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Abstract— This study introduces an advanced federated
learning framework tailored for smart home intrusion detection,
incorporating knowledge distillation and transfer learning to
tackle escalating threats to IoT devices. In light of the rapid
expansion of IoT devices and their vulnerability to botnet
incursions, our approach specifically addresses the challenges
related to the privacy concerns of home device data, heterogeneity
of devices, sparse intrusion data, and the dynamic nature of smart
home settings. We adaptively select model architectures tailored
to the computational capabilities of each device, ranging from
simple Neural Networks (NNs) to more complex Convolutional
Neural Networks (CNNs) and hybrid CNN-LSTM models,
ensuring efficient local training without overburdening the
devices. However, it can achieve good performance through
collaborative learning, even for devices with lower capacity and
sparse data. Our evaluation, conducted using the N-BaloT dataset,
demonstrates the effectiveness of our approach in detecting
anomalies across a diverse set of IoT devices infected with real-
world botnets such as Mirai and BASHLITE. The results highlight
the potential of our framework to provide a robust, privacy-
preserving, and adaptable solution for securing smart homes
against emerging threats.

Keywords—intrusion detection systems, smart home, federated
learning, deep learning

1. INTRODUCTION

In the realm of modern home automation, smart home
devices such as baby monitors, web cameras, and doorbells have
become integral components. These devices not only offer
convenience and efficiency but also play a crucial role in home
security. However, with the increasing integration of these
Internet of Things (IoT) devices into our daily lives, a significant
concern arises regarding their vulnerability to cyber threats [1].
These vulnerabilities are not limited to the potential for hacking
and data breaches but extend to more intrusive risks, such as
unauthorized surveillance and access to personal information
[2]. This aspect of security is particularly alarming given the
personal nature of the data collected by these devices, which
often include visual and audio recordings of private home
environments.

Imagine a hacker intercepts the feed from your baby
monitor, using it to spy on your most vulnerable moments. Or,
an attacker disables your smart doorbell, granting them
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unimpeded entry into your home. These chilling scenarios, once
relegated to the realm of science fiction, are becoming
increasingly real in the era of smart homes. As an army of
interconnected devices infiltrates our living spaces, from voice
assistants to connected appliances, security and privacy
concerns are escalating at an alarming rate.

The handling of user data collected by smart home devices
has become a topic of paramount importance, raising both legal
and ethical questions. Privacy concerns stem from how sensitive
data that can reveal intimate details about a person's daily life
are processed and stored. In light of regulations such as the
General Data Protection Regulation (GDPR) [3], there is a
growing demand for systems that can ensure the confidentiality
and integrity of user data. Moreover, the way these privacy
concerns are addressed significantly impacts user trust and the
adoption rate of smart home technologies. Users are becoming
increasingly aware of their digital footprint and are seeking
assurances that their personal data is handled securely and
responsibly.

Central to this security is the concept of intrusion detection,
which plays a pivotal role in identifying and mitigating potential
threats[4]. Intrusion detection systems (IDS) in IoT and smart
home environments are designed to detect unauthorized access
or anomalous behavior, thereby safeguarding networks and
devices from various cyber threats. By continuously monitoring
network traffic and device activities, these systems aid in the
early detection of potential security breaches, contributing
significantly to the overall security posture of smart homes.

Traditional Intrusion Detection Systems (IDS) face
significant challenges in the context of IoT environments, such
as those in smart homes. These challenges include serious
privacy concerns due to the need to collect and analyze large
volumes of potentially sensitive data. Typically, these data are
processed in a centralized cloud-based system, increasing the
risk of data exposure and misuse, particularly in the event of
security breaches[5]. Moreover, this centralized approach,
reliant on cloud computing, is increasingly viewed as
problematic from a privacy standpoint. Additionally, the process
of uploading vast amounts of traffic data to central servers can
be inefficient, consuming excessive bandwidth and depleting
device batteries.
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To address these privacy issues, federated learning presents
a promising alternative [6]. This approach allows for the training
of machine learning models directly on devices without the need
to transfer raw data to a centralized cloud. In the context of smart
homes, federated learning enables local processing and analysis
of data, with only the model parameters (and not the actual data)
being shared with a central server. This methodology
significantly enhances privacy as sensitive data remain on the
user's device.

Federated learning has been extensively researched across
various sectors, but its application in smart home intrusion
detection is still emerging. Despite its proven effectiveness in
multiple contexts, the deployment within smart home
ecosystems is complicated by several unique challenges. The
heterogeneity of smart home devices, which varies significantly
in bandwidth and computational power, can affect the
performance of federated learning models. Additionally, the
rarity of intrusion events means that some devices may not have
sufficient local data for effective learning. The data generated by
these devices are also diverse, reflecting the different
environments and usage patterns, which leads to non-identically
and independently distributed (non-11D) data that complicate the
training of models. Moreover, smart homes are dynamic
environments that constantly change with the addition or
removal of devices and evolution of usage patterns. Models
must navigate the delicate balance between personalizing for the
unique needs of individual homes and generalizing to benefit
from the shared learning across the network.

In light of these challenges and the potential of federated
learning, this paper aims to bridge the gap in current research.
We propose a novel framework that extends the principles of
Federated Learning (FL) through Knowledge Distillation (KD)
and Transfer Learning (TL) to address the unique challenges of
smart home intrusion detection. Knowledge distillation is a
technique that smaller models can learn from complex and larger
models through knowledge transfer across the heterogeneous
smart home devices. The goal is to achieve similar performance
as larger model while being efficient in terms of computational
resources. This distilled knowledge, in the form of class scores,
can then be used to update and synchronize the models on
individual devices, effectively transferring the collective
insights without the need for raw data exchange. This approach
is particularly effective given the heterogeneity of devices, the
rarity of intrusion events, and the dynamic nature of smart home
environments. The key contributions and novelties of our work
include the following.

1. Heterogeneous model support: Unlike traditional FL, which
requires a uniform model across devices, our framework
allows for diverse models tailored to the specific
capabilities and roles of each smart home device, thus
enhancing model performance and efficiency.

2. Data scarcity solution: Recognizing the infrequency of
intrusion events, we employ transfer learning from a large
public dataset to pre-trained models, ensuring that even
devices with limited exposure to intrusions can contribute
to and benefit from the federated model.

3. Knowledge distillation for communication: To facilitate
model collaboration without compromising data privacy,

our framework uses knowledge distillation, allowing
models to share insights via class scores derived from
public data, thereby overcoming the challenge of direct data
sharing.

4. Dynamic adaptation: Our approach was designed to adapt to
the evolving landscape of smart homes, accommodate new
devices, and change usage patterns without disrupting the
learning process.

5. Personalization vs. generalization: By leveraging collective
learning from the network while allowing for local model
customization, our framework strikes a balance between
personalizing intrusion detection for individual homes and
harnessing broader insights from the federated network.

This innovative combination of techniques addresses the
inherent challenges of applying FL to smart home intrusion
detection, leading to a more robust, efficient, and adaptable
solution.

II.  RELATED WORK

A diverse array of intrusion detection systems (IDS) has
emerged to safeguard smart homes. Signature-based approaches
identify malicious activities based on pre-defined attack patterns
(e.g., Snort) [7]. However, their effectiveness dwindles against
novel threats, requiring frequent signature updates. Anomaly-
based methods [8], particularly those leveraging deep learning
techniques, aim to automatically learn the complex patterns of
"normal" behavior for each device and its environment. This
could involve analyzing the power consumption, network
traffic, audio/video streams, or sensor data. Techniques such as
autoencoders [9], recurrent neural networks [10], and one-class
support vector machines [11], [12] have shown promise in
identifying subtle deviations from the expected behavior, and
anomaly detection methods for smart home network intrusion
detection systems using autoencoders potentially flagging novel
or zero-day attacks[13] However, these approaches face several
challenges. False positives can still arise due to inherent device
variations, user activities, and environmental changes. For
example, an unexpectedly high energy surge during cooking
may be misclassified as intrusion [14]. Additionally, detecting
rare attacks with limited training data can be difficult, leading to
missed threats. Furthermore, the computational demands of
deep learning models can be resource-intensive for smart home
devices, particularly those with limited processing power and
battery life [15]. Hybrid approaches combine signature and
anomaly detection to offer broader coverage, but face similar
limitations in terms of agility and accuracy [16].

Traditional centralized IDS collect and analyze data from all
devices on a single server, providing centralized control and
efficient model updates. However, this raises privacy concerns
as sensitive data leaves the device, creating a central honeypot
for attackers [17]. Additionally, network bottlenecks and high
latency hinder responsiveness in geographically dispersed
networks [18]. Decentralized approaches such as peer-to-peer
IDS distribute intelligence among devices, fostering local
autonomy and privacy [19]. Yet, they suffer from limited
information-sharing and vulnerability to compromised peers
[20]. Distributed multi-level IDS systems specifically for IoT
networks have also been proposed to reduce the response time,



save [oT the energy and bandwidth of IoT devices. For example,
in their work Roy et al. proposed a fog-cloud two layer
hierarchical intrusion detection mechanism that can effectively
detect intrusions in IoT networks while satisfying the IoT
resource constraints [21]. However, these works cannot solve
the privacy issues related to smart home requirements.

The limitations of traditional centralized and decentralized
IDS approaches have paved the way for federated learning (FL)
as a promising paradigm for intrusion detection[22]. FL offers a
promising middle ground that enables collaborative model
training without central data aggregation. Local models are
trained on individual devices and then aggregated, preserving
user privacy while leveraging collective knowledge. This fosters
adaptive and robust intrusion detection models that can evolve
to address novel threats [23].

Several recent studies showcase the potential of federated
learning in anomaly detection and intrusion detection. For
example, Mothukuri et al. proposed a federated-learning-based
anomaly detection for IoT security attacks, achieving
comparable accuracy to centralized approaches while protecting
user data [24]. Rey et al. explore federated learning for
enhancing malware detection across IoT devices, leveraging the
N-BaloT dataset, showcasing improved accuracy and
adaptability compared to traditional solutions [25]. Ruzafa-
Alcazar et al. delves into differential privacy techniques within
federated learning for enhancing intrusion detection in industrial
IoT environments, demonstrating its effectiveness in identifying
network anomalies while preserving user privacy [26]. Roy et
al. proposed an FL-based IDS for IoT devices. Their results
demonstrated comparable performance to centralized learning
on metrics including accuracy, precision, and recall, while
addressing privacy and data leakage concerns [27]. Despite its
advantages, FL faces challenges in the context of smart home
security. Heterogeneity in device capabilities, communication
bandwidth limitations, and potential security vulnerabilities
within the FL framework require further research and
development[28].

III. METHODOLOGY

Our methodology employs a system that integrates
knowledge distillation and transfer learning adapted from the
FedMD approach [29] to address the unique challenges of smart
home intrusion detection. As illustrated in Figure 1, it begins
with transfer learning initialization, where each device is trained
on a broad dataset to grasp potential security threats, followed
by local fine-tuning of private data to adapt to specific home
environments. The core of our approach, knowledge distillation
for federated learning [30], enables devices to share insights
without raw data exchange, creating a consensus of learned
features. This collective intelligence is then used to update and
synchronize models across the network, enhancing detection
capabilities even in devices with limited direct intrusion
exposure. The framework was designed for continuous
adaptation to the dynamic nature of smart homes, ensuring up-
to-date defense mechanisms. Balancing model personalization
and generalization ensures that while each system is tailored to
specific home needs, it also benefits from the wider network's
shared learning. Our approach aims to establish a robust,
privacy-conscious, and flexible system that elevates security in

the diverse ecosystem of smart home devices. The framework is
illustrated in Fig. 1.

A. Federated Leaning Framework

1) Transfer Learning Initialization:

Transfer Learning Initialization: Each device d; in the smart
home network will initially train its intrusion detection model M;
using a publicly available dataset Dpuuic relevant to general
security threats. In this experiment, the public dataset Dpupiic
encompassed all classes and devices from N-BaloT to ensure a
comprehensive foundation for intrusion detection knowledge
across all participating models. The objective is to optimize the
initial model parameters 6% by minimizing the loss function
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This step ensures that every participating model has a
foundational understanding of potential intrusions.

2) Local Fine-tuning:

Following the initial training, the devices fine-tune their
models on their private, locally stored data D7, Given the
rarity of intrusion events, this step is crucial for models to learn
from the limited but highly relevant examples of actual smart
home security incidents. This step adapts the model to the
specific security context of each smart home, optimizing the
parameters 6,7

0 = argmin Lyyipaee M (DP;6%) (2)
7]

3) Knowledge Distillation for Federated Learning:

The core of our approach involves smart home devices that
share knowledge without exchanging raw data. Devices
generate class scores Sj; for samples x; from the public dataset
Dpupic and share these scores with a central server. The server
aggregates this information to create a distilled knowledge



dataset, representing a consensus Sconsensus;j, Of learned features
from all participating devices.

Sconsensus,j = Z;V:I(Si,j) * CVW; (3)

where N is the number of participating devices and CVW
(Computational-Volume Weight) represents each device's
impact in terms of its computational power and data volume.

Computational-Volume  Weight (CVW): A  metric

determining a device's contribution to a machine learning model.

CVW considers:
e Computational Power: More powerful devices (able to
perform more calculations) have greater influence.
e Data Volume: Devices with larger datasets have a
greater impact.
Therefore, CVW is calculated based on two parts:
o  Complexity Assessment: The number of floating-point
operations (FLOPs) a device's model performs
determines its complexity [31].

e Data Volume: The amount of data a device contributes
is measured.
Both complexity and data volume are normalized as shown
Equation (4) and (5), ensuring each device's contribution is
weighted fairly based on its capabilities

CYW; = (W' + wdeta) (4)
floo _ _Fi

" oL (5)

W-data — Di ] (6)
i Z?’:l Dij

4) Model Update and Synchronization:

With the distilled knowledge, each device updates its local
model to align with the aggregated insights, optimizing the
parameters 0/?to minimize the difference between its class
scores and the consensus:

2 . 1
Gi( ) = argmin LdistillMi (Dpublic; Hi( )' Sconsensus) (7)
6
thereby benefiting from the collective learning of the network.
This step ensures that even devices with limited exposure to
intrusion events can enhance their detection capabilities.

5) Continuous Adaptation:

The smart home environment is dynamic, with devices being
added or removed and usage patterns evolving. Our framework
accommodates these changes by periodically repeating the
knowledge distillation and model update processes. This ensures
that the models remain effective and up-to-date with the latest
security threats.

6) Personalization vs. Generalization:

Our framework maintains a balance between personalizing
models to the unique security needs of each smart home, and
generalizing across the network to benefit from shared learning.
This balance is crucial for maximizing the effectiveness of
intrusion detection in diverse environments.

By customizing the FedMD approach for smart home
intrusion detection, we aim to create a robust, privacy-

preserving, and adaptable framework that enhances security
across a network of diverse and dynamically changing smart
home devices.

B. Local Training

In the Local Training phase of our distillation-based
federated learning framework, selecting the appropriate model
for each smart home device is critical, particularly given the
diverse ecosystem of devices within a typical smart home. These
devices range from high-capacity smart security systems to
more constrained IoT devices, such as smart bulbs and sensors.
The primary considerations in model selection are the
computational capabilities, available memory, and energy
constraints of each device, ensuring that the intrusion detection
process is sustainable and does not impair the device's primary
functions. The methodology for choosing the right model for a
specific home device involves a multi-faceted approach:

e Device capability assessment: The first step is a thorough
evaluation of each device's hardware specifications,
including processing power, available RAM, and storage.
This assessment helps in categorizing devices based on
their computational capabilities.

e Energy consumption consideration: For battery-powered
devices, energy efficiency becomes a pivotal factor.
Models that require less computational power and,
consequently, consume less energy are preferred to ensure
that the device's primary functionalities are not
compromised.

e Model complexity vs. performance trade-off: The trade-
off between model complexity and intrusion detection
performance was carefully analyzed. While simpler
models are more resource-efficient, they might lack the
sophistication needed for accurate intrusion detection.
Conversely, more complex models, although potentially
more accurate, may not be feasible for resource-
constrained devices.

e Adaptive model architecture: The architecture of the
models for local training is adaptively chosen based on
each smart home device's computational capabilities and
energy constraints. For example, in our experiments, our
selection spans a range of complexities, from Neural
Networks (NN) to more complex architectures such as
Convolutional Neural Networks (CNN) with varying
depths (e.g., CNN with two blocks for less capable devices
and CNN with three blocks for more capable ones) and
CNN-LSTM hybrids for devices that can afford additional
computational overhead while benefiting from LSTM's
ability to understand temporal patterns in data.

Algorithml: A]gorithm used to train heterogeneous models.

1 Input: Public dataset Dpuic, private datasets D brivae for each device di
2 Transfer Learning Initialization:
for each device di:
3 M; € model of each device
4 Train intrusion detection model M; on Dy
5 0 = argmin LyypiicM;(Dpupiic; 6)// Optimize initial model
[
parameters
6 end

7 Local Fine-tuning:



for each device di:

8 Gi(l) = argmin Lpn-,,%te M; (Dip Tivate, 91.(0)) // Fine-tune M; on
Diprivate
9 end
10 Knowledge Distillation:
sampley; € in Dpic:
1 for each device d::
12 | Generate class scores Si; for xj using M;
13 end

14 Aggregate class scores:
15 N
Scansensus,j = Z(Si‘j) * CVVVl
i=1

16 Models update:

17 for each device di:

18 gi(Z) = argmin LdistillMi (Dpublic; gfl)r Sconsensus) // Update
6
M using Seonsensus by minimizing Laisin
19 end
20 Repeat
IV. EVALUATION
A. Dataset

For our evaluation, we utilized the N-BaloT dataset, [32]
chosen for its relevance to IoT security and the variety of IoT
devices it encompasses, including nine commercial IoT devices
infected with Mirai and BASHLITE botnets. The N-BaloT
dataset is particularly suited for studying IoT-based botnet
attacks due to its real-world attack scenarios and diverse device
behaviors. This dataset includes traffic data from devices such
as security cameras, thermostats, and baby monitors, providing
a comprehensive overview of typical smart home devices. Each
device in the dataset exhibits unique features and behaviors,

which are essential for developing and testing intrusion
detection models that can adapt to the heterogeneous nature of
smart home environments. By using the N-BaloT dataset, our
evaluation aims to assess the effectiveness of our federated
learning and knowledge distillation approach in detecting
anomalies and potential security threats across a varied set of
IoT devices, ensuring our methodology's applicability to real-
world smart home settings.

B. Local Models

In our evaluation, the local model selection for each IoT
device accommodated the distinct characteristics and limitations
of the smart home devices. Considering the diverse nature of the

devices and their computational constraints, we adopted various
model architectures tailored to the specific needs and
capabilities of each device.

For the Danmini Doorbell, a relatively simple Convolutional
Neural Network (CNN) [33] with 2 Blocks (CNN_2Blocks) was
chosen, reflecting the device's moderate computational
resources. This model, comprising 81,952 parameters, strikes a
balance between complexity and efficiency, and is suitable for a
device such as a doorbell that requires real-time processing but
does not require extensive data analysis. The Ecobee Thermostat
and Provision PT-737E Security Camera utilized a simple
Neural Network (NN) architecture consisting of 185,984
parameters. This choice was driven by the need for models that
could efficiently process data without imposing significant
computational loads, given the energy and processing
constraints typical of such devices. The Philips BI20N/10 Baby
Monitor, which requires more nuanced data analysis due to its
complex functionalities such as motion and sound detection, was
assigned a CNN with three blocks (CNN_3Block), containing
318,752 parameters. However, it is important to note that this
device, along with the Ennio Doorbell, was excluded from our
final evaluation because of its limited class diversity, which did
not align with the requirements of our model. For security
cameras, which are pivotal in intrusion detection and require
sophisticated analysis to identify anomalies in the video data, we
employed more complex models. The Provision PT-838 and
SimpleHome XCS7 1002 WHT Security Cameras were
equipped with a CNN-LSTM hybrid model, blending the spatial
feature extraction capabilities of CNNs with the temporal
pattern recognition strength of LSTMs. This model architecture,
with 261,344 parameters, is particularly well-suited for
processing sequential data such as video streams. Lastly, the
SimpleHome XCS7 1003 WHT Security Camera was fitted
with a CNN model similar to that of the Danmini Doorbell,
considering the similar operational and computational demands
of these devices.

Table I illustrates each chosen model architecture and its
parameters. The selection of different models for different
devices underscores our methodology's emphasis on resource
awareness and adaptability to the heterogeneous ecosystem of
smart home devices.

C. Results

To model an idealized training scenario, we trained all models
on all devices using a centralized approach. In this scenario, each

TABLE L. DEVICES AND THEIR MODELS

Device Category Device Model Architecture Parameters CVwW
Doorbell Danmini CNN_2Blocks 81,952 0.16
Baby Monitor Philips_B120N10 CNN_3Blocks 318,752 0.40
Thermostat Ecobee NN 185,984 0.06
Provision PT 737E NN 185,984 0.08
Provision_PT_838 CNN+LSTM 261,344 0.07

Security Camera

SimpleHome_XCS7_1002_WHT CNN+LSTM 261,344 0.07
SimpleHome XCS7_1003_WHT CNN 81,952 0.15




device has access to the entire dataset for training and testing.
This approach is unlikely to be replicated in real-world
deployments, where individual devices may have limited access
to the full dataset due to storage or bandwidth constraints.
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Figure 2 illustrates the training accuracy achieved by all models
under this centralized approach. As shown, most devices reach
an accuracy of around 88%. Notably, the baby monitor device,
which utilizes the most complex model in our system, achieves
an accuracy of 91%.

Figure 3 depicts the loss curves for all models during the
centralized training process. The curves demonstrate a smooth
convergence towards their minimum values, indicating effective
learning. As expected, devices with more complex models, like
the baby monitor (orange curve), achieve lower final loss
compared to devices with simpler models, such as the Ecobee
thermostat (shown here for comparison). This suggests that the
increased complexity allows the model to better capture the
underlying patterns within the data.

Figure 4 illustrates the accuracy improvement of all devices
in our system throughout the training process (x-axis represents
communication rounds). Each line depicts the performance of a

single device. Devices begin with a pre-trained model (based on
a public security threat dataset). This initial training provides a
foundational level of accuracy, reflected in the starting points of
the lines. As communication rounds progress, devices leverage
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a federated learning approach with knowledge distillation. This
allows them to collaborate and share knowledge (without raw
data exchange) to improve their threat detection capabilities.

We observe two key trends: First, devices with a higher
contribution rate ,determined by CVW, exhibit a smoother and
more consistent accuracy improvement over communication
rounds. This is likely because they contribute more data and
computation to the learning process. Moreover. even simpler
models demonstrate accuracy improvement, albeit with some
fluctuations during training. This can be attributed to the
knowledge distillation step, where these models benefit from the
knowledge transferred from more complex models in the system.
For example, the Ecobee thermostat, equipped with a simple
neural network (NN) model, shows improvement from 58%
initial accuracy to 87% by the end of the training process.




TABLE II. PERFORMANCE OF FEDERATED MODELS TABLE IIL PERFORMANCE OF INITIAL MODELS
Device Precision Recall Accuracy  Fl-score Device Precision Recall Accuracy
Danmini 0.85 0.90 0.90 0.90 Danmini 0.54 0.60 0.52
Philips BI20N10 0.92 0.90 0.87 091 Philips B120N10 0.56 0.62 0.69
Ecobee 0.85 0.90 0.87 0.88 Ecobee 0.61 0.66 0.58
Provision_PT_737E 0.88 0.90 0.83 0.87 Provision PT_737E 0.59 0.64 0.63
Provision PT 838 0.89 0.89 0.86 0.89 Provision PT 838 0.71 0.71 0.69
?i_‘?g(l)e;_l%’;ffxcs 0.83 0.86 0.84 0.87 %‘?g(l)e;ji’;gfxcs 0.57 0.66 0.54
Ei_‘{‘(l)’(l;}_l&?gfxcs 0.86 0.87 0.85 0.87 31‘{‘5&2?&?1?{(“ 0.58 0.70 0.56

Figure 5 illustrates the loss performance of devices during
the federated learning process. Consistent with accuracy results,
devices with more complex models (higher FLOPs weight)
exhibit smoother convergence towards a minimum loss value.
Simpler models, while showing some fluctuations, ultimately
converge as well, demonstrating the benefits of federated
learning for all devices.

To gain a deeper understanding of how well our federated
learning system performs, we evaluate each device's model
using three key metrics: precision, recall, and F1-score. These
metrics provide a comprehensive picture of the model's ability
to accurately detect threats. Table II presents the initial
performance of each device's model after training on a public
dataset. It serves as our baseline for comparison. Table III
summarizes how the models perform across all devices after
using our knowledge distillation-based federated learning
system. Compared to their initial baseline performance in Table
I, we see a dramatic improvement across simpler models. The
Provision PT 737E device, as a key example, demonstrates the
most significant improvement. This highlights how our
proposed system effectively boosts the performance of models
with limited computational resources.

From the experiments, we can see that our proposed system
effectively enhances the security detection capabilities of smart
home devices, regardless of their model complexity, while
ensuring user privacy. This collaborative learning approach,
powered by knowledge distillation, shows particular promise for
devices with limited computational resources.

V. CONCLUSIONS

In this research, we proposed a robust and adaptable
federated learning framework specifically designed for intrusion
detection within smart home environments. Our approach
tackles several critical challenges inherent to this domain,
including data privacy, device heterogeneity, sparse intrusion
data, and the ever-changing nature of smart home settings. Key
innovations of our framework include heterogeneous model
support, where we strategically select diverse model
architectures (such as NN, CNN, and CNN-LSTM) based on
each device's computational capacity. This ensures that local

training remains efficient while maximizing performance across
the entire smart home network.

We prioritize privacy by using knowledge distillation. In this
approach, devices share insights in the form of class scores
derived from public datasets, preserving privacy while allowing
devices to learn from each other's insights. Additionally, we
address the issue of sparse intrusion data by pre-training all
devices on a public dataset. This gives each device a baseline
understanding of potential threats, ensuring robustness despite
infrequent intrusion events on individual devices. Our
framework is designed for continuous adaptation, seamlessly
adjusting to changes within the smart home environment, such
as added or removed devices, or evolving usage patterns, which
keeps security models up-to-date. Finally, we strike a crucial
balance between personalization and generalization. Local fine-
tuning allows each system to tailor itself to the specific security
needs of a smart home, while ongoing knowledge distillation
ensures that all devices benefit from broader network insights.

Extensive evaluation using the N-BaloT dataset
demonstrates that our approach detects anomalies with high
accuracy across a diverse set of IoT devices infected with real-
world botnets like Mirai and BASHLITE. Our results show that
even simpler devices benefit from knowledge distillation,
experiencing significant performance gains when compared to
their initial baselines. Notably, devices like the
Provision PT _737E exemplify the success of our system in
helping those with limited resources.

Our work has demonstrated the effectiveness of a privacy-
preserving, adaptable federated learning system for enhancing
intrusion detection in heterogeneous smart home environments.
This approach holds significant promise for the future of smart
home security. In our ongoing research, we plan to investigate
several avenues for further improvement. First, we intend to
explore more complex distillation techniques beyond class
scores. Distilling richer information such as feature maps could
provide deeper insights for model collaboration, potentially
leading to even more accurate intrusion detection. Additionally,
we plan to incorporate adversarial learning techniques to
enhance the robustness of our models. Adversarial learning
involves training models to be resilient against attempts to



manipulate their behavior. By incorporating this approach, we
can create models better equipped to handle new or unknown
attack vectors, further strengthening the security posture of
smart homes. Finally, to ensure broader real-world applicability,
we plan to conduct large-scale evaluations across a wider range
of smart home networks. This will provide a more
comprehensive understanding of the system's performance and
effectiveness in diverse real-world settings.
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