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Abstract

Across various sectors such as healthcare, criminal justice, national security, finance, and
technology, large-scale machine learning (ML) systems are being deployed to make critical
data-driven decisions. Many have asked if we can and should trust these ML systems to be
making these decisions. Two critical components are prerequisites for trust in ML systems:
interpretability, or the ability to understand why the ML system makes the decisions it
does, and fairness, which ensures that ML systems do not exhibit bias against certain
individuals or groups. While both interpretability and fairness have garnered substantial
attention in the ML literature, methods directly interpreting models in terms of fairness
remain limited. This paper considers a popular interpretation for a widely used class of ML
models: feature importance scores for decision trees and tree-based models. We introduce a
novel Fair Tree Feature Importance Score to assess each feature’s impact on fairness or bias
in decision trees. Analogous to the mean decrease in impurity for trees, our score quantifies
the mean increase (or decrease) in group bias, and extends to interpret tree-based ensembles
or surrogates of complex ML systems. Through simulations and real examples on benchmark
fairness datasets, we show the validity of our Fair Tree Feature Importance Score, offering
meaningful interpretations for both tree-based ensembles and tree-based surrogates of other
ML systems.

1 Introduction

The adoption of machine learning models in high-stakes decision-making has witnessed a remarkable surge in
recent years. Employing these models to assist in human decision processes offers significant advantages, such
as managing vast datasets and uncovering subtle trends and patterns. However, it has become increasingly
evident that the utilization of these models can lead to biased outcomes. Even when users can discern bias
within the model’s results, they frequently encounter substantial hurdles when attempting to rectify this bias,
primarily due to their inability to comprehend the inner workings of the model and the factors contributing
to its bias. When machine learning models impact high-stakes decisions, trust is paramount (Toreini et al.,
2020; Rasheed et al., 2022; Broderick et al., 2023). Users, stakeholders, and the general public need to have
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confidence in the fairness and interpretability of these models. Without comprehensible explanations and
the ability to audit model decisions, trust can degrade rapidly.

An incident with the Apple Credit Card in 2019 is a prime example of this. The wife of a long-time married
couple applied for an increased credit limit for her card (Vigdor, 2019). Despite having a better credit
score and other positive factors in her favor, her application for an increased line of credit was denied. The
husband, who had filed taxes together with his wife for years, wondered why he deserved a credit limit 20
times that of his wife. When the couple inquired as to why the credit limit was so different, no one was able
to explain the decision to the couple, which created consternation amongst these and other clients on social
media who also demanded explanations (Knight, 2019). This led to an investigation by the New York State
Department of Financial Services. While the investigation showed that the card did not discriminate based
on gender (Campbell, 2021), the inability to provide an interpretation or explanation about the fairness of
the algorithm used to determine credit limits created significant mistrust. Moving forward, we must have
ways of interpreting ML systems based not only on the accuracy of predictions but also on the fairness of
the predictions. As a particular example, we have many ways to interpret how features affect a model’s
predictions through feature importance scores (Du et al., 2019; Murdoch et al., 2019). Yet, we have no
current way of understanding how a feature affects the fairness of the model’s predictions. The goal of this
paper is to fill in this critical gap by developing a simple and interpretable fair feature importance score.

Countless works have proposed methods to improve fairness in existing models (Zemel et al., 2013; Calmon
et al., 2017; Agarwal et al., 2018; Zhang et al., 2018; Lohia et al., 2019; Caton & Haas, 2020), but few have
focused on how to interpret models with regards to fairness. We adopt a simple approach and consider
interpreting features in the context of fairness in decision trees. Why trees? For one, decision trees are the
base ensemble for one of the most widely used algorithms, random forests (RFs). Renowned for their robust
predictive capabilities, RFs provide an easily computable intrinsic feature importance score known as mean
decrease in impurity (MDI) (Breiman, 1973; Caruana et al., 2008). Beyond RFs, tree-based ensembles such
as AdaBoost and XGBoost are widely used machine learning models, especially for tabular data (Ferndndez-
Delgado et al., 2014). Moreover, trees have also more recently been proposed as interpretable surrogates for
deep learning systems (Guidotti et al., 2018; Schaaf et al., 2019).

In this work, we develop a straightforward and intuitive metric for calculating fair feature importance scores
in decision trees. Our Fair Tree Feature Importance Score (FairTreeFIS) reveals which features lead to
improvements in the fairness of a decision tree’s predictions and which degrade fairness or contribute to the
tree’s bias. Additionally, we show how FairTreeFIS can be used to explain the fairness of predictions in
tree-based ensembles and through tree-based surrogates of other complex ML systems.

1.1 Related Works

To promote trust, transparency, and accountability, there has been a surge in recent research in interpretable
ML; see reviews of this literature by Ishwaran (2007); Kazemitabar et al. (2017); Lipton (2018) for more
details. Interpretable ML (or explainable AI) seeks to provide human understandable insights into the data,
the model or a model’s output and decisions (Allen et al., 2023; Murdoch et al., 2019). One of the most
popular interpretations is feature importance, which measures how each feature contributes to a model’s
predictions. There are a wide variety of model-specific feature importance measures like the popular mean
decrease in impurity (MDI) for decision trees (Louppe et al., 2013) or layer-wise relevance propagation (LRP)
for deep learning (Samek et al., 2021), among many others. Several proposed model agnostic measures of
feature importance include Shapley values, feature permutations, and feature occlusions (Mase et al., 2021;
Chen et al., 2018; Lundberg et al., 2018). This work is inspired by the MDI metric for decision trees which is
widely used and also has been the subject of much recent research (Strobl et al., 2007; Li et al., 2019; Zhou
& Hooker, 2021; Scornet, 2023).

Another notable category of interpretability-enhancing techniques involves surrogate models. A surrogate
model is a simplified and more interpretable representation of a complex, often black-box model (Samek
& Miiller, 2019). Surrogate models are designed to approximate the behavior of the original model while
being easier to understand, faster to compute, or more suitable for specific tasks such as optimization,
sensitivity analysis, or interpretability; examples include linear models, decision trees or Gaussian processes.
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One of the most well-known surrogates for interpretability is LIME (Local Interpretable Model-Agnostic
Explanations) (Ribeiro et al., 2016); this approach builds a simple and interpretable (usually linear) model
to interpret a local sub-region of the input space. Global surrogates, on the other hand, build a second
surrogate model to approximate the global behavior and all the predictions of the original model. Decision
trees have been proposed as potential global surrogates as they are fast, simple and interpretable, and as a
fully grown decision tree can exactly reproduce the predictions of the original model on the training data
(Blanco-Justicia & Domingo-Ferrer, 2019). On a related note, decision trees have played a crucial role in an
associated field known as knowledge distillation, where simplified surrogates of complex models are crafted
to mimic the complex model’s predictions (Hinton et al., 2015; Gou et al., 2021). Although knowledge
distillation focuses on prediction, it is worth noting that if predictions from surrogate decision trees prove
to be accurate, they can also be harnessed for interpretation (Yang et al., 2018; Sagi & Rokach, 2021; Wan
et al., 2020).

Separate from interpretability, fairness is another critical component to promote trust in ML systems. There
has been a surge of recent literature on fairness (Chouldechova & Roth, 2018; Friedler et al., 2019). And
while many methods have been developed to mitigate bias in ML systems (Zhang et al., 2018; Grari et al.,
2019; Agarwal et al., 2018), very few of these papers have additionally focused on interpretability. Yet, many
have called for improving interpretability in the context of fairness (Jain et al., 2020; Agarwal, 2021; Dai
et al., 2021; Wang et al., 2023). Notably, there are a few recent examples that seek to address this. Begley
et al. (2020) introduces a new value function that measures fairness for use within Shapley values; although
this is an interesting and relevant approach, no code is publicly available and computing these Shapley values
requires significant computational time. Another relevant example is LimeOut (Bhargava et al., 2020) which
uses LIME explanations to determine which features to drop to make a classifier fairer. This is a local and
not global method, however, and the focus is on selecting features, not directly interpreting them via a
feature importance score. In this paper, we are motivated to address these issues by proposing a very simple,
intuitive, fast, and easy-to-compute fair feature importance score.

1.2 Contributions

We make three major contributions that allow us to interpret a tree or tree-based model in terms of the
fairness of its features. First, we propose and develop the first fair feature importance score (FairTreeFIS)
for interpreting decision trees. Second, we outline how to use FairTreeFIS to interpret tree-based ensembles
and tree-based global surrogates of complex ML systems. Finally, we empirically validate FairTreeFIS for
interpreting trees, tree-based ensembles, and tree-based surrogates of deep learning models on both synthetic
and benchmark datasets.

2 FairTreeFIS: Fair Feature Importance Score for Trees

2.1 Review: Feature Importance Score (TreeFIS) for Trees

One of the many benefits of decision trees is that they have a straightforward mechanism for interpretation.
Perhaps the most popular feature importance score for trees is based on the Mean Decrease in Impurity
(MDI), measured by a decrease in variance in regression or in the Gini Index or other metrics for classification
Breiman (1973); we refer to the MDI as TreeFIS in this paper. Let us first introduce some notation to formally
define and review TreeFIS; this definition will help us in defining our novel fairness version of TreeFIS in the
next section. Suppose we have a response y and the decision tree is built from data X based on n samples.
Additionally, let t = 0 be the root node of the tree and T be the total number of nodes in the tree; let n,
be the number of samples falling in node ¢. Next, let ¢;(¢) be the left child of ¢ and ¢, (¢) be the right child
of node t. Let Sy = {i € t} be the set of samples belonging to node t; let yg, be the response associated
with those samples in node ¢, we denote as y; for ease of notation. Let §; denote the predictions for samples
in node t. As an example, for binary classification with y € {0,1} or for regression with y € recall that
Gy = ﬁ Dic s, Yi; that is, §; is the proportion of successes in node ¢ in the classification setting and the
mean of node ¢ in the regression setting. Additionally, let w; represent the weighted number of samples “*
at node ¢ and 1y j); denote the indicator that feature j was split upon in node ¢. Let L(y,¢) be the loss
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Figure 1: Schematic trees to illustrate TreeFIS and FairTreeFIS. Panel A illustrates the level of node ¢ and
the child level of ¢ that are used to calculate FairTreeFIS. Panels B-D illustrate classification trees with pluses
and minuses denoting positive and negative labels respectively and red and blue denoting the majority and
minority groups respectively. Panels B and C show the Bias and weighted impurity (Gini Index) at node or
level t and that of the children of node ¢. In Panel B, notice the Bias decreases between the parent and child
level, resulting in a positive FairTreeFIS for that split. Differently, in Panel C, the Bias increases, resulting
in a negative FairTreeFIS for that split. Panel D illustrates why we must use soft predictions versus hard
labels when computing FairTreeFIS.

function employed to built the decision tree (e.g. MSE loss for regression or the Gini Index or Cross Entropy
for classification). Now, we can formally define TreeFIS:

Definition 1. For a decision tree, the TreeFIS (MDI) for feature j is defined as:

T-1

FIS; = Ly (Wil (e, ) = (Wey 0y £Wer(tys Geo(t)) + Wer (0 £We, (1)) Ten 1)) (1)
t=0

If feature j is used to split node ¢, then the TreeFIS calculates the change in the loss function before and
after the split, or more precisely, the change in the loss between the predictions at node ¢ and the predictions
of node t’s children. Hence, TreeFIS uses the accuracy of the predictions to determine feature importance.

2.2 FairTreeFIS

Inspired by TreeFIS, we seek to define a tree-based feature importance score for group fairness that is based
upon the bias of the predictions instead of the accuracy of the predictions. To do this, we first need to define
group bias measures. Let z; € {0,1} for ¢« = 1,...n be an indicator of the protected attribute (e.g. gender,
race or etc.) for each observation. We propose to work with two popular metrics to measure the group
bias, Demographic Parity (DP) and Equality of Opportunity (EQOP), although we note that our framework
is conducive to other group metrics as well. In brief, DP measures whether the predictions are different
conditional on the protected attribute whereas EQOP is typically only defined for classification tasks and
measures whether the predictions are different conditioned on a positive outcome and the protected attribute
(Hardt et al., 2016; Beutel et al., 2017).

One might consider simply replacing the loss function in equation 1 with these bias metrics, but constructing
our fair metric is not that simple. Consider that for TreeFIS, we can calculate the loss between y; and ¢
for a particular node ¢, hence we can calculate the difference in loss after a split. We cannot use this same
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process, however, for bias as the predictions in each node of the decision tree are the same by construction.
Thus, for a given node t, there are never any differences between the predictions based on protected group
status. Hence, the bias calculated at node ¢ must always be zero. To remedy this and keep the same spirit as
TreeFIS, we propose to consider the difference in bias between the split that produced node ¢ and the split
at node ¢ that produces node t’s children. Thus, we propose to calculate the bias that results from each split
of the tree. To formalize this, notice that the result of each split in a tree is a right and left node. We call
this set the level of the tree for node ¢ and denote this as lev(t); this level includes the right and left node
denoted as lev,(t) and lev,(t) respectively. We also let ¢(t) denote all the children of ¢, or in other words,
the child level of node t. Now, we can define our bias metrics for the split that produced node ¢, or in other
words, the level of node ¢. The Bias of lev(t) in terms of DP and EQOP are defined as follows:

BiasPT (lev(t)) = |E(§ilzi = 1,i € lev(t)) — E(§i]zi = 0,i € lev(t))

; (2)

BiasPOF (lev(t)) = |E@i =1y = 1,2 = 1,i € lev(t))
— B =1y; = 1,2, = 0,i € lev(t))|. (3)

These group bias metrics range between zero and one, with higher values indicating larger amounts of bias
in the predictions. Armed with these definitions, we now seek to replace the loss function £ in TreeFIS with
this Bias metric to obtain our FairTreeFIS. To do so, we calculate the difference in bias between the level
of node ¢ and node t’s children:

Definition 2. The FairTreeFIS for feature j is defined as:

T-1
FairTreeF1S; = Z Ly, jnwe (Bias(lev(t)) — Bias(c(t)) (4)
t=0

Note that at the root node, t = 0, the level of the tree consists of only the root; then, Bias(lev(0)) = 0 for
this constant model at the root in our definition. Finally, as the scale of TreeFIS is not always interpretable,
it is common to normalize TreeFIS so that is sums to one across all features. We analogously do so for
FairTreeFIS by rescaling so that the sum of the absolute values across all features is one; in this manner,
FairTreeFIS and TreeFIS are on the same scale and can be directly interpreted.

Our FairTreeFIS formulation is an analogous extension of TreeFIS as it calculates the Bias of the parent
minus the Bias of the children summed over all splits that split upon feature j. But unlike TreeFIS which
is always positive, FairTreeFIS can be both positive and negative. As decision trees are constructed with
each split minimizing the loss, the difference in loss between parent and children is always positive. The
splits do not consider Bias, however, so the Bias of the parent level could be higher or lower than that of
the child level. Thus, FairTreeFIS will be positive when the split at node ¢ improved the bias and negative
when the split at node ¢ made the bias worse. FairTreeFIS is then positive for features that improve the
fairness (or decrease the bias) and negative for features that are less fair (or increased the bias). This is
a particularly advantageous aspect of FairTreeFIS that improves the interpretability of each feature with
respect to fairness.

Figure 1 illustrates our FairTreeFIS definition for a binary classification example. Panel A highlights our
notation and calculation of Bias for levels of the tree. In Panel B, the bias improves from the parent level to
the child level and hence FairTreeFIS is positive, indicating the split improved the fairness of the predictions.
The opposite happens in Panel C where the bias is worse in the child level and hence FairTreeFIS is negative
indicating worsening fairness as a result of the split.

In regression settings, FairTreeFIS can be easily applied with the demographic parity metric equation 2,
which is most commonly used for regression tasks. The bias can be calculated directly as the empirical mean
of the predictions in each sensitive group. For classification settings, however, more care needs to taken in
computing the Bias and our FuairTreeFIS metric, as discussed in the next section.
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Figure 2: Classification results for TreeFIS (MDI using the Gini Index) and FairTreeFIS (DP) on the three
major simulation types and for a decision tree, gradient boosting, and random forest classifier. We consider
four feature groups: features in G; (red) and G5 (blue) are correlated with the protected attribute, features
in G7 and G3 (green) are signal, and features in G4 (purple) are noise. The magnitudes and directions of
the FairTreeFIS scores for each group align with what we would expect from the simulation construction,
thus validating our metric.

2.3 FairTreeFIS: Classification Setting

Typically for classification tasks, people use hard label predictions to compute the DP and EQOP Bias
metrics. However, for decision trees, this presents a problem as both the left and right node of level ¢ could
predict the same hard label; the parent and child levels could also predict the same hard label. In these
settings, using hard labels with equation 2 and equation 3 would result in zero or a misleading Bias measure
even when the split might be unfair. This phenomenon is illustrated in Figure 1 Panel D. To remedy this
issue, we are left with two options: employ measures of Bias that take soft predictions or employ probabilistic
decision trees that return stochastic hard label predictions based on the soft label probabilities. So that our
Bias metrics are interpretable and comparable with others that typically employ hard label predictions,
we choose the latter option. Let levy(t) and lev,(t) denote the left and right nodes of the level of node ¢
and let 7y, (1) and 7y, (1) denote the proportion of positive samples in these nodes, respectively. Then for
probabilistic trees, §; for ¢ € levl(t) is a Bernoulli random variable with probability of success Tleve(t), and
that of the right node is defined analogously. Given this, we can directly apply equation 2 and equation 3
to compute the expectation necessary for our Bias metrics:
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Proposition 1. Consider binary classification with probabilistic trees, then our Bias measures are given by
the following:

BmsDP(lev( = |m, (Zi]l{Zi—l,ielevz(t)} _ Zi]l{zi—o,ieleve(t)}>
o\ 3 Liz—ticten(®)y 2o L{zi=0.iclev(t)}
L (Zi Lii=ticlen (t)) Do l{zi_(),ielevr(t)}> (5)
ev,(t - 9
® Zl ]]-{z,izl,ielev(t)} Zi ]]-{zizo,ielev(t)}
'ILZ': yi=1,i€lev ']]-z: i=1,i€levy(t
BiCLSEQOP(leU( = | M, (¢ (Zl {zi=l,yi=Li€leve(t)} _ ZZ {z:i=0,yi=1,i€l l(”})
Zi ]]-{zi:Lyi:Lielev(t)} Zi ]]-{zi:07yi:1,i€lev(t)}
o <Zz ]]-{z,i=1,y,-=1,i€levr(t)} Z I]-{21—07311_1 zElevr(t)}> (6)
evr(?) El ]l{zi:Lyi:LiElev(t)} Z ]l{zlfo,ylfl i€lev(t)}

Thus, even when employing probabilistic trees, our Bias measures and hence FairTreeFIS is easy to compute.
The proof / calculation for Proposition 1 is in the Supplemental materials. Note also that these results for
the Bias and also FairTreeFIS can easily be extended to multi-class classification settings, which we present
in the Supplemental materials.

2.4 FairTreeFIS for Tree-Based Ensembles and Decision Tree Global Surrogates

Decision trees are widely used due to their ability to break down complex problems into simpler solutions,
thus making them more interpretable (Loh, 2011). Further, they are commonly employed in various popular
ensemble-based classifiers such as random forest, gradient boosting, XGBoost, and others. For these tree-
based ensembles, TreeFIS is averaged (or averaged with weights) over all the trees in the ensemble (Breiman,
1996). We propose to extend FairTreeFIS in the exact same manner to interpret all tree-based ensembles.

Decision trees have also gained attention for their role in knowledge distillation to transfer knowledge from
large, complex models to smaller models that are easier to deploy (Hinton et al., 2015; Bucilud et al.,
2006). Here, decision trees are not fit to the original labels or outcomes, but instead to the complex model’s
predicted labels or outcomes. Recently, others have proposed to use decision trees in a similar manner for
global interpretation surrogates (Blanco-Justicia & Domingo-Ferrer, 2019; Yang et al., 2018; Sagi & Rokach,
2021; Wan et al., 2020). Decision trees are often an ideal surrogate in this scenario as a fully grown tree can
exactly reproduce the predictions of the complex, black-box model. Hence, if the predictions match precisely,
we can be more confident in the feature interpretations that the decision tree surrogate produces. Here, we
propose to employ FairTreeFIS to interpret features in a decision tree surrogate in the exact same manner
as that of TreeFIS. In this way, FairTreeFIS provides a simple, intuitive, and computationally efficient way
to interpret any large, complex, and black-box ML system.

3 Empirical Studies

3.1 Simulation Setup and Results

We design simulation studies to validate our proposed FairTreeFIS metric; these simulations are an important
test since there are not other comparable fair feature interpretation methods to which we can compare our
approach. We work with four groups of features: features in G; and G5 are correlated with the protected
attribute z and are hence biased, features in G; and (3 are signal features associated with the outcome y,

and features in G4 are purely noise. We simulate the protected attribute, z;, as z i Bernoulli(r) and take
m = 0.2. Then, the data is generated as x; ; i N(aj * 2, %) with a; =2 if j € Gy or G2 and a; = 0 if
j € Gy or G4 in the classification scenarios and o; = 0.4 for j € G; or G2 and a; = 0 for j € G3 or G4 in
the regression simulations. Hence, all features in G; and G5 are strongly associated with z and hence should
be identified as biased features with a negative FairTreeFIS. Then, we consider three major simulation
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Figure 3: Regression results for TreeFIS (MDI using the Gini Index) and FairTreeFIS (DP) on the three
major simulation types and for a decision tree regressor, gradient boosting regressor, and random forest
regressor. We consider four feature groups: features in Gy (red) and G5 (blue) are correlated with the
protected attribute, features in G; and Gs (green) are signal, and features in G4 (purple) are noise. The
magnitudes and directions of the FairTreeFIS scores for each group align with what we would expect from
the simulation construction, thus validating our metric.

scenarios for both classification and regression settings: a linear model where f(z;) = fSo + 2521 Bixij,
a non-linear additive scenario where f(x;) = fo + Z§=1 Bjsin(x;;), and finally a non-linear scenario with
pairwise interactions where f(z;) = By + Z§:1 Bjixij + Zf:l,k:l Yiksin(zya) and with 4, = 1 for the
first two features in each group and zero otherwise. We also let ; = 1 for j € G; or Gz and §; = 0 for
j € G2 or G4 in the classification scenario and §; = 3 for j € G; or G5 and B; = 0 for j € Gy or Gy

in the regression simulations. For regression scenarios, we let y; = f(x;) + € where € AN (0,1), and for

classification scenarios, we employ a logistic model with y; Koy Bernoulli(o(f(x;)), where o is the sigmoid
function. We present our binary classification and regression results for the DP metric with N = 1000,
p = 12 features, and 3 = I in Figure 2. Additional simulation results for both classification and regression
tasks with N = 500 or 1000, larger p, correlated features with 3 # I, and for the EQOP metric are presented
in the Supplemental Materials.

Figure 2 presents the TreeFIS and FairTreeFIS metric for each of the twelve features colored according to
their group status, and averaged over ten replicates. We present all three classification simulation scenarios
for decision tree, gradient boosting, and random forest classifiers. First, notice that the sign of FairTreeFIS
is correct in all scenarios; that is, features in Gy (red) and Ga (blue) are biased and FairTreeFIS accurately
reflects this bias with a negative score while the features in G (green) and G4 (purple) exhibit no bias and
FairTreeF1S is positive. FairTreeFIS also accurately captures the magnitude of each feature’s contributions
as the magnitude of FairTreeFIS and TreeFIS are comparable in all scenarios. Note here that FairTreeFIS
values are low for non-signal features in trees and gradient boosting, as non-signal features are likely not
split upon and hence do not contribute to bias or fairness. Because random forests use random splits,
however, non-signal features are split upon more often and we see that FairTreeFIS accurately determines
that features in G5 are biased. Additionally, in Figure 3, we present all three regression scenarios for
decision tree regressor, gradient boosting regressor, and random forest regressor. We see similar behavior
to the classification results. Overall, these results (and the many additional simulations in the Supplement)
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Figure 4: Random Forest interpretation using FairTreeFIS for the Adult, Law, COMPAS, and Communities
and Crime datasets. The importance scores’ magnitudes and directions align with other studies done on
these datasets.

strongly validate the use of FairTreeFIS for interpreting features in trees and tree-based ensembles for the
bias or fairness that the feature induces in the predictions.

3.2 Case Studies

To align our work with the existing fairness literature, we evaluate our metric on five popular benchmark
datasets. We examine: (i) the Adult Income dataset (Dua & Graff, 2017) containing 14 features and
approximately 48,000 individuals with class labels stating whether their income is greater than $50,000
and Gender as the protected attribute; (ii) the COMPAS dataset (Larson et al., 2022), which contains
13 attributes of roughly 7,000 convicted criminals with class labels that state whether the individual will
recidivate within two years of their most recent crime and we use Race as the protected attribute; (iii) the
Law School dataset (Whiteman, 1998), which has 8 features and 22,121 law school applicants with class
labels stating whether an individual will pass the Bar exam when finished with law school and Race as the
protected attribute; (iv) the Communities and Crimes (C & C) dataset (Dua & Graff, 2017), which contains
96 features of 2,000 cities with a regression task of predicting the number of violent crimes per capita and
Race encoded as the protected attribute; and (v) the German Credit dataset, which classifies people with
good or bad credit risks based on 20 features and 1,000 observations and we use Gender as the protected
attribute.

We begin by evaluating the quality of FairTreeFIS interpretations on four benchmark datasets in Figure 4;
additional interpretations of all benchmarks are provided in the Supplemental Material. Figure 4 shows
scores for a random forest classifier on the Adult dataset with Gender as the protected attribute, the Law
dataset with race as the protected attribute, the C & C dataset with Race as the protected attribute, and
the COMPAS dataset with Race as the protected attribute. In the Adult dataset, the “Married” feature
contributes most to both accuracy and bias. This indicates that while the “Married” feature is highly
predictive, its use in the model could lead to more unfair predictions. This aligns with studies done showing
that in men higher wages were associated with a higher proportion of being married, whereas in women
higher wages were associated with a lower proportion of being married and the fact that many women are
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not employed outside the home (Mincy et al., 2009). Figure 4 shows that “Yr 3 GPA” contributes most to
both the accuracy and the bias of the model in the Law dataset. In the C & C dataset, the percentage of kids
who grew up with two parents in the household, denoted as “% Kids 2 Par”, has the highest magnitude for
both TreeFIS and FairTreeFIS, although FairTreeFIS shows that this feature contributes to the bias seen
in the predictions. Studies have shown that black young adults are disproportionately impacted by family
structure (Wilcox, 2021). Specifically, black young adults are less likely to go to college and more likely to
be imprisoned if they grow up in a single-parent household. In contrast, white young adults are significantly
less affected by family structure. Thus, our FairTreeFIS interpretations are consistent with these studies.
Looking at the results for the COMPAS dataset, the number of priors greater than 3, denoted as “Num Pri
> 3”7 has the highest magnitude for both TreeFIS and FairTreeFIS, and again FairTreeFIS reveals that this
feature strongly influences the biased outcomes. These interpretations are consistent with other studies on
the COMPAS data set (Rudin et al., 2020), again validating our results.

Next, we further validate our FairTreeFIS interpretations of Random Forest models by removing features
that contribute most to the bias of the model based on their FairTreeFIS values. Figure 5 shows fairness
and accuracy metrics over 10 runs on the Adult, Law, COMPAS, and Communities and Crime datasets.
The gray bar represents all features included in the model, the red bar represents when the feature with the
most negative FairTreeFIS value was removed from the model, and the blue bar represents when the two
features with the most negative FairTreeFIS values were removed. We expect that models containing all
features would yield the most biased results and the bias to decrease as features that contribute to the bias
most are removed. We see that this is indeed the trend for all of the datasets. Furthermore, we see in the
C & C dataset that the accuracy also slightly increases as features that contribute to bias are removed. In
the Adult dataset, we notice little movement between fairness and accuracy no matter which features are
included. We suspect that this is due in part to the fact that the Adult and C & C datasets have a large
number of features and many of them are highly correlated. As a result, it is unsurprising to see only small
changes when removing 1 or 2 features at a time.

We move on to validating the use of FairTreeFIS for interpreting tree-based global surrogates. To do this,
in Figure 6, we compare TreeFIS and FairTreeFIS results on a gradient boosting classifier (where these
scores were calculated by averaging over all tree ensemble members) to TreeFIS and FairTreeFIS results
for a tree-based surrogate of the same gradient boosting classifier (where a fully grown decision tree was fit
to the model’s predictions). Generally, we see that the TreeFIS and FuairTreeFIS scores between the top
row (boosting) and bottom row (surrogate) are similar in magnitude and direction. Specifically looking at
the Adult dataset, we see that “Married” is an important feature according to TreeFIS but FairTreeFIS
indicates that the model is using “Married” in a way that contributes to bias; these results are reflected in
both the boosting model and the tree surrogate. While the scores for some of the less important features
may vary slightly between the original model and the surrogate, notice that the most important features are
always consistent between the two approaches. This indicates that our FairTreeFIS scores are effective when
used to interpret tree-based global surrogates. Additional case studies on tree-based surrogates including
validating TreeFIS compared to model-specific deep learning feature importance scores are provided in the
Supplemental Material.

Lastly, in Figure 7, we examine TreeFIS and FairTreeFIS scores for a tree-based surrogate of a deep learning
model (multi-layer perception with two hidden layers each with p units and ReLU activation) as well as a
tree-based surrogate for a bias mitigation method, the Adversarial Debiasing approach (Zhang et al., 2018)
for the Adult dataset with Gender as the protected attribute. The Adversarial Debiasing method (Zhang
et al., 2018) applies adversarial learning to improve fairness by learning how to prevent an adversary from
predicting the protected attribute. Looking at the Adult dataset scores of the tree-based surrogate of the
deep learning model, we see that the “Cap. Gain”, “Edu Num”, and “Married” features are most important
in terms of accuracy and US Native Country (“US NC”), “Married”, and “Age” are most influential in
terms of bias. Specifically, “US NC” and “Married” hurt the overall fairness of the model. In the debiasing
method, the magnitude of both FairTreeFIS and TreeFIS for the feature “Married” decreases substantially,
showing that using this feature likely would result in more biased predictions. Additionally, the “Cap. Gain”
feature becomes more important in terms of accuracy in the debiasing model, as this feature contributes
less to bias. The accuracy and fairness go from 0.84 and 0.83 in the deep learning model to 0.80 and 0.92
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Figure 5: Random Forest model interpretations using FairTreeFIS when features contributing to most to
bias are removed (See Figure 4). Each panel shows accuracy and fairness (DP) metrics in three scenarios for
the Adult, Law, COMPAS, and C & C datasets. The gray bar represents a random forest model trained with
all the features, the red bar represents a random forest model trained without the feature with the most
negative FuairTreeFIS value, and the blue bar represents a model trained without the two most negative
FairTreeFIS values. Note that removing the features with the most negative FairTreeFIS values decreases
bias, therefore validating our FairTreeFIS metric.
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Figure 6: Global surrogate validation. The top row shows TreeFIS and FairTreeFIS results on a gradi-
ent boosting classifier for the Adult, COMPAS and Law datasets. The bottom row shows TreeFIS and
FairTreeFIS results for a tree-based surrogate of a boosting classifier. The scores between the top and
bottom rows are similar in magnitude and direction, indicating that our scores are effective when used to
interpret tree-based global surrogates.
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Figure 7: Interpretation of features for models with bias mitigation. The FairTreeFIS values show the
difference in importance scores between a tree-based surrogate of a deep learning (two hidden layer MLP)
model and a tree-based surrogate of a bias mitigation approach, deep learning adversarial debiasing method.
Note that the “Married” feature has the most negative FairTreeFIS in the tree-based surrogate model, but
is significantly less negative in the debiased model.

in the Adversarial Debiasing model, indicating that the approach is successful at mitigating bias. Seeing as
the features that strongly negatively contribute to fairness have less of an impact when the model becomes
more fair indicates that our fair feature importance scores accurately capture when features are helping or
hurting the overall fairness of the model. Note also that strongly predictive features often hurt fairness, and
as fairness increases, accuracy decreases. This trend is a sign of the well-known and studied tradeoff between
fairness and accuracy (Zliobaite, 2015; Little et al., 2022). Further results on all five benchmark datasets are
included in the Supplemental material.

4 Discussion

In this work, we proposed a fair tree feature importance score, FairTreeFIS, for interpreting trees, tree-
based ensembles, and tree-based surrogates of complex ML systems. We extend the traditional accuracy-
based TreeFIS (MDI), which calculates the change in loss between parent and child nodes, to consider
fairness, where we calculate the difference in group bias between the parent and child levels. We empirically
demonstrated that FairTreeFIS accurately captures the importance of features concerning fairness in various
simulation and benchmark studies. Crucially, we showed that we can employ this method to interpret
complex deep-learning models when trees are used as surrogates.

Our FairTreeFIS metric is inspired by TreeFIS (MDI) and recently, there have been many papers studying
theoretical properties of MDI and some of its limitations Strobl et al. (2007); Li et al. (2019); Zhou & Hooker
(2021). For example, MDI is known to favor features with high entropy and less correlation Strobl et al.
(2007); it is also known to be consistent using out-of-sample data for additive models Scornet (2023); Li et al.
(2019); Zhou & Hooker (2021), but its properties for other model classes are unknown. Given this recent
research on MDI, one may ask whether our FairTreeFIS metric inherits these properties and limitations.
Note that our FairTreeFIS metric performed well in simulations, including when there are correlated features
(see Appendix), suggesting that perhaps these limitations do not apply. Further, note that many of the
limitations of MDI arise from the fact that it utilizes the same loss function to compute feature importance
as was used to greedily build the tree. In contrast, FairTreeFIS is based upon the differences in proportions
across groups after each split and is hence less subject to such loss function specific biases. Nonetheless,
just as MDI has been studied extensively and theoretically, the properties of our FairTreeFIS metric are
important to investigate in future work.
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Additionally, there are several other possible directions to investigate in future work. FairTreeFIS is flexible
and can be easily extended to work with other group fairness metrics, including those that consider several
groups in the protected attribute or even multiple protected attributes. Further, just as people have studied
feature interactions using trees Basu et al. (2018), FairTreeFIS can possibly be extended to interpret bias
that might arise from feature interactions. Finally, one could also investigate extending other popular feature
importance scores to help interpret features in the context of fairness.

Our FairTreeFIS metric offers valuable insights for transparency and auditing. While our score does not
indicate if features are fair or unfair, it does help users understand how the model is using features in a
manner that may help or hurt fairness. Combined with traditional TreeFIS, it enables users to under-
stand the relative importance of features for both accuracy and fairness. Imagine if, in 2019, Apple and
Goldman Sachs had employed FairTreeFIS to explain the biases exhibited by their models toward women.
This could have significantly reduced public distrust and facilitated mitigation efforts. Furthermore, the
increasing emphasis on fairness in AI models, exemplified by the October 2023 executive order on Safe,
Secure, and Trustworthy AI, underscores the critical need for tools like FairTreeFIS. By enabling fair model
interpretation, FairTreeFIS facilitates transparency and builds trust among users and consumers.
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