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Abstract— This study introduces an advanced federated 

learning framework tailored for smart home intrusion detection, 

incorporating knowledge distillation and transfer learning to 

tackle escalating threats to IoT devices. In light of the rapid 

expansion of IoT devices and their vulnerability to botnet 

incursions, our approach specifically addresses the challenges 

related to the privacy concerns of home device data, heterogeneity 

of devices, sparse intrusion data, and the dynamic nature of smart 

home settings. We adaptively select model architectures tailored 

to the computational capabilities of each device, ranging from 

simple Neural Networks (NNs) to more complex Convolutional 

Neural Networks (CNNs) and hybrid CNN-LSTM models, 

ensuring efficient local training without overburdening the 

devices. However, it can achieve good performance through 

collaborative learning, even for devices with lower capacity and 

sparse data. Our evaluation, conducted using the N-BaIoT dataset, 

demonstrates the effectiveness of our approach in detecting 

anomalies across a diverse set of IoT devices infected with real-

world botnets such as Mirai and BASHLITE. The results highlight 

the potential of our framework to provide a robust, privacy-

preserving, and adaptable solution for securing smart homes 

against emerging threats.  

Keywords—intrusion detection systems, smart home, federated 

learning, deep learning 

I. INTRODUCTION 

In the realm of modern home automation, smart home 
devices such as baby monitors, web cameras, and doorbells have 
become integral components. These devices not only offer 
convenience and efficiency but also play a crucial role in home 
security. However, with the increasing integration of these 
Internet of Things (IoT) devices into our daily lives, a significant 
concern arises regarding their vulnerability to cyber threats [1].  
These vulnerabilities are not limited to the potential for hacking 
and data breaches but extend to more intrusive risks, such as 
unauthorized surveillance and access to personal information 
[2]. This aspect of security is particularly alarming given the 
personal nature of the data collected by these devices, which 
often include visual and audio recordings of private home 
environments. 

Imagine a hacker intercepts the feed from your baby 
monitor, using it to spy on your most vulnerable moments. Or, 
an attacker disables your smart doorbell, granting them 

unimpeded entry into your home. These chilling scenarios, once 
relegated to the realm of science fiction, are becoming 
increasingly real in the era of smart homes. As an army of 
interconnected devices infiltrates our living spaces, from voice 
assistants to connected appliances, security and privacy 
concerns are escalating at an alarming rate. 

The handling of user data collected by smart home devices 
has become a topic of paramount importance, raising both legal 
and ethical questions. Privacy concerns stem from how sensitive 
data that can reveal intimate details about a person's daily life 
are processed and stored. In light of regulations such as the 
General Data Protection Regulation (GDPR) [3], there is a 
growing demand for systems that can ensure the confidentiality 
and integrity of user data. Moreover, the way these privacy 
concerns are addressed significantly impacts user trust and the 
adoption rate of smart home technologies. Users are becoming 
increasingly aware of their digital footprint and are seeking 
assurances that their personal data is handled securely and 
responsibly. 

Central to this security is the concept of intrusion detection, 
which plays a pivotal role in identifying and mitigating potential 
threats[4]. Intrusion detection systems (IDS) in IoT and smart 
home environments are designed to detect unauthorized access 
or anomalous behavior, thereby safeguarding networks and 
devices from various cyber threats. By continuously monitoring 
network traffic and device activities, these systems aid in the 
early detection of potential security breaches, contributing 
significantly to the overall security posture of smart homes. 

Traditional Intrusion Detection Systems (IDS) face 
significant challenges in the context of IoT environments, such 
as those in smart homes. These challenges include serious 
privacy concerns due to the need to collect and analyze large 
volumes of potentially sensitive data. Typically, these data are 
processed in a centralized cloud-based system, increasing the 
risk of data exposure and misuse, particularly in the event of 
security breaches[5]. Moreover, this centralized approach, 
reliant on cloud computing, is increasingly viewed as 
problematic from a privacy standpoint. Additionally, the process 
of uploading vast amounts of traffic data to central servers can 
be inefficient, consuming excessive bandwidth and depleting 
device batteries.  
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To address these privacy issues, federated learning presents 
a promising alternative [6]. This approach allows for the training 
of machine learning models directly on devices without the need 
to transfer raw data to a centralized cloud. In the context of smart 
homes, federated learning enables local processing and analysis 
of data, with only the model parameters (and not the actual data) 
being shared with a central server. This methodology 
significantly enhances privacy as sensitive data remain on the 
user's device. 

Federated learning has been extensively researched across 
various sectors, but its application in smart home intrusion 
detection is still emerging. Despite its proven effectiveness in 
multiple contexts, the deployment within smart home 
ecosystems is complicated by several unique challenges. The 
heterogeneity of smart home devices, which varies significantly 
in bandwidth and computational power, can affect the 
performance of federated learning models. Additionally, the 
rarity of intrusion events means that some devices may not have 
sufficient local data for effective learning. The data generated by 
these devices are also diverse, reflecting the different 
environments and usage patterns, which leads to non-identically 
and independently distributed (non-IID) data that complicate the 
training of models. Moreover, smart homes are dynamic 
environments that constantly change with the addition or 
removal of devices and evolution of usage patterns. Models 
must navigate the delicate balance between personalizing for the 
unique needs of individual homes and generalizing to benefit 
from the shared learning across the network. 

In light of these challenges and the potential of federated 
learning, this paper aims to bridge the gap in current research.  
We propose a novel framework that extends the principles of 
Federated Learning (FL) through Knowledge Distillation (KD) 
and Transfer Learning (TL) to address the unique challenges of 
smart home intrusion detection. Knowledge distillation is a 
technique that smaller models can learn from complex and larger 
models through knowledge transfer across the heterogeneous 
smart home devices. The goal is to achieve similar performance 
as larger model while being efficient in terms of computational 
resources. This distilled knowledge, in the form of class scores, 
can then be used to update and synchronize the models on 
individual devices, effectively transferring the collective 
insights without the need for raw data exchange. This approach 
is particularly effective given the heterogeneity of devices, the 
rarity of intrusion events, and the dynamic nature of smart home 
environments. The key contributions and novelties of our work 
include the following. 

1. Heterogeneous model support: Unlike traditional FL, which 
requires a uniform model across devices, our framework 
allows for diverse models tailored to the specific 
capabilities and roles of each smart home device, thus 
enhancing model performance and efficiency. 

2. Data scarcity solution: Recognizing the infrequency of 
intrusion events, we employ transfer learning from a large 
public dataset to pre-trained models, ensuring that even 
devices with limited exposure to intrusions can contribute 
to and benefit from the federated model. 

3. Knowledge distillation for communication: To facilitate 
model collaboration without compromising data privacy, 

our framework uses knowledge distillation, allowing 
models to share insights via class scores derived from 
public data, thereby overcoming the challenge of direct data 
sharing. 

4. Dynamic adaptation: Our approach was designed to adapt to 
the evolving landscape of smart homes, accommodate new 
devices, and change usage patterns without disrupting the 
learning process. 

5. Personalization vs. generalization: By leveraging collective 
learning from the network while allowing for local model 
customization, our framework strikes a balance between 
personalizing intrusion detection for individual homes and 
harnessing broader insights from the federated network. 

This innovative combination of techniques addresses the 
inherent challenges of applying FL to smart home intrusion 
detection, leading to a more robust, efficient, and adaptable 
solution. 

II. RELATED WORK 

A diverse array of intrusion detection systems (IDS) has 
emerged to safeguard smart homes. Signature-based approaches 
identify malicious activities based on pre-defined attack patterns 
(e.g., Snort) [7]. However, their effectiveness dwindles against 
novel threats, requiring frequent signature updates. Anomaly-
based methods [8], particularly those leveraging deep learning 
techniques, aim to automatically learn the complex patterns of 
"normal" behavior for each device and its environment. This 
could involve analyzing the power consumption, network 
traffic, audio/video streams, or sensor data. Techniques such as 
autoencoders [9], recurrent neural networks [10], and one-class 
support vector machines [11], [12] have shown promise in 
identifying subtle deviations from the expected behavior, and 
anomaly detection methods for smart home network intrusion 
detection systems using autoencoders potentially flagging novel 
or zero-day attacks[13] However, these approaches face several 
challenges. False positives can still arise due to inherent device 
variations, user activities, and environmental changes. For 
example, an unexpectedly high energy surge during cooking 
may be misclassified as intrusion [14]. Additionally, detecting 
rare attacks with limited training data can be difficult, leading to 
missed threats. Furthermore, the computational demands of 
deep learning models can be resource-intensive for smart home 
devices, particularly those with limited processing power and 
battery life [15]. Hybrid approaches combine signature and 
anomaly detection to offer broader coverage, but face similar 
limitations in terms of agility and accuracy [16]. 

Traditional centralized IDS collect and analyze data from all 
devices on a single server, providing centralized control and 
efficient model updates. However, this raises privacy concerns 
as sensitive data leaves the device, creating a central honeypot 
for attackers [17]. Additionally, network bottlenecks and high 
latency hinder responsiveness in geographically dispersed 
networks [18]. Decentralized approaches such as peer-to-peer 
IDS distribute intelligence among devices, fostering local 
autonomy and privacy [19]. Yet, they suffer from limited 
information-sharing and vulnerability to compromised peers 
[20].  Distributed multi-level IDS systems specifically for IoT 
networks have also been proposed to reduce the response time, 



save IoT the energy and bandwidth of IoT devices.  For example, 
in their work Roy et al. proposed a fog-cloud two layer 
hierarchical intrusion detection mechanism that can effectively 
detect intrusions in IoT networks while satisfying the IoT 
resource constraints [21]. However, these works cannot solve 
the privacy issues related to smart home requirements. 

The limitations of traditional centralized and decentralized 
IDS approaches have paved the way for federated learning (FL) 
as a promising paradigm for intrusion detection[22]. FL offers a 
promising middle ground that enables collaborative model 
training without central data aggregation. Local models are 
trained on individual devices and then aggregated, preserving 
user privacy while leveraging collective knowledge. This fosters 
adaptive and robust intrusion detection models that can evolve 
to address novel threats [23]. 

 Several recent studies showcase the potential of federated 
learning in anomaly detection and intrusion detection. For 
example, Mothukuri et al. proposed a federated-learning-based 
anomaly detection for IoT security attacks, achieving 
comparable accuracy to centralized approaches while protecting 
user data [24].  Rey et al. explore federated learning for 
enhancing malware detection across IoT devices, leveraging the 
N-BaIoT dataset, showcasing improved accuracy and 
adaptability compared to traditional solutions [25]. Ruzafa-
Alcazar et al. delves into differential privacy techniques within 
federated learning for enhancing intrusion detection in industrial 
IoT environments, demonstrating its effectiveness in identifying 
network anomalies while preserving user privacy [26]. Roy et 
al. proposed an FL-based IDS for IoT devices. Their results 
demonstrated comparable performance to centralized learning 
on metrics including accuracy, precision, and recall, while 
addressing privacy and data leakage concerns [27]. Despite its 
advantages, FL faces challenges in the context of smart home 
security. Heterogeneity in device capabilities, communication 
bandwidth limitations, and potential security vulnerabilities 
within the FL framework require further research and 
development[28]. 

III. METHODOLOGY 

Our methodology employs a system that integrates 
knowledge distillation and transfer learning adapted from the 
FedMD approach [29] to address the unique challenges of smart 
home intrusion detection. As illustrated in Figure 1, it begins 
with transfer learning initialization, where each device is trained 
on a broad dataset to grasp potential security threats, followed 
by local fine-tuning of private data to adapt to specific home 
environments. The core of our approach, knowledge distillation 
for federated learning [30], enables devices to share insights 
without raw data exchange, creating a consensus of learned 
features. This collective intelligence is then used to update and 
synchronize models across the network, enhancing detection 
capabilities even in devices with limited direct intrusion 
exposure. The framework was designed for continuous 
adaptation to the dynamic nature of smart homes, ensuring up-
to-date defense mechanisms. Balancing model personalization 
and generalization ensures that while each system is tailored to 
specific home needs, it also benefits from the wider network's 
shared learning. Our approach aims to establish a robust, 
privacy-conscious, and flexible system that elevates security in 

the diverse ecosystem of smart home devices. The framework is 
illustrated in Fig. 1.  

A. Federated Leaning Framework 

1) Transfer Learning Initialization: 
Transfer Learning Initialization: Each device di in the smart 

home network will initially train its intrusion detection model Mi 
using a publicly available dataset Dpublic relevant to general 
security threats. In this experiment, the public dataset Dpublic 
encompassed all classes and devices from N-BaIoT to ensure a 
comprehensive foundation for intrusion detection knowledge 
across all participating models.  The objective is to optimize the 
initial model parameters θi

(0) by minimizing the loss function 
Lpublic of Dpublic: 

𝜃𝑖
(0)

= argmin 𝐿𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑖(𝐷𝑝𝑢𝑏𝑙𝑖𝑐 ;
𝜃

𝜃)   ( 1 ) 

This step ensures that every participating model has a 
foundational understanding of potential intrusions.  

2) Local Fine-tuning:  
Following the initial training, the devices fine-tune their 

models on their private, locally stored data Di
private. Given the 

rarity of intrusion events, this step is crucial for models to learn 
from the limited but highly relevant examples of actual smart 
home security incidents. This step adapts the model to the 
specific security context of each smart home, optimizing the 
parameters θi

(1): 

𝜃𝑖
(1)

= argmin 𝐿𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑖(𝐷𝑖
𝑝𝑟𝑖𝑣𝑎𝑡𝑒

;
𝜃

𝜃𝑖
(0)

)   ( 2 ) 

3) Knowledge Distillation for Federated Learning:  
The core of our approach involves smart home devices that 

share knowledge without exchanging raw data. Devices 
generate class scores Si,j for samples xj from the public dataset 
Dpublic and share these scores with a central server. The server 
aggregates this information to create a distilled knowledge 
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Fig. 1. System Framework 

 



dataset, representing a consensus Sconsensus,j, of learned features 
from all participating devices. 

𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠,𝑗 = ∑ (𝑆𝑖,𝑗)
𝑁

𝑖=1
∗ 𝐶𝑉𝑊𝑖    ( 3 ) 

where N is the number of participating devices and CVW 
(Computational-Volume Weight) represents each device's 
impact in terms of its computational power and data volume. 

Computational-Volume Weight (CVW): A metric 
determining a device's contribution to a machine learning model. 
CVW considers: 

• Computational Power: More powerful devices (able to 
perform more calculations) have greater influence. 

• Data Volume: Devices with larger datasets have a 
greater impact. 

Therefore, CVW is calculated based on two parts:  

• Complexity Assessment: The number of floating-point 
operations (FLOPs) a device's model performs 
determines its complexity [31]. 

• Data Volume: The amount of data a device contributes 
is measured. 

Both complexity and data volume are normalized as shown 
Equation (4) and (5), ensuring each device's contribution is 
weighted fairly based on its capabilities 

𝐶𝑉𝑊𝑖 =
1

2
 (𝑊𝑖

𝑓𝑙𝑜𝑝
+ 𝑊𝑖

𝑑𝑎𝑡𝑎  )    (4 ) 

𝑊𝑖
𝑓𝑙𝑜𝑝

=  
𝐹𝑖

∑ 𝐹
𝑖
𝑗𝑁

𝑗=1

      ( 5 ) 

𝑊𝑖
𝑑𝑎𝑡𝑎 =  

𝐷𝑖

∑ 𝐷
𝑖
𝑗𝑁

𝑗=1

      ( 6) 

4) Model Update and Synchronization:  
With the distilled knowledge, each device updates its local 

model to align with the aggregated insights, optimizing the 
parameters θi

(2)to minimize the difference between its class 
scores and the consensus:  

𝜃𝑖
(2)

= argmin 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑀𝑖(𝐷𝑝𝑢𝑏𝑙𝑖𝑐;
𝜃

𝜃𝑖
(1)

, 𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠)    ( 7 ) 

thereby benefiting from the collective learning of the network. 
This step ensures that even devices with limited exposure to 
intrusion events can enhance their detection capabilities. 

5) Continuous Adaptation:  
The smart home environment is dynamic, with devices being 

added or removed and usage patterns evolving. Our framework 
accommodates these changes by periodically repeating the 
knowledge distillation and model update processes. This ensures 
that the models remain effective and up-to-date with the latest 
security threats. 

6) Personalization vs. Generalization:  
Our framework maintains a balance between personalizing 

models to the unique security needs of each smart home, and 
generalizing across the network to benefit from shared learning. 
This balance is crucial for maximizing the effectiveness of 
intrusion detection in diverse environments. 

By customizing the FedMD approach for smart home 
intrusion detection, we aim to create a robust, privacy-

preserving, and adaptable framework that enhances security 
across a network of diverse and dynamically changing smart 
home devices. 

B.  Local Training  

In the Local Training phase of our distillation-based 
federated learning framework, selecting the appropriate model 
for each smart home device is critical, particularly given the 
diverse ecosystem of devices within a typical smart home. These 
devices range from high-capacity smart security systems to 
more constrained IoT devices, such as smart bulbs and sensors. 
The primary considerations in model selection are the 
computational capabilities, available memory, and energy 
constraints of each device, ensuring that the intrusion detection 
process is sustainable and does not impair the device's primary 
functions. The methodology for choosing the right model for a 
specific home device involves a multi-faceted approach: 

• Device capability assessment: The first step is a thorough 

evaluation of each device's hardware specifications, 

including processing power, available RAM, and storage. 

This assessment helps in categorizing devices based on 

their computational capabilities. 

• Energy consumption consideration: For battery-powered 

devices, energy efficiency becomes a pivotal factor. 

Models that require less computational power and, 

consequently, consume less energy are preferred to ensure 

that the device's primary functionalities are not 

compromised. 

• Model complexity vs.  performance trade-off: The trade-

off between model complexity and intrusion detection 

performance was carefully analyzed. While simpler 

models are more resource-efficient, they might lack the 

sophistication needed for accurate intrusion detection. 

Conversely, more complex models, although potentially 

more accurate, may not be feasible for resource-

constrained devices. 

• Adaptive model architecture: The architecture of the 

models for local training is adaptively chosen based on 

each smart home device's computational capabilities and 

energy constraints. For example, in our experiments, our 

selection spans a range of complexities, from Neural 

Networks (NN) to more complex architectures such as 

Convolutional Neural Networks (CNN) with varying 

depths (e.g., CNN with two blocks for less capable devices 

and CNN with three blocks for more capable ones) and 

CNN-LSTM hybrids for devices that can afford additional 

computational overhead while benefiting from LSTM's 

ability to understand temporal patterns in data. 

 

Algorithm1: Algorithm used to train heterogeneous models.  

1 Input: Public dataset 𝐷𝑝𝑢𝑏𝑙𝑖𝑐,  private datasets 𝐷 𝑖𝑝𝑟𝑖𝑣𝑎𝑡𝑒  for each device 𝑑𝑖 

2 Transfer Learning Initialization: 

 for each device 𝑑𝑖: 
3  Mi    model of each device 
4  Train intrusion detection model Mi on Dpublic 

5  𝜃𝑖
(0)

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑖(𝐷𝑝𝑢𝑏𝑙𝑖𝑐;
𝜃

𝜃)// Optimize initial model 

parameters 

6 end 

7 Local Fine-tuning: 



for each device 𝑑𝑖: 

8  𝜃𝑖
(1)

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑖(𝐷𝑖
𝑝𝑟𝑖𝑣𝑎𝑡𝑒

;
𝜃

𝜃𝑖
(0)

)   // Fine-tune 𝑀𝑖  on 

𝐷𝑖𝑝𝑟𝑖𝑣𝑎𝑡𝑒 

9 end 

10 Knowledge Distillation: 

sample𝑥𝑗  in 𝐷𝑝𝑢𝑏𝑙𝑖𝑐:  

11 for each device 𝑑𝑖: 

12  Generate class scores 𝑆𝑖,𝑗 for 𝑥𝑗 using 𝑀𝑖 

13 end 

14 Aggregate class scores: 

15 

𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠,𝑗 = ∑(𝑆𝑖,𝑗)

𝑁

𝑖=1

∗ 𝐶𝑉𝑊𝑖 

16 Models update: 

17 for each device 𝑑𝑖: 

18  𝜃𝑖
(2)

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑀𝑖(𝐷𝑝𝑢𝑏𝑙𝑖𝑐;
𝜃

𝜃𝑖
(1)

, 𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) // Update 

𝑀𝑖 using 𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 by minimizing 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 

19 end 

20 Repeat 

IV. EVALUATION 

A. Dataset 

For our evaluation, we utilized the N-BaIoT dataset, [32] 
chosen for its relevance to IoT security and the variety of IoT 
devices it encompasses, including nine commercial IoT devices 
infected with Mirai and BASHLITE botnets. The N-BaIoT 
dataset is particularly suited for studying IoT-based botnet 
attacks due to its real-world attack scenarios and diverse device 
behaviors. This dataset includes traffic data from devices such 
as security cameras, thermostats, and baby monitors, providing 
a comprehensive overview of typical smart home devices. Each 
device in the dataset exhibits unique features and behaviors,  

 

which are essential for developing and testing intrusion 
detection models that can adapt to the heterogeneous nature of 
smart home environments. By using the N-BaIoT dataset, our 
evaluation aims to assess the effectiveness of our federated 
learning and knowledge distillation approach in detecting 
anomalies and potential security threats across a varied set of 
IoT devices, ensuring our methodology's applicability to real-
world smart home settings. 

B. Local Models 

In our evaluation, the local model selection for each IoT 
device accommodated the distinct characteristics and limitations 
of the smart home devices. Considering the diverse nature of the 

devices and their computational constraints, we adopted various 
model architectures tailored to the specific needs and 
capabilities of each device. 

For the Danmini Doorbell, a relatively simple Convolutional 
Neural Network (CNN) [33] with 2 Blocks (CNN_2Blocks) was 
chosen, reflecting the device's moderate computational 
resources. This model, comprising 81,952 parameters, strikes a 
balance between complexity and efficiency, and is suitable for a 
device such as a doorbell that requires real-time processing but 
does not require extensive data analysis. The Ecobee Thermostat 
and Provision PT-737E Security Camera utilized a simple 
Neural Network (NN) architecture consisting of 185,984 
parameters. This choice was driven by the need for models that 
could efficiently process data without imposing significant 
computational loads, given the energy and processing 
constraints typical of such devices. The Philips B120N/10 Baby 
Monitor, which requires more nuanced data analysis due to its 
complex functionalities such as motion and sound detection, was 
assigned a CNN with three blocks (CNN_3Block), containing 
318,752 parameters. However, it is important to note that this 
device, along with the Ennio Doorbell, was excluded from our 
final evaluation because of its limited class diversity, which did 
not align with the requirements of our model. For security 
cameras, which are pivotal in intrusion detection and require 
sophisticated analysis to identify anomalies in the video data, we 
employed more complex models. The Provision PT-838 and 
SimpleHome XCS7_1002_WHT Security Cameras were 
equipped with a CNN-LSTM hybrid model, blending the spatial 
feature extraction capabilities of CNNs with the temporal 
pattern recognition strength of LSTMs. This model architecture, 
with 261,344 parameters, is particularly well-suited for 
processing sequential data such as video streams. Lastly, the 
SimpleHome XCS7_1003_WHT Security Camera was fitted 
with a CNN model similar to that of the Danmini Doorbell, 
considering the similar operational and computational demands 
of these devices. 

Table I illustrates each chosen model architecture and its 
parameters. The selection of different models for different 
devices underscores our methodology's emphasis on resource 
awareness and adaptability to the heterogeneous ecosystem of 
smart home devices. 

C. Results 

To model an idealized training scenario, we trained all models 
on all devices using a centralized approach. In this scenario, each 

TABLE I.  DEVICES AND THEIR MODELS 

Device Category Device Model Architecture Parameters CVW  

Doorbell Danmini CNN_2Blocks 81,952 0.16 

Baby Monitor Philips_B120N10 CNN_3Blocks 318,752 0.40 

Thermostat Ecobee NN 185,984 0.06 

Security Camera 

Provision_PT_737E NN 185,984 0.08 

Provision_PT_838 CNN+LSTM 261,344 0.07 

SimpleHome_XCS7_1002_WHT CNN+LSTM 261,344 0.07 

SimpleHome_XCS7_1003_WHT CNN 81,952 0.15 

 
 



device has access to the entire dataset for training and testing. 
This approach is unlikely to be replicated in real-world 
deployments, where individual devices may have limited access 
to the full dataset due to storage or bandwidth constraints. 

Figure 2 illustrates the training accuracy achieved by all models 
under this centralized approach. As shown, most devices reach 
an accuracy of around 88%. Notably, the baby monitor device, 
which utilizes the most complex model in our system, achieves 
an accuracy of 91%.  

Figure 3 depicts the loss curves for all models during the 
centralized training process. The curves demonstrate a smooth 
convergence towards their minimum values, indicating effective 
learning. As expected, devices with more complex models, like 
the baby monitor (orange curve), achieve lower final loss 
compared to devices with simpler models, such as the Ecobee 
thermostat (shown here for comparison). This suggests that the 
increased complexity allows the model to better capture the 
underlying patterns within the data. 

Figure 4 illustrates the accuracy improvement of all devices 
in our system throughout the training process (x-axis represents 
communication rounds). Each line depicts the performance of a 

single device. Devices begin with a pre-trained model (based on 
a public security threat dataset). This initial training provides a 
foundational level of accuracy, reflected in the starting points of 
the lines. As communication rounds progress, devices leverage 

a federated learning approach with knowledge distillation. This 
allows them to collaborate and share knowledge (without raw 
data exchange) to improve their threat detection capabilities. 

 We observe two key trends:  First, devices with a higher 
contribution rate ,determined by CVW, exhibit a smoother and 
more consistent accuracy improvement over communication 
rounds. This is likely because they contribute more data and 
computation to the learning process. Moreover. even simpler 
models demonstrate accuracy improvement, albeit with some 
fluctuations during training. This can be attributed to the 
knowledge distillation step, where these models benefit from the 
knowledge transferred from more complex models in the system. 
For example, the Ecobee thermostat, equipped with a simple 
neural network (NN) model, shows improvement from 58% 
initial accuracy to 87% by the end of the training process. 

 

Fig. 2. Centralized accuracies 

 

Fig. 3. Centralized losses 

 

 

Fig. 4. Federated accuracies 

 

Fig. 5. Federated losses 

 



Figure 5 illustrates the loss performance of devices during 
the federated learning process. Consistent with accuracy results, 
devices with more complex models (higher FLOPs weight) 
exhibit smoother convergence towards a minimum loss value. 
Simpler models, while showing some fluctuations, ultimately 
converge as well, demonstrating the benefits of federated 
learning for all devices. 

To gain a deeper understanding of how well our federated 
learning system performs, we evaluate each device's model 
using three key metrics: precision, recall, and F1-score. These 
metrics provide a comprehensive picture of the model's ability 
to accurately detect threats. Table II presents the initial 
performance of each device's model after training on a public 
dataset. It serves as our baseline for comparison. Table III 
summarizes how the models perform across all devices after 
using our knowledge distillation-based federated learning 
system. Compared to their initial baseline performance in Table 
I, we see a dramatic improvement across simpler models.  The 
Provision_PT_737E device, as a key example, demonstrates the 
most significant improvement. This highlights how our 
proposed system effectively boosts the performance of models 
with limited computational resources. 

From the experiments, we can see that our proposed system 
effectively enhances the security detection capabilities of smart 
home devices, regardless of their model complexity, while 
ensuring user privacy. This collaborative learning approach, 
powered by knowledge distillation, shows particular promise for 
devices with limited computational resources. 

V. CONCLUSIONS 

In this research, we proposed a robust and adaptable 
federated learning framework specifically designed for intrusion 
detection within smart home environments. Our approach 
tackles several critical challenges inherent to this domain, 
including data privacy, device heterogeneity, sparse intrusion 
data, and the ever-changing nature of smart home settings.  Key 
innovations of our framework include heterogeneous model 
support, where we strategically select diverse model 
architectures (such as NN, CNN, and CNN-LSTM) based on 
each device's computational capacity. This ensures that local 

training remains efficient while maximizing performance across 
the entire smart home network. 

We prioritize privacy by using knowledge distillation. In this 
approach, devices share insights in the form of class scores 
derived from public datasets, preserving privacy while allowing 
devices to learn from each other's insights. Additionally, we 
address the issue of sparse intrusion data by pre-training all 
devices on a public dataset. This gives each device a baseline 
understanding of potential threats, ensuring robustness despite 
infrequent intrusion events on individual devices. Our 
framework is designed for continuous adaptation, seamlessly 
adjusting to changes within the smart home environment, such 
as added or removed devices, or evolving usage patterns, which 
keeps security models up-to-date. Finally, we strike a crucial 
balance between personalization and generalization.  Local fine-
tuning allows each system to tailor itself to the specific security 
needs of a smart home, while ongoing knowledge distillation 
ensures that all devices benefit from broader network insights. 

Extensive evaluation using the N-BaIoT dataset 
demonstrates that our approach detects anomalies with high 
accuracy across a diverse set of IoT devices infected with real-
world botnets like Mirai and BASHLITE. Our results show that 
even simpler devices benefit from knowledge distillation, 
experiencing significant performance gains when compared to 
their initial baselines. Notably, devices like the 
Provision_PT_737E exemplify the success of our system in 
helping those with limited resources. 

Our work has demonstrated the effectiveness of a privacy-
preserving, adaptable federated learning system for enhancing 
intrusion detection in heterogeneous smart home environments. 
This approach holds significant promise for the future of smart 
home security. In our ongoing research, we plan to investigate 
several avenues for further improvement.  First, we intend to 
explore more complex distillation techniques beyond class 
scores. Distilling richer information such as feature maps could 
provide deeper insights for model collaboration, potentially 
leading to even more accurate intrusion detection.  Additionally, 
we plan to incorporate adversarial learning techniques to 
enhance the robustness of our models. Adversarial learning 
involves training models to be resilient against attempts to 

TABLE III.  PERFORMANCE OF INITIAL MODELS 

Device 
 

Precision Recall Accuracy F1-score 

Danmini 
 

0.54 0.60 0.52 0.51 

Philips_B120N10 
 

0.56 0.62 0.69 0.77 

Ecobee 
 

0.61 0.66 0.58 0.60 

Provision_PT_737E 
 

0.59 0.64 0.63 0.70 

Provision_PT_838 
 

0.71 0.71 0.69 0.69 

SimpleHome_XCS

7_1002_WHT 

 
0.57 0.66 0.54 0.58 

SimpleHome_XCS

7_1003_WHT 

 
0.58 0.70 0.56 0.57 

 

TABLE II.  PERFORMANCE OF FEDERATED  MODELS 

Device Precision Recall Accuracy F1-score 

Danmini 0.85 0.90 0.90 0.90 

Philips_B120N10 0.92 0.90 0.87 0.91 

Ecobee 0.85 0.90 0.87 0.88 

Provision_PT_737E 0.88 0.90 0.83 0.87 

Provision_PT_838 0.89 0.89 0.86 0.89 

SimpleHome_XCS

7_1002_WHT 
0.83 0.86 0.84 0.87 

SimpleHome_XCS
7_1003_WHT 

0.86 0.87 0.85 0.87 

 



manipulate their behavior. By incorporating this approach, we 
can create models better equipped to handle new or unknown 
attack vectors, further strengthening the security posture of 
smart homes.  Finally, to ensure broader real-world applicability, 
we plan to conduct large-scale evaluations across a wider range 
of smart home networks. This will provide a more 
comprehensive understanding of the system's performance and 
effectiveness in diverse real-world settings. 
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