
DODO : Dynamic Contextual Compression for Decoder-only LMs

Guanghui Qin⌘⇤ Corby Rossetµ Ethan C. Chauµ

Nikhil Raoµ Benjamin Van Durme⌘,µ

⌘Johns Hopkins University µMicrosoft
{gqin2,vandurme}@jhu.edu

Abstract

Transformer-based language models (LMs) are
inefficient in long contexts. We propose DODO ,
a solution for context compression. Instead of
one vector per token in a standard transformer
model, DODO represents text with a dynamic

number of hidden states at each layer, reducing
the cost of self-attention to a fraction of typical
time and space. Moreover, off-the-shelf models
such as LLAMA can be adapted to DODO by ef-
ficient parameter tuning methods such as LoRA.
In use, DODO can act as either an autoregres-
sive LM or a context compressor for down-
stream tasks. We demonstrate through experi-
ments in language modeling, question answer-
ing, and summarization that DODO retains ca-
pabilities in these tasks, while drastically reduc-
ing the overhead during decoding. For example,
in the autoencoding task, DODO shrinks context
at a 20x compression ratio with a BLEU score
of 98% for reconstruction, achieving nearly
lossless encoding.

1 Introduction

Transformer-based LMs (Vaswani et al., 2017) suf-
fer from quadratic computational complexity w.r.t.
sequence length, making it challenging to scale
to long sequences. Proposed solutions (Tay et al.,
2022) include sparsifying attention patterns (Belt-
agy et al., 2020; Ding et al., 2023) or approximat-
ing the attention computation with kernel meth-
ods (Choromanski et al., 2021). However, not all
these approaches are proven effective for NLP tasks
(Qin et al., 2023), and very few of them are applied
to large language models (LLMs), such as LLaMA
(Touvron et al., 2023a).

We propose DODO , a solution for dynamic
contextual compression for decoder-only LMs.
While a standard transformer represents a text with
vector sequences of the same length as tokens,

⇤Work done in part during Guanghui Qin’s internship at
Microsoft Research.

NLP is concerned with human language, …

Q: What is NLP? A: It is …

Compression w/

Figure 1: DODO efficiently maps long inputs into a
compressed set of vectors named nuggets , which can
then be attended to when processing a query.

the intuition of DODO is to use a smaller, vari-

able number of vectors as a contextual represen-
tation. Past research indicates that a subset of to-
ken embeddings, named nuggets , in an encoder
with global attention may carry enough informa-
tion to reconstruct surrounding context (Qin and
Van Durme, 2023), and upon inspection those au-
thors observed these nuggets tended to account
for preceding text. This suggests a decoder-only
model might be dynamically capable of deriving
such a representation online (Fig. 1). To enable
DODO requires addressing a selection process that
is not differentiable: we adopt the straight-through
estimator (Bengio et al., 2013) to make the model
end-to-end trainable.

Past work on context compression, such as Ge
et al. (2024) and Mu et al. (2023), appends fixed

additional tokens. DODO grows the representation
with sequence length and re-uses existing token em-
beddings. Moreover, unlike pattern-based methods
that evenly chunk the text (Rae et al., 2020), experi-
ments show that DODO spontaneously learns to use
textual delimiters as nuggets , naturally splitting
the text into subsentential units (Section 4.3).

DODO supports causal masking and can be natu-
rally used as an autoregressive LM. We experimen-
tally demonstrate that DODO can achieve a perplex-
ity score lower than the original LM with restricted
memory, outperforming the baseline model of Rae

et al. (2020). For tasks with a fixed context, e.g.
long-form QA, DODO works as a context compres-
sor: It encodes a token sequence into a shorter
vector sequence, achieving a configurable compres-
sion ratio. In experiments on autoencoding, we
demonstrate that DODO can achieve near lossless
encoding with a compression ratio as high as 20x, a
marked improvement over ICAE (Ge et al., 2024).
After fine-tuning, DODO is effective in downstream
NLP tasks such as question answering (QA) and
summarization, where it performs on par with or
even better than the original LMs while achieving
a compression ratio as high as 10x.

In summary, we propose DODO for contextual
compression for decoder-only transformers. It
learns to subselect a fractional number of tokens
as context representation. A straight-through esti-
mator ensures that DODO is differentiable and can
be trained with the next-token prediction objective.
DODO achieves a remarkable compression ratio of
up to 20x and is shown to be effective in tasks such
as autoencoding, language modeling, and applica-
tions including QA and summarization.

2 Approach

In this paper, we study the language modeling prob-
lem p(wt | w<t), where wi 2 V is a sequence
of tokens and V is the vocabulary. The common
Transformer (Vaswani et al., 2017) approach en-
codes a token sequence w1:n into a sequence of
vectors and then predicts the next token:
�
xL
1 ,x

L
2 . . . ,xL

n

�
= Transformer✓(w1:n), (1)

p(wn+1 | w1:n) ⇠ LMHead✓(x
L
n), (2)

where ✓ is the parameter, L is the number of trans-
former layers, xL

t 2 Rd is the hidden state of the
t-th token in the L-th layer, d is the hidden state
dimension, and LMHead is a feedforward neural net-
work that defines a categorical distribution over the
vocabulary. In the decoder-only transformers, xl+1

t

is encoded by attending to past token representation
in the l-th layer:

xl+1
t = Attn✓(x

l
t,x

l
1:t), l = 1, 2, . . . , L�1 (3)

where the Attn function takes query and key
(value) vectors as arguments. Eq. (3) can be in-
efficient with long sequences as its computation
grows quadratically with the sequence length. In
this paper, we aim to answer: Can we find an alter-

native method to efficiently approximate xl
t ?

2.1 Representing texts with DODO

In Eq. (3), context information up to the t-th token
is encoded into t vectors as hidden states. Intu-
itively, we can reduce the computational overhead
by controlling the size of hidden states. Formally,
we want to encode t tokens w1:t into k vectors:
(zl1, . . . , z

l
k), where k  t. Following prior work

(Qin and Van Durme, 2023) we refer to these vec-
tors as nuggets . Then xl+1

t is derived by

xl+1
t = Attn✓(x

l
t, z

l
1:k), l = 1, 2, . . . , L�1. (4)

Please note that k is not a fixed number (Zhang
et al., 2022; Ge et al., 2024) but a dynamic number

that depends on the input sequence w1:t. We will
discuss the choice of k later.

We observe that xl
1:t encodes the information of

tokens w1:t, thus one may derive zl1:k from xl
1:t. We

therefore select zl1:k by subselecting vectors from
xl
1:t. Formally, we have (c.f. §3.3 in Zeng et al.,

2023b and §3.1 in Qin and Van Durme, 2023):

{zl1, . . . , zlk} = {xl
i | ↵i = 1, 1  i  t}, (5)

p(↵i = 1) = �(Scorer'(x
◆
i)), (6)

where ↵i is a binary variable indicating if xl
i is

selected, p(↵i = 1) refers to a Bernoulli distri-
bution, Scorer' is a feedforward neural network
parameterized by ', and � is the sigmoid function.
Scorer' takes as input x◆

i, the hidden state of wi in
the ◆-th layer, where ◆ is a hyperparameter. 1 That
is, tokens that were assigned with higher scores by
Scorer is more likely be selected as nuggets .

Note that ◆ in Eq. (6) does not depend on l, thus it
selects the same set of indices for all the layers. In
the remainder of this paper, we abstract the process
of Eqs. (1) and (4) to (6) into a Dodo operator:

z1:L1:k = Dodo✓,'(w1:t), 1  k  t. (7)

We may omit the superscript and use zi (xi) to in-
dicate z1:Li (x1:L

i), the i-th nuggets in all layers.
So far, we only assume that k is a dynamic num-

ber depending on w1:t. In general, we set k to be
roughly proportional to t, controlled by a compres-
sion ratio r ⇡ t/k. Depending on the task, k can
either grow with t when w1:t is incrementally ob-
served (Section 2.2), or be strictly proportional to t
when w1:t is fully observed (Section 2.3).

1We empirically set ◆ = 3 in all experiments.

2.2 DODO as an autoregressive LM
Not all efficient LMs support causal masking (Peng
et al., 2022). Many context compression methods
(Mu et al., 2023; Ge et al., 2024) only apply to
fixed-sized texts. However, each hidden state zi in
nuggets only conditions on its past tokens. Thus
DODO can be naturally integrated into an autore-
gressive LM, where tokens w1:t are sequentially
fed into an LM. Instead of saving all past hidden
states x1:t, DODO only retains a subset of tokens
as nuggets , which are selected by Scorer. The
stochastic selection process in Eq. (5) is made de-
terministic by settings a threshold ⇤ in Eq. (6):

↵i = {Scorer'(x◆
i) > ⇤} , (8)

where is the indicator function. That is, token wi

is retained as nuggets zj if its score is above the
threshold ⇤. Because Eq. (8) does not depend on
future tokens, z1:k can be autoregressively encoded
with causal masking.

To set a proper threshold ⇤, we define a com-
pression ratio r � 1 and let r ⇡ t/k. That is,
⇤ should be set such that after t tokens are fed
into DODO , roughly k ⇡ t/r hidden states xi’s
should be selected as zj’s. In practice, we estimate
the threshold ⇤ by running a trained Scorer' on
sampled tokens. 2

Parameter configuration Intuitively, as a com-
pressed representation, zj should encode a broader
range of tokens than xi does. We therefore sepa-
rate their attention parameters: Once a token wt

is selected by Eq. (8), it uses Attn� to attend past
tokens. Otherwise, it uses Attn✓.

A mixed resolution Though z1:k is more effi-
cient than x1:t, information loss is inevitable dur-
ing the subselection process. Intuitively, the tokens
closer to the target token wt+1 contain more rele-
vant information. We propose to revise Eq. (4) with
a mixed resolution, where xt attends to recent ⌧
tokens without compression. Suppose we split the
sequence w1:t at index (t� ⌧), we have

xl+1
t = Attn✓

⇣
xl
t,
h
zl1:k;x

l
t�⌧ :t

i⌘
, (9)

z1:k = Dodo�,'(w1:t�⌧) (10)

where z1:k are the compressed representation of
w1:t�⌧ , [;] indicates the concatenation of vector

2Training Scorer' requires a determined ⇤, but setting
⇤ needs a trained Scorer'. To prevent the chicken-and-egg
problem, we initialize the Scorer' here from Section 2.3.

…

…

…

…

recent tokensdistant tokens

select

Figure 2: An illustration of the autoregressive DODO ,
where Scorer(') selects nuggets tokens, Dodo(�)
aggregates the information of (t� ⌧) distant tokens into
nuggets . When predicting a new token, the LM(✓)
has direct access to recent ⌧ tokens but needs to use
nuggets to access the distant information.

sequences, and ⌧ is a hyperparameter. An illustra-
tion of our method can be seen in Fig. 2.

Learning To train DODO as an autoregressive
LM, we estimate the parameters (✓,�,') to maxi-
mize the log likelihood of p(w1:n):

max
✓,�,'

X

w1:n2D

n�1X

i=1

log p(wi+1 | w1:i), (11)

where D is the corpus and p(wi+1 | w1:i) is defined
by Eqs. (2), (9) and (10).

Learning with Eq. (11) can be inefficient: The
computation cannot be parallelized on the sequence
dimension because they have different splitting in-
dex (i � ⌧). As an efficiency optimization, we
chunk the texts into segments, and tokens in a seg-
ment share the same splitting index.

2.3 DODO as a contextual compressor
In some tasks, such as long-form question answer-
ing, a fixed segment text, say w1:n, is treated as
the context and is fully observed before the text
generation. In this case, one can use DODO as an
encoder 3 to encode the input text into hidden states
z1:k where k  n.

Formally, suppose w1:n and y1:m are the input
and output sequences separately, the probability
distribution of y1:m is defined as

p(yi | y<i, w1:n) ⇠ LMHead✓

�
yL
i

�
, (12)

yl+1
i = Attn✓

⇣
yl
i,
h
zl1:k;y

l
1:i

i⌘
, (13)

where we slightly abuse the notation to use yi as
the hidden states of token yi. Refer to Fig. 3 for an
illustration of Eq. (13).

3We use the term “encoder” because it encodes an input
sequence. It is technically a decoder-only transformer model.

Decoder Generation Text

……

Encoder Input Text top-k

…… … …

Encoder Side Decoder Side
……

Nonparametric

Figure 3: DODO as context compressor. From left to right, Encoder side: Dodo� encodes texts into vectors
representations; Scorer: Scorer' computes a score for eaceh encoder token and then select the top-k tokens as
nuggets ; Decoder side: Language model LM✓ autoretressively decodes text conditioned on nuggets .

Because n, the number of input tokens, is known,
we could maintain a fixed compression r = n/k
by setting k = dn/re. We therefore make the
stochastic selection in Eq. (6) deterministic by:

{z1, . . . , zk} = TopK(x1:n, s1:n, k), (14)
si = Scorer'(x

◆
i), (15)

where TopK selects k vectors from x1:n with the
highest si, the score of token wi. 4

Parameter configuration We assign separate pa-
rameters to the attention modules in the encoder
and decoder: The parameters of the encoder (de-
coder) are indicated by � (✓).

Learning To train DODO as an encoder, we learn
it through maximum likelihood estimation:

max
✓,�,'

X

w,y2D

mX

i=1

log p (yi | y<i, w1:n) ,

where input and output sequence pairs (w1:n, y1:m)
are sampled from a corpus D, and the next-token
probability is defined by Eqs. (12) to (15).

2.4 Learning with straight-through estimator
The selection of z is discrete: the selection process,
Eqs. (8) and (14), is not differentiable. Here we
show how to back-propagate the gradients so the
parameter ' in Scorer' can be learned.

Previous work proposed approaches to make
TopK differentiable (e.g., Xie et al., 2020 and
Sander et al., 2023). To avoid unnecessary com-
plexity, we adopt the biased but simpler straight-
through estimator of Bengio et al. (2013). Suppose

4Because xi only encodes texts before wi, the last token
wn is always selected to the information in w1:n is completely
encoded in z1:k.

the token xj attends to the compressed representa-
tion zi, and let ⇠i,j denote the logit of the attention
token xi to the compressed hidden state zj . Then
we have (c.f. §3.2 in Qin and Van Durme, 2023
and §2.2 in Jang et al., 2017):

⇠li,j =
⇣
WQx

l
j

⌘> ⇣
WKz

l
i

⌘
, (16)

@`

@si

X

j

LX

l=1

@`

@⇠li,j
, (17)

where WQ and WK are parameters of the self-
attention, and @`/@si is set to be the aggregation of
the gradients of ⇠li,j from future tokens in all layers.
Intuitively, Scorer' learns to select tokens that
are more attended by future tokens. To implement
Eq. (17), we replace ⇠li,j in Eq. (16) with:

⇠
l
i,j = ⇠li,j + si � StopGrad(si), (18)

where the StopGrad(si) detaches si from back-
ward pass and ensures that the addition of si to ⇠Li,j
does not affect the forward pass.

3 Overall experiment setup

We adopt the decoder-only transformer architec-
ture of LLAMA (Touvron et al., 2023a,b) as our
base model. For the autoencoding experiment,
we use the checkpoint of LLaMA-7B following
the baseline model ICAE (Ge et al., 2024). We
use the checkpoint of LLaMA-2-7B for the au-
toregressive language modeling experiments (Sec-
tion 5) and LLaMA-2-7B-chat (Section 6) for
the downstream NLP tasks.

We adopt LORA (Hu et al., 2022) with a rank of
32 to fine-tune the parameters of the LM, namely

✓ and �. We adopt the implementation of hugging-
face/PEFT packakge (Sourab Mangrulkar et al.,
2022). More specifically, we fix the original param-
eters of LLAMAand add two LORA adapters for ✓
and � respectively. Different adapters are activated
for the computation of compressing and decoding
of DODO . We disable the adapters to produce the
features to Scorer.

We employ mixed precision to save GPU mem-
ory. The training is scaled up to 16 NVIDIA V100
cards with DeepSpeed (Rasley et al., 2020). See
Appendix B for further training details, including
hyperparameters, and parameter counts.

4 Autoencoding experiment

4.1 Task, dataset, and experiment setups
In this section, we use DODO as a context compres-
sor (Section 2.3) and apply it to the autoencoding
task. As a comparison, we use In-Context AutoEn-
coder (Ge et al., 2024, ICAE) as a baseline model.
In this task, a model is asked to reconstruct the
input text from a compressed representation. Fol-
lowing ICAE, we fine-tune the LLaMA-7B model
on the Pile (Gao et al., 2020) dataset. We manually
split the corpus into train, dev, and test splits, and
train the model until convergence.

As stated in Section 2.3, we use DODO to com-
press the input text into fewer hidden states z, and
then use the LM to decode the input sequence. The
size of hidden states z, i.e. k, is set to be propor-
tional to the length of the input sequence: k = n/r,
and we set r = 20 and 10. We prepend a trainable
soft token to the decoding sequence to signal the
model to reconstruct inputs (Ge et al., 2024).

The key idea of ICAE is to append 128 tokens to
the input sequence as “memory slots,” and train the
decoder to reconstruct the input from the memories:

(m̃1, m̃2, . . . , m̃128) = LM ([w1:n;m1:128])

p(wi+1 | w1:i) = LM ([w1:i; m̃1:128]) .

We measure using BLEU (Papineni et al., 2002)
score on pairs of input and decoded texts. 5

4.2 Experiment results
In Fig. 4 we see DODO has comparable perfor-
mance with the ICAE baseline for short sequences
and better performance for long sequences. More-
over, DODO successfully handles longer inputs:

5We report ICAE results per the §3.3.1 in Ge et al. (2024).

Figure 4: BLEU scores for autoencoding. Each group
corresponds to a sequence length (±5 tokens). Note
the performance of ICAE is nearly 100% for sequence
lengths shorter than 300.

performance improves on longer sequences be-
cause the number of nuggets is proportional
to the sequence length, unlike ICAE’s constant-
sized memory. Despite its variable memory,
DODO maintains an advantage over ICAE in com-
putational time and space. First, DODO encodes

sequences more efficiently: while ICAE always
appends 128 tokens, DODO reuses a fraction of the
already-encoded tokens. Also, DODO uses fewer

tokens than ICAE: even for the longest sequences,
DODO only uses 25 or 50 tokens, while ICAE
uses 128 for all sequences. 6 Lastly, DODO is
more efficient than ICAE during decoding be-
cause it uses fewer tokens and does not need to
re-encode them. In short, compared to the baseline,
DODO demonstrates comparable or better perfor-
mance, successful handling of long sequences, and
much more efficient encoding and decoding.

We also conducted experiments on languages
other than English. For more details, readers may
refer to Appendix F.

4.3 DODO selects clausal text delimiters
In Section 2.1, we employ Scorer to pick out
nuggets , but what are the actual tokens selected?
We empirically sampled 128 documents with 50k
tokens and run the Scorer from the checkpoint
in Section 4 with a compression ratio of 10, and
the results are shown in Fig. 5. Readers may refer
to Appendix C for case studies on sampled texts.
From Fig. 5, we observe similar phenomena as Qin
and Van Durme (2023), where the tokens preferred
by DODO are mostly clausal text delimiters, such
as punctuation marks and conjunction words. This

6DODO uses all layers while ICAE only uses the last layer.
However, ICAE needs to encode their memory tokens into
hidden states during decoding, while DODO can save this step.

Figure 5: Token frequency of tokens selected by
DODO and the formal texts. These top 10 token types
cover 95% of the observed selection.

phenonenon is further discussed in Section 7.2.

5 Autoregressive LM experiment

5.1 Experiment setup

In this task, the model is asked to autoregressively

decode a sequence of texts. We therefore use
DODO as an autoregressive LM (Section 2.2). We
introduce a baseline method Compressive Trans-
formers (Rae et al., 2020) (denoted by COMPRES-
SIVE), which evenly chunks the text into segments
and uses a pooling algorithm 7 to compress the
hidden states of each segment into a single vec-
tor. We also conduct experiments with the origi-
nal LLAMA, denoted by FULL . In experiments,
COMPRESSIVE has the save compression ratio as
DODO does. FULL does not support compression,
so we limit its context length to make sure all mod-
els use the same number of hidden states.

We use the Pile (Gao et al., 2020) and WikiText-
103 (Merity et al., 2017) as the corpus. We ran-
domly split the Pile into train, dev, and test sets,
where the test set contains 100k tokens. All models
are initialized from the checkpoint Llama-2-7b,
and trained on the training set of the Pile until
convergence. The compression ratio for DODO and
COMPRESSIVE is 10x. The evaluation is conducted
on the test set of the Pile and WikiText-103.

Perplexity (PPL) is used as the evaluation metric.
Following previous work, we exclude the words
that are defined as out-of-vocabulary by Merity
et al. (2017) from the evaluation on WikiText-103.
Because WikiText-103 is a tokenized corpus, we
take production over the probabilities of subwords
for each complete word to measure the word PPL.
Note our algorithm underestimates the model per-
formance for the complete word PPL.

We illustrate the intuition of DODO via an exam-
7In experiments, we adopt the mean pooling.

ple in Fig. 6. For such an example, DODO should
retain both topical and explicit vocabulary informa-
tion (e.g., the underlined text) in the compressed
history, in order to be less surprised by subsequent
text such as bolded there.

5.2 Experiment results

The experiment results are shown in Table 1. We
conduct experiments with 3 context configurations,
where an LM has access to up to 64, 128, or
256 past hidden states. For DODO and COMPRES-
SIVE , the first 32, 64, or 128 states are compressed
representation of the past 320, 640, or 1280 to-
kens. DODO outperforms both COMPRESSIVE and
FULL , showing that with a restricted size of hid-
den states, DODO is an effective method to encode
history information.

6 Downstream task experiments

We pick downstream tasks where a document as
context is followed by a query. The model is asked
to encode the document and decode the answer con-
ditioned on the document encoding and question.
In these tasks, we use DODO as a context compres-
sor (Section 2.3), and we set the compression r = 5
or 10. To train DODO to perform these tasks, we
consider 2 scenarios. a) Fine-tuning: DODO is
trained on the training set of the downstream tasks.
b) Zero-shot: DODO is trained on normal texts ran-
domly sampled from the Pile and directly tested on
the downstream task. In this case, each text is split
into 2 parts, containing up to 512 and 128 tokens,
and the model is asked to decode the second part
conditioned on the encoding of the first part.

We consider the tasks of question answering
and summarization. Datasets used in this sec-
tion are SQuAD (Rajpurkar et al., 2016) and
CNN/DailyMail v3.0.0 (See et al., 2017) for sum-
marization. Their statistics are listed in Table 2.

We use the following baseline methods:
• FULL : Results of the original LM.
• NODOC : LM is used to do the task without any

documents. Only the question is provided.
• LMSUMM : Use the LM to summarize the text

into fewer tokens with prompts, which asks the
LM to compress the texts into 10% of its length.
LM uses the summary instead of documents to
do the task. (Appendix D.1) 8

8In practice, LM uses 10.9% of its original length to sum-
marize the text on average, counted by subwords.

. . . In the 1890s, armed standoffs were avoided narrowly several times. The Great Northern Railway, under the supervision

of president . . . (omitted 230 tokens) . . . The railway also built Glacier Park Lodge, adjacent to the park on its east side,

and the Many Glacier Hotel on the east shore of Swiftcurrent Lake. Louis Hill personally selected the sites for all of these

buildings, choosing each for their dramatic scenic backdrops and views. Another developer, John Lewis, built the Lewis
Glacier Hotel on Lake McDonald in 1913–1914. The Great Northern Railway bought the hotel in 1930 and it was later . . .

Figure 6: An example of a setting of our LM experiment. Here, compressive models access 320 tokens of history
(italics) which they must compress to 32 states, along with 32 explicit tokens of most recent history (final portion of
red, normal text). FULL gets explicit access only to the entirety of the red text (64 tokens), with no access to longer
history. Models need to complete the sequence starting with The Great Northern Railway.

model total compressed context ppl. on WikiText ppl. on Pile
states tokens tokens subword word subword

FULL 256 0 256 6.39 10.65 4.94
COMPRESSIVE 256 1280 128 6.88 11.62 4.82
DODO 256 1280 128 6.30 10.55 4.01
FULL 128 0 128 6.87 11.69 5.35
COMPRESSIVE 128 640 64 7.09 12.18 4.93
DODO 128 640 64 6.58 11.06 4.49
FULL 64 0 64 7.95 14.08 5.80
COMPRESSIVE 64 320 32 7.64 13.39 5.65
DODO 64 320 32 6.91 11.78 5.01

Table 1: Perplexity on the Pile and WikiText-103, contrasting two 10x compressed solutions against no use
of compression. Compressed tokens: the number of compressed tokens that precede context tokens: the
uncompressed context immediately before the token to be predicted. This adds up to total state, which is directly
comparable between systems, using three settings (256, 128, and 64). DODO trades off explicit context for larger
history, with better perplexity results.

6.1 Question answering

In SQuAD a model is asked to extract a phrase
from the passage to answer the query. We refor-
mulate this problem as a text-to-text task instead
of annotation and prompt the model to answer the
question (Appendix D.2). We use accuracy to eval-
uate the model performance. As the model tends
to generate tokens more than the answer itself or
using different forms (e.g. using “two” instead of
“2”), we normalize the output to match the answer.
Readers may refer to Appendix E for the algorithm
used to calculate the accuracy.

We consider all models: FULL , LMSUMM ,
DODO , and NODOC (Table 3). All models
are evaluated in a zero-shot manner without fine-
tuning. FULL and DODO easily outperform the
NODOC and LMSUMM , and we observe that LM-
SUMM often omits details that are needed by the
question. The performance of DODO can be im-
proved by lowering its compression ratio, and the
performance of DODO (r = 5) is close to FULL ,
confirming a compressed representation can still
support LLM reasoning.

6.2 Summarization

CNN/DailyMail contains news articles, where a
model is required to generate a short summary. As
no query is involved, we propose a prompt as a
statement of the task requirement (Appendix D.3).

We consider FULL and DODO (r = 10). FULL is
evaluated in both zero-shot and fine-tuning settings
and DODO is fine-tuned. The results are shown
in Table 4. We find that DODO can achieve sim-
ilar or even better performance than FULL after
compression. We speculate that as the context of
CNN/DailyMail is long, this may lead the LM to be
“lost in the middle” (Liu et al., 2024), whereas the
nuggets generated by DODO is only 10% of the
original length and perhaps less susceptible. This
is an interesting avenue for future exploration.

7 Discussion

7.1 The selection of nuggets

In DODO , Scorer selects k vectors out of n candi-
dates at each layer of the transformers. We adopt a
solution of hard selection because of its simplicity.
Some alternatives, such as soft attention and soft

Dataset Split sizes Text length
train dev test doc query answer

SQuAD (Rajpurkar et al., 2016) 88k 10.5k - 231 17.0 -
CNN/DailyMail (See et al., 2017) 287k 13.4k 12k 878 - 68.9

Table 2: Dataset statistics. The text lengths are counted by the LLaMA tokenizer.

Model cmpr. accuracy
NODOC 1 1.4
LMSUMM 10x 30.9
FULL 1x 64.5
DODO 5x 59.1
DODO 10x 49.8

Table 3: The accuracy of all 4 models on the task of
SQuAD. Cmpr. is the compression ratio of the method.

model cmpr. R1 R2 RL
FULL (zero-shot) 1x 32.5 9.7 28.2
FULL (fine-tuning) 1x 37.7 15.6 35.3
DODO 10x 39.9 14.6 37.0

Table 4: The Rouge scores (F1 of Rouge-1, Rouge-2,
LCS) of FULL and DODO on CNN/DailyMail.

top-k operator, require either additional parameters
or advanced machine learning techniques. Hard
selection learns to naturally split the text, which
contrasts some pooling strategies that evenly split
the text (c.f. Section 5).

NUGGET selection is learned through the resid-
ual connection introduced in Section 2.4. With gra-
dient signal from the self-attention, Scorer tends
to select the tokens that are mostly attended by the
decoder. Isolating the other parts of the model, how

can we evaluate the performance of Scorer itself ?
To simplify the discussion, let I be the selection

conducted by Scorer. We use I⇤ to denote the
theoretically optimal nuggets selection, which
is defined as the selection that achieves the best
performance in a task, e.g. the lowest perplexity in
the LM task. To evaluate I, we ask: How similar
are I and I⇤ ? What is their performance gap?

Unfortunately, finding the optimal selection I⇤ is
a non-trivial combinatorial problem, so we propose
a greedy algorithm to approximate I⇤ . Due to
the space limit, we leave the details of this algo-
rithm and our experiment design to Appendix A.
As the results, the overlapping between I and I⇤ is
roughly 75.3%, meaning the nuggets selected by
Scorer are very close to the theoretical optimal se-

lection. Replacing I⇤ with I will sacrifice 7.9% of
the performance in terms of LM perplexity, so we
conclude that Scorer, though not being optimal,
can achieve a near-optimal performance through
the straight-through estimator.

7.2 DODO favors clausal text delimiters
In Section 4.3, we observed that DODO favors
clausal text delimiters as the nuggets tokens, sim-
ilar to the findings of Qin and Van Durme (2023).
We have the following assumptions:
• Clausal text delimiters are used as “summariza-

tion tokens” during pretraining. The LM was
pretrained to predict the next token, and predict-
ing the text delimiters was equivalent to predict-
ing the ending of a clause/sentence. Therefore,
the LM learned to store contextual information
in the delimiters, such as punctuation marks.

• Scorer was biased to frequent tokens. Except
for the clausal text delimiters, DODO also prefers
the token “the”, which hints that the straight-
through estimator in Section 2.4 might bias
Scorer to select frequently appeared tokens.

8 Related work

8.1 NUGGET text representation
DODO can be viewed as a natural extension of
NUGGET on decoder-only transformers. They are
similar regarding the vector subselection (Sec-
tion 2.1) but different in architecture and applica-
tions. From the perspective of architecture, differ-
ent from NUGGET that reduces the last-layer repre-
sentation of a transformer encoder, DODO reduces
the memory and computation of self-attention in
a transformer decoder. Also, DODO replaces the
residual connection used by NUGGET with straight-
through estimator (Section 2.4), which naturally
cancels the side-effect of the residual connection
in the forward pass. From the perspective of appli-

cations, because DODO supports causal masking,
it can be used for autoregressive language model-
ing without re-computation. NUGGET , instead, is
more suitable for text similarity measurement.

8.2 Scaling the context length of transformers

Scaling transformers to long sequences is a popu-
lar topic in the NLP community (Tay et al., 2022).
Existing work includes sparsify the attention pat-
terns (Beltagy et al., 2020; Zaheer et al., 2020;
Khalitov et al., 2023; Ding et al., 2023; Ainslie
et al., 2023; Rae et al., 2020), employing low-
rank or kernel methods to approximate the atten-
tion matrix computation (Choromanski et al., 2021;
Katharopoulos et al., 2020), or applying recur-
rence (Dai et al., 2019; Yang et al., 2019; Bulatov
et al., 2022). Another line of work tries to ex-
trapolate the ability of LMs to long contexts, such
as using linear bias (Press et al., 2022) or rotary
position embeddings (Su et al., 2024). Recently,
Bertsch et al. (2023); Tworkowski et al. (2023) ap-
plied kNN search to select a subset of tokens for
attention at each layer of an encoder-decoder trans-
former, effectively extending the attention range
of transformers. Zeng et al. (2023b) proposed to
compress the context by prioritizing the “VIP to-
kens”, which are important to certain tasks and can
be saved in specialized data structure.

Past work on efficient transformers, as shown
above, mainly improves the efficiency of the self-
attention. DODO instead addresses a language rep-
resentation problem: It shortens the length of the
sequences in the space of hidden states. From this
perspective, the idea of DODO is orthogonal to most
of the efficient self-attention methods, and thus can
be jointly applied with most of them, e.g. kNN
based methods (Tworkowski et al., 2023).

In the context of large language models, recent
work focuses on compressing the prompt tokens
into soft embeddings (Mu et al., 2023; Wingate
et al., 2022) or encoding the supporting docu-
ments (Ge et al., 2024; Chevalier et al., 2023) into
fewer vectors. LLMLingua (Jiang et al., 2023) is
a coarse-to-fine prompt compression method that
allocates different compression ratios over various
prompt components. Some recent work tries to
train LLMs with longer contexts, such as Li et al.
(2023), GLM (Zeng et al., 2023a), and Claude
2 (Anthropic, 2023). Notably, Xiong et al. (2023)
continue to train LLAMA to study the relationship
between model performance and context length.

Researchers also explored retrieval-based meth-
ods that infuse knowledge into LM decoding, some
notable work in this field includes FiD (Izacard and
Grave, 2021), REALM (Guu et al., 2020), KNN-
LM (Khandelwal et al., 2020), and RAG (Lewis

et al., 2020). From the angle of the LLMs, Zheng
et al. (2023) found that providing contexts to LLMs
can help them generate truthful answers.

9 Conclusion

In this work, we propose DODO , a method for con-
textual compression for decoder-only transform-
ers. In language modeling (Section 5) and sum-
marization (Section 6.2), DODO is shown to gener-
ate a highly condensed representation of the con-
text, while the results in autoencoding (Section 4)
and question answering (Section 6.1) reflect that
the details of the contexts can be recovered from
nuggets . Moreover, in Section 6.1 we show that
DODO trained with text continuation preserves the
capability of instruction following. This demon-
strates LLMs can encapsulate more of their input
into fewer hidden states than previously realized,
suggesting a new direction for efficient foundation
models. Future work will explore more special-
ized versions of this proposal for optimizing results
on individual applications, such as in dialog, su-
pervised fine-tuning, reinforcement learning with
human feedback, and in-context learning.

Ethical statement and limitations

Used artifacts In this work, we used the publicly
released codes and checkpoints of LLAMA. Per
the license attached to LLAMA, we agree not to
re-distribute their parameters and limit the usage of
the models for research purposes only.

Potential societal risks Because we only trained
LLAMA on general texts, we do not think that our
paper will have any additional societal impacts be-
yond the checkpoints, except for the privacy issues
mentioned below.

Privacy issues on the datasets Our method fur-
ther fine-tunes LLAMA on the Pile (Gao et al.,
2020). Given the size of the Pile (Gao et al., 2020)
is huge (around 800GB), we are unable to conduct
effective investigations on the privacy issue on the
corpus. We refer readers to Gao et al. (2020) for the
discussion of the potential issues inside the data.

Acknowledgment

We thank Ho-Lam Chung and Canwen Xu for their
thoughtful discussion. We thank William Fleshman
for his valuable feedback on the writing.

This work has been supported by the U.S. Na-
tional Science Foundation under grant no. 2204926.

Any opinions, findings, conclusions, or recommen-
dations expressed in this article are those of the
authors and do not necessarily reflect the views of
the National Science Foundation.

References
Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago On-

tañón, Siddhartha Brahma, Yury Zemlyanskiy, David
Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, Yun-
Hsuan Sung, and Sumit Sanghai. 2023. CoLT5:
Faster Long-Range Transformers with Conditional
Computation. In Proceedings of Conference on Em-

pirical Methods in Natural Language Processing

(EMNLP).

Anthropic. 2023. Claude 2.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The Long-Document Transformer.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R. Gormley. 2023. Unlimiformer: Long-
Range Transformers with Unlimited Length Input.
In Proceedings of Conference on Neural Information

Processing Systems (NeurIPS).

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev.
2022. Recurrent Memory Transformer. In Proceed-

ings of Conference on Neural Information Processing

Systems (NeurIPS).

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting Language Models to
Compress Contexts. In Proceedings of Conference

on Empirical Methods in Natural Language Process-

ing (EMNLP).

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking Attention with Per-
formers. In Proceedings of International Conference

on Learning Representations (ICLR).

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models Be-
yond a Fixed-Length Context. In Proceedings of

Annual Meeting of the Association for Computational

Linguistics (ACL).

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
LongNet: Scaling Transformers to 1,000,000,000
Tokens.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2024. In-context Autoencoder for Context Com-
pression in a Large Language Model. In Proceedings

of International Conference on Learning Representa-

tions (ICLR).

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. REALM: Retrieval-
Augmented Language Model Pre-Training. In Pro-

ceedings of International Conference on Machine

Learning (ICML).

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proceedings of International

Conference on Learning Representations (ICLR).

Gautier Izacard and Edouard Grave. 2021. Leveraging
Passage Retrieval with Generative Models for Open
Domain Question Answering. In Proceedings of

Annual Conference of the European Chapter of the

Association for Computational Linguistics (EACL).

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical Reparameterization with Gumbel-Softmax. In
Proceedings of International Conference on Learning

Representations (ICLR).

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compress-
ing Prompts for Accelerated Inference of Large Lan-
guage Models. In Proceedings of Conference on

Empirical Methods in Natural Language Processing

(EMNLP).

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Fran¸cois Fleuret. 2020. Transformers are
RNNs: Fast Autoregressive Transformers with Linear
Attention. In Proceedings of International Confer-

ence on Machine Learning (ICML).

Ruslan Khalitov, Tong Yu, Lei Cheng, and Zhirong
Yang. 2023. ChordMixer: A Scalable Neural Atten-
tion Model for Sequences with Different Lengths. In
Proceedings of International Conference on Learning

Representations (ICLR).

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through Memorization: Nearest Neighbor Language
Models. In Proceedings of International Conference

on Learning Representations (ICLR).

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceedings

of International Conference on Learning Representa-

tions (ICLR).

https://arxiv.org/abs/2303.09752
https://arxiv.org/abs/2303.09752
https://arxiv.org/abs/2303.09752
https://www.anthropic.com/index/claude-2
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/2207.06881
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2206.05852
https://arxiv.org/abs/2206.05852
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Proceedings of Confer-

ence on Neural Information Processing Systems

(NeurIPS).

Quentin Lhoest, Albert Villanova Del Moral, Yacine
Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario ˇ Saˇ sko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, Fran¸cois La-
gunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A Community Library for Natural Lan-
guage Processing. In Proceedings of Conference on

Empirical Methods in Natural Language Processing

(EMNLP).

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph E Gonzalez, Ion Stoica, Xuezhe
Ma, and Hao Zhang. 2023. How Long Can Context
Length of Open-Source LLMs truly Promise? In
Proceedings of Workshop on Instruction Tuning and

Instruction Following.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the Middle: How Language
Models Use Long Contexts. Transactions of the As-

sociation for Computational Linguistics (TACL).

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic Gradient Descent with Warm Restarts. In
Proceedings of International Conference on Learning

Representations (ICLR).

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer Sentinel Mixture Mod-
els. In Proceedings of International Conference on

Learning Representations (ICLR).

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to Compress Prompts with Gist Tokens. In
Proceedings of Conference on Neural Information

Processing Systems (NeurIPS).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of

Annual Meeting of the Association for Computational

Linguistics (ACL).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Proceedings of Conference on Neural

Information Processing Systems (NeurIPS).

Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani
Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
Schwartz, and Noah A. Smith. 2022. ABC: Attention
with Bounded-memory Control. In Proceedings of

Annual Meeting of the Association for Computational

Linguistics (ACL).

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
Short, Test Long: Attention with Linear Biases En-
ables Input Length Extrapolation. In Proceedings of

International Conference on Learning Representa-

tions (ICLR).

Guanghui Qin, Yukun Feng, and Benjamin Van Durme.
2023. The NLP Task Effectiveness of Long-Range
Transformers. In Proceedings of Annual Conference

of the European Chapter of the Association for Com-

putational Linguistics (EACL).

Guanghui Qin and Benjamin Van Durme. 2023. Nugget:
Neural Agglomerative Embeddings of Text. In Pro-

ceedings of International Conference on Machine

Learning (ICML).

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
and Timothy P. Lillicrap. 2020. Compressive Trans-
formers for Long-Range Sequence Modelling. In
Proceedings of International Conference on Learn-

ing Representations (ICLR).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-

ings of Conference on Empirical Methods in Natural

Language Processing (EMNLP).

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. DeepSpeed: System Opti-
mizations Enable Training Deep Learning Models
with Over 100 Billion Parameters. In Proceedings of

International Conference on Knowledge Discovery

and Data Mining (KDD).

Michael E. Sander, Joan Puigcerver, Josip Djolonga,
Gabriel Peyre, and Mathieu Blondel. 2023. Fast, Dif-
ferentiable and Sparse Top-k: A Convex Analysis
Perspective. In Proceedings of International Confer-

ence on Machine Learning (ICML).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of Annual Meet-

ing of the Association for Computational Linguistics

(ACL).

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. 2022. PEFT: State-
of-the-art Parameter-Efficient Fine-Tuning methods.

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://openreview.net/pdf?id=LywifFNXV5
https://openreview.net/pdf?id=LywifFNXV5
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2304.08467
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2110.02488
https://arxiv.org/abs/2110.02488
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://aclanthology.org/2023.eacl-main.273/
https://aclanthology.org/2023.eacl-main.273/
https://proceedings.mlr.press/v202/qin23a.html
https://proceedings.mlr.press/v202/qin23a.html
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/2302.01425
https://arxiv.org/abs/2302.01425
https://arxiv.org/abs/2302.01425
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. RoFormer: En-
hanced transformer with Rotary Position Embedding.
Neurocomputing, page 127063.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022. Efficient Transformers: A Survey.
ACM Computing Surveys, pages 1–28.

Together Computer. 2023. RedPajama: An Open
Dataset for Training Large Language Models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. LLaMA:
Open and Efficient Foundation Language Models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open Foundation and
Fine-Tuned Chat Models.

Szymon Tworkowski, Konrad Staniszewski, Mikoł aj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Mił oś. 2023. Focused Transformer: Contrastive
Training for Context Scaling. In Proceedings of Con-

ference on Neural Information Processing Systems

(NeurIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of Conference on Neural

Information Processing Systems (NeurIPS).

William A. Falcon and The PyTorch Lightning team.
2019. Pytorch Lightning.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt Compression and Con-
trastive Conditioning for Controllability and Toxicity
Reduction in Language Models. In Proceedings of

Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick Von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of Conference on Empirical Methods in

Natural Language Processing (EMNLP).

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo
Zhao, Hongyuan Zha, Wei Wei, and Tomas Pfister.
2020. Differentiable Top-k Operator with Optimal
Transport. In Proceedings of Conference on Neural

Information Processing Systems (NeurIPS).

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. 2023. Effective Long-Context Scaling of Foun-
dation Models.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In Proceedings of Con-

ference on Neural Information Processing Systems

(NeurIPS).

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for
Longer Sequences. In Proceedings of Conference on

Neural Information Processing Systems (NeurIPS).

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng
Zhang, Yuxiao Dong, and Jie Tang. 2023a. GLM-
130B: An Open Bilingual Pre-trained Model. In Pro-

ceedings of International Conference on Learning

Representations (ICLR).

Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston
Zhang, Nikolaos Pappas, Vikas Singh, and Shuai
Zheng. 2023b. VCC: Scaling Transformers to 128K
Tokens or More by Prioritizing Important Tokens. In
Proceedings of Conference on Neural Information

Processing Systems (NeurIPS).

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022. Multi-View Document Rep-
resentation Learning for Open-Domain Dense Re-
trieval. In Proceedings of Annual Meeting of the

Association for Computational Linguistics (ACL).

Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang.
2023. Why Does ChatGPT Fall Short in Providing
Truthful Answers? In Proceedings of ICBINB Work-

shop.

https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://arxiv.org/abs/2009.06732
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.03170
https://arxiv.org/abs/2307.03170
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://lightning.ai/
https://arxiv.org/abs/2210.03162
https://arxiv.org/abs/2210.03162
https://arxiv.org/abs/2210.03162
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2002.06504
https://arxiv.org/abs/2002.06504
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2305.04241
https://arxiv.org/abs/2305.04241
https://arxiv.org/abs/2203.08372
https://arxiv.org/abs/2203.08372
https://arxiv.org/abs/2203.08372
https://arxiv.org/abs/2304.10513
https://arxiv.org/abs/2304.10513

A Optimal nuggets selection

The nuggets selection module, i.e. Scorer, is
learned through the residual connection introduced
in Section 2.4. With gradient signal from the self-
attention, Scorer tends to select the tokens that
are mostly attended by the decoder (parameterized
by ✓). However, it remains a question whether
the selection is optimal. Here we provide an em-
pirical estimate of the gap between the optimal
nuggets selection and Scorer.

Suppose we select k nuggets out of n tokens,
we define a selection as a set of indices

I = {i1, i2, . . . , ik}, 1  ij  n.

From the definition, we can see that

I ✓ {1, 2, 3, . . . , n}.

We further define the optimal selection I⇤ as the
selection that achieves the best performance on
a downstream task, e.g. lowest perplexity for
language modeling. We denote the selection of
Scorer as Ī . We want to answer two questions:
How similar are I⇤ and Ī , and what is the perfor-
mance gap between I⇤ and Ī ?

Finding I⇤ is a non-trivial combinatorial opti-
mization problem. The only possible solution, as
we know, is to enumerate

�n
k

�
different selections,

which is infeasible for large n and k. Therefore, we
approximate I⇤ with a greedy algorithm. The basic
idea is to start with I Ī. Iteratively, for each
index i 2 I, we replace it with an optimal index
from the un-chosen indices so that it achieves the
best downstream performance. We formalize it in
Algorithm 1 with an example downstream task of
language modeling.

We conduct experiments with the checkpoints
in Section 5. We compress a sequence of up to
128 tokens into nuggetswith a compression ra-
tio of 10x. We present the model with another 64
tokens without compression. The model is required
to predict the next 64 tokens, and we measure the
subword-level perplexity of DODO . Because Al-
gorithm 1 contains 2 for loops and is expensive to
execute, we only sample 1000 documents from the
test set of WikiText-103 (Merity et al., 2017).

To measure the difference between Ī and I⇤ , we
count how many elements are replaced in Ī with
Algorithm 1. On average, 24.7% nuggets tokens
are replaced, meaning Scorer is roughly 75.3%
“correct”. After replacing Ī with I⇤ , the overall

Algorithm 1 A greedy algorithm to find the “opti-
mal” selection I⇤ .
Input: k (number of nuggets) and n (number

of tokens) (0 < k  n), encoder outputs x1:n

Output: A selection I and the corresponding LM
perplexity b
Initialize I = {i1, i2, . . . , ik} with Scorer.
Perplexity b Decoder(x1:n, I) . Lowest
perplexity so far
for i 2 I do

for i0 2 {1, 2, . . . , n}\I do . All possible
replacements from unchosen indices

I 0 (I\{i}) [{i0} . Replace i in I
with i0

Perplexity b0 Decoder(x1:n, I 0)
if b0 < b then . If i0 is better than i,

make the replacement permanent
b b0, I I 0

end if
end for

end for

subword-level perplexity is improved from 7.74 to
7.13, or I⇤ is roughly 7.9% better than Ī in terms
of downstream task performance.

In conclusion, we conduct experiments to show
that Scorer is adequate to select nuggets as
it can achieve similar performance as a decoder-
aware optimal selector.

B Implementation & training details

B.1 Implementation

The training pipeline of DODO is implemented with
the PyTorch (Paszke et al., 2019) and Pytorch Light-
ning package (William A. Falcon and The PyTorch
Lightning team, 2019). We use the ZeRO stage-2
provided by the DeepSpeed Rasley et al. (2020)
package with mixed precision to accelerate the
training. The implementation of DODO is based
on the huggingface/transformers package (Wolf
et al., 2020). Our dataset reader uses hugging-
face/datasets (Lhoest et al., 2021).

B.2 Hyperparameters and training devices

For all the experiments, we follow the training
setup of Touvron et al. (2023b) and use an Adam
optimizer (Kingma and Ba, 2015) with a learn-
ing rate of 1 ⇥ 10�4, �1 = 0.9, �2 = 0.95, and
✏ = 10�5. We use a cosine learning rate sched-
uler (Loshchilov and Hutter, 2017) with warmup

module #params percentage trainable
LLAMA-7B 6.74B 99.01% no
encoder (�) 25.2M 0.37% yes
decoder (✓) 25.2M 0.37% yes
Scorer (') 16.8M 0.25% yes
soft prompt (✓) 4,096 <0.0001% yes

Table 5: Parameter count of DODO . We do
not distinguish Llama-7b, Llama-2-7b, and
Llama-2-7b-chat here as they have the same ar-
chitecture. The parameters of the encoder and decoder
are counted as additional parameters with LoRA com-
pared to the base model.

of 2k steps, and the period of the cosine annealing
function is set as 150k steps.

All the text generation processes in this paper
are implemented as greedy decoding.

We train the models on 16 NVIDIA Tesla V100
GPUs (32 GiB), each with a batch size of 1. Gra-
dients are accumulated for 2 batches before the
execution of the optimizers. All the models are
trained until early stopping because of the conver-
gence of the loss on the validation set.

B.3 Number of parameters
In this section, we enumerate the number of param-
eters in DODO , as shown in Table 5. Except for
the frozen LLAMAmodel, DODO has an encoder
and decoder, which contains additional parameters
to the Llama model with LoRA (Hu et al., 2022)
(rank = 32), a scorer (2-layer feedforward neural
networks), and a soft prompt that adds a special
token to the embedding matrix.

For the experiments in Section 5, we use LoRA
to train COMPRESSIVE , which contains a decoder
and a soft prompt as we have shown in Table 5.
However, compared to the size of LLAMA, the
trainable parameters of both DODO and COMPRES-
SIVE are significantly fewer (<1%).

C Example text for nuggets selection
analysis

We sample a passage from Wikipedia and run
Scorer on the text, where we set the compression
ratio r = 10. The results are shown in Fig. 7.

D Prompts used in the paper

Here we list all the prompts used in Section 6.

D.1 Compress texts with LMs
The prompt used by the LMSUMM method to gen-
erate a summary for a given text is:

[INST]

Please summarize the following

text into $WORD words: $TEXT

[/INST]

We replace $WORD with dn · re, where n is the
number of words (counted by spaces) and r is a
desired ratio (in Section 6, r is 10).

D.2 Question answering on SQuAD

In the SQuAD experiment (Section 6.1), a prompt
is used to answer a question given a document:

[INST]

$DOCUMENT

Based on the provided document,

answer the following question:

$QUESTION

[/INST]

We replace $DOCUMENT with the context docu-
ment and $QUESTION with the question.

D.3 Summarization

In the summarization experiment (Section 6.2), we
use the following prompt:

[INST]

$DOCUMENT

Please summarize the above

document in one sentence.

[/INST]

We replace $DOCUMENT with the document to be
summarized.

E Normalization algorithm for SQuAD
answers

The output of the language model tends to have to-
kens other than the answer or have different forms.
For each pair of model output and SQuAD answer,
we apply the following rules:
• Convert all English numbers to digits. E.g. con-

vert “two” to “2”.
• Replace all punctuation marks with spaces.
• Remove side spaces on both sides.
• Lowercase the string.

After these steps, a program is used to check if
the model output contains the answer. We restrict
the model to generate up to 64 tokens in case they
generate many tokens to hit the answer. 9

The Brooklyn Nets have built themselves up from next to nothing . Devoid of anything close to an
asset before 2015 , the Nets had to make something out of nothing . They have done so indeed ,
loading the roster and asset cupboards simultaneously . Unfortunately , just as quickly as Marks
acquired youngsters , he must also decide which ones should stick around . It ’ s an arduous exercise ,
and even tougher for a team far from contention . Most teams reach this stage just as they are close
to playoff-caliber . The Nets do not have this luxury , and must evaluate with a much longer view
than the average young team . Put simply , they must think like a contender before becoming one .
Luckily , the current roster has distinct tiers of young players in terms of their long-term potential . Eight
of the nine under-25 players can be split into two tiers . Locks The group of definite keepers is relatively
simple . These players have the most potential of the current Nets . Although D’Angelo Russell has
gone through some rough patches , he has displayed enough promising signs to warrant the “keeper”
status . His crafty ball-handling , scoring off the dribble, shooting off the catch, and great passing vision
all make him an ideal fit for Kenny Atkinson ’ s attack . Being the No. 2 overall selection in a draft is
typically enough credibility to keep a player around , but Russell has shown legitimate flashes of star
potential as well . Giving up on him now would be a fatal mistake. Jarrett Allen, a rookie center from
the University of Texas, has done a wonderful job in his specialized role . With superb athleticism that
allows him to protect the rim and switch onto perimeter attackers , Allen is quite capable of captaining
a modern defense . This athleticism helps him on offense as well , as he gets plenty of lobs to finish
pick-and-roll plays . When in doubt, the guards can chuck it up to him for an easy deuce . The vertical
dimension of basketball is rarely appreciated .

Figure 7: Example texts processed by the Scorer of DODO . Darker texts have a higher score than light texts. The
tokens in green background are selected as nuggets .

Language English Bulgarian German French Italian Dutch Polish Russian
Average Length 348 346 393 346 295 228 325 407
BLEU 99.1 97.7 98.8 99.0 98.3 97.9 98.3 98.9
Perplexity 1.004 1.040 1.017 1.011 1.014 1.021 1.032 1.032

Table 6: The results of the multilingual autoencoding experiment.

F Multilingual autoencoding experiments
For the autoencoding experiment, we adopt the
architecture of LLAMAand the checkpoint of
LLaMA-7B (Touvron et al., 2023a) and fine-tune
the model on the Pile dataset (Gao et al., 2020).
Both pretraining and fine-tuning corpus are heavily
biased towards English, but the tremendous size of
LLAMAenables it to process languages other than
English. In this section, we conduct experiments to
test the multilingual capability of DODO .

We adopt the checkpoint of DODO in Section 4
with a 10x compression ratio without further fine-
tuning. We sampled 8 languages: Bulgarian, Ger-
man, English, French, Italian, Dutch, Polish, and
Russian. 10 For each language, we sampled 100
documents from the RedPajama corpus (Together

9They rarely do, as they are not optimized to cheat SQuAD.
10We did not consider non-Indo-European languages, such

as Chinese and Japanese, because we found that many charac-
ters are out-of-vocabulary for LLAMA.

Computer, 2023). We truncate the document if it is
longer than 512 tokens. We use BLEU (Papineni
et al., 2002) and perplexity as our metrics.

The results are shown in Table 6. We can observe
that DODO can still process other languages, even
if it was fine-tuned on an English-only corpus.

