribution); running k-means++ on the coreset takes poly(kd) time (with no
dependence on n). Combining our algorithm with coresets, we get a O(log k)-approximation in
O(nnz(X)) + O(nlogn) + poly(kd) - log n time. Notably, these guarantees cannot be achieved
with the additive approximations of [8} (7, 110].

Experimental Results. We implemented our algorithm, as well as the lightweight coreset of [10]
and k-means++ with sensitivity sampling [15]. We ran two types of experiments, highlighting various
aspects of our algorithm. We provide our code in the supplementary material. The two types of
experiments are:

* Coreset Construction Comparison: First, we evaluate the performance of our clustering algorithm
when we use it to construct coresets. We compare the performance of our algorithm to k-means++
with sensitivity sampling [9]] and lightweight coresets [LO]. In real-world, high-dimensional data,
the cost of the resulting clusters from the three algorithms is roughly the same. However, ours
and the lightweight coresets can be significantly faster (ours is up to 190x faster than k-means++,



see Figure 2 and Table[I). The lightweight coresets can be faster than our algorithm (between
3-5x); however, our algorithm is “robust” (achieving multiplicative approximation guarantees)
Additionally, we show that the clustering from lightweight coresets can have an arbitrarily high
cost for a synthetic dataset. On the other hand, our algorithm achieves provable (multiplicative)
approximation guarantees irrespective of the dataset (this is demonstrated in the right-most column
of Figure[2).

* Direct k-means++ comparison: Second, we compare the speed and cost of our algorithm to
k-means++[6] as a stand-alone clustering algorithm (we also compare two other natural variants
of our algorithm). Our algorithm can be up to 800x faster than k-means++ for £ = 5000 and our
slowest variant up to 100x faster (Table|L). The cost of the cluster assignments can be significantly
worse than that of k-means++ (see Figure[3). Such a result is expected since our theoretical results
show a poly(k)-approximation. The other (similarly) fast algorithms (based on approximating the
D?-distribution) which run in time O(nd) [8}[7] do not produce the cluster assignments (they only
output & centers). These algorithms would take O(ndk) time to find the cluster assignments — this
is precisely the computational cost our algorithm avoids.

We do not compare our algorithm with [26] nor implement approximate nearest neighbor search to
speed up k-means++ for the following reasons. The algorithm in [26] is significantly more compli-
cated, and there is no publicly available implementation. In addition, both [26]] and approximate
nearest neighbor search incur additional poly-logarithmic (or even n°!)-factors for nearest neighbor
search over /5 [4]) which add significant layers of complexity to the implementation and make a thor-
ough evaluation of the algorithm significantly more complicated. Instead, our current implementation
demonstrates that a simple, one-dimensional projection and k-means++ on the line enables dramatic
speedups to coreset constructions without sacrificing approximation quality.

Related Work. Efficient algorithms for clustering problems with provable approximation guar-
antees have been studied extensively, with a few approaches in the literature. There are
polynomial-time (constant) approximation algorithms (an exponential dependence on k is not
allowed) (see [50} [17, 12, 139] for some of the most recent and strongest results), nearly lin-
ear time (1 4 ¢)-approximations with running time exponential in & which proceed via core-
sets (see 41,119,136, 137, 15} 9 1277, 125]] and references therein, as well as the surveys [1,135]), and
nearly-linear time (1 4¢)-approximations in fixed / low-dimensional spaces [5} 481 68| [38] 24| 221 [23]).
Our O(nlog n)-expected-time implementation of k-means++ seeding achieves an O(log k) expected
approximation ratio for k-median and k-means in one dimension. We are unaware of previous work
on clustering algorithms running in time O(n logn).

Another line of research has been on dimensionality reduction techniques for k-means clustering.
Dimensionality reduction can be achieved via PCA based methods [31} 37} 21} |67]], or random
projection [21}[11}53]]. For random projection methods, it has been shown that the k-means objective
is preserved up to small multiplicative factors when projecting onto O, (log(k)) dimensional space.
Additional work has shown that dimensionality reduction can be performed in O(nnz(A)) time [51].
To the best of our knowledge, we are the first to show that clustering objectives such as k-median and
k-means are preserved up to a poly (k) factor by one-dimensional projections.

Some works show that the O(log k) expected approximation ratio for k-means++ can be improved by
adding local search steps after the seeding procedure [49} 20]. In particular, Choo et al. [20] showed
that adding €k local search steps achieves an O(1/e%) approximation ratio with high probability.

Several other algorithmic approaches exist for fast clustering of points in metric spaces. These include
density-based methods like DBSCAN [34]] and DBSCAN++ [43] and the line of heuristics based
on the Partitioning Around Medoids (PAM) approach, such as FastPAM [63], Clarans [56], and
BanditPAM [69]. While these algorithms can produce high-quality clustering, their running time is at
least linear in the number of clusters (DBSCAN++ and BanditPAM) or superlinear in the number of
points (DBSCAN, FastPAM, Clarans).

3Recall that the lightweight coresets incur an additional additive error which can be arbitrarily large.



2 Overview of Our Algorithm and Proof Techniques

Our algorithm, which we call PRONE (PRojected ONE-dimensional clustering), takes a random
projection onto a one-dimensional space, sorts the projected (scalar) numbers, and runs the k-
means++ seeding strategy on the projected numbers. By virtue of its simplicity, the algorithm is
scalable and effective at clustering massive datasets. More formally, PRONE receives as input a dataset
of n points in R?, a parameter k& € N (the number of desired clusters), and proceeds as follows:

1. Sample a random vector v € R from the standard Gaussian distribution and project the data
points to one dimension along the direction of v. That is, we compute z; = (x;,v) € R in
time O(nnz(X)) by making a single pass over the data, effectively reducing our dataset to the

collection of one-dimensional points z/, ..., 2] € R.
2. Run k-means++ seeding on 2, .. ., z/, to obtain k indices j1, ..., jx € [n] indicating the chosen
centers x’; ...,z and an assignment o : [n] — [k] assigning point 2] to center 2, . Even

though k-means++ seeding generally takes O(nk) time in one dimension, we give an efficient
implementation, leveraging the fact that points are one-dimensional, which runs in O(nlogn)
expected time, independent of k. A detailed algorithm description is in the appendix.

3. The one-dimensional k-means++ algorithm produces a collection of k centers z;,,...,zj,, as
well as the assignment o mapping each point z; to the center z;, ,,. For each £ € [k], we update
the cluster center for cluster £ to be the center of mass of all points assigned to x, .

While the algorithm is straightforward, the main technical difficulty lies in the analysis. In particular,
our analysis (1) bounds the approximation loss incurred from the one-dimensional projection in Step/[I]
and (2) shows that we can implement Step [2]in O(n log n) expected time, as opposed to O(nk) time.
We summarize the theoretical contributions in the following theorems.

Theorem 2.1. The algorithm PRONE has expected running time O(nnz(X) + nlogn) on any dataset
X ={x1,...,2,} CRL Moreover, for any § € (0,1/2) and any dataset X, with probability at
least 1 — 6, the algorithm runs in time O(nnz(X) + nlog(n/J)).

Theorem 2.2. The algorithm PRONE achieves an 5(k4) approximation ratio for the k-means objective
with probability at least 0.9.

To our knowledge, PRONE is the first algorithm for k-means running in time O(nd + nlogn) for
arbitrary k. As mentioned in [the paragraph on improving the competitive ratio, we obtain the
following corollary of the previous two theorems using a two-stage approach with a coreset:

Corollary 2.3. By using PRONE as the a-approximation algorithm in Theorem and running
k-means++ on the resulting coreset, we obtain an algorithm with an approximation ratio of O(log k)
that runs in time O(nnz(X) 4+ nlogn + poly(kd) log n), with constant success probability.

Due to space constraints, all proofs of our theoretical results are deferred to the appendix, where
we also generalize them beyond k-means to clustering objectives that sum up the z-th power of
Euclidean distances for general z > 1. The following subsections give a high-level overview of the
main techniques we develop to prove our main theorems above.

2.1 Efficient Seeding in One Dimension

The k-means++ seeding procedure has k iterations, where a new center is sampled in each iteration.
Since a new center may need to update Q2(n) distances to maintain the D? distribution, which samples
each point with probability proportional to its distance to its closest center, a naive analysis leads
to a running time of O(nk). A key ingredient in the proof of Theorem is showing that, for
one-dimensional datasets, k-means++ only needs to make O(n logn) updates, irrespective of k.

Lemma 2.4. The k-means++ seeding procedure can be implemented in expected time O(nlogn) in
one dimension. Moreover, for any § € (0,1/2), with probability at least 1 — 6, the implementation
runs in time O(nlog(n/d)).

The intuition of the proof is as follows: Since points are one-dimensional, we always maintain them in
sorted order. In addition, each data point z; will maintain its center assignment and distance p; to the
closest center. By building a binary tree over the sorted points (where internal nodes maintain sums
of p?’s), it is easy to sample a new center from the D? distribution in O(log n) time. The difficulty is



that adding a new center may result in changes to p;’s of multiple points z;, so the challenge is to
bound the number of times these values are updated (see Figure T|below).

Figure 1: From the top to the bottom, a new center (black circle) is chosen. Every point has an arrow
pointing to its closest center. The points in the dashed box are the ones that require updates.

To bound the total running time, we leverage the one-dimensional structure. Observe that, for a new
center, the updated points lie in a contiguous interval around the newly chosen center. Once a center
is chosen, the algorithm scans the points (to the left and the right) until we reach a point that does not
need to be updated. This point identifies that points to the other side of it need not be updated, so
we can get away without necessarily checking all n points (see Figure ). Somewhat surprisingly,
when sampling centers from the D?-distribution, the expected number of times that each point will
be updated is only O(log n), which implies a bound of O(n logn) on the total number of updates in
expectation. The analysis of the fact that each point is updated O(log n) times is non-trivial and uses
a carefully designed potential function (Lemma [C.5).

2.2 Approximation Guarantees from One-Dimensional Projections

Our proof of Theorem builds on a line of work studying randomized dimension reduction for
clustering problems [[14} 21} 11} 53]]. Prior work studied randomized dimension reduction for accurate
(1 4 ¢)-approximations. Our perspective is slightly different; we restrict ourselves to one-dimensional
projections and give an upper bound on the distortion.

For any dataset 1, ...,2, € R? a projection to a random lower-dimensional space affects the
pairwise distance between the projected points in a predictable manner — the Johnson-Lindenstrauss
lemma which projects to O(log n) dimensions being a prime example of this fact. When projecting
to just one dimension, however, pairwise distances will be significantly affected (by up to poly(n)-
factors). Thus, a naive analysis will give a poly(n)-approximation for k-means. To improve a
c-approximation to a O(log k)-approximation, one needs a coreset of size roughly poly(c/log k).
This bound becomes vacuous when c is polynomial in n since there are at most n dataset points.

However, although many pairwise distances are significantly distorted, we show that the k-means cost
is only affected by a poly (k)-factor. At a high level, this occurs because the k-means cost optimizes
a sum of pairwise distances (according to a chosen clustering). The individual summands, given
by pairwise distances, will change significantly, but the overall sum does not. Our proof follows
the approach of [21], which showed that (roughly speaking) pairwise distortion of the k& optimal
centers suffices to argue about the k-means cost. The k optimal centers will incur maximal pairwise
distortion poly (k) when projected to one dimension (because there are only O(k?) pairwise distances
among the k centers). This allows us to lift an r-approximate solution after the projection to an
O(k*r)-approximate solution for the original points.

Lemma 2.5 (Informal). For any set X of points in R%, the following occurs with probability at least
0.9 over the choice of a standard Gaussian vector v € R%. Letting X' C R be the one-dimensional
projection of X onto v, any r-approximate k-means clustering of X' gives an O(k*r)-approximate
clustering of X with the same clustering partition.

3 Experimental Results

In this section, we outline the experimental evaluation of our algorithm. The experiments evaluate the
algorithms in two different ways. For each, we measure the running time and the k-means cost of the
resulting solution (the sum of squares of point-to-center-assigned distances). (1) First, we evaluate
our algorithm as part of a pipeline incorporating a coreset construction — the expected use case for
our algorithm. (2) Second, we evaluate our algorithm by itself for approximate k-means clustering
and compare it to k-means++ [6]. As per Theorems[2.T]and [2.2] we expect our algorithm to be much
faster but output an assignment of higher cost. Our goal is to quantify these differences empirically.



All experiments were run on Linux using a notebook with a 3.9 GHz 12th generation Intel Core i7
six-core processor and 32 GiB of RAM. All algorithms were implemented in C++, using the blaze
library for matrix and vector operations performed on the dataset unless specified differently below.
We provide our code in the supplementary material for this submission.

Datasets. For our experiments, we use the following four datasets:

KDD [47]: Training data for the 2004 KDD challenge on protein homology. The dataset consists of
145751 observations with 77 real-valued features.

Song [12]): Timbre information for 515345 songs with 90 features each, used for year prediction.
Census [32]: 1990 US census data with 2458285 observations, each with 68 categorical features.

Gaussian: A synthetic dataset consisting of 240005 points of dimension 4. The points are generated
by placing a standard normal distribution at a large positive distance from the origin on each axis
and sampling 30000 points. The points are then mirrored so the center of mass remains at the origin.
Finally, 5 points are placed on the origin. This is an adversarial example for lightweight coresets [[L0],
which are unlikely to sample points close to the mean of the dataset.

3.1 Coreset Construction Comparison

Experimental Setup. Coreset constructions (with multiplicative approximation guarantees) always
proceed by first finding an approximate clustering, which constitutes the bulk of the work. The
approximate clustering defines a “sensitivity sampling distribution” (we expand on this in the
appendix, see also [9]), and a coreset is constructed by repeatedly sampling from the sensitivity
sampling distribution. In our first experiment, we evaluate the choice of initial approximation
algorithm used to define the sensitivity sampling distribution. We compare the use of k-means++
and PRONE. In addition, we also compare the lightweight coresets of [[10], which uses the distance to
the center of mass as an approximation of the sensitivity sampling distribution. For the remainder
of this section, we refer to sensitivity sampling using k-means++ as Sensitivity and lightweight
coresets as Lightweight. All three algorithms produce a coreset, and the experiment will measure the
running time of the three algorithms (Table[I)) and the quality of the resulting coresets (Figure[2). We
implemented all algorithms in C++.

Once a coreset is constructed for each of the algorithms, we evaluate the quality of the coreset by
computing the cost of the centers found when clustering the coreset (see Definition[A.T). We run a
state-of-the-art implementation of Lloyd’s k-means algorithm from the scikit-learn library [57]]
with the default configuration (repeating 15 times and reporting the mean cost to reduce the variance).
The resulting quality of the coresets is compared to a (computationally expensive) baseline, which
runs k-means++ from the scikit-learn library, followed by Lloyd’s algorithm with the default
configuration on the entire dataset (repeated 5 times to reduce variance).

We evaluate various choices of & ({10,100,1000}) as well as coresets at various relative sizes,
{0.001, 0.0025,0.005,0.01,0.025,0.05, 0.1} times the size of the dataset. We use as performance
metrics (1) a relative cost, which measures the average cost of the k-means solutions returned by
Lloyd’s algorithm on each coreset divided by the baseline, and (2) the running time of the coreset
construction algorithm.

Results on Coreset Constructions. Relative cost. Figure |2 shows the coreset size (z-axis)
versus the relative cost (y-axis). Each “row” of Figure [2 corresponds to a different value for
k € {10,100, 1000}, and each “column” corresponds to a different dataset. Recall that the first three
datasets (i.e., the first three columns) are real-world datasets, and the fourth column is the synthetic
Gaussian dataset. We note our observations below:

* As expected, on all real-world data sets and all settings of k, the relative cost decreases as the
coreset size increases.

* Inreal-world datasets, the specific relative cost of each coreset construction (Senstivity, Lightweight,
and ours) depends on the datase but roughly speaking, all three share a similar trend. Ours and
Sensitivity are very close and never more than twice the baseline (usually much better).

“The spike in relative cost for algorithm Sensitivity on the KDD data set for relative size 5 - 102 is due to
outliers.
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Figure 2: Plot of relative cost versus coreset size on our four datasets. The shaded region indicates
standard error. There is no data for relative size values where the coreset size is less than k.

* The big difference, distinguishing ours and Sensitivity from Lightweight, is the fourth column, the
synthetic Gaussian dataset. For all settings of k, as the coreset size increases, Lightweight exhibits
a minimal cost decrease and is a factor of 2.7-17x times worse than ours and Sensitivity (as well as
the baseline). This is expected, as we constructed the synthetic Gaussian dataset to have arbitrarily
high cost with Lightweight. Due to its multiplicative approximation guarantee, our algorithm does
not suffer this degradation. In that sense, our algorithm is more “robust,” and achieves worst-case
multiplicative approximation guarantees for all datasets.

Running time. In (the first table in) Table E, we show the running time of the coreset construction
algorithms as k increases. Notice that as k increases, the relative speedup of our algorithm and
Lightweight increases in comparison to Sensitivity. This is because our algorithm and Lightweight
have running time which does not grow with k. In contrast, the running time of Sensitivity grows
linearly in k. In summary, our coreset construction is between 33-192x faster than Sensitivity for
large k. In addition, our algorithm runs about 3-5x slower than Lightweight, depending on the dataset.
Our analysis also shows this; both algorithms make an initial pass over the dataset, using O(nd) time,
but ours uses an additional O(n logn) time to process.

3.2 Direct k-Means++ Comparison

Experimental Setup. This experiment compares our algorithm and k-means++ as a stand-alone
clustering algorithm, as opposed to as part of a coreset pipeline. We implemented three variants of
our algorithm. Each differs in how we sample the random one-dimensional projection. The first is
a one-dimensional projection onto a standard Gaussian vector (zero mean and identity covariance).
This approach risks collapsing an “important” feature, i.e. a feature with high variance. To mitigate
this, we implemented two data-dependent variants that use the variance, resp. covariance of the
data. Specifically, in the “variance” variant, we use a diagonal covariance matrix, where each entry
in the diagonal is set to the empirical variance of the dataset along the corresponding feature. In
the “covariance” variant, we use the empirical covariance matrix of the dataset. These variants aim
to project along vectors that capture more of the variance of the data than when sampling a vector
uniformly at random. Intuitively, the vectors sampled by the biased variants are more correlated with
the first principal component of the dataset. For each of our algorithms, we evaluate the k-means
cost of the output set C' of centers when assigning points to the closest center (costa (X, C) in
Deﬁnition and when using our algorithm’s assignment (costa (X, C, o) defined in Equation (I})).

We evaluated the algorithms for every k in {10, 25, 50, 100, 250, 500, 1000, 2500, 5000} and z = 2,
for solving k-means with the /o-metric. When evaluating the assignment cost, we ran each of our
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Figure 3: Clustering cost of all our variants compared to k-means++. The top row shows the k-means
cost, and the bottom row shows the cost of the assignment produced by our algorithm.

k 50 500 5000
Dataset Algorithm

k 10 100 1000
. Census PRONE 75 732 6625
Dataset _ Algorithm PRONE (variance) ~ 2.2 222 2147
Census Lightweight 73 694 6702 PRONE (covariance) 1.1 10.7 117.4
PRONE coreset 1.5 14.1 136.3 k-means++ 1.0 1.0 1.0
Sensitivity 1.0 1.0 1.0 Song PRONE 9.7 955 8375
Song Lightweight 89 872 8753 PRONE (variance) 23 231 2172
PRONE coreset 2.1 19.9 1879 PRONE (covariance) 0.8 8.2 82.4
Sensitivity 1.0 1.0 1.0 k-means++ 1.0 1.0 1.0
KDD Lightweight 6.4 63.0 6428 KDD PRONE 69 683 7275
PRONE coreset 2.1 19.6 192.6 PRONE (variance) 3.1 320 3124
Sensitivity 1.0 1.0 1.0 PRONE (covariance) 1.3 129 128.4
Gaussian  Lightweight 24 176 1748 k-means++ 1.0 1.0 1.0
PRONE coreset 0.5 3.8 33.7 Gaussian  PRONE 1.9 183 1659
Sensitivity 1.0 1.0 1.0 PRONE (variance) 20 17.7 1629
PRONE (covariance) 1.7 16.1 152.6
k-means++ 1.0 1.0 1.0

Table 1: Average speedup over sensitivity sampling across all relative sizes for constructing coresets
(in the first table) and average speedup over k-means++ as a stand-alone clustering algorithm (in the
second table). The tables with the full range of parameters can be found in the appendix.

algorithms 100 times for each k and five times when computing the nearest neighbor assignment, and
we report the average cost of the solutions and the average running time. Due to lower variance and
much higher runtime, k-means++ was run five times.

Results on Direct k-Means++ Comparison. Cost. Figure|3|(on top) shows the cost of the centers
found by our algorithm compared to those found by the k-means++ algorithm after computing the
optimal assignment of points to the centers computed by the algorithm (computing this takes time
O(ndk)). That is, we compare the values of costz (X, C) in Definition[A.T] In summary, the k-means
cost of all three variants of our algorithm are roughly the same and closely match that of k-means++.
On the Gaussian data set, one run of the biased algorithm failed to pick a center from the cluster at
the origin, leading to a high “outlier” cost and a corresponding spike in the plot.

We also compared the k-means cost for the assignment computed by our algorithm (so that our
algorithm only takes time O(nd + nlogn) and not O(ndk)) with the cost of k-means++ (bottom
row of Figure E). That is, we compare the values of costy (X, C, o) defined in Equation (I)). The
clustering cost of our algorithms is higher than that of k-means++. This is the predicted outcome from
our theoretical results; recall Theorem [2.2|gives a poly(k)-approximation, as opposed to O(log k)
from k-means++. On the real-world data sets, it is between one order of magnitude (for k¥ = 10) and
two orders of magnitude (for £ = 5000) worse than k-means++ for our unbiased variant and between
a factor 2 (for k = 10) and one order of magnitude (for £ = 5000) worse than k-means++ for our
biased and covariance variants.



Running time. Table[T shows the relative running time of our algorithm compared to k-means++,
assuming that no nearest-center assignment is computed. Our algorithms are designed to have a
running time independent of k, so we can see, from the second table in Figure E, all of our variants
offer significant speedups.

* The running time of our algorithm stays almost constant as k increases while the running time of
k-means++ scales linearly with k. Specifically for k£ = 25, even our slowest variants have about
the same running time as k-means++, while for £ = 5000, it is at least 82x faster, and our fastest
version is up to 837x faster over k-means++.

* The two variants can affect the quality of the chosen centers by up to an order of magnitude, but
they are also significantly slower. The “variance” and “covariance” variants are slower (between
2-4x slower and up to 10x slower, respectively) than the standard variant, and they also become
slower as the dimensionality d increases. We believe these methods could be further sped up, as
the blaze library’s variance computation routine appears inefficient for our use case.

4 Conclusion and Limitations

To summarize, we present a simple algorithm that provides a new tradeoff between running time
and approximation ratio. Our algorithm runs in expected time O(nnz(X) + nlogn) to produce a
poly(k)-approximation; with additional poly(kd) - logn time, we improve the approximation to
O(log k). This latter bound matches that of k-means++ but offers a significant speedup.

Within a pipeline for constructing coresets, our experiments show that the quality of the coreset
produced (when using our algorithm as the initial approximation) outperforms the sensitivity sampling
algorithm. It is slower than the lightweight coreset algorithm, but it is more “robust” as it is
independent of the diameter of the data set. It does not suffer from the drawback of having an additive
error linear in the diameter of the dataset, which can arbitrarily increase the cost of the lightweight
coreset algorithm. When computing an optimal assignment for the centers returned by our algorithm,
its cost roughly matches the cost for k-means++. When directly using the assignment produced by
one variant of our algorithm, its cost is between a factor 2 and 10 worse while being up to 300 times
faster.

Our experiments and running time analysis show that our algorithm is very efficient. However, the
clustering quality achieved by our algorithm is sometimes not as good as other, slower algorithms. We
show that this limitation is insignificant when we use our algorithm to construct coresets. It remains
an interesting open problem to understand the best clustering quality (e.g., in terms of approximation
ratio) an algorithm can achieve while being as efficient as ours, i.e., running in time O(nd + nlogn).
Another interesting problem is whether other means of projecting the dataset into a O(1) dimensional
space exist, which lead to algorithms with improved approximation guarantees and running time
faster than O(ndk).
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A Problem Setup and Background

In this work, we always consider datasets X = {z1,...,2,} C RY of high-dimensional vectors, and
we will measure their distance using the Euclidean (¢2) distance. Below, we define (k, z)-clustering.
This problem introduces a parameter z > 1, which measures the sensivity to outliers (as z grows, the
clusterings become more sensitive to points furthest from the cluster center). The case of k-means
corresponds to z = 2, but other values of z capture other well-known clustering objectives, like
k-median (the case of z = 1).

Definition A.1 ((k, 2)-Clustering). Consider a dataset X = {z1,...,z,} C RY, a desired number
of clusters k € N, and a parameter z > 1. For a set of k centers C = {c1,...,c,} C RY, et
cost, (X, C) denote the cost of using the center set C' to cluster X, i.e.,

n
cost,(X,C) = Z]Héﬁl] llzi — c;ll5-
i1

We let opty, ,(X) denote the optimal cost over all choices of C = {c1,...,cx} C R4:
opt; ,(X) = inf cost,(X,C).
’ CCR*
ICI<k

A (k, z)-clustering algorithm has the following specifications. The algorithm receives as input a
dataset X = {x1,...,2,} C R4, as well as two parameters k € N and z > 1. After it executes,
the algorithm should output a set of k centers C' = {cy,...,cx} C RY as well as an assignment
o : [n] — [k] mapping each point z; to a center c, ;).

We measure the quality of the solution (C, o) using the ratio between its (k, z)-clustering cost
cost, (X, C, o) and the optimal cost opt;, , (X ), where

cost,(X,C, o) := Z |2i = Co@zll3- (1)
i=1

For any D > 1, an algorithm that produces a D-approximation to (k, z)-clustering should guarantee
that cost, (X, C, o) is at most D - opt,, ,(X). For a randomized algorithm, the guarantee should hold
with large probability (referred to as the success probability) for any input dataset.

A.1 k-Means++ Seeding

The k-means++ seeding algorithm is a well-studied algorithm introduced in [6], and it is an important
component of our algorithm. Below, we describe it for general z > 1, not necessarily z = 2.

Definition A.2 (k-means++ seeding, for arbitrary z > 1). Given n data points x1, ...,x, € RY, the
k-means++ seeding algorithm produces a set of k centers, xy,, . .., x4, with the following procedure:

1. Choose £y uniformly at random from [n).

2. Fort = 2,...,k, sample {; as follows. For every i € [n], let p; denote the Euclidean
distance from x; to its closest point among %y, , . .., xy,_,. Sample Ly from [n] so that the
probability Pr[¢, = i is proportional to p? for every i € [n]. That is,

p?
Pr[t; =i] = =——+—.
Ei’e [n] pf
In the context of k-means (i.e., when z = 2), the distribution is known as the D2 distribution.

3. Output xy,,...,Tq,.

In the above description, Step lg of k-means++ needs to maintain, for each dataset point x;, the
Euclidean distance p; to its closest center among the centers selected before the current iteration.
This step is implemented by making an entire pass over the dataset for each of the k — 1 iterations of
Step[2] leading to an O(ndk) running time.

Theorem A.1 ([6], Theorem 3 in [70]). For z1,...,x, € R% let X = {x1,...,2,} be the input to
the k-means++ seeding algorithm. For the output x4, , . .., xy, of the k-means++ seeding algorithm,
define C = {xy,,...,xq,}. Then

E[cost. (X, C)] = O(2* log k) -opty, . (X).
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A.2 Coresets via Sensitivity Sampling

One of our algorithm’s applications is constructing coresets for (k, z)-clustering. We give a formal
definition and describe the primary technique for building coresets.

Definition A.3. Given a dataset X = {z1,...,x,} C RY, as well as parameters k € N, z > 1 and
€ > 0, a (strong) e-coreset for (k, z)-clustering is specified by a set of points Y C R and a weight
function w:' Y — R, such that, for every set C = {c1,...,c} C R¢,

(1 —¢)- cost,(X,C) < Z w(y) - min ||y — ¢;||5 < (1 +¢€) - cost, (X, C).
vey JE[K]

Coresets are constructed via “sensitivity sampling,” a technique that, given an approximate clustering
of a dataset X, produces a probability distribution such that sampling enough points from this
distribution results in a coreset.

Definition A.4 (Sensitivity Sampling). Consider a dataset X = {z1,...,z,} C R? as well as
parameters k € N, z > 1. For a centet set C = {cy,...,cx} C R? and assignment o : [n] — [k], let
X; =A{x; : 0(i) = j}. Welet D be a distribution supported on X where
2 — Coi) 3 1
Pr [z = ;] x - .
z~D Y llzg —copnlls 1 Xowl

The main theorem that we will use is given below, which shows that given a center set and an
assignment that gives an «-approximation to (k, z)-clustering, one may sample from the distribution
D defined about in order to generate a coreset with high probability.

Theorem A.2 ([15]). Forany dataset X = {x1,...,x,} C R4 and any parameters k € Nand z > 1,
suppose that C = {ci,...,cx} C R and o: [n] — [k] is a a-approximation to (k, z)-clustering,
Le.,

n
S llai — oo l5 < @ opty, L (X).
i=1
Letting D denote the distribution specified in Definition[A.4] the following occurs with high probability.

* Welet yq,...,y, denote independent samples from D, and w(y,;) be the inverse of the
probability that y, is sampled according to D. We set s > poly(kd - « - 2% [¢).

* The setY = {yi,...,Yys} with weights w is an e-coreset for (k, z)-clustering.

A.3 A Simple Lemma

We will repeatedly use the following simple lemma.
Lemma A.3. Let a,b € R>q be any two numbers and z > 1. Then, (a + b)* < 27—1g7 4 22— 1pz,

Proof. The function ¢(t) = t* is convex for z > 1, so Jensen’s inequality implies ¢((a + b)/2)

<
(1/2)¢(a) + (1/2)6(b). O
B Approximation Guarantees from One-Dimensional Projections

In this section, we prove Theorem (rather, the generalization of Theorem toany z > 1)
by analyzing the random one-dimensional projection step in our algorithm. In order to introduce
some notation, let X = {x1,...,z,} C R? be a set of points, and for a partition of X into k sets,
(Y1,...,Yy), we let the (k, z)-clustering cost of X with the partition (Y1,...,Y;) be

k
cost,(Y1,...,Yy) = min Z llz —¢||3 2)
i=1

Rd
= ce z€Y;

and call the k points ¢ selected as minima a set of centers realizing the (k, z)-clustering cost
of (Y1,...,Ys). We note that (2) is a cost function for (k, z)-clustering, but it is different from
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Definition In Definition the emphasis is on the set of k centers C' = {cy,...,cx}, and
the induced set of clustering of X, i.e., the partition (Y7, ...,Y%) given by assigning points to the
closest center, is only implicitly specified by the set of centers. On the other hand, (Z) emphasizes
the clustering (Y7, ...,Y%), and the set of k centers implicitly specified by (Y1,...,Y%). The
optimal set of centers and the optimal clustering will achieve the same cost; however, our proof
will mostly consider the clustering (Y7, ..., Y)) as the object to optimize. Shortly, we will sample
a (random) dimensionality reduction map IT: R? — R? and seek bounds for t = 1. We will write
cost, (II(Y7),...,II(Y})) for the cost of clustering the points after applying the dimensionality
reduction map II to the partition Y7, ..., Y). Namely, we write

k
cost, (II(Y3), ..., IL(Y})) = Zggg} > IIT(z) — 5.
i=1 z€Y;

Definition B.1. For a set of points X = {x1,...,x,} C R%, weuse X7,..., X} of X to denote the

partition of X with minimum (k, z)-clustering cost and we use C* = {c%, ..., ct} C R? to denote a
set of k centers which realizes the (k, z)-clustering cost of X7, ..., X}, i.e., the set of centers which
satisfies
k
cost.(X7,.... X;)=>_ Y [lz =<5
=1 ;ceXi*

By slight abuse of notation, we also let ¢*: X — C* be the map which sends every point of X to its
corresponding center (i.e., if v € X}, then ¢*(x) is the point c).

We prove the following lemma, which generalizes Lemma from k-means to (k, z)-clustering
(recall that k-means corresponds to the case of z = 2).

Lemma B.1 (Effect of One-Dimensional Projection on (k, z)-Clustering). For n,d,k € N and

z>1,let X = {xy,...,2,} C R? be an arbitrary dataset. We consider the (random) linear map
IT: R — R given by sampling g ~ N'(0, 1;) and setting
(z) = (z,g).

With probability at least 0.9 over g, the following occurs:
s We consider the projected dataset X' = {x',...,x.} C R be given by x’, = TI(x;), and

o Foranyr > 1, we let (Y1, ...Y}) denote any partition of X satisfying

t (TL(Y1),..., TI(Y:)) <7+ mi in |z — el?.
cost: (T, AR <7, min, 0 smly s =

Then,
cost,(Y7,...,Y;) <200) k2% .. opty, . (X).

By setting z = 2, we obtain the desired bound from Lemma 2.5 We can immediately see that, from
Lemma|B.1, and the approximation guarantees of k-means++ (or rather, its generalization to z > 1)
in Theorem [A.1} we obtain our desired approximation guarantees. Below, we state the generalization
of Theorem [2.2[to all z > 1 and, assuming Lemma @, its proof.

Theorem B.2 (Generalization of Theorem[2.2]to z > 1). For n,d,k € Nand z > 1, let X =
{x1,...,2,} C R be an arbitrary dataset. We consider the following generalization of our
algorithm PRONE:

1. Sample a random Gaussian vector g ~ N(0,14) and consider the projection X' =
{z},...,x,} given by x, = II(z;), for II(z) = (z,g) € R.

2. Execute the (generalization of the) k-means++ seeding strategy for z > 1 of Definition|A.2)
with the dataset X' C R, and let x) ..., € Rdenote the centers and (Y 1,...,Yy)
denote the partition of X specifying the k clusters found.
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3. Output the clustering (Y 1,...,Y ), and the set of centers c1,. .., cj € R? where

co= E [x] eRe

x~Y
Then, with probability at least 0.8 over the execution of the algorithm,

k
cost,(Y1,...,Y) < Z Z |z — eoll3 <200 - k% logk - opty, . (X).
(=1 z€Yy

Proof of Theorem|B.2assuming Lemma We consider the case (over the randomness in the exe-
cution of the algorithm) that:

1. The conclusions of Lemma hold for the projected dataset X’ (which happens with
probability at least 0.9) by Lemma[B.T.

2. The execution of the generalization k-means++ seeding strategy on X' (from Defini-

tion |A.2) produces a set of centers {z/ ,..., ) } C R which cluster X’ with cost at
most O(2%*log k) - opt,, ,(X") (which also happens with probability 0.9 by Markov’s
inequality).

By a union bound, both hold with probability at least 0.8. We now use Lemma[B.T]to upper bound the
cost of the clustering (Y1, ..., Y). The first inequality is trivial; suppose we let ¢},...,¢;, € R4
be the centers which minimize for each ¢ € [k]

min e —él5= ) llz— &l

éoERY

z€Y T€Y
Then, we trivially have
k k
cost,(Yyq,...,Yy) = Z Z |z — |15 < Z Z |z — cell3-
(=1z€Y, (=1z€Y,

Furthermore, we can also show a corresponding upper bound. For each ¢ € [k, recall that ¢, € R? is
the center of mass of Y'i, so we can apply the triangle inequality and Lemma|A.3

Do llr—edls <277t Y lz = é7llz +2°7H Yol -l = E[a]ll3
~X¥y

€Yy z€Y,
<27y el + 227 Y - B (le ¢l
:l‘:NYg
€Yy
where the second inequality is Jensen’s inequality, since ¢(z) = ||é; — || is convex for z > 1.

Thus, we have upper-bounded

Yo llr—edls <27 Y llz &5,

€Yy z€Y,
and therefore
k
S e —edls <27 cost (Y, Vi), 3)
¢(=1z€Yy

The final step involves relating cost, (Y1, ..., Y ) using the conclusions of Lemma Notice that
our algorithm produces the clustering (Y1, ..., Y ) of X’ which is specified by letting

Y= {w;€ X :Vj' €[k], |z} - @),| < |af —a;['},

and by the event (E), we have cost. (IL(Y 1),..., II(Y)) < O(2%%logk) - opt;, .(X'). By event

, Lemmaimplies that cost,(Y'1,...,Y}) < 2003). k?#.0(22% log k) - opt;, , (X ). Combined
with (3), we obtain our desired bound. O
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B.1 Proof of Lemma[B.T

We now turn to the proof of Lemma [B.T| where our analysis will proceed in two steps. First,
we assume a fixed dimensionality reduction map IT: R¢ — R?, which satisfies two geometrical
conditions on II. Under these conditions, we show how to “lift” an approximate clustering of the
mapped points in R? to an approximate clustering of the original dataset in R? at the cost of weakening
the approximation ratio. Then, we show that a simple one-dimensional projection IT: R¢ — R
given by II(z) = (z, g), for g being sampled from a d-dimensional standard Gaussian, satisfies the
geometrical conditions of our lemma.

Lemma B.3. Let X = {z1,...,2,} C R% and TI: R? — R! be a linear map. Let C =
{et,...,ct} C RY denote the set of centers minimizing cost,(X,C), and (X7,...,X}) denote
the optimal (k, z)-clustering, and suppose that for the parameters D1,Da, D3 > 1, the following
conditions hold:

* Centers Don’t Contract: Every i,j € [k| satisfies
llei = ¢ ll2 < Dy - [[TI(c;) — TI(cf) |2

* Costof (X7,...,X}) does not Increase: We have that

Z > M i)z < D2 - cost.(X7,..., Xp).

i= lzeX*

» Approximately Optimal (II(Y7),...,II(Ys)): The partition (Y1,...,Ys) of X is Ds-
approximately optimal for II(X), i.e.,

cost. (I(Y1),...,11(¥)) < D3 min Znelbxﬂlun ) —¢l3.

Then,
cost,(Y1,...,Yy) < (2771 +2%572D%Dy(1 + D3)) - cost. (X7, ..., X}).

Before starting the proof of Lemma|[B.3] we show that projecting points onto a random Gaussian vector
gives the first two desired guarantees of the above lemma with D; := (k?/68) and Dy := 20(*) /§
with probability at least 1 — §. The first lemma that we state below shows that the first condition of
Lemma [B.3]is satisfied with high probability, and the second lemma that the second condition of
Lemma B.3is satisfied with high probability.

Lemma B.4 (Centers Don’t Contract). Let C' = {c1,...,cx} C R? denote any collection of k points
and let T1: R — R be a random map given by

H(z) = (. 8)

for a randomly chosen vector g ~ N (0,1;). Then, with probability at least 1 — § over g, every
i,7 € [k] satisfies

() - les = &l < 1T - (&)l

Lemma B.5 (Cost of (X7,...,X}) does not Increase). Let X = {z1,...,7,} C R? and let
X3, ..., X} be the partition of X, and c5, ..., c; € RY be the centers which minimize the (k, z)-
clustering cost of X. Then, with probability a least 1 — 6,

k k
S ) - ) < (2°9/8) 30 3 e il

i=1 zeX; i=1 zEX;]

Proof of Lemma|B.I|assuming Lemma Lemmal|B.4|and Lemma We will apply Lemma[B.3
by letting § be a small enough constant (say, § = 0.01) to take a union bound. Lemma|B.4 implies
the first condition with D; = O(k?) and Lemma|B.5 implies the second condition with Dy = 2°(*).
Finally, the second assumption of Lemma|B.1{sets r = D3, from which we derive the conclusion. [
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We now prove Lemma[B.4, Lemma[B.5| Lemma|B.3 is proved in Subsection[B.2!

Proof of Lemma(B.4] The proof relies on the 2-stability property of the Gaussian distribution.
Namely, if we let z € R? be an arbitrary vector and we sample a standard Gaussian vector
g ~ N(0, I), the (scalar) random variable (z, g) is distributed like ||z||2-g’, where g ~ N(0, 1). Us-
ing the 2-stability of the Gaussian distribution for every i, j € [k], we have that ||TI(c;) — IX(c;)||3 is
distributed as (g’)?|lc; — ¢;||3, where g’ is distributed as a (one-dimensional) Gaussian A/(0, 1).
Thus, by a union bound, the probability that there exists a pair i,j € [k], which satisfies
ITI(c;) — T(c;)|13 < @ - |le; — ¢;]|3 is at most k? times the probability that a Gaussian ran-
dom variable lies in [—a, o], and this probability is easily seen to be less than . Setting v = §/k?

gives the desired lemma. O
Proof of Lemma[B.3| Similarly to the proof of Lemma [B.4| we have that ||[II(z) — II(c})|3 is
distributed as |g'|* - |x — ¢} |3, where g’ is distributed as a (one-dimensional) Gaussian A (0, 1). By

linearity of expectation,

k

k
Ereg, |y > M@ ~THI5| =D > E (gl e 5.

,N
i=1 zeX; im1 sex: 8~NOD)

To conclude, note that for z > 1, there is some « > 1 such that a2 is an even integer and o < 2.
Thus, by Jensen’s inequality and the fact that f(x) = x'/* is concave we can write

!z oz 1/0‘
By (lg"1*] < (E(g")**])

Now note that all odd moments of the Gaussian distribution are zero by symmetry. Thus, for the
moment generating function E[e8 | it holds that

I |

gl — . N\2k

Efes] =) 2mi El(g")™].
k=0

As E[e8'] < e'/2 it follows that

1/« 1/«

(Bl D" < ((02)E[e]) T < ((az)tet/?) T <200
Applying Markov’s inequality now completes the proof. O
B.2 Proof of Lemma[B.3
Let {¢;};c[x) be an optimal set of centers for the partition (Y1, ...,Y}) for the (k, z)-clustering
problem on I1(X), where &; € Y;. Specifically, the points ¢4, . . ., & € R? are those which minimize
k
cost(I(Y1), ..., TI(¥;) € 3= 3 |(z) — &3
i=1 z€Y;

To quantize the cost difference between the centers c¢* and the centers ¢ we analyze the following
value. We assume we mapped every point of X to IIc*(X), and we then compute the cost of the
partition Y7, ..., Y}y on this set. Formally, we let

k k
Va‘l(HaC*7Y17' .. 7Yk) = ZZ D/L mX]*‘ : HH(C;) - ét”;
i=1 j=1

First, we prove the following simple claim.

Claim B.6. There exists a set of centers ¢\, ..., c), (with possible repetitions) which are chosen
among the points {c5, ..., c}} such that

k k
SN YA X I — T 5 < 27 val(IL e, Vi, ., V).

i=1 j=1
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Proof. We will prove the claim using the probabilistic method. For every ¢ € [k], consider the

distribution over center {cj, ..., c;} which samples a center c; as
Y,nXz

Prlel=c) = g 0
i > 1YiN X7

Then, we upper bound the expected cost of using the centers c. Using Lemma

k
E|Y Z |¥; N XG] - [T(cf) — T(ch) I3
=1 j=1

E

k
< D> Win X E () — éll2 + |T1(ef) — éill2) ]

=1 j=1

HM»
HM»

YﬂX;I'IIH(C}f)*éiII§+2Z*IZ Y Vin X E(I(e) - &3]

k

YN X/
:2Z71-va](ﬂ,c*’Y1,..., + 2%~ lz Z|Y ﬂX | Z,Jl—é|\ﬂ(02)*éz||§
io1 \i= =1 2= Yin X7

= 2% .val(Il, ¢*, Y71, ..., Y%). O

We now upper bound cost,(Y1,...,Y}) in terms of cost,(X7,...,X}). We do this by going
through the centers chosen according to Claim[B.6] This will allow us to upper bound the cost of
clustering with (Y7, ..., Y%) in terms of the cost, (X7, ..., X}) as well as clustering cost involving
only pairwise distances from {cj,...,c}}. Then, we relate to distances after applying the map II.
Specifically, first notice that if we conmder the set of centers ¢/, . .., ¢}, chosen from C1a1m|:

k
cost (V1,...,Yn) <> ) flz =3

i=1 x€Y;

k k
<3N (le—clle+ e =€)

i=1j=12€Y;NX;

<27 cost. (X7, XP) 427 Y Y Vin X[l =l @)
i=1 j=1
where the third inequality uses Lemma[A.3]once more. Note that the right-most summation of (@)

involves distances which are only among c7, ..., ¢}, so by the first assumption of the map II and
Claim[B.6] we may upper bound

k k k kK
SOS VANl — el <0303 N XTI — T3
i=1 j=1 i=1 j=1
< Dj-2%.val(Il,¢*, Y1,..., Y). (5)

Combining (@) and (5), we may upper bound
cost,(Y1,...,Y,) <257 . cost. (X],..., X;) + D7 - 227 .val(Il, ¢*, Y1, ..., Y2)

=271 COStz(Xika s aXZ) + DT - 2% Z Z |Y; N X]*| ’ HH(C;) - éz”;
i=1 j=1
(6)
We continue upper bounding the right-most expression in (6) by applying the triangle inequality:

k k
¥ X 1) — &l
2.2

i=1 j=1
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E k Kk
<2IYN N U@ -+ YN Y @) —al

i=1 j=1 zeYiﬁX; i=1 j=1 azeYiﬂX;
< 277Dy - cost, (X7, ..., X7) + 2571 - cost, (IT(Y1), ..., TI(YR)). @)

By the third assumption of the lemma, we note that

t.(T(Y1),...,T[(Y;)) <Dz - mi () — |12
cost. (T1(Y1) (Y3)) < D3 cl,..r.r,lcl,?eRfZHelbIcl] T () = ¢5]l3

<Dj- Z > ¢))|l3 < D3Dy - cost. (X],..., X}). (8)

j=lzeX;
Summarizing by plugging (7) and (8) into (6)), can upper bound
cost,(Y7,...,Y,) < (2771 +2%72. DiDo(1 + D3)) - cost. (X7, ..., X}).

C Efficient Seeding in One Dimension

In this section, we prove Theorem [2.1] which shows an upper bound for the running time of our
algorithm PRONE. As in Theorem [B.2] we consider a generalized version of PRONE where we run
k-means++ seeding for general z > 1 (Definition|A.2) in Step 2. We prove the following generalized
version of Theorem

Theorem C.1 (Theorem@for general z > 1). Let X = {x1,...,2,} C R? be a dataset consisting
of n points in d dimensions. Assume that d < nnz(X), which can be ensured after removing redundant
dimensions j € [d] where the j-th coordinate of every x; is zero. For any z > 1, the algorithm PRONE
(for general z as in Theorem @) has expected running time O (nnz(X)+ 2%/2nlog n) on X. For any
§ € (0,1/2), with probability at least 1 — 8, the algorithm runs in time O (nnz(X ) +2%/?nlog(n/s)).
Moreover; the algorithm always runs in time O(nnz(X) + nlogn + nk).

To prove Theorem 2.1, we show an efficient implementation (Algorithm|1) of the k-means++ seeding
procedure that runs in expected time O(27/?nlogn) for one-dimensional points (Lemma . A
naive implementation of the seeding procedure would take ©(nk) time in one dimension because we
need ©(n) time to update p; and sample from the D? distribution to add each of the k centers. To
obtain an improved and provable running time, we use a basic binary tree data structure to sample
from the D? distribution more efficiently, and we use a potential argument to bound the number of
updates to p;.

The data structure S we use in Algorithm[I]can be implemented as a basic binary tree, as described
in more detail in Appendix [D. The data structure S keeps track of n nonnegative numbers s1, .. ., s,
corresponding to p7, ..., pZ and it supports the following operations:

1. Initialize(a). Given an array a = (ay,...,a,) € R%, the operation Initialize(a)
creates a data structure S that keeps track of the numbers s, ..., s, initialized so that
(s1,.--58n) = (a1,...,ay,). This operation runs in O(n) time.

2. Sum(S). The operation Sum(.S) returns the sum $1 + - - - + s,,. This operation runs in O(1)
time, as the value will be maintained as the data structure is updated.

3. Find(S,r). Given a number r € [0, ., s;), the operation Find(S, r) returns the unique
index £ € {1,...,n} such that

This operation runs in O(logn) time.

4. Update(S, a,i1,42). Given an array a = (a1,...,a,) € RZ, and indices i1, 2 satisfying
1 <41 < iy < n, the operation Update(S, a, i1, 12) performs the updates s; « a; for every
i =11,41 + 1,...,19. This operation runs in O((i2 — i1 + 1) + logn) time.
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Algorithm 1: Efficient k-means++ seeding in one dimension

Input: Points x4, ...,x, € R; k € Z satisfying 1 < k < n; real number z > 1.
Output: Centers zy, , ..., %y, € R;assignmento : [n] — [k].
Sort and re-order the points so that 1 < - -+ < z,;
Choose ¢; uniformly at random from {1,...,n};
Initialize a = (ay, ..., a,) by setting a; < |z; — xy, |* foreveryi =1,...,n;
S < Initialize(a);
fort=2,... kdo
Choose r uniformly at random from [0, Sum(S5));
0 < Find(S,7); ap, < 0; i+l —1; j+—{+1;
while ; > 0 and |z; — x¢,|* < a; do
a; < |z — x4, |%
1 1—1;
end
while j < nand |z; — 2,|* < a; do
aj  |z; — z,|*;
J< i+ 1L
end
Update (S,a,i+ 1,5 — 1);
end
Sort and re-order ¢, ..., ¢ sothat {1 < --- < £ ;
i1, j«1;
whilei <ndo /* Assign x; to the closest center Ty, @MONE Ty, ,...,Ty,. */
if j <kand |z; — 2| > |2; — 24, | then
| j«Ji+1
else
o(i) < Jj;
i1+ 1;
end
end
return z,, ..., 2, and o (converted to the old ordering of 21, ..., z,, before Line ;

The following claim shows that Algorithm [1|correctly implements the k-means++ seeding procedure
in one dimension.

Claim C.2. Consider the values of t, a1, . .., ay, and the data structure S at the beginning of each
iteration of the for-loop (i.e., right before Linel6). Let s1, ..., s, be the numbers the data structure S
keeps track of. For everyi =1,...,n, define p; := ming—;y ;1 |x; — Ty, |. Then s; = a; = p?
foreveryi=1,...,n. Consequently, the distribution of {, at Line[7 conditioned on the execution
history so far satisfies Pr[l, = i) = p7/ > ., _, p foreveryi=1,...,n.

The claim follows immediately by induction over the iterations of the for-loop based on the description
of the data structure S and its operations above. The following lemma bounds the running time of
Algorithm

Lemma C.3 (Lemma [2.4] for general z > 1). The expected running time of Algorithm |l is
O(2*/?nlogn). For any § € (0,1/2), with probability at least 1 — &, Algorithm |Z runs in time
0(2%/?*nlog(n/d)). Moreover, Algorithmalways runs in time O(nlogn + nk).

Before proving Lemma|C.3, we first use it to prove Theorem|[C.T.

Proof of Theorem|C.1, Lemma|C.3]bounds the running time of Step 2 of our algorithm PRONE defined
in Section 2. Now we show that Step 1 (random one-dimensional projection) can be performed in
time O(nnz(X) + n). Indeed, z} can be computed as x; = 3, x;;0; where the sum is over all
the non-zero coordinates x;; of x;, and each v; is drawn independently from the one-dimensional
standard Gaussian (the value of v; should be shared for all ¢). The time needed to compute z, . .., z/,

in this way is O(nnz(X) + n). In Step 3 of PRONE, we compute the center of mass for every cluster.
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This can be done in time O(nnz(X) + n) by summing up the points in each cluster and dividing each
sum by the number of points in that cluster. O

The key step towards proving Lemma[C.3 is to bound the number of updates to @ at Lines[9]and [I3]
As the algorithm starts by sorting the n input points, which can be done in time O(n logn), we can
assume that the points are sorted such that vy < --- < x,. Fori=1,...,nandt =2,...,k, we
define £(i,t) = 11if a; is updated at Line[9 in iteration ¢ and define £(i, t) = 0 otherwise. Here, we
denote each iteration of the for-loop beginning at Line [5 by the value of the iterate t. We define
U; = Ef:z &(i,t) to be the number of times a; gets updated at Line@ The following lemma gives
upper bounds on u; both in expectation and with high probability:

Lemma C4. Foreveryi=1,...,n, it holds that
Elu;] < O(2*/%logn).
Moreover, for some absolute constant B > 0 and for every § € (0,1/2), it holds that
Pr[u; < B2*/%log(n/8)] > 1— 4.

Before proving Lemma|C.4, we first use it to prove Lemma|C.3.

Proof of Lemmal|C.3| Recall that fori = 1,...,nandt = 2,...,k, we define {(i,t) = 1if a; is
updated at Line%l iteration ¢ and define £(é,t) = 0 otherwise. Similarly, for j = 1,...,n and
t=2,...,k wedefine {'(j,t) = 1if a; is updated at Line[13 in iteration ¢ and define ¢'(j,t) = 0
otherwise.

The computation at Lines [T4 takes O(nlogn) time. The computation at Lines [I828 takes
O(klogk + n) = O(nlogn) time. For t = 2,... k, iteration ¢ of the for-loop takes time
O(logn+ > i, &(4,t) + > €'(4,t)). Summing them up, the total running time of Algorithm E
s n k n k
0 <n10gn S e+ ZZ&'(i,t)) . ©
i=1 t=2 i1 t=2

By Lemma[C.4,

n k
PBPBNCL)
=1 t=2 1
Also, for any 8’ € (0,1/2), setting § = ¢’/n in Lemma[C.4] by the union bound we have

E =E | ui| =0(2*?nlogn). (10)
=1

n k [n k
Pr [ZZ&(LL‘) < 2B2*/?nlog(n/8")| > Pr ZZf(i,t) < B2Z/2n10g(n/§)]

i=1 t=2 i Li=1 t=2
>1—nd
—1-4. (11)

Similarly to and we have

n k
E > €(i,t)| = 0(2*/*nlogn), and (12)
i=1 t=2
n k
Pr lZZg(i,t) < 2322/2n10g(n/5’)] >1-7. (13)
i=1t=2

Plugging and into (9) proves that the expected running time of Algorithm [T is
O(2%/?>nlogn). Choosing & = §/2 for the § in Lemma and plugging and into
(©), we can use the union bound to conclude that with probability at least 1 — ¢ Algorithm|l runs
in time O(2*/2nlog(n/d)). Finally, plugging £(i,¢) < 1 and & (i,t) < 1 into (), we get that
Algorithm |I|always runs in time O(n logn + nk). O

te{1,...,k} such that 3_},_, £(i,t') = u. That is, a; gets updated at Line (9 for the u-th time in
iteration ¢(¢,u). Our definition implies that ¢(i,0) = 1 and ¢(i,u) € {2,...,k} foru =1,...,u,.
We define a nonnegative potential function 7(7, u) as follows and show that it decreases exponentially
in expectation as u increases (LemmalC.5).

To prove Lemma|C.4] for i = 0,...,nand u = 0,...,u;, we define t(z’,zlj to be the smallest
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Potential Function 7(i,u). Fort = 2,..., k, we consider the value of ¢; after Line |Zin iteration
t. Foru=1,...,u;, we define n(i, u) to be L4(s,u) — 1, which is guaranteed to be a positive integer
by the definition of ¢(¢, ). Indeed, in the while-loop containing Line E, 1 starts from ¢; — 1 and
keeps decreasing, so whenever Line[9 is executed, 7 is smaller than ;. In particular, a; is updated
at Line lgin iteration (4, u) of the for-loop, so we have i < {y(; ,,). We define 7(7,0) = n, and for

u=mwu;+1,u;+2,..., wedefine n(i,u) = 0. See FigureE]for an example illustrating the definition
of n(i, ).
T T @ Tga o T
t ‘ f ,
gt(i,?) =1+1 gt(i,l) =i+4
n(i,2) =1 n(i,1) =4

Figure 4: An example illustrating the definition of the potential function n. Here, a; is updated at
Linelglfor the first time in iteration (¢, 1) when ly(i,1) = it +4. Then a; gets updated at Linel?]for the
second time in iteration ¢(4, 2) when ly(i,2) = © + 1. We always have £, > i whenever a; is updated
at Line[9] and 7 is the difference between ¢; and i. Thus in this example 7(¢,1) = 4 and 1(i,2) = 1.
If a; is never updated at Line 9] after iteration ¢(i, 2), we define n(i,u) = 0 foru = 3,4, .. ..

Lemma C.5 (Potential function decrease). Foranyi € {1,...,n} and u € Z>,

‘ ‘ : 27/2 1
i+ DI, 0). (i) < max {0, 55 ntiv - 5}
Before proving Lemma we first use it to prove Lemma [C.4] Intuitively, Lemma says
that 7)(¢, u) decreases exponentially (in expectation) as a function of u. Since 7(i, u) is always a
nonnegative integer, we should expect 7)(%, u) to become zero as soon as u exceeds a small threshold.
Moreover, our definition ensures 7(¢, u;) > 0, so u; must be smaller than the threshold. This allows
us to show upper bounds for u; and prove Lemma[C.4.

Proof of Lemma[C4, Our definition of 1) ensures 7(é,u;) > 1. By Lemma|C.5 and Lemma|C.7,

Inn 1
Elui +1] < —77 + 2z 027 Inn) 4272 + 1.
In 52/s 1— T

This implies E[u;] = O(2?/?logn). Moreover, by Lemma @,
) ) 22/2 u 22/2 u
E[n(i,u)] < n(i,0) <2z/2+1> =n <22/2+1) )
and thus, by Markov’s inequality,
) 22/2 u
Prlu; > u] = Prn(i,u) > 1] <n (2z/2+1> .

For any 6 € (0,1/2), choosing u = ln(n/é)/ln(Qz/;/ﬁl) = 0(2*/%1log(n/)) in the inequality
above gives Pru; > u] < 4. O

We need the following helper lemma to prove Lemma|C.5.

Lemma C.6. The following holds at the beginning of each iteration of the for-loop in Algorithm/[I,
i.e., right before Line6]is executed. Choose an arbitrary i = 1,...,n and define

L={i}u{teZ: i<l<n,|z; —x* <a;}. (14)
Then for £, 0" € L satisfying £ < (', it holds that apy < 2%ay.

Proof. Fort =2,... k,atthe beginning of iteration ¢, the values {1, ..., ¢;_; have been determined.
For every z € R, let p(z) denote the value among zy, ,...,xy,_, closest to x. By Claim
a; = |z; — p(x;)|* for every i € [n]. Now for a fixed ¢ € [n], define L as in and consider
0,0 € L satisfying £ < ¢'. It is easy to see that x; < p(xy) < x4 cannot hold because otherwise
a; < |z; — p(xe)|? < |z; — x¢|* < a;, a contradiction. For the same reason, the inequality z; <
p(z¢) < 4 cannot hold. Thus there are only three possible orderings of z;, x4, ¢, p(x¢), p(xe):
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L. p(xe) = plae) < x; < 20 < 2403

2. p(we) <xy <y < 2pr < p(ae);

3. 2 <wmp < zp < plag) = p(zp).
In scenario 3, it is clear that ap = |z — p(ap)|* < |z — p(2¢)]* = ap. In the first two scenarios,
foranyt' =0,...,t —1,

|zi — e, | > |20 — @0, | — |20 — 23] = w0 — p(m0)| — |20 — 23| = |25 — p(20))].
This implies that p(z;) is the closest point to ; among xy, , . .., xy, ,. Therefore, a; = |x; — p(xy)|?.
Jensen’s inequality ensures ((g + h)/2)* < (g* 4+ h*)/2 for any g, h > 0, which implies (g + h)* <
22’192 + 22132 Therefore,
ap < |z — p(ze)|? < 227 Hap — 237 + 257 oy — pla)|? < 2%ay,
whereas
ag = |wg — p(xe)|” = @i — p(ae)|” = ai.

Thus, we have ay < 2%ay in all three scenarios. O

Proof of Lemma|C.5. Throughout the proof, we fix ¢ € {1,...,n} and u € Z>( so that they are
deterministic numbers. Algorithm|[T is a randomized algorithm, and when we run it, exactly one of
the following four events happens, and we define a random variable ¢t* accordingly:

1. Event F;: u; < u. That is, a; gets updated at LineEfor less than u times. In this case we
have 7(i,u 4+ 1) = 0 by our definition of 7), and we define t* = +o0.

2. Event Es: u; = w and i is never chosen as ¢; at Line [7. In this case we also have
n(i,u + 1) = 0, and we also define t* = +oo.

3. Event E3: u; = u and there exists t € {2,3,...,k} such that i is chosen as ¢; at Line|z1n
iteration ¢. This ¢ must satisfy ¢ > (i, u), as all updates to a; in Line|§|must happen before
x; is chosen as a center. We define ¢* = ¢ in this case. Again, we have n(i,u + 1) = 0 in
this case.

4. Event Ey: u; > u. We define t* := ¢(4,u + 1) > (¢, u) in this case.

Define E* := E3 U E4. Since n(i,u + 1) = 0 under E; and E», it suffices to prove thatﬂ

2%/2 1
]E[n(% u+ 1)|77(7’7 O)a ce 777(i7 u)a E*] < Wﬁ(% U) - 5 (15)
By our definition, the random variable ¢* takes its value in {2,3,...,k} U {4+00}. Moreover,

t* = +oo if and only if E* does not happen. Therefore, to prove (13), it suffices to prove the
following for every to = 2,3,...,k:

27/2 1
Consider a fixed ty € {2,3,...,k}. For t* = t( to happen, the following must hold during the
execution of Algorithm I]before iteration ¢(: a; has been updated at Line 0] for exactly u times, and i
has not been chosen as /; at Line[7] Thus, the rest of the proof assumes that the execution history H of
Algorithm|[I|before iteration ¢, satisfies this property. Now we know that the values 7(i,0), .. ., 7(i, u)
are determined by the execution history H. Lines guarantee that the distribution of ¢, satisfies

a
Prit;, = ¢|H] = —t—  for every { =1,...,n,
Zj:l aj
where we use the values a1, .. ., a, right before iteration ¢ is executed. Moreover, conditioned on

H, we have t* =t if and only if /;, € L, where
L={}u{leZ:i<l<n,|z—z;]° <a;}.

>We have (i, u + 1) = 0 also for E3, so one can also simply choose E* = E,. Choosing E* = E3 U E,4
helps us get improved constants in our bound.
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Therefore, if we further condition on ¢t* = ¢y, we have ¢;, € L and

Prlly, = L|H,t" =to] = % for every £ € L. (17
ZjeL a;
When t* = ty, we have n(i,u + 1) = ¢;, — i. Therefore, to prove , it suffices to show that
22/2 1
E[l, — i|H,t" = to] < Wn(i,u) ~ 3 (18)

It is clear that we can write L as L = {i,4 + 1,...,¢*} for some integer £* > i. If u > 0, Claim
implies a; < [x; — @y, ,|*, and thus £* < £y(; ) and €% — i < by ) — i@ = (i, u). ifu = 0, we
have 7)(¢,u) = n, so it also holds that /* — ¢ < (i, u). By and Lemma|C.6, we can set y = 2*
in Lemma|C.8]to get

' 2z/2 , 1 22/2 1
. . _ < T L2 1
E[ to Z|H7t tO]f 2z/2+1( Z) 9 = 22/2+177(27u) 2'
This proves (18) and thus proves the lemma. O

C.1 Helper Lemmas

Lemma C.7. Let M > 1 and \ € (0,1) be parameters. Let g, a1, ... € [0,+00) be random
variables satisfying oy = M and Eloiy1|aq, ..., ;] < Aoy forevery i = 0,1,. ... Lett > 0 be the
smallest integer satisfying o, < 1. Then

E[f] < In M n 1
T n(1/A) 1= X
Proof. For every j = 0,1,..., we define a random variable ¢; := min{t, j}. By the monotone
convergence theorem, it suffices to show that
In M 1

i< E— | =
[tj]*ln(l//\)—’_l—)\ forevery j = 0,1, (19)

We prove by induction on j. When j = 0, we have ¢; = 0, and the inequality above holds
trivially. We assume that holds for an arbitrary j € Zx( and show that it also holds with j
replaced by 5 + 1. We have

Elt; 1] = 1+ E[tjs1 — 1] = 1 + E[E[(t;11 — 1)]ea])- (20)

By our definition of ¢4, we have ¢;11 — 1 = min{t — 1, j}. Applying our induction hypothesis on
the sequence o, as, . . ., we have

E[(tj+1 — 1)]a;] = Emin{t — 1, j}|ai] < f(a1), 1)
where
N )
_ )i if a € [0,1);
fla) = {lnl(‘;%) + L, ifa> 1

It is easy to check that f is an increasing concave function of a € [0, +o0) and 1 + f(Aa) < f(a)
holds for every a > 1. Plugging into (20), we have

In M 1
Elt: 1] <1+E <1 E <1 M) < fM)=——F~ 4+ ——.
1] € 1+ E{f00)] < 1+ F(Blon]) < 1+ F(AM) € J(M) = oo + =
Lemma C.8. Let v > 1 be a real number. Let [y, . .., By,—1 be non-negative real numbers such that

foreveryi,j € {0,...,m — 1} satisfying i < j, it holds that 3; < vB;. Then,

m—1 m—1
g o< (Y2 1 |
Zzﬁz<<ﬁ+1 2);51.

=0
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Proof. The lemma holds trivially if 5y = 0 because in this case 3; < v8y = 0 for every j =

0,...,m — 1. We thus assume w.l.o.g. that 5y > 0. Define 7 to be the unique real number satisfying
m—1 m—1
DWED
i=0 i=0

It is clear that 7 € [0, m — 1]. Our goal is to prove that

cVrm 1 (22)

T .

VAT S
Define 3, := ming<;<- f;. Foreveryi =0,...,m — 1, we have 3; > B, if i < 7, and §5; < v, if
i > 7. Therefore, defining s := |7, we have

m—1
O_TZﬁz Zlﬂz
; 1=0
Z T—1)p
S0+ T i @)
i<t i>T
(s+1)(27 — s) (m—s—1)2r—m—s)

=g Bt 5 YBx- (24)

Now, we show that 3, > 0. For the sake of contradiction, assume 5, = 0. We already assumed
that B89 > 0, so 84 # [y. By the definition of 3,, this means that 7 > 0 and inequality is strict,
leading to the false claim of

0> (r—i)B+ > (T — i)y = 0.

i<r i>T

Therefore, S, > 0 must hold. Now we know that implies
(s+1)27—s)+(m—s—1)2r —m —s)y <0.
Treating s as a real-valued variable, the left-hand side is minimized when s = 7 — 1/2, giving us
(1+1/2)* — (m—7—1/2)*y <0.

The inequality above implies

(T+1/2)* < (m—1—1/2)%y
Taking square root for both sides and solving for 7 gives (22). O

D Data Structure for Fast Sampling in Seeding

In Appendix [C| our Algorithm [T]uses a binary tree data structure S that keeps track of n nonnegative
numbers s1, ..., S, and supports several operations. Here, we describe the implementation of this
data structure. We assume that n = 29 for some nonnegative integer g. This is without loss of
generality because we can choose n’ to be the number that satisfy n < n’ < 2n and n’ = 29 for some
q € Z>o and consider s1, ..., 8, Spt1,---,Sp With 8,41 = -+ = 5,» = 0. Under this assumption,
the data structure S is a complete binary tree with ¢ + 1 layers indexed by 0, ..., g. In each layer

¢ =0,...,q there are 2¢ nodes each corresponding to a set of indices from {1,...,n}. The root,

denoted by Ugo)’ is the unique node in layer O and it corresponds to the entire set V(0 ={1,...,n}.

For( =0,...,q—1, each node UJ(C) in the ¢-th layer has two children vécﬂ), végﬂ) in the (¢ +1)-th
layer correspondmg to the sets VQ(j 1 V2(7 +1), respectively, where V;fjl ) is the smaller half of
Vj(o and Vz(f+ ) is the larger half. Thus,

D=fieZ:(j—1)27¢ < i< j21¢)

©

© — )
in the tree stores a sum 557 = Zievf‘) S;.

Each node v ;

The data structure supports the four types of operations needed in Appendix |C|as follows:
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Layer 0

Layer 1

Layer 2

Layer 3

Figure 5: An example of a basic binary tree data structure with ¢ = 3.

1. Initialize(a). Recursively run Initialize on the first half (ay,...,a, ) and the
second half (a,, /241, .- ., a,) to obtain the two subtrees rooted at v%l) and vél). Then add a
root U%o) that stores 550) — sgl) + 5(21).

2. Sum(.S). Simply output Sgo).

3. Find(S,r). If r < sgl), recursively call Find on the left subtree rooted at vil). Otherwise,

recursively call Find on the right subtree rooted at vél) with r replaced by r — sgl). Once

(q)
¢

we reach a leaf v,”’, return /.

4. Update(S,a,iy,42). If iz < n/2, recursively call Update on the left subtree rooted at vgl).

If i1 > n/2, recursively call Update on the right subtree rooted at vél). Otherwise, we have

i1 < n/2 < iy and we call Update on the left subtree with indices i1, /2 and call Update

on the right subtree with indices n/2 + 1, i. In all cases, we update sgo) — sgl) + sél) as

the final step. The running time is proportional to the number of nodes we update. We need
to update sg-o stored at v§<) only if Vj(o N{i1,...,i2} # 0. For each ¢, the number of such

j is at most (i — iy + 1)/297¢ + 2. Summing up over ¢ = 0, ..., g, the total number of
nodes we need to update is O((iz — 41 + 1) + ¢) = O((i2 — i1 + 1) +logn).

E Additional Experiments and Data

In this section, we provide the tables for speedups and absolute running times of the experiments
performed in Section[3] Additionally, we provide some experimental data for the algorithmic approach
described in Theorem

E.1 Improved Approximation Ratio

Experimental Setup.  This experiment aims to compare the algorithmic approach outlined in
Theorem [2.3]to the direct use of PRONE as a clustering algorithm as was done in Section For
this, we use PRONE as the approximation algorithm for sensitivity sampling and then cluster the
coreset using a weighted variant of the k-means++ algorithm. This approach is termed PRONE
(boosted) in the rest of this section. This pipeline requires as parameters the number of centers k
and a hyperparameter « indicating the size of the coreset produced by sensitivity sampling. We
aim to compare the clustering cost (see Definition and running time of our approach to that of
k-means++.

We run both algorithms on the datasets described in Section [3 and choose k €
{10, 25, 50,100, 250, 500, 1000, 2500, 5000} and « € {0.001,0.01,0.1}. Each algorithm is run
5 times.

Results on Improved Approximation Ratio  Costs. Figure|6|shows the costs of centers produced
by this algorithm relative to the cost of centers produced by k-means++. It also contains the (k, 2)-
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Dataset = KDD Dataset = Song Dataset = Census Dataset = Gaussian

3.0 120 2.00
Algorithm
~—— PRONE (boosted, a = 0.001)

25
§ 2.0 110 1.50 PRONE (boosted, a = 0.01)
1.05 PRONE (boosted, a = 0.1)
05 e = 1
15 N - k-means++
1.00 = 1.00 — = —— PRONE, no pipeline
10 vl -00 (B2 .+ N0 pips

10! 10? 10% 10! 10? 10° 10! 10? 103 10! 10? 10°
k k [3 k

1.15 1.75

Nos o o

Figure 6: Clustering cost of the boosted variants compared to k-means++. Lines in the plot show the
cost of centers produced by the boosted algorithm relative to k-means++ for centers ranging from 10
to 5000. Dark blue indicates the non-boosted version.

clustering costs of PRONE relative to k-means++. We can see that on all real datasets, PRONE (boosted)
produces solutions of the same or better quality than k-means++, as long as an < k. This shows that
although PRONE by itself produces centers of worse quality, the PRONE (boosted) variant produces
centers of the same quality as vanilla k-means++. When an = k, we observe an uptick in cost before
the end of the lines corresponding to « € {0.1,0.01} in the plots for KDD, Song, and Gaussian.
The boosted approach outperforms PRONE, which is usually worse by a constant factor compared
to the other algorithms, and it helps to reduce significantly the amount of variance in the quality of
solutions. On the Gaussian dataset, we observed a failure to sample a point from the central cluster,
which explains the spike at & = 2500 for the line corresponding to o = 0.1.

Running time. Table[2|shows the speedup of the boosted approach versus using plain k-means++, for
the time taken to compute the centers. The running time of our algorithms now scales with k, but at a
slower rate compared to k-means++, as we have to run it on a much smaller dataset. Once again, we
observe significant speedups, especially as k grows large.

* As expected, the speedup depends on the choice of the hyperparameter «. We observe diminishing
returns for larger « as k scales, with the speedup remaining mostly constant for £ > 100 across
datasets, except for Gaussian. This is due to the algorithm’s running time being dominated by the
time it takes to execute k-means++ on the coreset, which has O(ndk) asymptotic running time.
The speedups we can achieve using this method are significant, up to 118x faster than k-means++.
We expect that on massive datasets, even greater speedups can be achieved.

* Interestingly, the speedup can come very close to or even out scale «, as observed on the KDD and
Song datasets. The final stage of the boosted approach executes k-means++ on a coreset of size
an, so the running time of this step should be O(andk). The observed additional speedup may be
due to better cache and memory utilization in the k-means++ step of the algorithm.

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset Algorithm

Census PRONE (boosted, « = 0.001) 1.6 40 79 156 36.8 69.5 1185 - -
PRONE (boosted, o = 0.01) 1.5 37 67 11.7 208 285 30.1 36.2 419
PRONE (boosted, o = 0.1) 1.0 1.8 23 27 3.0 32 3.0 3.0 32
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Song PRONE (boosted, = 0.001) 2.1 53 10.7 21.3 51.7 975 - - -
PRONE (boosted, « = 0.01) 2.1 50 9.8 185 380 59.1 81.5 1083 117.0
PRONE (boosted, o = 0.1) 1.3 22 28 34 38 40 4.0 4.0 39
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KDD PRONE (boosted, « = 0.001) 1.8 50 9.6 20.6 - - - - -
PRONE (boosted, o = 0.01) 19 48 90 17.5 371 592 925 - -
PRONE (boosted, o = 0.1) 14 27 36 49 57 62 7.1 6.6 6.4
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Gaussian  PRONE (boosted, « = 0.001) 0.5 0.9 1.9 3.6 - - -
PRONE (boosted, « = 0.01) 0.5 1.0 20 34 82 148 256 - -
PRONE (boosted, o = 0.1) 04 0.8 14 22 40 50 6.1 6.8 7.2
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Average speedup when computing a clustering and assignment for different datasets relative
to k-means++. In other words, each cell contains T_means++/TproNE. Missing entries denote the case
of an > k.
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E.2 Additional Data

In this section, we provide the running time data for the full range of parameters for the experiments
performed in Section Table [3|shows the speedups over k-means++, analogous to the right-hand-

side table in Table[T] Additionally, Table f] provides absolute running times in milliseconds.

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset Algorithm
Census PRONE 1.5 38 7.5 151 362 732 1422 3519 6625
PRONE (variance) 05 1.1 22 46 11.0 222 437 1095 214.7
PRONE (covariance) 0.2 0.5 1.1 22 52 107 21.0 547 1174
k-means++ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Song PRONE 20 50 97 19.1 46.1 955 1882 443.0 8375
PRONE (variance) 05 1.1 23 45 114 23.1 442 1109 217.2

KDD

Gaussian

PRONE (covariance)
k-means++

PRONE

PRONE (variance)
PRONE (covariance)
k-means++

PRONE

PRONE (variance)
PRONE (covariance)
k-means++

0.2
1.0
L5
0.7
0.3
1.0
0.5
0.5
0.4
1.0

0.4
1.0
3.7
1.7
0.7
1.0
1.0
1.0
1.0
1.0

1.0

L5
1.0
16.3
6.3
2.6
1.0
3.8
3.8
3.6
1.0

4.0
1.0
39.5
16.1
6.8
1.0
9.2
9.1
8.2
1.0

8.2
1.0
68.3
320
12.9
1.0
18.3
17.7
16.1
1.0

15.5
1.0
158.5
63.4
25.8
1.0
35.7
345
31.8
1.0

40.0
1.0
414.7
159.6
58.5
1.0
85.3
83.6
79.9
1.0

82.4
1.0
727.5
312.4
128.4
1.0
165.9
162.9
152.6
1.0

Table 3: Average speedup when computing a clustering and assignment for different datasets relative

to k-means++. In other words, each cell contains T means++/TPRONE-

Centers 10 25 50 100 250 500 1000 2500 5000
Dataset  Algorithm
Census  PRONE 52514153 53434234  5346+208  530.1 £ 154 5389+ 152 5339+ 117 5474 +238 5482+ 13.5 563.7+8.7
PRONE (variance) 1750.6 £71.7  17789+38.1  1780.3+£239  17527+569  1768.6+282  1757.6=37.8 17789275 1761.0 £ 733 1739.6 + 109
PRONE (covariance) ~ 3769.0 & 152.2  3882.5 + 167.8 3743943167 3714243783 3766442202 36629+ 122.6  3708.7 £ 372.4 3525.6 + 609.9 3182.2 4+ 288.7
k-means++ 81254209 2040.6+25.6 39943+253 79929 £91.5 19519.0+ 161.5 39058.4 +337.8 77823.6£527.5 192913.1 £3657.0 3734882 +£221.9
Song PRONE 1044 £5.5 1018 +52 1065 + 4.1 1099 + 6.8 1137 £88 109.0 £ 6.4 108.7 3.9 1172463 1208 + 12.9
PRONE (variance) 4433 +5.0 4483 £ 8.0 450.1£9.9  468.0 £31.6 458.8 = 15.1 450.7 £ 10.0 462.6 = 11.6 468.3 £ 14.0 465.7 £ 14.9
PRONE (covariance) 11644+ 162.1 1266.5 + 136.6 13324+ 1163 1381.8+£ 1084 1322241734 12630+ 175.6 13242+ 1084 1296.8 4 177.8 12280 + 175.2
k-means++ 2074 £4.0 5137498 10366+ 17.0 21039 £442 52459+ 143.6 104125+ 1193 20464.1 1969  51917.4 + 5543  101149.0 + 1962.7
KDD PRONE 312452 322474 341418 289 +4.9 2924091 34.6 463 30.8 4 8.6 288 +5.2 334466
PRONE (variance) 720+ 14 718+ 14 765+7.2 75.1+7.1 718+ 12 739 +2.1 770+ 4.6 747 +32 77.7+5.9
PRONE (covariance) 169.3 +2.9 1735+£55 1803 +13.1  184.1+212 170.8 + 8.9 182.6 = 19.0 188.7 = 16.9 204.1 £ 40.3 189.1 £ 11.6
k-means++ 480403 1193 +37 2339432 4704+ 116 11535421 23633+ 108.6  4878.1 4 1711  11928.94+2343 242859 + 2438
Gaussian  PRONE 300+23 29.1+22 30.6+3.3 291+ 14 291+ 1.0 287402 293404 30206 3L5+06
PRONE (variance) 29.8 £ 3.0 289 +£0.3 205+ 1.0 29.6+0.6 29.6 403 29.6 404 302403 30.8 £ 0.2 321406
PRONE (covariance) 318422 315+2.1 34.6+6.6 30.8+03 327428 32.6+24 328423 32205 343404
k-means++ 13.7+22 30.0 + 0.4 59.5+22 1115428 268.6 + 1.5 5253+ 1.9 10433+ 1.4 25753 £ 5.0 52296 + 135.0

Table 4: Average running time and standard deviation in milliseconds when computing a clustering

and assignment for different datasets relative to k-means++.
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