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Abstract
In the kernel density estimation (KDE) problem one is given a kernel K(x, y) and a dataset P of points in

a high dimensional Euclidean space, and must prepare a small space data structure that can quickly answer
density queries: given a point q, output a (1 + ✏)-approximation to µ := 1

|P |
P

p2P K(p, q). The classical

approach to KDE (and the more general problem of matrix vector multiplication for kernel matrices) is the
celebrated fast multipole method of Greengard and Rokhlin [1983]. The fast multipole method combines
a basic space partitioning approach with a multidimensional Taylor expansion, which yields a ⇡ logd(n/✏)
query time (exponential in the dimension d). A recent line of work initiated by Charikar and Siminelakis
[2017] achieved polynomial dependence on d via a combination of random sampling and randomized space
partitioning, with Backurs et al. [2018] giving an e�cient data structure with query time ⇡ polylog(1/µ)/✏2

for smooth kernels.
Quadratic dependence on ✏, inherent to the sampling (i.e., Monte Carlo) methods above, is prohibitively

expensive for small ✏. This is a classical issue addressed by quasi-Monte Carlo methods in numerical analysis.
The high level idea in quasi-Monte Carlo methods is to replace random sampling with a discrepancy based
approach – an idea recently applied to coresets for KDE by Phillips and Tai [2020]. The work of Phillips and
Tai gives a space e�cient data structure with query complexity ⇡ 1/(✏µ). This is polynomially better in 1/✏,
but exponentially worse in 1/µ. In this work we show how to get the best of both worlds: we give a data
structure with ⇡ polylog(1/µ)/✏ query time for smooth kernel KDE. Our main insight is a new way to combine
discrepancy theory with randomized space partitioning inspired by, but significantly more e�cient than, that
of the fast multipole methods. We hope that our techniques will find further applications to linear algebra for
kernel matrices.

1 Introduction

In the kernel evaluation problem, an algorithm receives as input a dataset P of n points p1, . . . , pn 2 Rd and must
preprocess it into a small-space data structure that allows one to quickly approximate, given a query q 2 Rd, the
quantity

K(P, q) :=
X

p2P

K(p, q).(1.1)

where K(p, q) is the kernel function. In this paper, we will study positive definite (p.d) radial kernels K. In
particular, we consider kernel functions K : Rd ⇥ Rd ! R�0 given by a decreasing function of the distance, i.e.,
there exists a function G : R�0 ! R�0 such that K(p, q) = G(kp� qk22). The restriction that K is positive definite
means that for any collection of points x1, . . . , xm 2 Rd, the m⇥m kernel matrix whose (i, j)-entry is K(xi, xj) is
positive definite. Some example of prominent p.d radial kernels include1 the Cauchy kernel (or, more generally,
the rational quadratic kernel) for any � � 1, and the Student-t kernel, respectively,

K(p, q) :=

✓
1

1 + kp� qk22

◆�

and K(p, q) :=
1

1 + kp� qkt2
.(1.2)

A variety of kernels are used in applications [STC+04, RW06], and kernel methods are a fundamental approach
with numerous applications in machine learning, statistics and data analysis [FG96, SS01, JKPV11, SZK14,
GPPV+14, ACMP15, GB17].
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1
The Gaussian kernel K(p, q) = exp(�kp � qk22/(2�2

)) is a widely-used p.d kernel, but not “smooth” (as per the definition

in [BCIS18a]).
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For example, kernel density estimation is a classic tool in non-parametric statistics, where a kernel function
is applied to extrapolate a function specified on a discrete set of points to the entire space. This is used in
algorithms for mode estimation [GSM03], outlier detection [SZK14], density based clustering [RW10] and other
problems. Kernel methods (e.g., regression [SSPG16]) have also been applied to objects specified by point-clouds
or distributions [GFKS02], requiring summing up the kernel function between all pairs of points across two sets.
Another application is kernel mean estimation using an empirical average (see [MFS+17], section 3.4.2).

We are interested in fast and space e�cient approximations algorithms for kernel evaluations. An estimator
for K̂(P, q) is a (1 + ✏)-approximation to K(P, q) if

(1� ✏) · K(P, q)  K̂(P, q)  (1 + ✏) · K(P, q).

The kernel density estimation problem has received a lot of attention over the years, with a number of powerful
algorithmic ideas leading to di↵erent precision/space/query time tradeo↵s. The focus of this work is algorithms
for the so-called “high-dimensional” regime: we will study algorithms whose complexity will depend at most
polynomially, as opposed to exponentially in the underlying dimension.

Prior Work: Fast Multipole Methods. The celebrated fast multipole method [BG97] can be used to
obtain e�cient data structure for kernel evaluation (see also the Barnes-Hut algorithm [BH86]). However, this
approach su↵ers from an exponential dependence on the dimensionality of the input data points: it provides a
(1 + ✏)-approximation to kernel evaluation value using space ⇡ n logd(n/✏) and query time ⇡ logd(n/✏).

In particular, the exponential dependence on the dimensionality is due to a (deterministic) space partitioning
procedure (essentially building a quadtree) which is central to the fast-multipole method. More generally, this
deficiency is shared by other tree-based methods for kernel density estimation [GM01, GM03, YDGD03, LMG06,
RLMG09]. Methods based on polynomial approximations have recently been used to obtain fast algorithms for
kernel graphs [ACSS20] as well as attention mechanisms in transformers [AS23] – all these approaches are only
e�cient in relatively low dimensions.

Prior Work: Sampling-based approaches (Monte-Carlo methods). A recent line of work [CS17a,
CS19, BCIS18b, BIW19, CKNS20a] sought to design sublinear query-time algorithms for kernel density estimation
while avoiding exponential dependencies in the dimension (thereby allowing these methods to be scaled to high-
dimensional spaces). These works parametrize the query time of the data structure in terms of the value
µ = K(P, q)/n, and the goal is to achieve query times which are significantly faster than O(d/(✏2µ)), which
is what one achieves via uniform random sampling. Surprisingly, [CS17b] showed how, for several kernels, one
can reduce the query time to O(d/(✏2

p
µ)) by using the Locality-Sensitive Hashing framework of Indyk and

Motwani [IM98]. Furthermore, [BCIS18b] (and also [CKNS20a]) developed the approach further, and showed
that for “smooth” kernels, i.e. kernels with polynomial decay, a multiplicative approximation can be obtained
with just a polylogarithmic dependence on 1/µ. Specifically, they achieve a (1 + ✏)-approximation using space
⇡ n · polylog(1/µ)/✏2 space and

(1.3) query time ⇡ polylog(1/µ)/✏2.

Prior Work: Quasi-Monte Carlo (i.e., discrepancy-based) methods. In the approaches above, the
focus has always been on the dependence on µ, and the additional factor of 1/✏2 a consequence of the sampling-
based approach. More broadly, this quadratic dependence on 1/✏ is unsurprising. It is common, in approaches
via random sampling, to design an estimator and utilize Chebyshev’s inequality to upper bound the probability
that the estimator deviates from its expectation. On the other hand, in applications where the 1/✏2 dependence
(coming from random sampling) is prohibitively expensive, a common approach in numerical analysis is to use
quasi-Monte Carlo methods.

At a high level, these techniques are based on discrepancy theory. They seek to find a “random-like” set of
samples (such that the estimator will approximate the expectation), and at the same time, minimize the “random
deviations” that one expects from random sampling. In the context of kernel density estimation, this idea was
used in the beautiful work of Phillips and Tai [PT20], who used discrepancy theory to build a small coreset for
kernel density estimation. As we detail in Section 2, standard subsampling approaches correspond to chosing the
colors uniformly at random, but [PT20] show that a coloring with much lower discrepancy can be constructed
using Banaszcyk’s theorem. Repeatedly ‘subsampling’ using these low-discrepancy colorings, they give a data
structure with space ⇡ polyd/(✏µ) and

(1.4) query time ⇡ polyd/(✏µ).
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This gives yet another way to improve on the O(d/(✏2µ)) query time that one achieves via uniform random
sampling.2 In the work of [PT20], the focus is on the dependence on ✏ and the dependence on 1/µ remains
linear.3

Our contribution. In this work, we show how to achieve the best of both (1.3) and (1.4) quantitatively.
Namely, we show how one may use randomized partitioning techniques (like those in [BCIS18a, CKNS20a]) to
obtain a poly-logarithmic dependence on 1/µ for smooth kernels, and at the same time, a linear dependence on
1/✏. The resulting data structure will obtain space complexity ⇡ n · polyd log(1/µ)/✏ and

query time ⇡ polyd log(1/µ)/✏.

At a qualitative level, our work gives new structural results and algorithmic techniques for both the sampling-
based and quasi-Monte Carlo-based approaches, and we are hopeful that these techniques will prove useful for
fast algorithms in related tasks for kernels in high-dimensional spaces.

From the perspective of the sampling-based methods, our work shows that the quadratic dependence on 1/✏
is not intrinsic to the randomized approaches for high-dimensions, and that quasi-Monte Carlo (discrepancy-
based) techniques can be used to design kernel density estimators in high-dimensions. From the perspective of
the quasi-Monte Carlo methods, our work shows that, if one allows randomized data structures, then randomized
space partitioning can give exponential improvements on the µ-dependence of discrepancy for smooth kernels;
from polyd/(✏µ) to roughly polyd log(1/µ)/✏. In what follows, we will formally state our results and some open
problems, and give an outline of our techniques.

Our results. Our focus is on developing fast data structures for “smooth” p.d radial kernels. We reproduce
the definition of “smooth” kernel from [BCIS18a] below, and then we state our main result. As we will soon see,
the smoothness condition will become important in the technical details. After discussing the main result, we will
give a few open problems and highlight a few concrete challenges involved in obtaining improved ✏-dependencies
for non-smooth kernels (like the Gaussian kernel).

Definition 1.1. (Smooth Function [BCIS18a]) A kernel K : Rd ⇥ Rd ! R is (L, t)-smooth if for any three
points p1, p2, q 2 Rd with p1 6= q 6= p2,

max

⇢
K(p1, q)

K(p2, q)
,
K(p2, q)

K(p1, q)

�
 L ·

✓
max

⇢
kp1 � qk2
kp2 � qk2

,
kp2 � qk2
kp1 � qk2

�◆t

.

Remark 1.1. We remark that the definition above encompasses kernels with a polynomial decay, such as, for
example, the rational quadratic kernel and its variants with polynomial decay (1.2). While certainly less popular
than the Gaussian kernel, the rational quadratic kernel is commonly listed among the standard covariance functions
(i.e. kernels) in the literature on Gaussian processes. See, e.g., Section 4.2.1 of [RW06], as well as Section 5.4
of the same book, which in particular presents settings where the rational quadratic covariance assumption leads
to improvements of the Gaussian.

Theorem 1.1. (Main result (Informal – see Theorem 4.1)) For every ✏ 2 (0, 1) and µ > 0 there exists a
randomized data structure for kernel evaluation of (L, t)-smooth p.d radial kernels K with polynomial preprocessing
time,

space complexity: n · L · (d log(n�/(✏µ)))O(t)/✏ and query time: L · (d log(n�/(✏µ)))O(t)/✏

which outputs a multiplicative (1 ± ✏)-approximation to kernel evaluations whenever the kernel evaluation is at
least µn, where � is the aspect ratio of the points.4

2
One should interpret the dimensionality d as being !(logn)  d  n

o(1)
. This means that exponential dependencies on d should

be avoided (as they incur super-polynomial factors in n), but arbitrary polynomial dependencies are allowed.
3
In fact, the data structure of [PT20] has a Las Vegas guarantee; it uses randomness to build the data structure, but then

guarantees that all queries are correct.
4
The dependence on � seems necessary when making no assumptions on the smooth kernels. This dependence can be removed

under a mild assumption on the decay of the kernel (which holds for the Cauchy and Student-t kernels listed as examples).
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The main conceptual contribution behind the result is a framework for combining discrepancy techniques with
randomized space partitioning. To the best of our knowledge, ours is the first work that succeeds in combining
these lines of work. At a technical level the two main innovations that we introduce are (a) a strong bound on
the discrepancy of the kernel matrix for smooth kernels under a geometric separability assumption akin to the
one used in Fast Multipole Methods and (b) a way to partition a dataset (and potential queries) into a small
number of pieces that ensure separation.

Dependence on �. We note that a dependence on the aspect ratio � of the dataset is also present
in [BCIS18a], and seems necessary for general smooth kernels. For instance, a natural approach to removing
it would be to (a) remove data points that are poly1/(✏µ) far from the query point from consideration and
(b) discretize points without significantly changing the kernel values but ensure that non-equal points have a
minimum distance—(a) and (b) e↵ectively upper bounds the aspect ratio � by upper bounding the maximum
distance and lower bounding the minimum distance. However, this does not work without a closer look at the
specific kernel function K. For example, the counting kernel K(x, y) = 1 for all x, y would mean one cannot do
(a). For (b), consider the kernel K(x, y) = 1

1+�2kx�yk2 , where we let � go to infinity. This kernel is smooth as per
our definition for every �, independent of L. At the same time, the value of the kernel starts dropping sharply
at kx � yk2 ⇡ 1/�, so one should not give a discretization independent of �. At the same time, the dependence
on � can be removed for specific kernels such as the Cauchy or the t-Student kernel using the approach outlined
above.

Dependence on (d log(n�/(✏µ)))O(t). Our techniques will naturally incur a poly-logarithmic dependence on
d log(n�/(✏µ), where the specific power of the exponent will be O(t) for (L, t)-smooth kernels K. For the Cauchy
kernel or Student-t kernel with � and t being O(1), the additional factors are poly-logarithmic. Interestingly, the
dependence on the smoothness t in [BCIS18a] is 2O(t), which becomes important once t = ⇥(log n).

1.1 Future Directions and Open Problems We hope that our techniques, which allow one to combine
discrepancy methods with randomized space partitioning, will prove instrumental in resolving other exciting
questions in numerical linear algebra with kernel matrices. We mention two prominent questions here.

• Kernel density estimation for Gaussian Kernel. Does there exist a data structure for kernel density estima-
tion for the Gaussian kernel (i.e., K(p, q) = exp(�kp� qk22/2)) with polynomial space complexity and query
time polyd/(✏ ·µ0.99)? The Gaussian kernel is not “smooth” so the approach from this paper would degrade
to (d log(1/µ))⌦(d)/✏. A specific hurdle is that our partitioning techniques only ensure an ⌦(1/

p
d) relative

separation of the query and dataset (here ‘relative’ refers to the size of a bounding Euclidean ball - see Sec-
tion 2 for more details). However, a natural extension of our data-dependent embeddings to the Gaussian
kernel incurs an exponential dependence on the inverse of this relative separation – see Remark 3.1 for more
details.

• Fast Multipole Methods with a polynomial dependence on dimension. In fast multipole methods one ap-
proximates a kernel matrix by first using a crude (`1 ball carving) space partitioning to partition space
into bounded regions, and then Taylor expands the kernel arounds centers of these regions to approximate
interactions between well-separated data points (see, e.g., [BG97]). Both steps incur an exponential in the
dimension loss: the former because a constant factor separation is ensured in the crude `1 ball-carving used,
which requires breaking an `1 ball into d⌦(d) balls of factor

p
d smaller radius. The latter because a Taylor

expansion has an exponential number of terms in the dimension of the dataset. The latter exponential loss
was recently overcome by the work of [AKK+20a], who showed how to sketch the polynomial kernel (i.e., the
Taylor expansion) with only a polynomial in d dependence. However, the approach of [AKK+20a] su↵ers
from a polynomial dependence on the radius of the dataset, as they do not supply a corresponding space
partitioning primitive. Our space partitioning methods are able to exploit only a ⌦( 1p

d
) relative separation,

and only result in a polynomial in d dependence: can our techniques be used together with [AKK+20a] to
optimally sketch kernel matrices?

2 Technical Overview

In this section, we give an overview of the techniques involved. In order to highlight our main contributions, it
will be useful to consider the case of the 2-Student kernel K : Rd ⇥ Rd ! [0, 1] for concreteness. This kernel is

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited5121

D
ow

nl
oa

de
d 

08
/0

1/
24

 to
 5

0.
20

7.
99

.8
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



given by

K(x, y) =
1

1 + kx� yk22
.

One receives a dataset P ⇢ Rd of points and seeks to process them into a data structure to support kernel
evaluation queries. Namely, a query q 2 Rd will come, and we want to estimate

P
p2P

K(p, q) up to a factor
of 1 ± ✏, and similarly to [CS17a, CS19, BCIS18b, BIW19, CKNS20a] we will parametrize our time and space
complexity in terms of µ = (1/n)

P
p2P

K(p, q).
We start by explaining two prior approaches which will be important ingredients in our scheme. First, a

simple random sampling approach, and then the prior work of [PT20] which shows how to use discrepancy theory
to obtain an improved dependence on ✏. Then, we overview our approach. First, we show how we may improve
on the discrepancy bounds when datasets are “well-separated” from a query, and then how to algorithmically
utilize the improved discrepancy bounds in the worst-case.

Random sampling as repeated coloring. It is not hard to see that, since kernel values are always between
0 and 1, a uniformly random sample from P of size O(1/(✏2µ)) will approximate the kernel evaluation of any q with
probability at least 0.9. More generally, one may take samples from an unbiased estimator of (1/n)

P
p2P

K(p, q),
and show that the estimate is good via bounding the variance of the estimator. If proceeding with this plan,
the quadratic dependence on 1/✏ is a consequence of using Chebyshev’s inequality; since the probability that the
estimate is o↵ by more than ✏µ (the quantity we want to minimize by taking more samples) becomes at most
the variance divided by ✏2µ2. To facilitate comparison with discrepancy-based approaches, we now sketch an
alternative derivation of this result. And for this purpose it will be useful to instead think of repeatedly sampling
data points in P with probability 1/2 and analyzing how errors in the corresponding KDE estimates accumulate.

Suppose that we would like to subsample the dataset P to a subset P 0 containing about half of the points in
P while preserving KDE value. It is convenient to think of this process as coloring the points in P

� : P ! {�1, 1},

and then letting the ‘subsampled’ dataset P 0 contain points that were colored 1, say:

P 0 = {p 2 P : �(p) = 1}.

We thus would like to find a coloring � of P such that

(2.5)

������
1

|P |
X

p2P

K(p, q)� 2

|P |
X

p2P 0

K(p, q)

������
 ✏µ.

The left hand side of (2.5) can be expressed as

������

X

p2P

K(p, q)� 2
X

p2P 0

K(p, q)

������
=

������

X

p2P

K(p, q)� 2
X

p2P :�(p)=1

K(p, q)

������

=

������

X

p2P :�(p)=�1

K(p, q)�
X

p2P :�(p)=1

K(p, q)

������

=: discK(P,�, q),

the discrepancy of coloring � with respect to query q. Choosing P 0 to be a uniformly random subset of P
containing every data point independently with probability 1/2 amounts to a uniformly random coloring � of P ,
and a simple calculation shows that

discK(P,�, q) = O

0

@
sX

p2P

K(p, q)2

1

A = O

0

@
sX

p2P

K(p, q)

1

A = O
⇣p

µ · |P |
⌘
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for every kernel bounded by 1, with constant probability. Substituting back into (2.5) and taking the normalizing
factor of 1

|P | into account, we get that the error introduced by subsampling is below ✏µ as long as

1

|P | ·O
⇣p

µ · |P |
⌘
= O

✓r
µ

|P |

◆
⌧ ✏µ.

This means that we can keep subsampling5 while |P | � 1/(✏2µ). This recovers the bound from Chebyshev’s
inequality6.

Better colorings via Banaszczyk’s theorem [PT20]. Instead of selecting the coloring randomly, [PT20]
note that since K is a p.d kernel with K(p, q)  1 for all p, q, there exists an embedding � such that for every
p, q 2 Rd one has

k�(p)k2  1, k�(q)k2  1

as well as
K(p, q) = h�(p),�(q)i.

The existence of a coloring � such that

(2.6) discK(P,�, q)  O(�2(K)) = O(1) ·
✓
max
p2Rd

k�(p)k22
◆

= O(1)

for all q then follows by Banaszczyk’s theorem – see Theorem 3.1.7 Here �2(K) is the �2-norm of the kernel
matrix K, which provides a commonly used route for upper bounding discrepancy – see Section 3 for more details.
Substituting this bound into (2.5), we get that the error introduced by subsampling is below ✏µ as long as

1

|P | ·O(1) � 1/(✏µ).(2.7)

This means that we can keep subsampling while |P | � 1/(✏µ). This is a quadratic improvement on the ✏-
dependence from random sampling, but far short of our goal of polylog(1/µ)/✏. Furthermore, the bound on
discrepancy provided by (2.6) is tight in general.

Our approach: discrepancy bounds for well-separated datasets. In order to get around the tightness
of the above bound for general datasets, we show that every dataset P can be decomposed into a small number of
datasets that are ‘nice’ with respect to any fixed query q 2 Rd. This decomposition is independent of the query,
and relies on randomized space partitioning in high dimensions akin to locality sensitive hashing. We then design
specialized feature embeddings for each element in this decomposition to establish a significantly stronger upper
bound on the discrepancy of the corresponding sub-dataset with respect to q.

Our geometric assumptions are inspired by those in Fast Multipole Methods [BG97]. In the Fast Multipole
Methods, the space Rd is deterministically recursively partitioned with `1-balls of geometrically decreasing
diameter. The benefit of using `1-balls is that they tile Rd, and whenever p and q belong to two di↵erent
`1-balls which are not adjacent (share a corner) at a particular radius, p and q are separated by at least the
diameter. The downside is that, since Euclidean separation ultimately matters, one must decrease the radius by
at least a constant (and, in fact, at least

p
d) factor at every level – and this leads to an exponential dependence

in the dimension as the tree encoding the recursive partition has degree exp(⌦(d)). Our recursive partitioning
will be randomized and use `2-balls of randomly chosen radii. With such a partitioning scheme one can ensure
a weaker separation, namely a relative ⌦( 1p

d
) separation. We show, however, that this su�ces! Specifically, we

show strong discrepancy bounds when either

(1) the dataset P lies in a spherical shell and the query q lies in a slightly larger spherical shell (see Fig. 1)

or

5
One can verify that the total error induced by a sequence of recolorings is dominated by the error introduced in the last step –

see Section 3 for more details.
6
Of course, this derivation also uses Chebyshev’s inequality in bounding the discrepancy of a random coloring; however, as we

show next, it readily generalizes to settings when the coloring is obtained by a more careful method than uniformly random choice.
7
Banaszcyk’s theorem gives a distribution over (random) colorings which achieves a O(1) discrepancy for each q with very high

probability, so in general, there is a O(
p
logm)-factor, where m denotes the number of rows, i.e., queries, of the kernel matrix which

one wishes to support.
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rmax

rout
rmin

rin

dataset Ppossible queries

Figure 1: Illustration of the well-separated setup. The point c 2 Rd is the center of ball, which may be assumed
to be the origin after a translation, and we consider two well-separated shells at radii between [rmin, rin] and
[rout, rmax] centered at c, where rin < rout. We consider dataset points which lie in the inner shell, with distance
between rmin and rin from c, and queries which lie in the outer shell, with distance between rout and rmax from
c. This is the case we consider throughout the technical overview; the symmetric case when the dataset is inside
a low radius shell and query is outside will be analogous.

(2) the query q lies inside a spherical shell and dataset P lies in a slightly larger spherical shell (the opposite of
(1)).

This in particular is where we crucially use the assumption that the kernel is smooth – see Remark 3.1 in
Section 3 for more details.

In what follows we give a more detailed outline of how our feature embeddings are constructed, using the
2-Student kernel as a running example. We first define a basic feature embedding, then explain how to apply
discrepancy theory to achieve good colorings via the �2 norm of the embedding and then talk about our modified
feature embeddings that achieve strong discrepancy bounds in settings (1) and (2) above.

Feature Embeddings for Smooth Kernels. The crucial property of positive definite kernels K is that
they may be represented as inner products in a (potentially infinite dimensional) feature space. Consider the
following explicit construction for the 2-Student kernel, which proceeds by taking the inverse Laplace transform
of 1/(1 + kx� yk22) and a Taylor expansion of ex:

K(x, y) =
1

1 + kx� yk22
=

Z 1

t:0
e�t(kx�yk2

2+1)dt =

Z 1

t:0
e�tkxk2

2e�tkyk2
2e2thx,yie�tdt

=

Z 1

t:0
e�tkxk2

2e�tkyk2
2 · e�t

1X

k=0

(2t)k

k!
· hx⌦k, y⌦kidt.

We may now consider an embedding � which takes as input a vector x 2 Rd and outputs the (infinite-dimensional)
function �(x) whose inputs are a number t 2 [0,1), an index k 2 Z�0, and sets

�(x)(t, k) := e�tkxk2
2

r
(2t)k

k!
· e�t/2 · x⌦k 2 Rd

k

.(2.8)

This representation has the benefit that for all x, y 2 Rd

K(x, y) = h�(x),�(y)i,

where h�(x),�(y)i =
R1
t:0

P1
k=0(�(x)(t, k))

|(�(y)(t, k))dt.
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Discrepancy on the Feature Space. The key to applying discrepancy minimization algorithms is
understanding the so-called �2-norm of the kernel matrix, since this will govern the discrepancy that we may
achieve (and hence the number of times that we may halve the dataset). Consider the kernel matrix A = (K(q, p))
where rows are indexed by a set of possible queries Q and columns are indexed by dataset points P . The �2-norm
of A is the minimum, over all factorization of A into UV , where U is a |Q|⇥ d0 matrix and V is a d0⇥ |P | matrix,
of the maximum row norm of Q times the maximum column norm of P . By placing �(q) as the rows of U for
each potential query in Q and placing �(p) as the columns of V for each dataset point in P , we obtain that

�2(A)  max
q2Q

k�(q)k2 ·max
p2P

k�(p)k2.

By construction, k�(q)k22 = h�(q),�(q)i = K(q, q) which equals 1 for any q (and similarly p) – this gives the bound
on the �2-norm used by [PT20]. As we show below, however, significantly stronger upper bounds on the �2-norm
can be obtained if the dataset is well-separated from the query in an appropriate way – this, coupled with a new
hashing-based procedure for reducing to the well-separated setting, will lead to our improved bounds.

Modifying the Feature Embedding. Suppose that every dataset point p in P was contained within a
shell of inner radius rmin and outer radius rin, and that every query q in Q which we will consider was contained
within a shell of inner radius rout (which is larger than rin) and outer radius rmax (the symmetric case when the
query is inside a shell close to the origin and the dataset points are in a shell far from the origin will be analogous).
See Fig. 1 for an illustration.

In Section 3.1, we show that a configuration gives an improved bound on the �2 norm of the kernel matrix.
Indeed, the fact that q has norm which is at least rout and every p in P has norm which is at most rin guarantees
that the points p and q are not too close to each other, i.e.,

(2.9) kp� qk2 � rout � rin.

For example, if we could support a small additive error ⇠ > 0 (which we will later incur a logarithmic dependence,
so we will set ⇠ to ✏µ/n), then, it su�ces to “cut o↵” the feature embedding at

t0 := O

✓
ln(1/⇠)

(rout � rin)2

◆
,

because for any such “well-separated” pair of points p, q 2 Rd,
Z 1

t:t0

e�t(kp�qk2
2+1)dt  e�t0(rout�rin)

2
Z 1

t:t0

e�tdt  ⇠.

Once we introduce this change, we will exploit the fact that kpk2 2 [rmin, rin] and kqk2 2 [rout, rmax] in order to
modify the embedding to �0 such that the norm of �0(p) will not increase too much, but the norm of �0(q) will
decrease a significant amount. Overall, we will show that k�0(p)k2k�0(q)k2, which gives an upper bound on the
�2-norm of the matrix, will be much smaller. In particular, for a setting of ⇢ > 1, we introduce the change

(2.10) �0(p)(t, k) = �(p)(t, k) · ⇢k and �0(q)(t, k) =
�(q)(t, k)

⇢k
,

and �0 certifies an improved bound on the �2-norm of an additive ⇠-perturbation of kernel matrices. In particular,
we upper bound the product of k�0(p)k2k�0(q)k2 while using the fact that kpk2 2 [rmin, rin] and kqk2 2 [rout, rmax].
We point the reader to Section 3.1 with G(t) = (1 + t)�1, where we show that this product can be at most,

k�0(p)k2k�0(q)k2 . ln(1/⇠) · r2in
(rout � rin)2 · rout · rmin

 ln(1/⇠) · rin
(rout � rin)2 · rmin

.(2.11)

The above bound gives us the upper bound on the discrepancy that we will achieve, and this will dictate how
many times we may half the dataset and incur at most ✏µ error. Importantly, since the query q and every dataset
point p considered (inside the shell) satisfies by (2.9), we have a lower bound on what each point p from the shell
contributes to the kernel evaluation to a query q 2 Q,

µ � min
p2P,q2Q

K(p, q) � 1

1 + (rin + rmax)2
,
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since rin + rmax is an upper bound on the maximum distance from q to P . We will be able to ensure that
rmax = O(rout), rin/rmin = O(1), and that rout � rin � ⌦(rout/

p
d) (we expand on why in the next subsection).

Overall, this means that

µ � ⌦

✓
1

1 + r2out

◆
.

Since we had rin/rmin = O(1) and (rout � rin)2 � r2out/d, when we use the discrepancy bound in (2.11), each step
of halving incurs error O(ln(1/⇠) · r2out/d), and similarly to the discussion in (2.7), we may continue decreasing
the dataset until

1

|P | ·O
✓
ln(1/⇠) · d

r2out

◆
. ✏

1 + r2out
=) |P | & d ln(1/⇠)

✏
.

Even though we have specialized the discussion to the 2-Student kernel, we use a characterization of positive
definite radial kernels due to Schoenberg in order to use the above embeddings in general. We note that the
smoothness assumption come in the following way. Note that the �2-norm bound depends on how rmin, rin and
rout relate to each other, which will factor into the number of times we may halve the dataset while incurring at
most ✏µ in the error. This must be compared to K(p, q) (which depends on kp � qk2) so that the additive error
can be absorbed into ✏ · K(P, q)/|P |. (See also, Remark 3.1.)

Remark 2.1. Taking a broader perspective on kernel methods for high-dimensions, we are not aware of any
prior work which adapt the feature embeddings to the specific dataset for improved algorithms. As an example,
sampling techniques for the Nyström method [MM17], random Fourier features [RR08, AKM+17], and sketching
methods [ANW14, ACW17a, ACW17b, AKK+20b] always consider the feature embedding � : Rd ! L2 which gives
h�(p),�(q)i = K(p, q) for all p, q 2 Rd. Our approach, of dividing the dataset and adapting the feature embeddings
to the various parts of the dataset, fits nicely within a recent line-of-work on “data-dependent” techniques for
high-dimensional datasets [AINR14, AR15, ALRW17, ANN+18, CKNS20b, CJLW22], and we are hopeful that
such techniques are applicable in other algorithmic contexts

Maintaining Separation for Coresets. It remains to show that we can build a data structure which
always constructs coresets while guaranteeing a separation between queries and dataset points. The idea is to
proceed via ball carving of randomly chosen radii. Suppose, for instance, that all dataset points P lie within a
ball of radius R > 0, and let c denote the center of that ball. We consider three cases, corresponding to where
the (unknown) query q may be in comparison to the ball. The first two cases are relatively simple to handle, and
most of the work involves the last case.

Case 1 (easy): q is much farther than R/✏ from c. Then, since any p lies within distance R from c,
one may use the triangle inequality to conclude that the kernel evaluation of K(q, p) and K(q, c) is the same up to
1± ✏. In this case, a data structure just needs to remember the center c and the size of the dataset |P |, so that
one can output |P | · K(q, c) to approximate K(P, q). See Definition 4.1 and Claim 4.1.

Case 2 (relatively easy): q is farther than 3R but within R/✏ of c. In this case, we can utilize
the coreset construction. Indeed, we “guess” the distance from q to c (for which there are at most O(log(1/✏))
many choices). Let R0 � 3R a guessed distance such that kq � ck2 ⇡ 3R0. Pick a randomly chosen point c0

drawn from B2(c, R0/2) uniformly and use that as our new “center.” Every point in P will be within a ball of
radius (R0/2 + R)  3R0/2 from c0 (by the triangle inequality), and at distance at least R0/100 from c0 (with
high probability for d = !(log n)). In addition, the query is within distance at least 5R0/2 from c0. Setting
rmin = R0/100, rin = 3R0/2, and rout = 5R0/2, we can always guarantee an upper bound on the �2-norm of
O(1/(R0)2). In addition, the K(q, p) � O(1/(R0)2), so the repeated halving technique of [PT20] will give the
desired coreset. This is handled in Section 4.3.

Case 3 (the di�cult case). This case occurs when q is within 3R from c – see Fig. 2 for an illustration.
Here, we want to partition the space such that, as in the fast multipole method, we can guarantee some amount of
separation, without the exponential dependency obtained from partitioning into cubes (as is usually done in the
fast multipole methods). Consider a point p from P and a query q such that kp� qk2 = ⌦(R). We will consider
the following randomized partition. First, we sample a random point c0 within O(R) from c, and then we sample
a (random) radius r on the order of R. The hope is that p falls inside the ball around c0 of radius r, and that q
falls outside the ball. In order to apply the improved discrepancy bound for well-separated datasets, we must also
fit a shell inner radius rin and outer radius rout, where rout� rin = ⌦(R/

p
d). We point the reader to Lemma 4.1,
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c
c0

R/✏

3R

dataset P ✓ B2(R)possible queries
inside B2(3R)

Figure 2: Illustration of ball-carving with balls of radius O(R) when query is at distance at most 3R from c.

where we show this partitioning procedure separates each p 2 P with kp� qk2 = ⌦(R) with probability at least
⌦(1/

p
d), so after repeating O(

p
d log n) times, we are guaranteed to have separated every dataset point p at

distance ⌦(R) from q.
In the data structure, we sample a ball and consider the points within the inner-shell and the points outside

the outer shell. We construct a coreset for the points inside the inner-shell, and we will use these coresets to
evaluate queries which come outside the outer shell (to guarantee separation). Whenever queries come outside the
outer shell, the points inside the inner shell are “captured,” and the coreset approximates their contribution. For
these queries, it remains to recurse on the dataset points which were not captured by the coreset. Similarly, we
construct a coreset of the dataset points which evaluate queries which fall inside the inner shell (again, to guarantee
separation), and we must recurse on the dataset points outside the outer shell. This recursive partitioning scheme
is done in Algorithm 4.2.

Note that there is a small technical issue arising, since the points which fall within radius rin and rout from c0

are replicated. While this may naively blow up the space of the data structure, the probability that any dataset
point falls inside this shell can be made small. The is done by decreasing rout � rin to ↵R/

p
d, at a cost of an

increase in the coreset size.
Organization. In the rest of the paper we first present the formal construction and analysis of our improved

coresets for well-separated points in Section 3. We then present the details of our reduction to the case of
well-separated datasets and the final algorithm in Section 4.

3 Structural Result: Improved Coresets for Well-Separated Shells

Given a p.d kernel K, the “kernel trick” refers to the fact there exists a feature embedding � mapping Rd into a
much larger and possibly infinite-dimensional space Rd

0
where K(x, y) = h�(x),�(y)i for any x, y 2 Rd. As [PT20]

show, whenever K(x, x) = 1 for all x, the existence of such a feature embedding �, as well as discrepancy
minimization algorithms are useful for constructing coresets for kernel evaluation.

The approach proceeds as follows: one receives a dataset P ⇢ Rd and wants to support kernel evaluation
queries for a finite set of queries Q ⇢ Rd.8 Then, consider the |Q| ⇥ |P | kernel matrix A = (aqp) where the
(q, p)-entry is K(q, p). Notice that A · 1 2 R|Q| (where 1 2 R|P | is the all-1’s vector) is the vector of kernel
evaluations at each of the queries in Q. If one finds a vector � 2 {�1, 1}|P | where kA ·�k1  ↵, then considering
the partition of P into P+ and P� according to whether a p 2 P has �p = 1 (in which case it belongs to P+,
and P� otherwise) at least one of the subsets is smaller than |P |/2 and for any q 2 Q, one may approximate the

8
[PT20] show how to discretize Q to only need to consider exp(d)-sized query sets, but since we will allow queries to fail with a

small probability, the discretization will not be an issue in this work.
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kernel evaluation by only considering that subset. Formally, for both sets S being P+ and P�,
������
2
X

p2S

K(p, q)�
X

p2P

K(p, q)

������
=

������

X

p2P+

K(p, q)�
X

p2P�

K(p, q)

������
= (A�)q  ↵.

In essence, one decreases the size of the dataset by a factor of 2 and incurs an additive error of ↵ on the kernel
evaluation. One can bound ↵ using discrepancy theory.

Definition 3.1. (�2-norm of a matrix) For a matrix A 2 Rm⇥n, the �2-norm of A is given by

�2(A) = inf {kuik2 · kvjk2 : UV = A, u1, . . . , um are rows of U and v1, . . . , vn columns of V } .

Theorem 3.1. (Banaszczyk’s Theorem) For any matrix A 2 Rm⇥n,

min
�2{�1,1}n

kA · �k1 . �2(A) ·
p

logm.

The final ingredient is showing that �2(A)  1, which is a simple consequence of the existence of �. In
particular, consider the |Q|⇥d0 matrix U whose rows correspond to �(q) for q 2 Q, and the d0⇥ |P | matrix whose
columns correspond to �(p) for p 2 P . Then, A = UV since � is a feature embedding of K(·, ·), and the maximum
row norm of U and column norm of V is at most 1, because k�(q)k22 = K(q, q) = 1 and similarly for p.

In this section, we will do two things.

1. First, we explicitly construct new feature embeddings for p.d radial kernels K : Rd ⇥ Rd ! [0, 1]. For
parameters 0 < rin < rout, as well as an additive error ⇠ > 0 (think of ⇠ as extremely small, since we will
depend logarithmically on 1/⇠), our new feature embedding � will only map vectors z 2 Rd which satisfy
kzk2 /2 [rin, rout], i.e., they avoid a shell of outer radius rout and inner radius rin around the origin. Whenever
kyk2  rin and kxk2 � rout, then h�(x),�(y)i will be up to ±⇠ the same as K(x, y), yet k�(x)k2 · k�(y)k2
will be smaller than 1.

2. Second, we use the technique of [PT20] to repeatedly halve the dataset and construct the coreset whenever
a query and dataset will be separated by a shell of inner radius rin and outer radius rout, and in addition
between rmin and rmax from the origin. One (minor) di↵erence is that we utilize the self-balancing walk of
[ALS21] instead of algorithmic versions of Banaszczyk’s theorem. This will lose a logarithmic factor in the
size of the coreset, but has the benefit of being very simple.

3.1 New Feature Embeddings In what follows, for any two thresholds 0 < rin < rout, we let Shell(rin, rout) ⇢
Rd be the set of vectors x 2 Rd with rin < kxk2 < rout. The main theorem of this section is the following.

Theorem 3.2. Let G : R�0 ! [0, 1] be such that K(x, y) = G(kx� yk22) is a p.d kernel for every Rd. For any two
thresholds 0 < rin < rout and ⇠ > 0, there exists a map � : Rd \ Shell(rin, rout) ! L2 such that every x, y 2 Rd

where 0 < kyk2  rin < rout  kxk2 satisfy:

• The inner product |h�(x),�(y)i � K(x, y)|  ⇠.

• For any z 2 Rd \ Shell(rin, rout),

k�(z)k22 . G

✓
(rout � rin)2

ln(1/⇠)
· kzk

2
2

r2in

◆
.

We will prove Theorem 3.2 in the next subsection, but we note below that it directly implies an improvement
on the �2-norm of kernel matrices of p.d kernels (up to a small additive error ⇠). In particular, Theorem 3.2
implies that for any sets P,Q ⇢ Rd where P ⇢ B2(0, rin) \ B2(0, rmin) and Q 6⇢ B2(0, rout) (or vice-versa), there
exists a |Q|⇥ |P | matrix Ã which is entry-wise ⇠-close to the |Q|⇥ |P | kernel matrix (K(q, p))q2Q,p2P , and

�2(Ã) .
✓
G

✓
(rout � rin)2

ln(1/⇠)
· r

2
out

r2in

◆
·G
✓
(rout � rin)2

ln(1/⇠)
· r

2
min

r2in

◆◆1/2

.
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Remark 3.1. (Using Smoothness to Relate �2(Ã) to K(P, q)/|P |) Here, one can see where smoothness of
the kernel becomes essential. As per (2.7), one can decrease the size of P while the error incurred from discrepancy,
which is given by �2(Ã)/|P |, is smaller than ✏·K(P, q)/|P |. Note that when p 2 P and q 2 Q are always at distance
at most 2rmax, we know K(p, q) � G(4r2max). Thus, we can continue decreasing the dataset while (1/|P |) · �2(Ã)
is significantly smaller than ✏ ·G(4r2max), which occurs while

|P | & 1

✏

✓
G

✓
(rout � rin)2

ln(1/⇠)
· r

2
out

r2in

◆
·G
✓
(rout � rin)2

ln(1/⇠)
· r

2
min

r2in

◆◆1/2
1

G(4r2max)
.

The smoothness comes in when computing the ratio of G(·)’s, since the smoothness allows us to relate the
G(r21)/G(r22) in terms of r2/r1.

In particular, this is why extending our approach to kernels with faster decay requires interesting new ideas: for
the Gaussian kernel, for example, the right hand side of the equation above is significantly larger than K(P, q)/|P |,
as the ⇥(1/

p
d) factor stemming from the separation that our partitioning scheme ensures a↵ects the exponent.

3.2 Proof of Theorem 3.2 We will construct the map � explicitly. In order to do so, we first recall
Schoenberg’s characterization of p.d radial kernels, as well as the Haussdorf-Bernstein-Widder theorem, which we
will use in constructing �. We point to Chapter 7 of [Wen04] for an extensive treatment of these topics.

Theorem 3.3. (Schoenberg’s Characterization) A kernel K(x, y) = G(kx � yk22) is p.d if and only if the
function G is completely monotone on R�0, i.e., G 2 C1(R�0), and

(�1)` ·G(`)(t) � 0 for all ` 2 {0} [ N and t � 0.

Theorem 3.4. (Haussdorf-Bernstein-Widder) A function G : R�0 ! R is completely monotone if and only
if there exists a non-negative finite Borel measure µ where

G(�) =

Z 1

t:0
e�t�µ(dt).

We introduce the following notation:

t0 =
log(1/⇠)

(rout � rin)2
and ⇢ = 1�min

⇢
1

t0 · r2in
,
1

2

�
.

We show how to map each point �(x) and �(y) when kxk2 � rout and kyk2  rin. First, we let
ux, vy : [0, t0]⇥ ({0}[N) ! R⇤ (where R⇤ consists of the union of all finite length tuples [j�1Rj) be the functions
given by

ux(t, k) = e�tkxk2
2 · 1p

k!

⇣p
2t · ⇢

⌘k
·
p

µ(t) · x⌦k 2 Rd
k

,

vy(t, k) = e�tkyk2
2 · 1p

k!

✓p
2t · 1

⇢

◆k

·
p

µ(t) · y⌦k 2 Rd
k

.

The map �(x) will consider the collection of functions {ux(·, k) : [0, t0] ! Rd
k

: k � 1} and “concatenate them.”
In particular, we let H denote the Hilbert space over functions g : [0, t0]⇥

�
[k�1[d]k

�
! R, where g1, g2 2 H have

hg1, g2i :=
Z

t0

t:0

1X

k=0

d
kX

i=1

g1(t, k, i) · g2(t, k, i)dt.

Then, �(x) and �(y) are the functions where �(x)(t, k, i) = ux(t, k)i and �(y)(t, k, i) = vy(t, k)i. We note that the
novelty in the above definitions is introducing the ⇢ and 1/⇢ factors in ux and vy. In the absence of the ⇢- and
1/⇢-factors, the proof that we produce would recover features embeddings of unit norm. By introducing these
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factors, we are able to exploit the fact that x and y have di↵erent norms. In particular, these terms cancel out
when computing hux, vyi, but a↵ect the norms kuxk22 and kvyk22. For instance, we have

h�(x),�(y)i =
1X

k=0

Z
t0

t:0
hux(t, k), vy(t, k)idt

=

Z
t0

t:0
e�tkxk2

2�tkyk2
2

1X

k=0

1

k!
(2thx, yi)k µ(dt)

=

Z
t0

t:0
e�tkxk2

2�tkyk2
2+2thx,yiµ(dt) =

Z
t0

t:0
e�tkx�yk2

2µ(dt).

(3.12)

By Theorem 3.4, we have

G(kx� yk22)� h�(x),�(y)i =
Z 1

t:t0

e�tkx�yk2
2µ(dt)  exp

✓
� ln(1/⇠)kx� yk22

(rout � rin)2

◆
 ⇠,

where we used the fact that kx � yk2 � (rout � rin) by the triangle inequality and the fact that
R1
t:t0

µ(dt) R1
t:0 µ(dt) = K(0, 0)  1. In particular, K(x, y)� ⇠  h�(x),�(y)i  K(x, y).

The norms k�(x)k22 and k�(y)k22 satisfy

k�(x)k22 =

Z
t0

t:0
e�2tkxk2

2

1X

k=0

1

k!
(2t⇢2kxk22)kµ(dt) 

Z
t0

t:0
e�2tkxk2

2(1�⇢
2)µ(dt)  G

�
2(1� ⇢2)kxk22

�

and

k�(y)k22 =

Z
t0

t:0
e2t(1/⇢

2�1)kyk2
2µ(dt) =

Z
t0

t:0
e3t(1/⇢

2�1)kyk2
2 · e�t(1/⇢2�1)kyk2

2µ(dt)

 e3t0(1�⇢
2)kyk2

2/⇢
2
Z 1

t:0
e�t(1�⇢

2)kyk2
2µ(dt) = e3t0(1�⇢

2)kyk2
2/⇢

2

·G
✓
(1� ⇢2)kyk22

⇢2

◆
.

Since G(·) is decreasing (because G is total monotone by assumption, so the derivative of G is always non-positive)
and ⇢ < 1, we have

G(2(1� ⇢2)kxk22)  G

✓
kxk22
t0 · r2in

◆
and G

✓
(1� ⇢2)kyk22

⇢2

◆
 G

✓
kyk22
t0 · r2in

◆

The final upper bound on k�(y)k22 comes from the fact

3t0(1� ⇢2)kyk22
⇢2

. t0 ·
1

t0 · r2in
· kyk22  1,

since kyk2  rin.

3.3 Coresets from New Feature Embeddings

Definition 3.2. (Smooth Function [BCIS18a]) For L, t � 1, a kernel K : Rd ⇥ Rd ! R is (L, t)-smooth if
for any three points p1, p2, q 2 Rd with p1 6= q 6= p2,

max

⇢
K(p1, q)

K(p2, q)
,
K(p2, q)

K(p1, q)

�
 L ·

✓
max

⇢
kp1 � qk2
kp2 � qk2

,
kp2 � qk2
kp1 � qk2

�◆t

.

Suppose the kernel K(x, y) = G(kx � yk22) is p.d for every Rd, and in addition, is (L, t)-smooth. We will
need one preliminary theorem which will follow from the (online) discrepancy minimization algorithm of [ALS21].
Then, we state and prove Lemma 3.1, which is the main lemma of this section.
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Theorem 3.5. (Self-Balancing Walk [ALS21]) For any n, d 2 N, there exists a randomized algorithm which
receives as input a set of vectors V = {v1, . . . , vn} 2 Rd and a parameter � > 0. The algorithm outputs a (random)
subset V0 ⇢ V such that, for any vector u 2 Rd, with probability at least 1� �,

�����
X

i2V0

hvi, ui �
X

i/2V0

hvi, ui

����� . log(n/�) · kuk2 ·max
i2[n]

kvik2.

Furthermore, the algorithm does not require explicit access to V ; it only requires oracle access to {hvi, vji}i,j2[n].

Proof. The statement of Theorem 3.5 above does not explicitly appear in [ALS21], but readily follows from the
proof of Theorem 1.1 in their paper. In particular, [ALS21] give a randomized algorithm, Balance, which
receives as input a sequence of vectors v1, . . . , vn 2 Rd of norm at most 1, and a failure probability �.9 The
algorithm produces a sequence of (random) vectors w0 = 0,w1, . . . ,wn 2 Rd such that for any vector u 2 Rd

with kuk2  1,10

E
wi


exp

✓
hwi, ui2

240⇡ log(n/�)

◆�


p
2.

In addition, as long as |hwi, vi+1i|  c = 30 log(n/�) for all i 2 [n], then there is a setting of signs � 2 {�1, 1}n
such that every i 2 [n] satisfies

wi =
iX

`=1

�ivi.

As in their proof of Theorem 1.1, one may take a union bound over the n steps and conclude that |hwn, ui|  c
except with probability at most �. Theorem 3.5 stated above simply performs the above argument with
u0 = u/kuk2 and v0

i
= vi/maxi kvik2 to obtain the setting signs � 2 {�1, 1}n, and sets V0 to be those indices

i 2 [n] where �i = 1.

The main result of this section is

Lemma 3.1. For L, t � 1, let K : Rd ⇥ Rd ! [0, 1] be a p.d radial kernel which is (L, t)-smooth. There exists a
randomized algorithm which receives as input a subset X ⇢ Rd, four thresholds 0 < rmin  rin < rout  rmax, and
three parameters ✏, ⇠, � 2 (0, 1). The algorithm outputs a random subset S ⇢ X and a number T � 0 which satisfy
the following conditions.

• For any q 2 Rd, if kqk2 2 [rout, rmax] and kxk2 2 [rmin, rin] for every x 2 X, or kqk2 2 [rmin, rin] and
kxk2 2 [rout, rmax] for every x 2 X, the following holds with probability at least 1� �,

�����2
T
X

x2S

K(x, q)�
X

x2X

K(x, q)

�����  ✏
X

x2X

K(x, q) + 2|X|⇠.

• The size of the subset S is bounded by

|S|  log2(|X|/�)
✏

· L ·
✓

2 · rmax

rout � rin
· rin
rmin

p
ln(1/⇠)

◆t

Proof. Let � : Rd \ Shell(rmin, rout) ! L2 be the map of Theorem 3.2 instantiated with the parameter ⇠. The
algorithm will proceed in iterations and, go through ` 2 {0, . . . , T} specifying the sets

• V0 = {�(x) : x 2 X}.

9
We consider the minor modification to their algorithm, where the second condition of Line 4, that kwi�1k1  c is dropped,

which allows us to set c = 30 log(n/�), as they do in their proof of Theorem 1.2. We note that the reason the check kwi�1k1  c is

present in their algorithm is because in online discrepancy, one wants to ensure that every coordinate of any partial sum of vectors

is small, whereas we will only care about the final vector.
10
The specific constant of 240⇡ log(n/�) follows their bound of 4Lc, since L = 2⇡ and c = 30 log(n/�).
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• For ` 2 [T ], the set V` is set to the smallest of V0
`�1 or V`�1 \V0

`�1, where V
0
`�1 is the output of algorithm

from Theorem 3.5 with input V`�1 and failure probability set to �/T .11

By definition of the procedure above, its simple to see that |VT |  |X|/2T . In order to show the approximation
bound, we first note that

�����2
T
X

x2VT

K(x, q)�
X

x2X

K(x, q)

����� 

�����2
T
X

x2VT

h�(x),�(q)i �
X

x2X

h�(x),�(q)i

�����+ (|X|+ 2T |VT |) · ⇠,(3.13)

and because of the fact |VT |  |X|/2T , we have |X| + 2T |VT |  2|X|. This handles the claimed additive error.
Then, we also have

�����2
T
X

x2Vt

h�(x),�(q)i �
X

x2X

h�(x),�(q)i

����� 
TX

`=0

2`�1

������
2
X

x2V`

h�(x),�(q)i �
X

x2V`�1

h�(x),�(q)i

������

=
TX

`=0

2`�1

������

X

x2V0
`�1

h�(x),�(q)i �
X

x2V`�1\V0
`�1

h�(x),�(q)i

������

.
TX

`=0

2`�1 · log(|X|T/�) ·G
✓
(rout � rin)2

ln(1/⇠)
· r

2
min

r2in

◆
,(3.14)

where the final line applies the upper bound of Theorem 3.5, as well as the fact that

k�(q)k2 ·max
x2X

k�(x)k2 . G

✓
(rout � rin)2

ln(1/⇠)
· r

2
min

r2in

◆
.

from Theorem 3.2. Furthermore, we notice that kx � qk2  2rmax for every x 2 X, which means K(x, q) �
G(4r2max). Using the fact that K is (L, t)-smooth, we may always upper bound (3.14) by

0

@
2T log

⇣
|X|T
�

⌘

|X|

1

A · L ·
✓

2 · rmax

rout � rin
· rin
rmin

·
p

ln(1/⇠)

◆t X

x2X

K(x, q),

and the above bound is smaller than ✏ as long as we set

T = log2

0

@ ✏ · |X|
log2(|X|/�)

· 1
L

·
 
rout � rin
2 · rmax

· rmin

rin
· 1p

ln(1/⇠)

!t
1

A ,

and results in a set S of size at most

|S|  |X|
2T

 log2(|X|/�)
✏

· L ·
✓

2 · rmax

rout � rin
· rin
rmin

·
p

ln(1/⇠)

◆t

.

The above lemma readily implies the following theorem, which we state so that we can directly invoke this
in the subsequent sections. Specifically, Lemma 3.1 can produce a coreset S, so if we store the coreset points, the
parameter T , and a translation vector c 2 Rd.

Lemma 3.2. Let n, d 2 N, and suppose that for L, t � 1, K : Rd ⇥ Rd ! [0, 1] is a p.d radial kernel which is
(L, t)-smooth. There exist two randomized algorithms with the following guarantees:

11
Even though the vectors �(x) are infinite dimensional, there are only a finite set of vectors. In addition, Theorem 3.5 has no

dependence on the dimensionality d. Thus, it su�ces to implicitly work with the subspace spanned by {�(x) : x 2 X} and �(q).
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• ProcessCaptured(X, c, rmin, rin, rout, rmax, ✏, ⇠, �) receives as input a set X ⇢ Rd of size at most n, a point
c 2 Rd, thresholds rmin < rin < rout  rmax 2 R�0, error parameters ✏, ⇠ 2 (0, 1), and failure probability
� 2 (0, 1). We are promised that one of the following two hold

kx� ck2 2 [rmin, rin] : 8x 2 X(3.15)

kx� ck2 2 [rout, rmax] : 8x 2 X.(3.16)

The algorithm outputs a pointer to a data structure v.

• QueryCaptured(q, v, c, rmin, rin, rout, rmax, ✏, ⇠, �) receives as input a query q 2 Rd, a pointer to a data
structure v, a point c 2 Rd, thresholds rmin < rin < rout < rmax 2 R�0, error parameters ✏, ⇠ 2 (0, 1), and
failure probability � 2 (0, 1). The algorithm outputs a value ⌘ 2 R�0.

For any query q 2 Rd, if kq � ck2 2 [rout, rmax] and (3.15) holds, or kq � ck2 2 [rmin, rin] and (3.16)
holds, the following occurs with probability at least 1 � � over the randomness in the algorithm. We execute
ProcessCaptured(X, c, rmin, rin, rout, rmax, ✏, ⇠, �) and we let v denote the pointer to the data structure it
outputs, and we let ⌘ be the output of QueryCaptured(q,v, c, rmin, rin, rout, rmax, ✏, ⇠, �). Then,

• Correctness: The estimate ⌘ 2 R�0 that we output satisfies

(1� ✏)
X

x2X

K(q, x)� 2⇠|X|  ⌘  (1 + ✏)
X

x2X

K(q, x) + 2⇠|X|.

• Time and Space Complexity: The algorithm ProcessCaptured(X, c, rmin, rin, rout, rmax, ✏, ⇠, �) takes
time at most polynd time to output a data structure v.12 The total space of v, as well as the running time
of QueryCaptured(q,v, c, rmin, rin, rout, rmax, ✏, ⇠, �) is, up to a constant factor, at most

d · log
2(|X|/�)
✏

· L ·
✓

2 · rmax

rout � rin
· rin
rmin

·
p
ln(1/⇠)

◆t

.

Remark 3.2. Lemma 3.2 assumes black-box access to dot products in the embedded space. This can typically be
achieved by obtaining an analytic expression for the measure µ and integrating as per (3.12). For example, if
K(x, y) = 1/(1+ kx� yk2), then G(�) = 1/(1+�) in Theorem 3.4 and one has µ(t) = e�t. Then h�(x),�(y)i can
be evaluated per (3.12) at polylogarithmic cost.

4 Algorithmic Result: Data Structure for Evaluating the Coresets

4.1 A Ball Carving Hash For this section, we present a ball carving hash function. We let d 2 N will be
the dimensionality of the space (which we view as a non-constant parameter), as well as a dataset P ⇢ Rd of
n points. The goal will be to provide a randomized partition of the dataset, such that whenever we use the
coreset data structure of [PT20], we are doing so for points P (and potential queries Q) whose kernel matrix has
a smaller �2-norm. Hence, this section does not concern the specific kernel K, and will simply be a ball-carving
hash function.

Lemma 4.1. There exists absolute constants c1, c2 > 0 such that, for any ↵ 2 (0, c2) and R > 0, we have
the following. There exists a distribution D supported on pairs (c, r) 2 Rd ⇥ R�0 which specify a function
hc,r : Rd ! {0, 1, ⇤} given by

hc,r(x) =

8
>><

>>:

0 x 2 B2

⇣
c, r � ↵Rp

d

⌘

1 x /2 B2

⇣
c, r + ↵Rp

d

⌘

⇤ o.w.

.(4.17)

The distribution satisfies the three guarantees:

12
It is important here that the algorithm can e�ciently compute h�(x),�(y)i for any x, y 2 X for the feature embeddings of

Theorem 3.2. See Remark 3.2 for more details.
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• Separate Far Points: For any two points x, y 2 B2(0, R) where kx � yk2 � R/100, the probability over
(c, r) ⇠ D that hc,r(x), hc,r(y) 2 {0, 1} and hc,r(x) 6= hc,r(y) is at least c1/

p
d.

• Avoid Boundary: For any point x 2 B2(0, R), the probability over (c, r) ⇠ D that hc,r(x) = ⇤ is at most
↵/

p
d.

• Far From Center: For any point x 2 Rd, with probability at least 1� 2�⌦(d) over the draw of (c, r) ⇠ D,
kx� ck2 � R/100, kck2  2R.

Proof. The distribution D samples a point c and a threshold r by letting c ⇠ N (0, R2 · Id/d) and r ⇠ [0, 3R]. The
third item is the simplest: (i) by anti-concentration of N (0, R2 · Id/d), the probability mass on any ball of radius
R/100 is at most 2�⌦(d), and (ii) by concentration of N (0, R2 · Id/d), kck2  2R except with probability 2�⌦(d).
The second item is also simple to argue: for any fixed c 2 Rd, hc,r(x) = ⇤ whenever |r� kx� ck2|  ↵R/

p
d.

Therefore, the probability over the draw of r ⇠ [0, 3R] that the above occurs is at most ↵/
p
d.

We now argue the first item, that hc,r tends to separate far points. Consider a fixed setting of p, q 2 B2(0, R),
and for a sample (c, r) ⇠ D, let

� :=
��kp� ck2 � kq � ck2

��.
Then, the event that hc,r(p) 6= hc,r(q) occurs whenever the following two events hold:

• Event A: For � = 1/2, we have p, q 2 B2(c, (2 + �)R), and

• Event B: The threshold r lies within an interval of 3R of length � � 2↵R/
p
d.

Notice that Event A holds with high probability because we may apply the triangle inequality and the fact
p, q 2 B2(0, R). If event A fails, then the center point c must have Euclidean norm larger than (1 + �)R, so

Pr
c
[Event A fails]  Pr

c
[kck2 � (1 + �) ·R]  Pr

x⇠�2(d)
[x� d � � · d]  e�d�

2
/8,

using a standard concentration inequality on �2(d) random variables (see, Example 2.5 in [Wai19]). Therefore,
we have

Pr [Events A and B hold] � Pr [Event B holds]� Pr [Event A fails]

� Pr [Event B holds]� e�d�
2
/8.(4.18)

So it remains to lower bound the probability over (c, r) ⇠ D that hc,r(p) 6= hc,r(q), which is at least

Pr [Event B holds] = E
c

"
� � 2↵R/

p
d

3R

#
=

1

3R
· E
c
[�]� ↵p

d
.(4.19)

We may lower bound the expectation of � by considering whether or not event A holds. In particular, we may
always lower bound, for any setting of the randomness of �,

� =

���kp� ck22 � kq � ck22
���

kp� ck2 + kq � ck2
�

���kp� ck22 � kq � ck22
���

2(2 + �)R
� 1 {Event A fails} · (R+ kck2).(4.20)

The reason is the following: if event A holds, then kp � ck2 + kq � ck2  2(2 + �)R and we obtain the desired
lower bound. If event A fails, then since kpk2, kqk2  R,

���kp� ck22 � kq � ck22
���

2(2 + �)R
=

���kpk22 � kqk22 � 2hp� q, ci
���

2(2 + �)R
 2R2

2(2 + �)R
+

2kp� qk2kck2
2(2 + �)R

 R+ kck2,

so subtracting 1{Event A fails} · (R+ kck2) ensures that the right-hand side of (4.20) is negative. Hence,

E
c
[�] � E

c

"��kp� ck22 � kq � ck22
��

2(2 + �)R

#
�R · Pr

c
[Event A fails]� E

c
[kck2 · 1{kck2 � (1 + �)R}]
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We bound each term:

E
c

"��kp� ck22 � kq � ck22
��

2(2 + �)R

#
=

1

2(2 + �)R
· E
c

⇥��kpk22 � kqk22 � 2hp� q, ci
��⇤ = ⌦

✓
kp� qk2p

d

◆
,

where by 2-stability of the Gaussian distribution, 2hp� q, ci is distributed like N (0, 4kp� qk22 · R2/d), and anti-
concentration of the Gaussian distribution. Recall that we have already upper bounded the probability that event
A fails, and finally, we can similarly bound the final expectation,

E
c
[kck2 · 1{kck2 � (1 + �)R}] 

Z 1

⇣:�
R · Pr

c
[kck2 � (1 + ⇣)R] d⇣  R

Z 1

⇣:�
e�d⇣

2
/8d⇣  R · e�⌦(d),

using the fact � = 1/2. Substituting into (4.19) into (4.18), we obtain

Pr
(c,r)⇠D


hc,r(p) 6= hc,r(q)

hc,r(p), hc,r(q) 2 {0, 1}

�
� 1

3R

✓
⌦

✓
kp� qk2p

d

◆
�R · e�⌦(d)

◆
� ↵p

d
� e�⌦(d)

� ⌦

✓
1p
d

◆
.

since kp� qk2 � R/100, ↵ is a small enough constant, and d is at least a large enough constant.

4.2 Data Structure In this section, we will use Lemma 4.1 to preprocess the dataset by recursively hashing.
We will consider a dataset P ⇢ Rd which consists of n points, an unknown query q 2 Rd, and the parameter
� > 1 which denotes the maximum aspect ratio of P [ {q}, i.e.,

� =
maxx,y2P[{q} kx� yk2
minx 6=y2P[{q} kx� yk2

.

We assume that the dimensionality d is !(log n log log�)  d; the assumption is without loss of generality, as we
may add coordinates which are set to 0.

Theorem 4.1. For n, d 2 N, and L, t � 1, consider any p.d (L, t)-smooth kernel K : Rd ⇥ Rd ! [0, 1]. There
exists two randomized algorithms Preprocess (Algorithm 4.2) and Query (Algorithm 2) such that,

• Preprocess(P, ✏, ⇠) receives as input a dataset P ⇢ Rd of at most n points, and two error parameters
✏, ⇠ 2 (0, 1). The algorithm outputs a pointer to a data structure u.

• Query(q, u, ✏, ⇠) receives as input a query q 2 Rd, a pointer to a data structure u generated by Preprocess,
and two error parameters ✏, ⇠ 2 (0, 1).

Suppose that P [ {q} has aspect ratio at most �, then we satisfy the following guarantees with probability at least
0.9,

• Correctness: If u is the output of Preprocess(P, ✏,�) and ⌘ 2 R�0 is the output of Query(q,u, ✏,�).
Then,

(1� ✏)
X

p2P

K(p, q)� 2⇠n  ⌘  (1 + ✏)
X

p2P

K(p, q) + 2⇠n.

• Space Complexity: The total space of a data structure u produced by Preprocess(P, ✏, ⇠) is at most, up
to a constant factor,

nd

✏
· L ·

⇣p
d · polylog(nd� ln(1/⇠)/✏) · ln(1/⇠)

⌘t
.

• Query Time: Query(q,u, ✏, ⇠) takes time at most, up to a constant factor,

d

✏
· L ·

⇣p
d · polylog(nd�/✏) · ln(1/⇠)

⌘t
.
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• Preprocessing Time: Assuming access to oracles for computing h�(x),�(y)i for x, y 2 Rd and �
constructed from Theorem 3.2, the algorithm Preprocess(P, ✏, ⇠) runs in time polynd log� ln(1/⇠)/✏.

Remark 4.1. (Simplifications on the Notation and Error Probability) In the description of the al-
gorithms Preprocess(P, ✏, ⇠) and Query(q, u, ✏, ⇠), we will make multiple calls to ProcessCaptured and
QueryCaptured with various parameter settings and we will make the following simplifications. First, we will
drop the dependence on ✏ and ⇠ in the description below, as these will remain constant throughout the algorithm.
Second, we will, at the forefront, set the error probability � in calls to ProcessCaptured and QueryCaptured

to 1/polydn�/✏. Thus, in the presentation below, we (i) simplify the notation by dropping the dependence on � in
calls to ProcessCaptured and QueryCaptured, and (ii) essentially assume that ProcessCaptured and
QueryCaptured are deterministic algorithms. Indeed, the theorem that we seek to prove, Theorem 4.1, allows
for polylog(dn�/✏) dependencies, and Lemma 3.2 has poly-logarithmic dependence on 1/�. Since the preprocess-
ing time of Preprocess(P, ✏, ⇠) and query time Query(q, u, ✏, ⇠) which is at most polynomial in nd log�, setting
�  1/polydn� allows one to union bound over all executions of ProcessCaptured and QueryCaptured so
that they are all correct with high probability.

The remainder of this section gives the proof of Theorem 4.1. The preprocessing algorithm that we present
below can be thought of as consisting of two main parts, where we prepare for an (unknown) query q 2 Rd. The
data structure will be stored as a binary tree where nodes will hold additional information. Specifically, a call
to Preprocess(P ) instantiates a node u, and will have certain attributes stored in the node. The notation for
these will be u.attr, for some “attribute” attr. Each non-leaf node u will have at most two children, which will be
stored in u.Child(0) and u.Child(1). The formal description appears in Algorithm 4.2.

High Level Structure of Algorithm 4.2 The first thing the algorithm does is enclose the dataset P with
an (approximately) minimum enclosing ball around a center point u.cen of radius u.rad. This is done in Line 3,
and can be done in O(nd) since it will su�ce to obtain a constant-factor approximation (for instance, picking an
arbitrary point p 2 P and letting u.cen = p and u.rad = maxp02P kp � p0k2 su�ces). If Line 5 is triggered, then
there is at most 1 distinct point (which is stored as u.cen) and since the algorithm stores |P | in u.size, it will be
able to compute the kernel contribution of P . The parameter u.R is set to 2 ·u.rad and the algorithm will prepare
for two cases: when the (unknown) query q 2 Rd is “close” to u.cen (within distance at most u.R), and when the
query q 2 Rd is “far” from u.cen.

• Query Close: In this case, we will be preparing for a query q satisfying kq�u.cenk2  u.R, so that we may
instantiate Lemma 4.1 with the origin as u.cen and R as u.R. In this case, we can consider the hash function
as dividing Rd into three parts: (i) within distance u.rin of u.newcen (with high probability, we also have
the distance will be at least u.rmin as well), (ii) within the shell around u.newcen of inner-radius u.rin and
outer-radius u.rout, and (iii) outside the ball around u.newcen of radius u.rout (and we will also have an upper
bound on the distance to u.newcen of u.rmax). In this case, we build two coresets with ProcessCaptured

for regions (i) and (iii). Then, we recursively preprocess the points which are not captured by the coresets
and store these data structures as the children, u.Child(0) and u.Child(1).

• Query Far: In this case, we prepare for a query q which satisfies kq�u.cenk2 � u.R. Since every point p 2 P
lies within distance u.rad of u.cen and u.R = 2 · u.rad, we can already guarantee a separation of least u.rad
between q and any p 2 P . Formally, we will handle this in Line 15 with the sub-routine PreprocessFar

(which we specify shortly). This case will not recursively call Preprocess.

As we will formally show below, recursively applying the ball-carving hash function result in calls to Preprocess

with datasets of decreasing radii. This is because Lemma 4.1 guarantees that we separate far points with at least
some probability. Eventually the radius becomes 0 and Line 5 ends the recursion.
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Algorithm 1 Preprocessing of a dataset P ⇢ Rd into a data structure.

1: procedure Preprocess(P )
2: Initialize a node u.
3: Let MEB(P ) ⇢ Rd denote an (approximately) minimum enclosing ball of P .
4: Store the parameters u.rad, u.cen, u.R, u.size as

u.rad = radius of MEB(P ) 2 R�0

u.cen = center of MEB(P ) 2 Rd

u.R = 2 · u.rad
u.size = |P | 2 N.

5: if u.rad = 0 then
6: return u.
7: Sample (c, r) ⇠ D from Lemma 4.1 with R set to u.R and ↵ = c1/(4 log n log�)2.
8: Store u.c = c and u.r = r and define the following quantities

u.rmin =
u.R

100

u.rin = r� ↵ · u.Rp
d

u.rout = r+
↵ · u.Rp

d

u.rmax = 3 · u.R
u.newcen = u.c+ u.cen.

9: We defined the following subsets of P (which do not necessarily partition P ):

Cap(b) = {p 2 P : hc,r(p� u.cen) = 1� b} , for b 2 {0, 1}

10: for b 2 {0, 1} do
11: Run ProcessCaptured(Cap(b), u.newcen, u.rmin, u.rin, u.rout, u.rmax).
12: Store the output in u.InnerBall(b).
13: if P \ Cap(b) 6= ; then
14: Execute Preprocess(P \ Cap(b)) and store the output in u.Child(b).

15: Run PreprocessFar(P, u.cen, u.rad, u.R) and store in u.FarDS.
16: return u.

Algorithm 2 Querying a data structure rooted at u with a point q 2 Rd.

1: procedure Query(q, u)
2: if kq � u.cenk2  u.R then
3: We evaluate the hash function hu.c,u.r(q � u.cen), and set b 2 {0, 1, ⇤} to be its output.
4: if b = ⇤ then
5: return “fail.”
6: Execute QueryCaptured(q, u.InnerBall(b), u.newcen, u.rmin, u.rin, u.rout, u.rmax)
7: Execute Query(q, u.Child(b)).
8: return the sum of the outputs of Line 6 and Line 7.

9: if kq � u.cenk2 > u.R then
10: return QueryFar(q, u.FarDS, u.cen, u.R).
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4.3 The PreprocessFar and QueryFar Algorithms In this section, we give the descriptions of
PreprocessFar (Algorithm 3) and QueryFar (Algorithm 4). These are meant to capture cases where the
query lies substantially far from the dataset. The approach will be straight-forward: we will partition the (query)
space Rd into geometrically increasing balls (up to a certain point), and maintain a coreset for each of these balls.
The remaining piece is to bound how many balls we need.

Definition 4.1. Let K : Rd ⇥Rd ! [0, 1] be a p.d radial kernel. For any r � 0 and ✏, ⇠ 2 (0, 1), let R(r, ✏, ⇠) > 0
denote the minimum over all R � 0 such that, for all datasets P ⇢ Rd where P ⇢ B2(0, r), and for all queries
q 2 Rd with kqk2 � R,

(1� ✏)
X

p2P

K(p, q)� 2⇠|P |  |P | · K(0, q)  (1 + ✏)
X

p2P

K(p, q) + 2⇠|P |.

Claim 4.1. We always have R(r, ✏, ⇠) = O(r ln(1/⇠)/✏).

Proof. By Theorem 3.4 there exists a non-negative finite Borel measure µ such that

(4.21) K(p, q) =

Z 1

t:0
e�tkp�qk2

2µ(dt)

for all p, q 2 Rd. We consider the parameter R = Cr ln(1/⇠)/✏, for large enough constant C, and we show that
enforcing kqk2 � R su�ces. Note that R � 2r, and that for any p 2 B2(0, r), the following occurs. If we consider
a query q 2 Rd with kqk2 � R, we always have kp � qk2 � kqk2 � kpk2 � kqk2/2. Consider first the case that
t � 0 satisfies, tkqk22 � 4 ln(1/⇠). Then, we will have

(4.22) e�tkp�qk2
2  e�tkqk2

2/4  ⇠.

On the other hand, if t � 0 is such that tkqk22  4 ln(1/⇠), then

t  4 ln(1/⇠)

kqk22
 4✏2

C2r2 ln(1/⇠)
and tkqk2  4✏

Cr
,

which implies the following two inequalities:

e�tkp�qk2
2

e�tkqk2
2

= e�tkpk2
2+2thp,qi  e2trkqk2  e8✏/C  1 + ✏/2

e�tkpk2
2+2thp,qi � e�tr

2�2trkqk2 � e�4✏2/(C2 ln(1/⇠))�8✏/C � 1� ✏/2.

Putting both cases together, whenever kqk2 � R, we have

X

p2P

K(p, q) =
X

p2P

Z 1

t:0
e�tkp�qk2

2µ(dt) 
X

p2P

Z 4 ln(1/⇠)/kqk2
2

t:0
e�tkp�qk2

2µ(dt) + |P |⇠

 (1 + ✏/2)
X

p2P

Z 4 ln(1/⇠)/kqk2
2

t:0
e�tkqk2

2µ(dt) + |P |⇠  (1 + ✏/2)|P | · K(0, q) + |P |⇠,

and analogously,

X

p2P

K(p, q) �
X

p2P

Z 4 ln(1/⇠)/kqk2
2

t:0
e�tkp�qk2

2µ(dt) � (1� ✏)
X

p2P

Z 4 ln(1/⇠)/kqk2
2

t:0
e�tkqk2

2µ(dt)

� (1� ✏/2)
X

p2P

Z 1

t:0
e�tkqk2

2µ(dt)� |P |⇠ � (1� ✏/2)|P | · K(0, q)� |P |⇠.

Re-arranging terms gives the desired inequality.
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Algorithm 3 Preprocessing of a dataset P ⇢ Rd within a ball when the query will be far.

1: procedure PreprocessFar(P, c, rin, r)
2: Initialize a node u, and sample a point c0 ⇠ B2(0, rin/3) and let

u.cen = c+ c0 2 Rd

u.rmin =
rin
100

u.rin = 4 · rin/3

u.r = r � rin/3 � 5

4
· u.rmin (when r � 2 · rmin)

u.size = |P |.

3: for h 2 {0, . . . , dlog2 (R(u.r, ✏, ⇠)/u.r)e} do
4: Execute ProcessCaptured(P, u.cen, u.rmin, u.rin, 2h · u.r, 2h+1 · u.r),
5: Store the output in u.OuterBall(h).

6: return u.

Algorithm 4 Querying of a dataset P ⇢ Rd within a ball when the query is far.

1: procedure QueryFar(q, u, c, r)
2: Compute r = kq � u.cenk2 (note we will always have r � u.r).
3: Let h 2 {0, 1, 2, . . . } such that 2h · u.r  r  2h+1 · u.r.
4: if h  dlog2(R(u.r, ✏, ⇠)/u.r)e then
5: return QueryCaptured(q, u.OuterBall(h), u.rmin, u.rin, 2h · u.r, 2h+1 · u.r).
6: if h > dlog2(R(u.r, ✏, ⇠)/u.r)e then
7: return u.size · K(q, u.cen).

Lemma 4.2. Let n, d 2 N, and suppose that, for L, t � 1, K : Rd ⇥ Rd ! [0, 1] is a p.d radial kernel which is
(L, t)-smooth. There are two randomized algorithms with the following guarantees:

• PreprocessFar(P, c, rin, r) receives as input a set P ⇢ Rd of size at most n, a point c, and two thresholds
rin and r, where r � 2 ·rin. We are promised that every p 2 P satisfies kp�ck2  rin. The algorithm outputs
a pointer to a data structure u.

• QueryFar(q, u, c, r) receives as input a query q 2 Rd, and a pointer to a data structure (generated from
PreprocessFar). We are promised that the query q satisfies kq � ck2 � r, and the algorithm returns a
value ⌘ 2 R�0.

We satisfy the following guarantees with probability at least 1� 1/polynd�/✏:

• Correctness: If u is the output of PreprocessFar(P, c, rin, r) and ⌘ is the output of QueryFar(q,u, c, r),
then

(1� ✏)
X

p2P

K(p, q)� 2⇠|P |  ⌘  (1 + ✏)
X

p2P

K(p, q) + 2⇠|P |.

• Preprocessing Time and Space Complexity: The algorithm PreprocessFar preprocesses inputs in
time at most polynd log� ln(1/⇠)/✏ to output the data structure u. The total space of u is, up to a constant
factor, at most

d

✏
· polylog(dn� ln(1/⇠)/✏) · L ·

⇣
O(
p
ln(1/⇠))

⌘t

• Query Time: The algorithm QueryFar outputs an estimate ⌘ in time, up to a constant factor, at most

d

✏
· log2(nd�/✏) · L ·

⇣
O(
p
ln(1/⇠)

⌘t
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Proof. The purpose of Line 2 is to find an appropriate center which will guarantee some separation between
the query and the dataset, and to ensure that no dataset point is too close to the center. In particular, since
c0 ⇠ B2(0, rin/2) is drawn randomly and d = !(log n log log�)), it is not too hard to check that with high
probability, the new center u.newcen and thresholds u.rmin < u.rin < u.r satisfy that (i) u.r � u.rin � u.rin/4,
(ii) every p 2 P satisfies kp � u.cenk2 2 [u.rmin, u.rin], and (iii) every q 2 Rd with kq � ck2 � r will also satisfy
kq � u.cenk2 � u.r. Thus, the calls to ProcessCaptured(P, u.cen, u.rmin, u.rin, 2h · u.r, 2h+1 · u.r) and
QueryCaptured(q, u.OuterBall(h), u.rmin, u.rin, 2h · u.r, 2h+1 · u.r) satisfy the correctness guarantees for queries
q with kq � u.cenk2 2 [2h · u.r, 2h+1 · u.r]. If kq � u.cenk2 � R(u.r, ✏, ⇠), then by Definition 4.1, the entire kernel
contribution of P is approximated by K(q, u.cen) · u.size. The bound on the space and query time follow from
Lemma 3.2, plugging in rmax = 2h+1 · u.r, rout = 2h · u.r, rin = u.rin and rmin = u.rmin

2 · 2h+1 · u.r
2h · r � u.rin

· u.rin
u.rmin

= O(1).

4.4 Analysis of Preprocess and Query Before we begin to analyze Preprocess(P ), it is useful to check
that the invocations of ProcessCaptured satisfy the requirements specified in Lemma 3.2. We check both cases
of b 2 {0, 1} individually.

• Case b = 1. By definition of hc,r, we have the following guarantees. The set Cap(1) consists of all points
p 2 P where p is within B2(u.newcen, u.rin). Furthermore, by a union bound over |P | points, with probability
at least 1 � |P |/2⌦(d), every p 2 Cap(1) also satisfies kp � u.newcenk2 � u.R/100 = u.rmin. Thus, the call
to ProcessCaptured with b = 1 satisfies Inequality 3.15 in Lemma 3.2, and will handle cases where
kq � u.newcenk2 2 [u.rout, u.rmax].

• Case b = 0. In a similar vein, Cap(0) consists of points whose distance to u.newcen is at least u.rout.
Furthermore, since P ⇢ B2(u.cen, u.rad) and by the sampling procedure (recall u.c ⇠ N (0, u.R2Id/d),) we
have ku.ck2  2u.R with probability 1 � 2�⌦(d), we have P ⇢ B2(u.newcen, 3u.R), so kp � u.newcenk2 
u.rmax. Thus, the call to ProcessCaptured with b = 1 satisfies Inequality 3.16 and kq � u.newcenk2 2
[u.rmin, u.rin] in Lemma 3.2 with probability at least 1 � 2�⌦(d). Hence, in both b 2 {0, 1} of Line 11, we
apply Lemma 3.2 with

2 · rmax

rout � rin
· rin
rmin

= O

 p
d

↵

!
.

With those remarks set, we now analyze the space complexity Preprocess(P ). Since we will later bound the
space complexity of ProcessCaptured, we will mostly be concerned with the size of the binary tree rooted at
u produced by Preprocess(P ). The one challenging aspect in bounding the size of the tree is that the two sets
P \Cap(0) and P \Cap(1) are not necessarily disjoint. In particular, if p 2 P happens to satisfy hc,r(p�u.cen) = ⇤,
then p is contained in both sets. This will mean that the tree may be super-linear in size (if we are not careful
about the setting of ↵). We will first bound the depth of the tree.

Lemma 4.3. The total depth of an execution of Preprocess(P ) is O(
p
d log(n log�) log�) with high probability.

Proof. We will show that the following occurs with high probability, which in turn implies the desired bound on
the depth. Let u be any node of the tree and Pu ⇢ P such that u was the output of Preprocess(Pu). Then,
over the randomness of the next s levels down the tree, we consider any path u = u0,u1, . . . ,us down the tree
where u` is the child of u`�1, and we have us.rad  u.rad/2. Suppose that we set s such that the above event
occurs with probability at least 1� 1/o(log�) (so we can union bound over O(log�) such events). Then, every s
levels of the tree, the values of u.rad decrease by a factor of 2, and by the definition of the aspect ratio �, there
are at most O(s log�) recursive levels before Line 6 always returns.

We now show that we may set s = ⇥(
p
d log(n log�)) in the above argument. Consider fixing any two points

p1, p2 2 Pu. Let T denote the random sub-tree rooted u which recursively contains children v generated from
calls Preprocess(Pv) in Line 14 where p1, p2 2 Pv. We notice that v.rad is always at most 2 · u.rad (because
Pv ⇢ Pu and the factor of 2 occurs because we may choose a di↵erent center of MEB(Pu) and MEB(Pv)), so that in
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Line 7, the distribution D has v.R  4u.rad. Then, the number of nodes at depth ` of T is a (simple) branching
process (known as a Galton-Watson process), where in a node which contains p1 and p2 undergoes the following
process:

• By Lemma 4.1, the fact R  4u.rad, and kp1�p2k2 � u.rad/2, we have that with probability at least c1/
p
d,

the hash hc,r satisfies hc,r(p1 � v.cen), h(p2 � v.cen) 2 {0, 1} and hc,r(p1 � v.cen) 6= h(p2 � v.cen). Thus,
the node v has no descendants in T (since we’ve separated p1, p2).

• If hc,r(p1 � v.cen) = hc,r(p2 � v.cen) = ⇤, then p1 and p2 are included in both calls to Preprocess(Pv \
Cap(0)) and Preprocess(Pv \ Cap(1)) in Line 14. In this case, v has two descendants in T, but by
Lemma 4.1, this occurs with probability at most ↵/

p
d.

• Finally, if neither of the above two holds, then v has one descendant in T, since p1 and p2 are not separated,
but they are also not both replicated.

Suppose that we let d(s) denote the probability that a fixed node u has some ancestor at depth s in T. Then,
we may give a recursive upper bound for d(s), since either (i) a node has one child (with probability at most
1 � c1/

p
d) and that child must have some ancestor at depth s � 1 in T, or (ii) a node has two children (with

probability at most ↵/
p
d), and then at least one of them must have an ancestor at depth s� 1. Thus,

d(s) 
✓
1� c1p

d

◆
· d(s� 1) +

↵p
d

⇣
1� (1� d(s� 1))2

⌘

✓
1� c1p

d
+

2↵p
d

◆
· d(s� 1),

implying

Pr [T has depth s] 
✓
1� c1p

d
+

2↵p
d

◆s�1

.

Since ↵  c1/4 and we let s = ⇥(
p
d log(n log�)), this probability is at most (n log�)�10, so we can union bound

over n2 potential pairs p1, p2 at distance kp1 � p2k2 � u.rad/2, and we get the desired bound.

Lemma 4.4. With probability at least 1 � o(1), an execution of Preprocess(P ) results in a rooted tree of
O(n

p
d log(n log�) log�) nodes.

Proof. Suppose that we consider executing Preprocess(P ) while allowing at most t depths of recursion. Then,
we bound the expected number of leaf nodes resulting from such a tree, and the total number of nodes will be
at most t times that. Since each leaf node contains at least one point, we bound the total number of leaf nodes
containing any one point p 2 P . Any node u generated from call Preprocess(Pu) where p 2 Pu has that either
(i) u is a leaf, (ii) the point p satisfies hc,r(p� u.cen) 2 {0, 1} in Line 7 and p lies in a single child of u, or (iii) p
satisfies hc,r(p�u.cen) = ⇤ in Line 7, and then p lies in both children of u. Again, this length-t branching process
is a simple process, and it is not hard to see that the expected number of leaves containing p within depth t of u
is at most 2↵t/

p
d, and thus the total expected number of leaves at most n2↵t/

p
d.

By the Markov inequality at a union bound over the depth of Preprocess(P, ✏,�), it su�ces to consider

t = ⇥(
p
d log(n log�) log�), and since ↵  c1/(4 log n log�)2, 2↵t/

p
d = O(1) and t · O(n) gives us the desired

bound.

Lemma 4.5. For any fixed query q 2 Rd, the following occurs with high probability. Suppose u is the output of
an execution of Preprocess(P ), and ⌘ 2 R is the output of Query(q,u). Then, we have:

(1� ✏)
X

p2P

K(p, q)� �|P |  ⌘  (1 + ✏)
X

p2P

K(p, q) + �|P |.

Proof. First, the query q generates a root-to-leaf path given by the executions Query(q,v). In order for the
algorithm to avoid outputting “fail,” it cannot be the case hu.c,u.r(q � u.cen) = ⇤. For any fixed node v, the
probability that this occurs is always at most ↵/

p
d. Therefore, we note that the probability over the execution

of Preprocess(P ) that Query(q,u) outputs “fail” sometime within the first o(
p
d/↵) recursive calls is at most
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o(1). At the same time, the depth of the tree is at most O(
p
d log(n log�) log�) = o(

p
d/↵) with high probability.

Taking a union bound, we have that we reach the end of the tree and we do not output “fail” with high probability.
The other necessary event to check is that, if v is a node on the root-to-leaf path in an execution of

Query(q, u), and the call which initialized v was Preprocess(Pv), then we always have every p 2 Pv satisfies
kp� v.newcenk2 � v.R/100 and kq � v.newcenk2 � v.R/100. For any fixed node, the probability that this occurs
is at least 1 � (n + 1)2�⌦(d), so we can again union bound over the first O(

p
d log(n�) log�) levels of the tree

when d = !(log n log log�).
Finally, we note that in any execution of Query(q,u), the output is given by a sum of at most |P | executions

of QueryCaptured, so that the additive errors � accumulate to at most �|P |.
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