SocloTy: Practical Cryptography in Smart Home Contexts

Tushar M. Jois Gabrielle Beck Sofia Belikovetsky
City College of New York Johns Hopkins University Johns Hopkins University
tjois@ccny.cuny.edu becgabri@cs.jhu.edu sofia.belikovetsky@gmail.com
Joseph Carrigan Alishah Chator Logan Kostick
Johns Hopkins University Boston University Johns Hopkins University
joseph.carrigan@jhu.edu alishahc@bu.edu lkosticl@jhu.edu
Maximilian Zinkus Gabriel Kaptchuk Aviel D. Rubin
Johns Hopkins University Boston University Johns Hopkins University
zinkus@cs.jhu.edu kaptchuk@bu.edu rubin@cs.jhu.edu
ABSTRACT The convenience afforded by mobile computing is accompanied

Smartphones form an important source of trust in modern com-
puting. But, while their mobility is convenient, smartphones can
be stolen or seized, allowing an adversary to impersonate the user
in their digital life: accessing the user’s services and decrypting
their sensitive files. With this in mind, we build SocloTy, which
leverages a user’s existing IoT devices to add a context-sensitive
layer of security for non-expert users. Instead of assuming the ex-
istence of dedicated hardware, SocloTy re-uses the devices of a
user’s smart home to provide cryptographic services, which we
term at-home cryptography. We show that at-home cryptography
can be built from simple cryptographic primitives, and that our
SocloTy solution is able to provide useful functionalities, like two-
factor authentication (2FA) and secure file storage, while protecting
against powerful adversaries in this setting. We implement and
evaluate SocloTy in real-world use cases and provide microbench-
marks for individual cryptographic operations on realistic models
of IoT devices. We also provide full benchmarks of an end-to-end
deployment on a simulated smart home, using a smartphone and 9
IoT devices to generate and display 2FA one-time passwords in less
than 200 milliseconds. SocloTy is able to provide strong, practical
cryptography while binding its execution to the smart home itself,
all without requiring additional hardware.

KEYWORDS

smart home computation, context-based cryptography, two-factor
authentication, systems security, compelled access security

1 INTRODUCTION

Mobile devices have quickly become users’ most important trusted
computing base. Users rely on them to authenticate and interact
with services that perform sensitive tasks, e.g., online banking,
file storage, and telehealth. These tasks are often secured using a
combination of passwords and locally-stored cryptographic secrets,
e.g., one-time passwords (OTPs) generated by a smartphone app.
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 447-464

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0026

This work is licensed under the Creative Commons Attribu-

447

by a commensurate increase in risk. Mobile devices are highly
portable, allowing them to be easily lost or stolen. Once a mobile
device is taken, any cryptographic material on the device could
be extracted [73]. This would allow an adversary to impersonate
the user and access their services—a catastrophic breakdown in
online security and privacy. A corporate spy, for instance, could
use extracted 2FA OTPs to connect to a rival company’s internal
VPN. This threat is particularly dire when the user needs to keep
their data private from law enforcement agencies with access to
software that can be used to circumvent on-device security mea-
sures. For example, border police could decrypt files from a user’s
cloud storage, inspecting it for content deemed subversive.

Mitigating risk with at-home cryptography. To mitigate the
risk posed by device loss, users should be able to voluntarily restrict
access to critical key material to times when their device is in
some trustworthy context, e.g., when at home. These users can opt-
in to restricting their usage, possibly because they may consider
a certain subset of actions too sensitive to operate outside of a
secure context, or might consider themselves particularly at-risk.
For instance, users might browse social media wherever they are,
but may already limit their use of online banking or telemedicine to
times when they are at home for privacy reasons. By limiting their
use in this way, these users actively engage in misuse resistance
for their critical services, protecting themselves from risks outside
of the home.

Users may also wish to utilize recently proposed privacy enhanc-
ing systems that assume the existence of a personal, fixed storage
for secrets local to a user. For example, BurnBox [65] provides
self-revocable encryption, which allows users to temporarily delete
keys that could decrypt sensitive cloud data (e.g., before a border
crossing), and recovers these keys after the user is safely home with
key material stored there.

The fundamental building block required to realize these appli-
cations is computation that can only be performed at home, which
can then be leveraged to perform cryptographic operations. We
refer to such a system as one that provides at-home cryptography.

Importantly, mobile devices cannot facilitate at-home cryptogra-
phy alone, as they cannot offer fine-grained context-sensitive access
control mechanisms. Even if the user only uses their material in
the home context, this material is still on device—and therefore

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0026

Proceedings on Privacy Enhancing Technologies 2024(1)

exposed—while they are on the go. Similarly, mobile devices cannot
be the fixed store of secrets required for advanced privacy sys-
tems. Thus, mobile devices need assistance from other parts of the
physical environment to enforce context sensitivity.

Prior attempts. At first glance, achieving limited access to keys
might appear trivial; a user can simply store key material for au-
thentication or encryption on a device that stays at home rather
than on their mobile device, e.g., a desktop computer or a dedicated
hardware security module. Because this device is stationary and
only accessible on a local network—or even air-gapped—access to
the key material is inherently limited.

While straightforward, this solution requires the user to (1) own
stationary hardware, and (2) have the technical expertise to manage
their stationary hardware. In the time before widespread smart-
phone use, this solution made sense; personal computers were not
very portable, and required at least some level of technical expertise
to operate. However, this ostensibly simple solution is becoming
unworkable for a rising part of the general population. 15% of adults
in the United States only use smartphones as their primary device,
with an upward trend since 2013; in the youngest generation of
adults, 18-29 years old, this proportion increases to 28% [51].

Past research efforts also focus on the use of dedicated hardware
to build this functionality. While context-sensitive cryptography (of
which at-home cryptography is a subset) has been studied in both
the theoretical [13, 15, 17, 34, 50] and applied [6, 43, 60-62, 66]
literature, no practical constructions have been realized or widely
deployed.! As such, we turn to a more pragmatic approach: re-use
the devices users already have to establish a context.

Re-using devices for at-home cryptography. Although users
are unlikely to have access to dedicated hardware for at-home
cryptography, users may have access to Internet-of-Things (IoT)
devices. These devices typically do not leave the home, making
them an attractive prospect for anchoring a trusted computing base
for at-home cryptography.

Re-using these devices raises its own difficulties, however:

o 10T devices are designed to be single-purpose, and, to keep
costs low, have just enough compute capability to provide
their application, unlike the general purpose capabilities of
smartphones and computers. Re-using an IoT device beyond
its intended purpose may induce measurable overhead, so
we must ensure that at-home cryptography operations are
lightweight.

o 10T devices have a history of vulnerabilities [23, 58], so it is
not advisable to use one as a single store of secrets. Instead,
we observe that it is more appropriate to distribute trust
among many IoT devices, such that an attacker would need
to compromise many IoT devices before exposing any of the
user’s secret data. Of course, resource constraints limit the
viable approaches to federating trust.

As such, leveraging IoT devices into a practical at-home cryp-
tography system requires carefully navigating tradeoffs between
functionality, deployability, and security.

SocloTy. In this work we present SocloTy, a system design and
protocol for at-home cryptography using a user’s existing IoT de-
vices. SocloTy is designed for non-expert users who want to protect

Indeed, there are impossibility results that might rule out “ideal” solutions [17].

448

Jois et al.

high-value digital resources from powerful, privacy-invading ad-
versaries but do not have the access, expertise, or inclination to use
dedicated hardware. Our system allows these users to set their own
risk tolerances, allowing them to tie whatever secrets they consider
to be most valuable to their smart home. Unlike existing privacy-
enhancing systems, SocloTy protects against common surveillance
techniques even if the user’s devices are compromised (like during
border searches). While we focus on the smart home in this work,
SocloTy has applications wherever there are multiple embedded
devices running on the same network, such as small businesses and
hospitals. Our design is summarized in Figure 1.

SocloTy builds an at-home cryptographic system for a pseu-
dorandom function (PRF) [27], a simple, but powerful, primitive.
From this at-home PRF, we can directly build two-factor authenti-
cation [45, 46] and derive keys for encryption. SocloTy treats the
smart home as a PRF that users can query to provide at-home cryp-
tographic services. Because the user is physically at home, they
can generate PRF outputs, and use these outputs to address their
real-world needs—like generation of 2FA OTPs for authentication
and of keys for cloud-encrypted content—all without worrying
that their credentials are at risk outside of the home. Moreover,
the interface to users is the same, and service providers would not
have to change their architectures to accommodate SocloTy; users
perform one setup step on their smart home, and service providers
only need to use a different PRF library in their backends.

To address the problems of IoT devices discussed above, we
build a “dual-layered” PRF where one layer is produced by the
smart home, and the other by the a more powerful device (e.g., a
smartphone). This dual-layered PRF is realized by combining the
output of a threshold, distributed PRF [47] (TDPRF) with that of a
normal PRF. Each IoT device computes a partial evaluation on an
input, and the more powerful device reconstructs the TDPRF result
from the smart home’s multiple partial evaluations and combines
it with a PRF evaluation computed on its own key material. This
federates trust among all of the participants in the smart home:
the individual IoT devices along with the smartphone that controls
them. Any compromising party would be forced to corrupt both
layers to recover the final output. At the same time, the computation
power required by the IoT devices is low, since only one operation
is needed (in implementation, a single elliptic curve multiplication)
per each user request.

We evaluate SocloTy on a simulated smart home, consisting of
analogs of smart home devices, from high-end, full-size systems
(Raspberry Pis) to tiny, embedded microcontrollers (ESP32s). We
collect microbenchmarks on these devices, as well as benchmarks
on full deployments of the system in realistic configurations. To
highlight the ease of use of our proposed system, we also build a
simple Google Authenticator-style smartphone app that uses Soc-
IoTy to calculate OTPs. We find that our implementation meets the
performance needs of our envisioned applications, while remaining
seamless to the end user—performing OTP generation, for example,
in < 200 milliseconds on average when involving a smartphone
and 9 SocloTy devices.

Contributions. In this work, we study the problem of giving non-
expert users context-sensitive access control to their cryptographic
material, focusing on the smart home setting. Our goal is to help

SocloTy

Figure 1: An overview of SocloTy, which uses a PRF built
from IoT devices to provide at-home cryptographic services.

average users mitigate the risk associated with carrying high-value
cryptographic material on their mobile devices, giving users the
peace-of-mind in knowing that their service or files can only be
accessed from home. Specifically,

(1) We discuss at-home cryptography, highlighting relevant use
cases and design considerations for a context-sensitive cryp-
tographic system at home (Section 3).

(2) We present SocloTy, an at-home cryptography system de-
signed for non-expert users and their smart homes, and show
how it can be used to build relevant constructions such as
time-based one-time passwords [46] and self-revocable en-
cryption [65] that can only be operated in the home context
(Section 4).

(3) We implement and evaluate SocloTy on realistic hardware,
providing microbenchmarks for individual cryptographic op-
erations on representative IoT devices and full benchmarks
of an end-to-end deployment on a realistic smart home con-
figuration (Section 5).

2 BACKGROUND

Smart homes. SocloTy relies on a home Internet-of-Things net-
work, or “smart home”, to bootstrap at-home cryptography. IoT
devices and smart home networks are proliferating rapidly [44]. In
2022, 57.5 million Americans lived in a smart home accounting for
45% of US households, and it is estimated that by 2026, more than
25% of homes worldwide will have some degree of IoT capability
[63]. IoT devices range in computational capacity from extremely
lightweight microcontrollers to fully-Linux-capable system boards
with gigabytes of RAM. We rely on IoT devices to perform crypto-
graphic operations and to communicate over the network in order
to manifest a cryptographic scheme from the participation of oth-
erwise logically isolated systems. As in prior work (e.g., [40]), we
assume a network of constrained devices (in terms of computation
and power) participates in the cryptographic protocol, and in our
evaluation (Section 5) model such devices to demonstrate feasibility.

Pseudorandom functions (PRFs). A pseudorandom function [27]
is one which outputs values that, without knowing some key k,

449

Proceedings on Privacy Enhancing Technologies 2024(1)

cannot be distinguished from random. PRFs can be used to build
many other primitives in cryptography, including symmetric en-
cryption and authentication schemes. For encryption, there exists a
well-known theoretical construction that randomly chooses input
for the PRF and treats the output as a one-time pad for the message.
It is also possible to treat the output of a PRF as input to a key
derivation function for block ciphers. Authentication is straightfor-
ward, as the input to the PRF can be the message the party would
like to have verified, and the output being the tag for verification.

(Threshold) Distributed PRFs. One useful variant of a pseudo-
random function is the distributed pseudorandom function (DPRF),
which allow a group to jointly evaluate a PRF. Each party uses
shares of the secret key to calculate a partial output that can later
be combined to recover the full PRF output. This can be extended
to the threshold case, where the computation is successful if ¢
parties supply honest recovery values, but to any group of t — 1
parties the PRF output appears to be uniformly random, creating
a threshold DPRF (TDPRF). While TDPRFs can be constructed us-
ing generic MPC, it would be highly inefficient and take multiple
rounds of communication to produce a result, both non-starters for
IoT devices. We instead utilize a protocol that requires only one
round of communication between evaluators and an aggregator,
with no communication required between evaluators. The protocol,
originally presented by Naor et al. [47], is based on the decisional
Diffie-Hellman assumption and the use of random oracles.
The interface of a TDPRF consists of a tuple of algorithms (Gen,
PartialEval, Recon):
° Gen(l’l, k, t,n) produces shares of the PRF key k denoted as
ki...ky.
e PartialEval(k;, x) uses a key share k; on an input x to pro-
duce a partial evaluation of the PREF, y;.
e Recon({y;}icy) takes a subset of partial evaluations by users
Y C [n] where |Y| > t and produces the full PRF output y.
Finally, we note that a TDPRF may have an additional efficient
algorithm which takes in a fully reconstructed key k and an input
x which we denote by Eval(k, x), allowing a TDPRF to be used as a
regular PRF.

Two-factor authentication (2FA). To increase user security,
online service providers have started to roll out 2FA, which requires
a second form of authentication to log in to a service. The most
common form of 2FA after email and SMS [19] is the time-based one-
time password (time-based OTP or TOTP) [46]. Every h seconds, a
user’s token (e.g., a smartphone app) generates an OTP. When the
user wishes to authenticate, they input their username, password,
and OTP. Unlike passwords, OTPs are short lived; they are only valid
for the time interval h in which they are generated, and can only be
used once. Users therefore authenticate with either something they
know (a password) or something they are (a fingerprint or retina
scan), alongside something they have (their token, which generates
OTPs). TOTP is supported by major social media platforms [68],
electronic health records systems [24], financial institutions [54],
and corporations [22]

The security of TOTP relies on the underlying HMAC-based OTP
algorithm (HOTP) [45], which generates OTPs using the HMAC
construction [39]. The security of HOTP, in turn, relies on the
assumption that HMAC is a PRF. Since adversaries without k cannot

Proceedings on Privacy Enhancing Technologies 2024(1)

predict PRF outputs, they also cannot predict OTPs. Thus, as long
as we assume that our underlying primitive (HMAC) is a PRF, then
the OTPs generated by HOTP (and TOTP) are secure.

More formally, a TOTP is parameterized by h and defined by
TOTPy,(ks,z) = PRF(ky, L%J) mod 10°, where z is the current
timestamp and mod is the modulus operation, which is used
to convert the output of PRF into a 6-digit integer. We omit h in
our notation for TOTP for simplicity, and use the recommended
default & = 30 from the TOTP RFC [46].

Compelled access. Compelled access to a software system or to
data, whether by a malicious attacker or law enforcement agent,
poses a serious risk to privacy and security. Compelled access can
be viewed as exploiting a user’s ability to authenticate, and sim-
ilarly compelled decryption can be viewed as exploiting a user’s
ability to decrypt sensitive data. Recent work has explored the
mechanisms and mitigations of compelled access and decryption in
mobile devices [73], as well as defending cryptographic protocols
from compelled decryption by identifying and reducing long-lived
secret values [56]. BurnBox [65] attempts to address compelled de-
cryption by putting a user’s ability to decrypt their files in escrow
in a safe place—specifically, by allowing for a form of secure dele-
tion (revocation) which is reversible only with a secret key saved
elsewhere, e.g., in a vault at home.

Context-sensitive cryptography is a powerful mechanism when
considering compelled access and decryption. Broadly, context-
sensitive cryptography ties cryptographic operations to some no-
tion of context, usually through some information only available in
a certain place or among certain parties (e.g., [61, 62, 66]). If cryp-
tography is only possible when a secure context is established (e.g.,
in the home), and compelled access or decryption can be expected
to occur elsewhere (e.g., at a border crossing or the proverbial dark
alley), these risks are mitigated. Better yet, the user cannot be di-
rectly coerced (i.e., via “rubber-hose” cryptanalysis) to release a key
which is only accessible under a certain context.

3 DESIGNING AT-HOME CRYPTOGRAPHY

To capture the notion that some cryptographic operations should
only be available within the context of the home, i.e., at-home cryp-
tography, it is necessary to modify the interface to cryptographic
calls with a context input. This modification clearly captures generic
context-sensitive cryptography, a superset of at-home cryptogra-
phy. As we are only interested in this subset, we (informally) modify
a cryptographic function F with input z to produce the function
Fhome as follows:

F(z) if cONTEXT = home

F Z, CONTEXT) = .
home() { L otherwise

We emphasize that this notation is informal; by making the
context an input to the function, an adversarial caller could call the
function with a context other than their own. Formally modeling
this transformation would require limiting the caller to use their
true context, perhaps by letting users make queries to a subset
of functionalities, where the subset is determined by their present
context. Indeed, this better matches our envisioned system, in which
these oracles are realized by distributed computation on hardware
segmented to only a local network (i.e., the home context). In either
sense, providing a formal framework for at-home cryptography is

450

Jois et al.

beyond the scope of this work; we will use the informal notation
described above, as the intuitive meaning is clear.

We focus on at-home cryptography in this work, but this ap-
proach is general, and there is nothing preventing the above def-
inition from being applied to other contexts. For example, one
could envision an “at-work” cryptography system for employees
performing sensitive tasks in an industrial IoT setting.

We note that there are times when context is also (practically
speaking) location-bound. For example, if the devices that define
the home context are difficult or expensive to move (e.g., a smart
ceiling fan, a smart oven, or a smart irrigation system), at-home
cryptography could also realize a limited form of location-sensitive
cryptography. We explore this idea further in Section 4.4. Of course,
if the user desires to change homes, the at-home context should be
able to move with the user; the user has a new definition of “home”,
and at-home cryptography should reflect that. As such, we consider
the at-home context to be semi-permanent.

3.1 Case Studies

To make the envisioned usage of at-home cryptography clear, we
briefly present several concrete use cases. While not true anecdotes,
these motivating examples are rooted in real-world trends and con-
textualize the technical considerations that must go into designing
our at-home cryptography solution, SocloTy.

Use Case 1: The Remote Worker. Consider a user that recently
accepted a job offer from a prominent law firm as a legal aid, where
they will work as a remote-only employee; this kind of remote-only
work has been on the rise since the COVID-19 pandemic [49], and
some anticipate that many of these jobs will remain fully-remote
permanently [55]. To access the sensitive legal documents required
to do their job, the user connects to the law firm’s network over a
VPN. To authenticate to the VPN, the user enters codes generated
by a 2FA app on their company-managed smartphone. Company
policy requires that the user should only connect to the VPN when
within their home, owing to the sensitive nature of the company’s
documents. However, the user has no way of ensuring that they
meet that policy if their smartphone is lost or stolen.

Use Case 2: The Outpatient. Consider a user who has end-stage
renal disease, and requires active management through dialysis. In-
stead of remaining in the hospital, the user owns a dialysis machine
at home, which are increasingly common [41]. The user regularly
meets with their doctor to discuss their condition. On days they
are not able to visit their doctor for a check-up, they set up a
telemedicine appointment from home. Based on the check-up, the
user’s doctor is able to remotely configure the dialysis machine over
the Internet. The user has an app they use to connect to hospital’s
electronic medical records system, but is nervous about their health
data leaking when they leave the house.

Use Case 3: The Foreign Correspondent. Consider a user who
is an investigative journalist that frequently travels to war-torn,
authoritarian countries as part of their reporting duties. During
such trips, the user keeps detailed notes, initial research, article
drafts, and the identities of sources on their smartphone. To ensure
that this information is not lost if their phone is lost, they back up
these files to cloud storage services; due to the sensitive nature of
these documents, they keep them encrypted while in cloud storage

SocloTy

and keep decryption keys on their smartphone. While traveling,
the user is often stopped and searched by local law enforcement
(either at border crossings or during routine encounters on the
street); such stops are common in countries with repressive regimes,
and border officers are known to extract data from smartphones
at border crossings [73]. The user has heard of next-generation
cryptographic systems designed to let them temporarily revoke
access to their sensitive documents until they return to a secure
location (e.g., [65]), but they lack the dedicated, stationary hardware
those systems require.

3.2 Design Goals

With these use cases in mind, we now discuss the goals and consid-
erations for a realization of an at-home cryptography system.

Functionality. All of the use cases in Section 3.1 require limiting
execution of cryptographic functions to the home. One way of
implementing this constraint is to only hold the secrets at home, so
the required key material is unavailable under any other context.
This would allow all three of our envisioned users to opt-in to
limiting access; each envisioned user either does not require access
on-the-go, or would like to ensure it is not possible.

We require support for both authentication (use cases 1 and 2)
and encryption (use case 3). An authentication primitive means that
we can use the home as a second factor for 2FA—somewhere you are
in addition to the typical something you know, have, or are triad. An
encryption primitive would allow users to secure files such that they
can only be decrypted when the user is at home, suitable for privacy
systems that require a digital safe [65] to recover files after a threat
has passed and they have returned home. Note that it is possible
to accomplish this task robustly while still storing encrypted files
in the cloud—even if the encrypted files are available globally, the
plaintext documents are context sensitive.

Deployability. Prior work on context sensitivity for crypto-
graphic operations [6, 14, 43, 60-62, 66] has not been deployed in
practice due to its reliance on specific hardware to provide secu-
rity properties or non-standard adversarial models. Therefore, we
aim to use existing devices to build the context: namely, the IoT
devices of the user’s smart home. Since we are re-using devices,
we must ensure that our solution does not require intensive or
long-running computations. Similarly, we also prefer protocols that
have as few rounds of communication as possible (or, ideally, are
non-interactive) and linear in communication complexity.

In essence, the IoT devices should achieve their cryptographic
task quickly and return to their primary functionality in the home.
From the user’s perspective, the only change is that the context
matters for the task at hand; the rest of the interface for cryptogra-
phy should be the same, and be fast enough that the user does not
notice any latency.

We note that this does not preclude a more powerful device
from being involved. The IoT devices can operate a lightweight
part of the computation; then, another device—a smartphone or
tablet—performs the more heavyweight computation. This other
device and its interface can be the same as what would be used in a
more traditional, non-context-sensitive cryptographic solution (e.g.,
a 2FA app on a smartphone), abstracting away the new at-home
cryptography system.

451

Proceedings on Privacy Enhancing Technologies 2024(1)

~

[4

User can access
services from
secure context

Figure 2: An overview of our threat model for SocloTy.

Security. An at-home cryptography system must be secure in
the context of adversaries that are able to corrupt and control the
smart home’s devices, and those that are able to compel access to
the user’s secrets outside of the home. We more concretely define
our threat model in Section 3.3.

The smart home setting introduces particular challenges not
captured by traditional models. For example, family members and
roommates can also share the space, perhaps with their own IoT
devices. Additionally, each member of the household may have
several different at-home services they wish to use. Any solution
must be therefore secure in the presence of several other users and
multiple different services.

We emphasise that our intention is to allow for users to opt-in
to this extra layer of protection for the selected services that make
sense for them (or the organizations of which they are a part). We
target users who are explicitly concerned with the risks associated
with ubiquitous access to all online services and files, and want to
choose which services they can access on-the-go versus when in the
home context. Critically, these choices are highly specific to each
user. In use case 2, for instance, the user’s fixed medical devices
should only be able to communicate at home; any communication
outside the home would likely be an error. Moreover, the choice
to add context sensitivity to particular services might also change
over time, based on what the user plans to do when they leave
their home and the specific threats that they might expect along
their journey. For example, in use case 3, the user might want to
add an additional layer of security to their sensitive services only
when planning to cross international borders, even if they do not
context-bind access to these services in their daily life.

3.3 Threat Model

Since our system makes use of multiple devices and a variety of
scenarios, it is important that our threat model systematically con-
siders all of these components. We model around a setting where
the user has IoT devices in their smart home, as well as a powerful
mobile device (a smartphone or tablet) that can communicate with
the IoT devices and can be involved in a setup procedure that au-
thorizes it to participate in the protocol. We will refer to this device
as the authorized device. To successfully tie cryptographic services
to the home, the system must be designed in such a way that a

Proceedings on Privacy Enhancing Technologies 2024(1)

cryptographic operation cannot succeed if this authorized device is
not also at home and participating in the protocol.

Concretely, we demonstrate this by showing that the protocol
must be secure against the following types of adversaries:

Compelled access adversaries. We consider adversaries that
can obtain access to the authorized device when it is not physically
present in the home [73]. These adversaries can extract all of the
secrets from the authorized device. For example, consider a border
control officer that compels decryption of the user’s authorized
device while the user is crossing the border [65]. While they now
have access to any secrets on the authorized device, they should
not be able to successfully authenticate or decrypt as they are not
physically in the home. We note that this threat model is stronger
than that of many secure protocols, which assume a malicious
network but a trusted, secure end-user device.

Local network adversaries. We consider adversaries present
on the local network. This can occur through compromising any
number of IoT devices on the network. This is a natural assump-
tion as IoT devices have a history of vulnerabilities [23, 58]. The
adversary can be remote, or have physical access to the devices.
The latter models threats from other residents of the smart home,
such as a malicious roommate or house-guest. In either case, the
local network adversary will also be able to see all of the traffic
over the LAN between the devices and the authorized device. They
would also have the ability to use this access to perform denial-
of-service. Despite all this, as long as the user’s authorized device
remains secure, the local network adversary should not be able to
successfully execute the protocol.

These two adversaries represent the primary ways that a ma-
licious party would try to undermine an at-home cryptographic
system. Building a system robust against these two adversaries en-
sures that in-home compromise of the IoT devices or out-of-home
compromise of the user’s authorized device does not violate the
context-sensitive property of the system. We design for this threat
model in a modular way, demonstrating the security of our sys-
tem against each adversary independently. We assume that these
adversaries do not collude, as compelled access adversaries are
not assumed to have the capability to access personal devices be-
sides those physically available to them [56, 65, 73]. However, in
Section 4.3 we describe some extensions that would allow for our
system to handle colluding adversaries as well.

4 SOCIOTY

We are now ready to describe SocloTy, our at-home cryptographic
solution.

4.1 Preliminaries

We discuss SocloTy in terms of its components:

o Authorized device/authorized smartphone: This device has
reasonably good computational power and is carried by the
user. We assume the authorized device is honest while within
the home, but might be corrupted (e.g., stolen or forcibly re-
moved from the user) upon leaving the home. We assume the
device supports effaceable storage, i.e., allows for secure dele-
tion of cryptographic secrets. Such functionality is common
on modern smartphones [73].

452

Jois et al.

e Remote service: The remote service is an Internet-accessible
service with which the user wishes to interact through their
at-home cryptography. In the authentication case, this is a
service requiring login with 2FA enabled. In the encryption
case, this is a cloud storage endpoint.

o JoT devices: The user selects the IoT devices from their smart
home with sufficient hardware and network capabilities to
execute the SocloTy protocol, which may include smaller,
microcontroller-class devices.

Choosing the correct cryptographic primitive. For both at-
home authentication and encryption, we need to tie cryptographic
operations to a particular context. One natural way to do this is
to have IoT devices use a generic MPC protocol to perform both
encryption and authentication, where the respective keys have been
secret shared among all parties and the output is given directly to
the smartphone.

Unfortunately, generic MPC is too inefficient for our setting,
involving multiple rounds of communication and expensive com-
putation operations [36, 37, 67]. Particularly in IoT environments,
where even RAM is significantly constrained, we cannot use many
standard tricks to improve performance and even hundreds of mil-
liseconds per circuit layer may introduce unacceptable latency.
Additionally, the comparatively high resource requirements of an
MPC protocol may interfere with the normal operation of the smart
home. Waiting for the interactive execution of each round could
delay the processing of incoming IoT events, and this delay could be
exacerbated by the limited multitasking capabilities of IoT devices.
We further explore MPC as a primitive for SocloTy in Appendix
B, where we highlight the slow execution times of an MPC-based
protocol on IoT devices.

We would instead prefer to have the smart home implement
a single cryptographic primitive that is well suited for use in a
wide range of applications. One primitive that could work is a PRF,
which has standard transformations to both symmetric encryption
schemes and MACs. The distributed version of a PRF that is most
applicable in our setting is a TDPRF [47]. As discussed in Section 2, a
TDPREF allows > ¢t parties to compute partial evaluations of the PRF
that can later be combined to recover the full PRF output, but to any
group of < t parties, the output of the TDPRF is indistinguishable
from random. This helps with both security and availability; not
every IoT device needs to be online to evaluate the TDPRF, but
any adversary that only compromises < ¢ devices cannot recover
the correct output of the TDPRF on any point that they have not
already seen.

Layering security. While a TDPRF achieves some security against
an adversary corrupting < t parties, we would also like to handle the
case where an adversary corrupts over this threshold, potentially
even up to all the IoT devices in the home. To protect against such
adversaries, the phone will also contribute to constructing correct
output. In short, we will construct a new PRF P’ from the proposed
TDPREF of the smart home and a PRF P, with the same co-domain
as the TDPREF. If the composition of the outputs of the TDPRF and
P is pseudorandom, even when either of the TDPRF key or the key
for P is leaked (and the smartphone is the only party who holds
the key for P) the output of P’ will appear pseudorandom to all
adversaries covered in our model. This layering will also be more

SocloTy

1a.Load
PRF key
from
server

1b. Generate PRF key
on device

3. Reconstruct PRF
output to generate
oTP

4. Forward
generated OTP to
server for access

4.Send encrypted file
to storage server

1. Request

of a
ame

evalu

3. Encrypt file with
reconstructed
output as the
encryption key

Figure 5: The encryption workflow of SocloTy.

practically efficient to compute than any generic solution that only
protects against a limited number of IoT device corruptions.

4.2 Protocol Description

We now briefly describe the normal operation of SocloTy at a high
level before describing the protocol in depth. When an authorized
smartphone wants to register a new service with the smart home,
it first generates the key material needed for itself and the home

453

Proceedings on Privacy Enhancing Technologies 2024(1)

Algorithm 1: SocloTy authentication

Input: k;, the key of the smartphone, § a counter value
derived from a timestamp

Output: TOTP token

Request smart home devices invoke PartialEval on § and
receive {y;}ijer where T C [n], |T| > t

y < TDPRF.Recon({y; }ieT)

z =y + PRF.Eval(kp, §)

Output z (mod 10°)

using a setup algorithm (Figure 3). It gives the correct key shares to
all the devices in the smart home and securely deletes them from its
memory. When the smartphone later uses the service, it broadcasts
over the LAN a request for a TDPRF evaluation. The phone waits
until it receives at least ¢ evaluation responses from the IoT devices
before attempting reconstruction. Once reconstruction is completed,
depending on whether the application is authentication (Figure 4)
or encryption (Figure 5), the phone takes a series of actions. Any
sensitive information is securely erased from the phone after the
operation completes. What follows is a complete description of the
setup, authentication and encryption algorithms for SocloTy.

Setup. Let n be the number of smart devices a user owns and
let ¢ be a fixed number, equal to the number of devices expected
to be online at any given point in time. The setup procedure is
designed to produce two keys: one for the smartphone denoted by
kp and one split among the networked IoT devices denoted by k.
In the case of authentication, the keys k; and k will be provided by
the remote service the phone is authenticating to. For encryption,
kp and k should be generated by the smartphone. The phone uses
the TDPRF.Gen algorithm to share the key k as k; ... k,. The key
share k; is given to device i. The phone then stores k, and after
sharing the shares of k, securely deletes all key material related to k.
When a new IoT device is bought or sold from the smart home, the
phone repeats this procedure, replacing k, and k with new keys.
Figure 3 illustrates the setup process. We assume that in the case of
authentication, the remote service provides a mechanism by which
the symmetric TOTP key can be updated.

We note that the setup algorithm should be run for each remote
service for authentication, as each remote service would require its
own key. Similarly, we recommend running the setup algorithm
for each set of files that are to be encrypted. This way, all SocloTy
applications have their own (kp, k) pair.

Also, to ensure that all secrets are initialized without adversar-
ial interference, we require the setup process to be over a secure,
authenticated point-to-point channel. This channel can be instanti-
ated over TLS with mutual authentication (bootstrapped via, e.g.,
QR codes). After this setup procedure, however, SocloTy does not
have this secure channel requirement for communication, as the
dual-layered PRF prevents an adversary from getting total PRF
output even if they obtain k. We discuss this further in Section 4.3.

Authentication. For authentication, the smartphone calculates
a counter ¢ based on the current timestamp. It then sends an au-
thentication request to all devices within the smart home. Each
device with available bandwidth runs TDPRF.PartialEval(k;, §) to
get y; and sends the resulting y; to the phone. Once the phone

Proceedings on Privacy Enhancing Technologies 2024(1)

Algorithm 2: SocloTy encryption

Input: k;, the key of the smartphone, m the name of the file,
f the content of the file itself

Output: Encrypted file ¢

Request smart home devices invoke PartialEval on m and
receive {y;}jer where T C [n], |T| > t

y < TDPRF.Recon({yi}ier)

z =y + PRF.Eval(kp, m)

K « KDF.Derive(z)

¢ « AE.Encrypt(X, f)

Securely delete K

Output ¢

has received t partial evaluations it recovers the PRF output and
calculates its own PRF value. The two are then combined? and the
output is truncated to 6 digits, which are displayed to the smart-
phone user. The remote service can use kp and k, along with the
PRF.Eval and TDPRF.Eval algorithms, to check for correctness. An
overview diagram is provided in Figure 4, with a more specific
description in Algorithm 1.

Encryption. To encrypt and decrypt sensitive files, the smart-
phone first makes a request for a TDPRF evaluation on a file-
name m. The smart home devices conduct a partial evaluation as
TDPRF.PartialEval(k;, m). The output of these evaluations is then
given to the smartphone. The phone can then reconstruct the TD-
PRF output before combining it with the output of its own PRF
evaluation on m using key k;. The resulting output is then used
as an entropy source for a key derivation function, KDF [38]. The
value returned by KDF is a pseudorandom key? which can then be
used in an authenticated encryption scheme AE to either encrypt or
decrypt the file while providing strong confidentiality and integrity.
After the operation is completed, the phone securely deletes the
reconstructed key and potentially the plaintext file. This workflow
is depicted in Figure 5 and described in Algorithm 2.

4.3 Security Analysis

We now give a justification of security for our construction against
the relevant adversaries. Recall that we are concerned with two
types of attackers (1) a compelled access adversary who may com-
promise the phone while it is abroad, but does not simultaneously
have access to any device in the smart home and (2) a local network
adversary that has direct physical access to IoT devices and any
traffic over the LAN but cannot compromise the smart phone. We
note that in the multi-user setting, other users are equivalent to
adversary 2. To give a brief summary, security holds because of
how the PRF and TDPRF are composed. Even if an adversary has
access to one of k, (adversary 1) or k (adversary 2), the total output
retains PRF security and is indistinguishable from uniform. This is
because the evaluations of the smart home TDPRF and smartphone
PRF are additively composed. If one of these keys is unknown and
drawn from a uniform distribution, then the output of the (TD)PRF

2We combine these two values through addition, which occurs in the codomain of the
underlying PRFs.

3We assume that KDF acts as a random oracle, which defends our construction from
related-key-style statistical attacks on the encryption key.

454

Jois et al.

evaluation with that key will be unknown. Then, the sum of this
unknown value with the other (known) PRF evaluation is still uni-
form. This means an adversary has no chance better than random
of guessing either the TOTP value or the key used to encrypt files.

Extensions. We now discuss some special considerations for
other types of network attacks and more powerful adversaries.

A local network adversary in practice has some slightly stronger
adversarial capabilities, due to its ability to modify traffic and di-
rectly interact with the smart home. SocloTy does not necessarily
require authentication and encryption of home requests, as the se-
curity of the system relies on the dual-layered PRF. Thus, even if the
adversary attempts to relay into the smart home and interact with
it remotely, or replay a prior request to the devices, they will not be
able to obtain the the final TOTP as they do not have k, (which is
on the user’s smartphone). However, without guaranteeing the au-
thenticity of the requests, we do open up users to denial-of-service
attacks on each of the relevant services, as an adversary could
interfere with partial evaluations?. In the case of authentication,
such an attack can only temporarily prevent correct functioning
of the system. Assuming that either the AE is key-robust or the
KDF acts as a random oracle prevents related-key attacks from
enabling plaintext file recovery. When initializing a user account
and encrypting files, denial of service attacks may be conducted
which have irrecoverable effects, leading to a breakdown of system
properties (e.g., encrypting a file with a corrupted key and then
deleting the plaintext).

So, if protection against these attacks is required, we recommend
adding authenticity checks to values sent by IoT devices. The secrets
required for these checks can be generated and shared during setup.
In our implementation, we use the recently standardized Ascon
lightweight AEAD scheme [48] for communication between parties
to maintain security against these types of attacks. We evaluate the
performance of Ascon in Section 5.

Next, we consider a more powerful access adversary who can
gain control of both the phone and even one IoT device on the
home network to be out of scope. We believe, for most use cases,
this is a realistic assumption: even gaining the public-facing IP
address of devices on the network is not something a foreign nation
can do easily, without help from the user’s local ISP. For those
highly-targeted users for whom such an adversary could be realistic,
though, turning off the smart home entirely when they leave the
house will prevent this attack, giving the user the same security
guarantees as an offline solution.

Finally, we consider an adversary that first compels access to the
user device and then later attempts to compromise the rest of the
system to be also out of scope. We note that prior work on compelled
access [65] similarly does not provide security against attacks that
occur after the access ends. To achieve post-compromise security
in this setting, our system could be extended to perform a full key
rotation upon returning home after a compelled access event. This
process would involve regenerating k, and k for all authentication
services and all encrypted files.

4We note that, without authentication, a Do$ is possible by anyone with at least some
local network access; it does not require the ability to corrupt an IoT device.

SocloTy

4.4 Deployment Flexibility

SocloTy’s design allows for significant flexibility when deploying
on a smart home. We discuss these considerations below.

Devices to use. We envision SocloTy as running on essentially
any IoT device that has some form of networking capability, as the
number and types of device vary from smart home to smart home.
Users should try to use their more powerful devices to increase
performance, but we believe this is not strictly necessary. We eval-
uate these performance claims in Section 5, using a wide range of
devices to benchmark the SocloTy protocol.

Multi-user smart homes. SocloTy can support multiple users,
each with their own services. Each device i holds a separate key k;
(for PartialEval) for each pair (u,s) describing a user u and service
s. The wrong user u” cannot authenticate to s as u because they do
not have the key k, on u’s smartphone. Thus, SocloTy supports
as many users and services as there is space for keys on the IoT
devices. Similarly, SocloTy also supports multi-owner setups, where
the devices are not all owned by a single user. This is common in
smart home settings, as devices can belong to roommates, landlords,
or caretakers, to name a few. If all device owners cooperate, SocloTy
proceeds as normal. If owners deviate from the protocol, the worst
that can happen is denial-of-service—not a security break.

Network structure. Our design does not require a specific struc-
ture of the smart home network. Traditionally, protocols are de-
signed point-to-point, where each device is able to directly commu-
nicate with each other device. For some smart homes, computation
is handled through a hub, which acts as an intermediary for mes-
sages to and from the smart home devices. Hubs are particularly
used for low-resource devices. SocloTy is able to handle this case,
which we investigate end-to-end in Section 5.3.

SocloTy makes no liveness assumptions on the whole network.
Other approaches, like generic multi-party computation [11, 18, 28,
70], would require all of the IoT devices to communicate with each
other during the whole protocol. SocloTy only needs each node to
be active for one PartialEval. So a device can respond to a request,
and go back to attending to its primary task (or return to sleep),
without waiting for all of the other nodes to respond or for the
final reconstruction to occur. Moreover, because our cryptographic
protocol only requires one round of communication, we can also
tolerate networks with very low available bandwidth.

Server interface. SocloTy meets our deployment goal of not
requiring changes to the user interface, but we briefly discuss how
SocloTy impacts the remote service. When applying SocloTy to
encryption, the cloud server that provides storage does not change
its interface. From its perspective, the user is still uploading a file:
a SocloTy-encrypted blob rather than a cleartext one. The cloud
service stores it as it would any other file.

For authentication, however, the situation is different. The TOTP
standard [46] recommends HMAC-SHA-1 as the underlying PRF.
Our construction is not backwards-compatible with HMAC-SHA-1
in implementation, but the interface is the same: a call to TOTP
returns a one-time password. Rather than using HMAC-SHA-1, a
call to TOTP(k;, ts) in SocloTy would instead invoke Algorithm 1,
with the server keeping k; = (kp, k).

455

Proceedings on Privacy Enhancing Technologies 2024(1)

We argue that this change is minimal, as the TOTP standard has
a high level of abstraction [46]. Moreover, services are incentivized
to make this change, as the additional security and flexibility of
SocloTy is a marketable benefit.

From context to location. So far, we have defined SocloTy in
terms of context, where the context is the home, or more precisely,
the presence of smart home devices with specific cryptographic
material in the home. Some users may wish to go the extra step and
attain true location sensitivity, i.e., binding their computation to their
physical house, rather than just the context of the devices inside
of it. Location sensitivity is a physical attribute, and as such needs
physical-level steps to integrate with SocloTy’s context sensitivity.
The most straightforward way would be to physically bind devices
to the home, bolting down SocloTy devices into walls or using de-
vices for SocloTy that are cumbersome to move (e.g., a smart fridge).
Another option is to enforce location during communication, by
using low-range technologies such as NFC for communication or
by validating certain radio attributes at the PHY layer (e.g., [66]).
Location can also be tied to some sort of user interaction in which
presence is required, such as a button press or voice command.
We leave integration of specific location-based security controls as
future work.

4.5 Instantiating the TDPRF

We must instantiate the TDPRF underlying SocloTy’s operations to
deploy our solution in practice. We employ the decisional Diffie-
Hellman-based construction first proposed by Naor et al. [47] for
our TDPRF. We choose elliptic curve groups for the underlying
operations because of their efficiency in implementation. As is com-
mon when discussing elliptic curves, we use additive notation for
group operations. Let G be a generator of an elliptic curve sub-
group S C E(FFy) of prime order p and # : {0, 1} — S some hash
function modeled as a random oracle hashing A-bit strings onto S.
We describe below the algorithms for our TDPRF Gen, PartialEval,
and Recon, as well as the extra algorithm Eval (useful for a server
implementation):

e Gen(14,k, t,n): Sample a random polynomial f of degree
t — 1 by uniformly sampling its coefficients from Z,, subject
to the constraint that f(0) = k. The output party shares are
the scalars k1 = f(1), k2 = f(2),...,kn = f(n).

e PartialEval(k;, x): Hash the input x using H onto a point P
along the elliptic curve. Then, the output is simply y; < k;P:
scalar multiplication of the key share to the input point.

e Recon({y;}icy): Let @1 ... a; be the identities of the parties
providing points y; ... y; to Recon. Consider the following
function, defined Vi € [¢]:

no= [=2
J

[04
vjijelt]

It is well known that given ¢ points along a polynomial f,
evaluation can be done at any point a as f(a) = ¥_; f(ai) -
Li(«). Given these points “in the exponent" it is possible to
recover a “in the exponent". To be precise, we can recover

Proceedings on Privacy Enhancing Technologies 2024(1)

Table 1: Hardware specifications of test devices as well as
examples of comparable IoT devices.

[Test Device [CPU [RAM [Comparable IoT Device]
RPi 3B+ ARM Cortex-A53 | 1GiB Apple TV HD [7]
RPi 2B ARM Cortex-A7 1 GiB Amazon Echo Dot (3rd Gen) [12]
RPi Zero W | ARM1176JZF-S 512 MiB | Google Nest Thermostat E [42]
ESP32 Xtensa LX6 320 KiB | Belkin WeMo Light Switch [64]
the PRF output as:

t t
v= S w10 - |-k
i=1 i=1
o Eval(k, x): Hash the input x using H onto a point P along
the elliptic curve. Then, the output is y « kP: scalar multi-
plication of the reconstructed key to the input point.
Note that the hashing of the input x is important, as the output
of this TDPRF is uniform only if its input is also uniform. If we
model this hash function as a random oracle, security holds [47].

5 EVALUATION

We now demonstrate the feasibility of our constructions on real
IoT hardware.

Implementation. We implement SocloTy in Rust due to its mem-
ory safety guarantees as well as its good platform support for IoT
architectures. Additionally, we use the Curve25519 as our elliptic
curve and Ascon, the winner of the NIST lightweight cryptography
competition [48], for authenticated encryption in our implementa-
tion. While the dual-layer PRF allows for security to hold during
evaluation without the need of authenticated encryption, we in-
clude it in our implementation to add security against network
tampering (as discussed in Section 4.3) and evaluate its overhead.
We have open-sourced all of our SocloTy software and benchmarks

for public use and review".

Devices. We wish to understand how SocloTy runs on a vari-
ety of devices. To this end, we performed our benchmarks on the
following devices: 6 Raspberry Pi (RPi) Model 3B+ single-board
computers (SBCs), 3 RPi Model 2B SBCs, 3 RPi Zero W SBCs, and 5
ESP32 microcontrollers. Raspberry Pis are increasingly being used
a benchmarking platforms to simulate smart home devices in lieu
of commercial devices; [oT device vendors do not support running
arbitrary software for security reasons, limiting the ability to use
them for development. Recent generations of Raspberry Pis have
been increasing in computing power with specifications of up to
8GB of memory. Thus, we used both lower-end Raspberry Pis and
smaller microcontrollers as representative devices to better simu-
late a network of heterogeneous IoT devices. Table 1 maps our test
bed devices to comparable smart home devices.

5.1 Microbenchmarks

We first begin by presenting microbenchmark results for the algo-
rithms of a TDPRF: (Gen, PartialEval, Recon). All of our selected
devices are capable of computing all three of these algorithms.

A core goal of SocloTy is to re-use existing smart home hardware
to provide cryptographic services. We primarily study the execution

5 Available at https://github.com/tusharjois/socioty.

456

Jois et al.

Table 2: Average runtimes for an evaluation of PartialEval,
both without and with authenticated encryption (AE). All
times are in milliseconds.

[Experiment [RPi3B+ [RPi2B [RPiZero | ESP32 |
[PartialEval [134 T 219 [290 [43.68 |
| PartialEval (AE) [153 | 243 [3.28 | 47.22 |
EEE RPi 3B+ RPi2B WEE RPiZero
1.6
144
g 1.2+
EU
£ 1.0
=
£ 084
=1
g
% 0.6
0.4+
0.2
o »o 99 N ® 9 D
7 7 2 7 7 7 2 Va
<.;\\ 10:‘ (\\\ q,:\ o,:\ \,Q:\' \\\\ q/:&
7 o o o o y 7 A
N N N N N W & @

Figure 6: Microbenchmarks for Gen on different test devices
over varying configurations of total number of parties n and
reconstruction threshold ¢.

time of SocloTy primitives in our simulated smart home, identify-
ing if the additional latency of running SocloTy would hinder the
normal operation of the device. Through these microbenchmarks,
we aim to investigate if adding SocloTy software would necessitate
hardware changes on the IoT devices.

PartialEval. Because PartialEval will be conducted on resource-
constrained IoT devices, microbenchmarks for it are very infor-
mative. As discussed in Section 4.5, each PartialEval in our im-
plementation is one elliptic curve multiplication. We evaluate the
performance of PartialEval, and of PartialEval followed by an au-
thenticated encryption of the result using Ascon (denoted AE). The
Raspberry Pis performed each task 100,000 times, and the ESP32
performed each 1,000 times, with the results in Table 2. The Rasp-
berry Pis complete the task very quickly—less than 5 milliseconds
on average. The sub-50ms average time on the ESP32s is also very
promising; while an order of magnitude slower than the Raspberry
Pis, this result shows that adding SocloTy on even highly con-
strained devices will not induce noticeable latency. We also note
that the overhead of authenticated encryption is minimal, even on
the ESP32. As such, for the rest of our benchmarks, we have all
nodes use PartialEval with Ascon.

Gen and Recon. We also perform microbenchmarks on Gen and
Recon, and present our results in Figures 6 and 7. Each Raspberry
Pi once again ran each task 100,000 times, with varying configura-
tions of the total number of parties n and the threshold required
to reconstruct t. Gen in our implementation only samples random
values for keys. So, while the time to run does scale with each (n, t)

https://github.com/tusharjois/socioty

SocloTy

704

B RPi3B+ m RPi2B B RPi Zero

Execution time (ms)

Figure 7: Microbenchmarks for Recon on different test devices
over varying configurations of total number of parties n and
reconstruction threshold ¢.

pair, the operation only requires several hundred microseconds (us)
on average. Recon takes longer, likely owing to the multiple elliptic
curve operations required to interpolate the partial evaluations
and recover the PRF output. It similarly increases as the network
grows, but even in a 12-device network, it takes only around 70
milliseconds on a Raspberry Pi Zero.

We believe that these microbenchmarks represent an upper
bound on the execution time; as discussed in Section 4.1, we expect
users to use their smartphone as the authorized device for Gen and
Recon, and modern smartphones have much better processors than
the ARM1176]ZF-S found in the Pi Zero. While we do not envision
users generating and recovering on even smaller, microcontroller-
class devices, for completeness we evaluated how Gen and Recon
fare on the ESP32 for different configurations of (n, t). These results
can be found in Appendix A.

Resource requirements. IoT devices have limited resources, so
we also evaluate how much storage and compute our implementa-
tion requires. Even in our smallest device class, the ESP32, we only
use 40% of the total flash storage and one core for our binary and
the runtime required on-chip. Many consumer home IoT devices
have specifications that far exceed these requirements. Addition-
ally, our current implementation is unoptimized research code, and
further improvements could reduce the size of the binary further.
This result nonetheless establishes a relative floor on the level of
I0T device that would be necessary for our specific implementation,
as well as shows that hardware modifications are unnecessary to
support SocloTy software.

5.2 Scalability Benchmarks

Our next set of experiments measures how the execution time of the
evaluation of SocloTy’s TDPRF scales once communication between
devices is involved. We set up two types of nodes, a request node and
n evaluation nodes. The evaluation nodes are the Raspberry Pis: 6
RPi 3B+s (used for all benchmarks), 3 RPi 2Bs (used for n > 7), and 3

457

Proceedings on Privacy Enhancing Technologies 2024(1)

(n=12,t = 10) : C T |
(n=11,t=9) b [T} f

(n=10,t = 8) — 1} !

(n=9,t="7)1 —{ [—

(n=8t=6) T —

(n=7,t=5)1 HT F—

n=6t=41]

(n=5t=31 H

T T

5 10 15 20 25 30
Execution Time (ms)

Figure 8: Protocol execution time over CoAP for varying con-
figurations of total number of parties n and reconstruction
threshold t.

RPi Zeros (used for n > 10). In each run, the request node connects
to all n evaluation nodes and makes a request for a timestamp
6. Each evaluation node then responds with the (authenticated-
encrypted) PartialEval for §, and the request node performs Recon
once it has received (and decrypted) ¢ responses. All of the nodes
are on the same Wi-Fi network, and communication occurs over
the Constrained Application Protocol (CoAP) [71], a popular point-
to-point protocol in IoT.

We perform 1,000 of these runs for varying configurations of
(n, t), and plot our results in Figure 8. Benchmark results for addi-
tional variations of (n, t) can be found in Appendix A.

Clearly, as the required threshold to reconstruct t increases, the
execution time increases: more responses need to arrive. Moreover,
we see a relatively large jump in average execution time at n = 7
and n = 10, likely because of the involvement of the less-powerful
Pi 2Bs and Pi Zeros at each step. We note that waiting for the first
t responses is biased towards the fastest devices, but this bias does
not impact security. SocloTy does not require entropy from the
devices during PRF evaluation; rather, all of the entropy required is
provided by the smartphone to generate the keys kj, and k during
setup (see Section 4.2). We could extend the system to wait for a
specific number of responses from different device types, which
would potentially make the system more robust against the com-
promise of a class of devices (like a vulnerability affecting a brand
of light switch). This, in turn, would allow users to weigh trust
more granularly in their smart home.

Regardless, even in a relatively large configuration like (n =
12,t = 10), each full run takes less than 25 milliseconds on average.
Thus, SocloTy TDPRF evaluations are able to scale well as the smart
home network adds devices.

5.3 End-to-End Deployment

We now perform an end-to-end deployment of SocloTy. We focus
on the authentication process depicted in Section 4.2. The results for

Proceedings on Privacy Enhancing Technologies 2024(1)

H T
H T—

200

400 500 600 700

Execution Time (ms)

300

Figure 9: End-to-end OTP generation time using our iOS app
for varying configurations of total number of parties n and
reconstruction threshold t.

authentication will be applicable to encryption as well, as the core
of the two algorithms is the same. The only difference is the actual
authenticated encryption of a file, which has minimal overhead.
An end-to-end authentication system must support the genera-
tion of 2FA OTPs. So we built a smartphone app, based on an open-
source implementation [9], with the same interface as common 2FA
apps. Our app performs all of the steps in the TDPRF evaluation—
making the PartialEval requests and Reconing the responses—and
takes the additional step of converting the output of Recon into a
six digit OTP and displaying it to the user. A screenshot of our app
can be found in Appendix A.
As discussed in Section 4.4, smaller single purpose devices may
not directly connect to the Internet or other devices found within
the smart home, but rather connect to a central, more-powerful
hub. This hub coordinates the flow of data of each device to and
from parts of the smart home or Internet. A commonly used IoT
protocol for this is MQTT, in which devices subscribe to topics to
receive information and publish to them to send information, while
a central broker sends published data to subscribers.
Keeping this in mind, we construct the following testbed to
perform our end-to-end experiments. Our simulated smart home
consists of the 12 Raspberry Pis from our experiment in Section 5.2,
as well as 5 ESP32 microcontrollers—representing the class of de-
vices that use lightweight IoT protocols like MQTT due to its hub
architecture—for total of 17 evaluation nodes, all connected to the
same Wi-Fi network. A 2018 iPhone X is used to run our smart-
phone app. We use a standard Ubuntu 21.04 server running on the
same LAN as the MQTT broker.
Every h seconds (represented by a full progress circle in Fig-
ure 10), the iOS app generates a new TOTP by doing the following:
(1) The app calculates the TOTP counter value § = L%J based
on the current timestamp z.

(2) The app connects to the MQTT broker, subscribes to the
MQTT topic socioty/tdprf/4, and publishes § to the topic
socioty/tdprf to the broker.

458

Jois et al.

(3) Each node i is subscribed to socioty/tdprf, and receives &
from the broker.

(4) Each node i then computes y; « PartialEval(k;, §), and
publishes it to socioty/tdprf/é.

(5) Once the app has t responses, it performs the remainder of
Algorithm 1, reconstructing the output and displaying the
new TOTP.

We consider the above steps one run, and we perform 100 runs,
varying the threshold ¢ while leaving the number of total devices
fixed as n = 17. We present our results of our end-to-end deploy-
ment benchmarks in Figure 9. We see that average execution times
range from under 200ms at a majority threshold ¢ = 9 to under
500ms when all devices are involved at t = 17. Similarly to our
results in Section 5.2, we see a sharp increase in execution times
as we rely more on weaker devices to provide their responses. The
large spread at t = 17 is likely due to the app waiting for a straggler
device that receives the request last and computes a response last;
after all, an n-of-n system will be as fast as its slowest component.

Our experiments show that we are able to request and recon-
struct the OTP well within the default lifetime of the TOTP, which
is h = 30 seconds [46]. For a threshold set to a simple majority of
devices the response is quick, accounting for less than 1% of the
TOTP lifetime. We find these results demonstrate the practicality
of our system to be used seamlessly as a TOTP generator.

Barriers to widespread deployment. The above result demon-
strates that SocloTy is practical for real-world smart homes. How-
ever, there are some issues that arise when attempting to deploy
SocloTy on commercial devices. Chief among them would be man-
ufacturer support for the PartialEval functionality. Manufacturers
would have to commit developer effort to program this functional-
ity and integrate it into the devices, as well as ensure that SocloTy’s
runtime does not interfere with the normal operation of the IoT
device or artificially increase hardware requirements. The SocloTy
smartphone app would also require adequate domain separation to
ensure the keys would not leak to other apps on the smartphone.

We believe that these issues are surmountable. Consumer inter-
est in privacy is growing, and the additional guarantees of SocloTy
would be a marketable benefit for IoT products. Moreover, as our
evaluation shows, SocloTy induces limited overhead and resource
costs, especially on more performant devices, which means that its
addition will likely not require modifications to the device bill of
materials. Smartphones also have numerous confidentiality mech-
anisms [73], which can be used to enforce domain separation for
the keys. To reduce developer time, manufacturers can use our
open-source implementation as a reference. Some IoT devices are
even specifically designed for third-party functionality (e.g., [12]),
and we aim on porting SocloTy to these platforms as future work.
This will improve the ecosystem for SocloTy and hopefully spur
further exploration and adoption.

6 RELATED WORK

We now compare SocloTy to other work with similar goals. We
summarize our comparisons in Table 3.

Context-sensitive cryptography. In the literature, context-

sensitive cryptography usually focuses on authentication, typically
using some ambient information to establish a key or authorize an

SocloTy

Proceedings on Privacy Enhancing Technologies 2024(1)

Table 3: A comparison of related work with similar goals to those of SocIoTy.

Category Authentication? | Encryption? | Binding? | Uses existing hardware? | Suitable for non-experts?
Context-sensitive auth [6, 14, 43, 60—62, 66] v v v

Proximity measurement [5, 72] v v

Wearable devices [16, 21, 59] v v v
Geo-encryption [1, 25, 53, 57] v v

Position-based crypto [13, 15, 17] v v 4 N/A

Time-specific encryption [34, 50, 52] v 4 N/A

HSMs [31, 32, 69] v v v

SocloTy (this paper) v v v v v

action. Early work by Mayrhofer and Gellersen [43] propose using
mobile device acceleration information for authentication. Sigg [60]
proposes an audio-based system as a case study of context-based
security, and Sigg et al. [61] improve upon this scheme by applying
fuzzy cryptography to handle noise in generated secrets. Wang et
al. [66] use radio characteristics of BLE systems to set up context
information for pairing purposes. Work in the HCI community [14]
shows that users find context-sensitive schemes to be a promising
improvement over traditional mechanisms.

An alternative to using the ambient features of a room is to use
the presence of nearby systems as a context instead. Pico [62] is
portable password storage hardware that pairs with other devices
and applications to exchange keys and enable further seamless
authentication. Such a device can be shaped as a watch, a key fob,
a bracelet or an item of jewellery. Pico establishes a context when
near dedicated Picosiblings devices, which coordinate and allow
password actions on the primary Pico device. Instead of utilizing
ambient features or dedicated hardware, SocloTy re-uses existing
IoT hardware (with a dedicated, unrelated purpose) to provide extra
cryptographic functionalities.

Some context-sensitive authentication works focus on the IoT
use case. Zhang et al. [72] describe an easier authentication for IoT
devices by gesturing with a smartphone in close proximity to the
devices. Aman et al. [5] used a similar concept for the authentication
of IoT devices by accounting for physical location. These works
do not provide a binding property for user data, however. Certain
works employ IoT-specific characteristics for user authentication;
in particular, [16, 21, 59] use wearable IoT devices as a second-factor
for authentication. Anton et al. [6] propose context authentication
for industrial IoT systems.

Location-sensitive cryptography. Heuristics around applying
location information to cryptography were originally formed in the
networking community, with a set of “geo-encryption” algorithms
[1, 25, 53, 57] that introduce location and time as additional param-
eters to a cryptographic operation by using satellite data. More
formal cryptographic definitions were introduced by Chandran et
al. [17] as “position-based cryptography,” wherein they demonstrate
the impossibility of verifying the physical position (based on radio
wave communications) of a number of colluding provers within
a space in the standard model. Works since have explored the as-
sumptions made by Chandran and their implications in complexity
theory [13] and in the quantum setting [15].

Phuong et al. developed a location-based encryption scheme
in 2019 [52]. However, their scheme requires bilinear maps (as
used in an attribute-based encryption scheme) to achieve constant
ciphertext size decryptable at arbitrary points within 2-D or 3-D

459

grids. Further, they rely on time-specific encryption [34, 50] to
ensure decryption only at particular points for a given ciphertext.

Hardware security modules (HSMs). Hardware security mod-
ules are separate, dedicated computing devices that protect cryp-
tographic keys by storing them and monitoring their access and
usage. They provide tamper-evidence or even tamper-resistance
through the use of special hardware. Once tampering is detected,
the device may stop functioning properly or delete its secret keys.
HSMs can be used to protect keys used by certificate authorities,
banks, and cryptocurrency wallets. They are present within vehi-
cles [69], operational technology [32], and clouds [31]. HSMs act as
trusted security anchors and gateway to the network. They securely
generate, store, and process security-critical material shielded from
any potentially malicious actor on the network and outside of it.

While providing good security guarantees on paper, historically
HSMs have been too expensive for average consumers at the highest
security levels and therefore have limited usability outside of large
corporations [33, 35].

7 CONCLUSION

We present SocloTy, an at-home cryptography system designed
with non-technical users in mind. SocloTy allows users to bind
their secrets to their smart homes, giving them the opportunity
to opt-in to additional protections for sensitive tasks. We protect
against powerful, privacy-invading adversaries that can obtain the
user’s state or compromise their devices, all without requiring extra
hardware. Our system protects against common surveillance tech-
niques in this setting (like border searches), which is beyond what
existing privacy-enhancing systems consider, all while providing
the functionalities users expect, like authentication and encryption.
Our benchmarks show that SocloTy is practical, efficient, and con-
ducive to deployment on real smart homes. In the future, we plan
on exploring what other at-home services we can provide on top
of IoT devices through systems like SocloTy.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the NSF under
awards 1653110, 1801479, 1955172 and 2030859, and from DARPA
under contracts HR00112020021 and HR001120C0084. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the sponsors. Any mention
of specific companies or products does not imply any endorsement
by the authors, by their employers, or by the sponsors.

Proceedings on Privacy Enhancing Technologies 2024(1)

REFERENCES

(1]

[2

—

3

=

(1]

[12]

[13]

=
it

[15]

[16

=
=

[18]

[19

[20

[21]

Ala Al-Fugaha and Omar Al-Ibrahim. 2007. Geo-encryption protocol for mobile
networks. Computer Communications 30, 11-12 (2007), 2510-2517.

Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In ASIACRYPT 2016, Part I (LNCS, Vol. 10031),
Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer, Heidelberg, 191-219.
https://doi.org/10.1007/978-3-662-53887-6_7

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT 2015, Part I
(LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg,
430-454. https://doi.org/10.1007/978-3-662-46800-5_17

Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. 2020. Design of Symmetric-Key Primitives for Advanced Crypto-
graphic Protocols. IACR Trans. Symm. Cryptol. 2020, 3 (2020), 1-45. https:
//doi.org/10.13154/tosc.v2020.i3.1-45

Muhammad Naveed Aman, Mohamed Haroon Basheer, and Biplab Sikdar. 2018.
Two-factor authentication for IoT with location information. IEEE Internet of
Things Journal 6, 2 (2018), 3335-3351.

Simon Duque Anton, Daniel Fraunholz, Christoph Lipps, Khurshid Alam, and
Hans Dieter Schotten. 2019. Putting things in context: Securing industrial au-
thentication with context information. arXiv preprint arXiv:1905.12239 (2019).
Apple Inc. 2021. Apple TV HD Technical Specifications. https://support.apple.
com/kb/SP724. Accessed 2/27/2023.

Tomer Ashur and Siemen Dhooghe. 2018. MARVELlous: a STARK-Friendly
Family of Cryptographic Primitives. Cryptology ePrint Archive, Report 2018/1098.
https://eprint.iacr.org/2018/1098.
Bastian Jaansen. 2020. Authenticator.
Authenticator.

M. Bellare and R. Impagliazzo. 1999. A tool for obtaining tighter security analyses
of pseudorandom function based constructions, with applications to PRP to PRF
conversion. Cryptology ePrint Archive, Report 1999/024. https://eprint.iacr.org/
1999/024.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In 20th ACM STOC. ACM Press, 1-10. https://doi.org/10.1145/62212.
62213

B&H Photo. 2023. Amazon Echo Dot (3rd Generation, Charcoal).
https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_
echo_dot_3rd_generation.html/specs. Accessed 2/27/2023.

Joshua Brody, Stefan Dziembowski, Sebastian Faust, and Krzysztof Pietrzak. 2017.
Position-Based Cryptography and Multiparty Communication Complexity. In
TCC 2017, Part I (LNCS, Vol. 10677), Yael Kalai and Leonid Reyzin (Eds.). Springer,
Heidelberg, 56-81. https://doi.org/10.1007/978-3-319-70500-2_3

Matthias Budde, Till Riedel, Marcel Képke, Matthias Berning, and Michael Beigl.
2014. A Comparative Study to Evaluate the Usability of Context-based Wi-Fi
Access Mechanisms. In Universal Access in Human-Computer Interaction. Aging
and Assistive Environments: 8th International Conference, UAHCI 2014, Held as Part
of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings,
Part III 8. Springer, 451-462.

Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal, Rafail
Ostrovsky, and Christian Schaffner. 2011. Position-Based Quantum Cryptogra-
phy: Impossibility and Constructions. In CRYPTO 2011 (LNCS, Vol. 6841), Phillip
Rogaway (Ed.). Springer, Heidelberg, 429-446. https://doi.org/10.1007/978-3-
642-22792-9_24

Yetong Cao, Qian Zhang, Fan Li, Song Yang, and Yu Wang. 2020. PPGPass:
Nonintrusive and secure mobile two-factor authentication via wearables. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1917-1926.
Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. 2009.
Position Based Cryptography. In CRYPTO 2009 (LNCS, Vol. 5677), Shai Halevi (Ed.).
Springer, Heidelberg, 391-407. https://doi.org/10.1007/978-3-642-03356-8_23
David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty Uncon-
ditionally Secure Protocols (Abstract) (Informal Contribution). In CRYPTO’87
(LNCS, Vol. 293), Carl Pomerance (Ed.). Springer, Heidelberg, 462. https:
//doi.org/10.1007/3-540-48184-2_43

Chrysta Cherrie. 2021. The 2021 State of the Auth Report: 2FA Climbs, While
Password Managers and Biometrics Trend. https://duo.com/blog/the-2021-state-
of-the-auth-report-2fa- climbs- password- managers-biometrics-trend. Accessed
2022-07-29.

Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel
Kaptchuk. 2021. Fluid MPC: Secure Multiparty Computation with Dynamic
Participants. In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris
Peikert (Eds.). Springer, Heidelberg, Virtual Event, 94-123. https://doi.org/10.
1007/978-3-030-84245-1_4

John Chuang. 2014. One-step two-factor authentication with wearable bio-
sensors. In Symposium on Usable Privacy and Security-SOUPS, Vol. 14.

https://github.com/BastiaanJansen/

460

[22

[23

[24

™~
i

[26

[27

[28

[29

[30

[31

[32

[33

(34]

[35

[36

(37

=
&

Jois et al.

Cisco. 2020. Configure AnyConnect Secure Mobility Client using
One-Time Password (OTP) for Two-Factor Authentication on an ASA.
https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-
mobility-client/213931- configure-anyconnect-secure-mobility- cli.html.
Accessed 2022-07-29.

Jyoti Deogirikar and Amarsinh Vidhate. 2017. Security attacks in IoT: A survey.
In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC). IEEE, 32-37.

Duo. 2021. Duo Authentication for Epic. https://duo.com/docs/epic. Accessed
7/29/2022.

Mahdi Daghmechi Firoozjaei and Javad Vahidi. 2012. Implementing geo-
encryption in GSM cellular network. In 2012 9th International Conference on
Communications (COMM). IEEE, 299-302.

Shoni Gilboa, Shay Gueron, and Ben Morris. 2018. How many queries are needed
to distinguish a truncated random permutation from a random function? Journal
of Cryptology 31, 1 (2018), 162-171.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1984. How to Construct
Random Functions (Extended Abstract). In 25th FOCS. IEEE Computer Society
Press, 464-479. https://doi.org/10.1109/SFCS.1984.715949

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218-229. https://doi.org/10.1145/28395.
28420

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In USENIX Security 2021, Michael Bailey and Rachel Greenstadt
(Eds.). USENIX Association, 519-535.

Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. 1998. Building PRFs
from PRPs. In CRYPTO’98 (LNCS, Vol. 1462), Hugo Krawczyk (Ed.). Springer,
Heidelberg, 370-389. https://doi.org/10.1007/BFb0055742

Juhyeng Han, Seongmin Kim, Taesoo Kim, and Dongsu Han. 2019. Toward
scaling hardware security module for emerging cloud services. In Proceedings of
the 4th Workshop on System Software for Trusted Execution. 1-6.

William Hupp, Adarsh Hasandka, Ricardo Siqueira de Carvalho, and Danish
Saleem. 2020. Module-OT: a hardware security module for operational technology.
In 2020 IEEE Texas Power and Energy Conference (TPEC). IEEE, 1-6.

SANS institution. 2002. Global Information Assurance Certification Paper. https://
www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811.
Kohei Kasamatsu, Takahiro Matsuda, Keita Emura, Nuttapong Attrapadung,
Goichiro Hanaoka, and Hideki Imai. 2012. Time-specific encryption from forward-
secure encryption. In International Conference on Security and Cryptography for
Networks. Springer, 184-204.

Anand Kashyap. 2018. The Next Generation: HSM approach delivers unparalleld
cost/benefit for organizations. https://securitytoday.com/Articles/2018/12/01/
The-Next-Generation.aspx?Page=1.

Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-
tion. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna (Eds.). ACM Press, 1575-1590. https://doi.org/10.1145/3372297.3417872
Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-
Vazquez, and Srinivas Vivek. 2017. Faster Secure Multi-party Computation
of AES and DES Using Lookup Tables. In ACNS 17 (LNCS, Vol. 10355), Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, 229-
249. https://doi.org/10.1007/978-3-319-61204-1_12

Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF
Scheme. In CRYPTO 2010 (LNCS, Vol. 6223), Tal Rabin (Ed.). Springer, Heidelberg,
631-648. https://doi.org/10.1007/978-3-642-14623-7_34

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing
for Message Authentication. IETF Internet Request for Comments 2104.

Sam Kumar, Yuncong Hu, Michael P. Andersen, Raluca Ada Popa, and David E.
Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation
for IoT. In USENIX Security 2019, Nadia Heninger and Patrick Traynor (Eds.).
USENIX Association, 1519-1536.

Dawn MacKeen. 2022. Can New Technology Make Home Dialysis a More Realistic
Option? The New York Times (10 Nov 2022). Accessed 2023-02-27.

Matt Burns. 2011. Nest Thermostat Teardown Reveals Beautiful Innards, Powerful
ARM CPU, Zigbee Radio. https://techcrunch.com/2011/12/22/nest-arm-zigbee/.
Accessed 2/27/2023.

Rene Mayrhofer and Hans Gellersen. 2007. Shake well before use: two implemen-
tations for implicit context authentication. Adjunct Proc. Ubicomp 2007 (2007).
Mordor Intelligence. 2022. Global smart homes market—growth, analysis, forecast
to 2022. https://www.mordorintelligence.com/industry-reports/global-smart-
homes-market-industry.

David M’Raihi, Mihir Bellare, Frank Hoornaert, David Naccache, and Ohad Ranen.
2005. RFC 4226: HOTP: An hmac-based one-time password algorithm.

David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. 2011. RFC 6238:
TOTP: Time-based one-time password algorithm.

Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-random
Functions and KDCs. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://support.apple.com/kb/SP724
https://support.apple.com/kb/SP724
https://eprint.iacr.org/2018/1098
https://github.com/BastiaanJansen/Authenticator
https://github.com/BastiaanJansen/Authenticator
https://eprint.iacr.org/1999/024
https://eprint.iacr.org/1999/024
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_echo_dot_3rd_generation.html/specs
https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_echo_dot_3rd_generation.html/specs
https://doi.org/10.1007/978-3-319-70500-2_3
https://doi.org/10.1007/978-3-642-22792-9_24
https://doi.org/10.1007/978-3-642-22792-9_24
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43
https://duo.com/blog/the-2021-state-of-the-auth-report-2fa-climbs-password-managers-biometrics-trend
https://duo.com/blog/the-2021-state-of-the-auth-report-2fa-climbs-password-managers-biometrics-trend
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-84245-1_4
https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-mobility-client/213931-configure-anyconnect-secure-mobility-cli.html
https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-mobility-client/213931-configure-anyconnect-secure-mobility-cli.html
https://duo.com/docs/epic
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BFb0055742
https://www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811
https://www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811
https://securitytoday.com/Articles/2018/12/01/The-Next-Generation.aspx?Page=1
https://securitytoday.com/Articles/2018/12/01/The-Next-Generation.aspx?Page=1
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-642-14623-7_34
https://techcrunch.com/2011/12/22/nest-arm-zigbee/
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry

SocloTy

Springer, Heidelberg, 327-346. https://doi.org/10.1007/3-540-48910-X_23

NIST. 2023. Lightweight Cryptography Standardization Process: NIST Selects

Ascon. https://csrc.nist.gov/News/2023/lightweight- cryptography-nist-selects-

ascon. Accessed 2/27/2023.

Kim Parker, Juliana Menasce Horowitz, and Rachel Minkin. 2020. How the

Coronavirus Outbreak Has - and Hasn’t - Changed the Way Americans Work.

Pew Research Center (9 Dec 2020). Accessed 2023-02-27.

Kenneth G Paterson and Elizabeth A Quaglia. 2010. Time-specific encryption.

In International Conference on Security and Cryptography for Networks. Springer,

1-16.

Pew Research Center. 2021. Mobile Fact Sheet. https://www.pewresearch.org/

internet/fact-sheet/mobile/. Accessed 7/29/2022.

Tran Viet Xuan Phuong, Willy Susilo, Guomin Yang, Jun Yan, and Dongxi Liu.

2019. Location Based Encryption. In ACISP 19 (LNCS, Vol. 11547), Julian Jang-

Jaccard and Fuchun Guo (Eds.). Springer, Heidelberg, 21-38. https://doi.org/10.

1007/978-3-030-21548-4_2

Di Qiu, Sherman Lo, Per Enge, Dan Boneh, and Ben Peterson. 2007. Geoencryption

using loran. In Proceedings of the 2007 National Technical Meeting of The Institute

of Navigation. 104-115.

Robinhood. 2022. Two-Factor Authentication. https://robinhood.com/us/en/

support/articles/twofactor-authentication/. Accessed 2022-07-29.

Bryan Robinson. 2022. Remote Work is Here to Stay And Will Increase Into 2023,

Experts Say. Forbes (01 Feb 2022).

Sarah Scheffler and Mayank Varia. 2021. Protecting Cryptography Against

Compelled Self-Incrimination. In USENIX Security 2021, Michael Bailey and Rachel

Greenstadt (Eds.). USENIX Association, 591-608.

Logan Scott and Dorothy E Denning. 2003. A location based encryption technique

and some of its applications. In Proceedings of the 2003 National Technical Meeting

of The Institute of Navigation. 734-740.

[58] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. 2020. A comprehensive

survey on attacks, security issues and blockchain solutions for IoT and IIoT.

Journal of Network and Computer Applications 149 (2020), 102481.

Prakash Shrestha and Nitesh Saxena. 2018. Listening watch: Wearable two-factor

authentication using speech signals resilient to near-far attacks. In Proceedings

of the 11th ACM conference on security & privacy in wireless and mobile networks.

99-110.

Stephan Sigg. 2011. Context-based security: State of the art, open research

topics and a case study. In Proceedings of the 5th ACM International Workshop on

Context-Awareness for Self-Managing Systems. 17-23.

Stephan Sigg, Dominik Schuermann, and Yusheng Ji. 2012. Pintext: A framework

for secure communication based on context. In Mobile and Ubiquitous Systems:

Computing, Networking, and Services: 8th International ICST Conference, MobiQui-

tous 2011, Copenhagen, Denmark, December 6-9, 2011, Revised Selected Papers 8.

Springer, 314-325.

Frank Stajano. 2011. Pico: No more passwords!. In Security Protocols XIX: 19th

International Workshop, Cambridge, UK, March 28-30, 2011, Revised Selected Papers

19. Springer, 49-81.

Statista. 2022. Digital market - Smart Home. https://www.statista.com/outlook/

dmo/smart-home/worldwide.

TechInfoDepot. 2023. Belkin WeMo Light Switch (F7C030). http://en.

techinfodepot.shoutwiki.com/wiki/Belkin_ WeMo_Light Switch_(F7C030). Ac-

cessed 2/27/2023.

Nirvan Tyagi, Muhammad Haris Mughees, Thomas Ristenpart, and Ian Miers.

2018. BurnBox: Self-Revocable Encryption in a World Of Compelled Access. In

USENIX Security 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX

Association, 445-461.

[66] Juan Wang, Karim Lounis, and Mohammad Zulkernine. 2019. CSKES: a context-

based secure keyless entry system. In 2019 IEEE 43rd Annual Computer Software

and Applications Conference (COMPSAC), Vol. 1. IEEE, 817-822.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In ACM CCS 2017, Bhavani M. Thuraisingham, David

Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 39-56. https://doi.org/

10.1145/3133956.3133979

Yash Wate. 2021. How to Enable Two-Factor Authentication on Facebook,

Instagram, and Twitter. https://techpp.com/2020/02/03/enable-two-factor-

authentication-instagram-facebook-twitter/. Accessed 2022-07-29.

Marko Wolf and Timo Gendrullis. 2011. Design, implementation, and evalu-

ation of a vehicular hardware security module. In International Conference on

Information Security and Cryptology. Springer, 302-318.

Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, 162-167. https://doi.org/

10.1109/SFCS.1986.25

C. Bormann Z. Shelby, K. Hartke. 2014. The Constrained Application Protocol

(CoAP). RFC 7252. RFC Editor. https://www.rfc-editor.org/rfc/rfc7252

[72] Jiansong Zhang, Zeyu Wang, Zhice Yang, and Qian Zhang. 2017. Proximity based
IoT device authentication. In IEEE INFOCOM 2017-IEEE conference on computer
communications. IEEE, 1-9.

[48]

[49

[50

[51]

[52

[53]

[54]
[55]

[56]

[57]

[59]

[60

[61

[62]

[63

[64]

[65

[67]

[68]

[69]

[70]

[71]

461

Proceedings on Privacy Enhancing Technologies 2024(1)

SocloTy

Email

alice@example.com

Social Media

@alice@example.com

Work VPN

alice@vpn.example.com:51820

8 9 8

Figure 10: A Simulator screenshot of our iOS app. Note that
all benchmarks were performed with a hardware iPhone X.

[73] Maximilian Zinkus, Tushar M. Jois, and Matthew Green. 2022. SoK: Cryptographic
Confidentiality of Data on Mobile Devices. PoPETs 2022, 1 (Jan. 2022), 586—-607.
https://doi.org/10.2478/popets-2022-0029

A ADDITIONAL EVALUATION RESULTS

We present additional results from our evaluation in this section.

ESP32 Gen and Recon. As discussed in Section 5.1, we believe
that it is unlikely for Gen and Recon to be run on devices that have
computational resources below that of the Pi Zero. However, for
completeness we evaluated how Gen and Recon fare on the ESP32
for different configurations of (n,t). These results are shown in
Tables 4 and 5, respectively. Note that x is the average and s is the
standard deviation of each execution.

Scalability with CoAP. CoAP scalability results for more con-
figurations of (n, t) are shown in Table 6. Note that there is a sharp

https://doi.org/10.1007/3-540-48910-X_23
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://doi.org/10.1007/978-3-030-21548-4_2
https://doi.org/10.1007/978-3-030-21548-4_2
https://robinhood.com/us/en/support/articles/twofactor-authentication/
https://robinhood.com/us/en/support/articles/twofactor-authentication/
https://www.statista.com/outlook/dmo/smart-home/worldwide
https://www.statista.com/outlook/dmo/smart-home/worldwide
http://en.techinfodepot.shoutwiki.com/wiki/Belkin_WeMo_Light_Switch_(F7C030)
http://en.techinfodepot.shoutwiki.com/wiki/Belkin_WeMo_Light_Switch_(F7C030)
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://techpp.com/2020/02/03/enable-two-factor-authentication-instagram-facebook-twitter/
https://techpp.com/2020/02/03/enable-two-factor-authentication-instagram-facebook-twitter/
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://www.rfc-editor.org/rfc/rfc7252
https://doi.org/10.2478/popets-2022-0029

Proceedings on Privacy Enhancing Technologies 2024(1)

Table 4: Microbenchmarks for Gen on the ESP32 devices over
varying configurations of total number of parties n and re-
construction threshold ¢. All times are in milliseconds.

[Experiment [x [s]
Gen (n=51=3) 41.16 | 0.02
Gen (n=5,¢t=4) 41.63 0.02
Gen (n=5,¢t=5) 42.12 | 0.02
Gen (n=6,t=4) 49.78 0.02
Gen (n=6,¢t=5) 50.33 | 0.02
Gen (n=6,¢t=6) 50.89 | 0.02
Gen (n=7,t=5) 58.55 | 0.02
Gen (n=71=6) 59.18 | 0.02
Gen(n=7t=7) 59.83 | 0.02
Gen (n=8,¢t=6) 67.48 | 0.02
Gen (n=8,t=7) 68.20 0.02
Gen (n=8,t=8) 68.92 | 0.02
Gen(n=9,t=7) 76.58 | 0.02
Gen (n=9,¢t=8) 77.36 | 0.02
Gen (n=9,t=9) 78.17 | 0.02
Gen (n=10,t =8) 85.83 0.02
Gen(n=10,£=9) | 86.70 | 0.02
Gen (n=10,t=10) | 87.73 | 0.02
Gen (n=11,t=9) 95.25 0.02
Gen(n=11,¢t=10) | 96.18 | 0.02
Gen (n=11,t=11) | 97.31 | 0.02
Gen (n=12,t =10) | 104.81 | 0.02
Gen (n=12,¢t=11) 105.83 | 0.02
Gen (n=12,t =12) 107.05 | 0.02

Table 5: Microbenchmarks for Recon on the ESP32 devices
over varying configurations of total number of parties n and
reconstruction threshold ¢. All times are in milliseconds.

[Experiment [x [s]
Recon (n =5, =3) 382.47 | 0.01
Recon (n =5, =4) 382.47 | 0.01
Recon (n =5, =5) 382.11 | 0.01
Recon (n=6,t =4) 495.02 | 0.01
Recon (n=6,t =5) 495.02 | 0.01
Recon (n=6,t =6) 494.48 | 0.01
Recon (n=7,t=5) 622.77 | 0.01
Recon (n=7,t=6) 622.77 | 0.01
Recon (n=7,t=7) 622.02 | 0.01
Recon (n=8,t =6) 765.77 | 0.01
Recon (n=8,t=7) 765.77 | 0.01
Recon (n=8,t =38) 764.76 | 0.01
Recon (n=9,t=7) 923.98 | 0.01
Recon (n=9,t =38) 923.98 | 0.01
Recon (n=9,t=9) 922.68 | 0.01
Recon (n =10,¢ = 8) 1097.46 | 0.01
Recon (n =10, =9) 1097.46 | 0.01
Recon (n=10,¢ =10) | 1097.44 | 0.01
Recon (n=11,t=9) 1286.10 | 0.01
Recon (n=11,¢=10) | 1286.51 | 0.01
Recon (n=11,¢=11) | 1286.09 | 0.01
Recon (n=12,¢t =10) | 1490.53 | 0.01
Recon (n=12,t=11) | 1490.53 | 0.01
Recon (n=12,t =12) | 1490.06 | 0.01

increase when the number of nodes is n > 10 and the threshold
is t = n. In this case, we found that one of the Raspberry Pi Zeros
performs significantly worse on network communication than all
other devices, perhaps due to a manufacturing issue. As mentioned
in Section 5.3, when the threshold is sufficiently large to encompass
the slowest of devices, the computation becomes bounded by the

slowest performing devices.

i0OS App. A screenshot of the iOS app we built for our end-to-end
deployment evaluation in Section 5.3 can be found in Figure 10.

462

Jois et al.

Table 6: Protocol execution time using CoAP over all evalu-
ated configurations of total number of parties n and recon-
struction threshold t. All times are in milliseconds.

[Experiment [X [s]
(n=51t=3) 7.90 1.23
(n=51t=4) 8.96 1.76
(n=51t=5) 10.77 4.34
(n=6t=4) 8.85 1.76
(n=6,t=5) 10.65 2.26
(n=6,t=06) 12.05 2.16
(n=7,t=5) 11.05 2.51
(n=7,t=6) 12.57 2.65
(n=7,t=17) 14.41 3.21
(n=8,t=6) 12.39 2.38
(n=81t=7) 14.31 2.74
(n=28,t=238) 16.06 2.99
(n=9,t=17) 14.42 2.51
(n=9,t=238) 16.70 3.47
(n=9,t=9) 18.37 4.03
(n=10,¢t=28) 17.07 4.28
(n=10,¢=9) 19.74 4.21
(n=10,¢=10) | 49.57 | 151.41
(n=11,t=9) 19.81 3.90
(n=11,t=10) | 22.35 3.97
(n=11,¢=11) | 48.05 | 134.40
(n=12,t=10) | 23.34 4.87
(n=12,t=11) | 24.63 5.01
(n=12,t=12) | 53.62 | 145.06

B MPC-BASED SOCIOTY

In this appendix, we explore how SocloTy could be built using
secure multi-party computation (MPC) and investigate its execution
time, comparing it to our dual-layered PRF solution presented in
the main body of this work.

MPC [11, 18, 28, 70] allows a set of parties to compute a function
of their inputs while keeping those inputs confidential. Generic
MPC protocols IT can securely compute arbitrary functions f, de-
scribed as either Boolean or arithmetic circuits. Of course, the
security and properties provided by IT may differ widely based on
the protocol chosen.

MPC for IoT devices. Inthe main body of this work we build Soc-
IoTy from a combination of a TDPRF (on the smart home devices)
and a regular PRF (on the smartphone) to mitigate the impact of
device compromise. To do the same with MPC, we evaluate the stan-
dard cryptographic functions used in authentication and encryption
within an MPC protocol. Specifically, the secret key material is se-
cret shared among all n IoT devices, and only ever reconstructed
within the MPC. Thus, like in the proposed SocloTy model, compro-
mise of one device—or even a handful of devices—does not destroy
the security guarantees of the system.

We utilize an MPC system that allows for dynamic participa-
tion—entering and exiting—as a part of protocol execution. MPC
computations are potentially long-running and involve several
steps of interaction between parties, and it may be unrealistic to
expect parties (especially low-powered ones) to participate for the
duration of the whole protocol. So, with dynamic participation, a
party (i.e., an IoT device) that must leave (e.g., to service a user
event), can do so without seriously impacting protocol execution.
We choose the recent proposal of Choudhuri et al. [20], Fluid MPC,
in which the execution of an MPC protocol is divided into discrete

SocloTy

Proceedings on Privacy Enhancing Technologies 2024(1)

— T
(n=12,t=10) |
—L T
(n=11,t=9) |
—{T
(n=10,t=8) |
—{ T
(n=9,t=7) |
T
(n=8t=6) |
HH
(n=7,t=5) |
L
(n=6t=4) |
L
(n=5t=3) |
0 5000 10000 15000 20000 25000 30000

Execution Time (ms)

Figure 11: Comparison of execution time boxplots for the TDPRF-based SocloTy protocol (lower boxplot, orange median) and
the MPC-based SocIoTy protocol (upper boxplot, blue median).

stages known as “epochs” such that a different set of parties, called a
“committee,” participates in each epoch. The Fluid MPC protocol—a
variant of BGW [11]—achieves maximal fluidity, i.e., each epoch
has one round of communication.

MPC-friendly PRFs. The SocloTy solution presented in the main
body of this work builds its dual-layered PRF from a TDPRF, which
in turn is build with elliptic curve multiplications (see Section 4.5).
However, these kinds of Diffie-Hellman operations are too slow to
operate inside of an MPC circuit, and we require different primitives
for the distributed computation. So, in this appendix, we use the
symmetric cipher MiMC [2] to build a PRF for TOTP inside of MPC.
We study MiMC because it is a relatively new, MPC-friendly cipher
with low multiplicative complexity; similar ciphers have been ex-
plored in [3, 4, 8, 29]. For MiMC, we represent our computation as
an arithmetic circuit over GF(2'%3).

Block ciphers are typically modeled as a pseudorandom permu-
tation (PRP), but there is a line of work in the theoretical litera-
ture [10, 26, 30] on how truncating the output of a PRP results in a
(secure) PRF. As defined [46], TOTP truncates the output of its PRF
to be 6 digits long. Thus, as long as our PRP-to-PRF truncation re-
sults in enough bits to be further truncated to be 6 digits long (PRF
mod 10°), we can use block ciphers as the PRF in TOTP. With this
in mind, we set PRF.Eval(sk, t) = Enc(sk, t)[: 24], where Enc is the
symmetric key encryption function of a block cipher like MiMC
and the output is truncated to be 24 bits long. Since 224 > 10°,
truncating the output to 24 bits will still allow for OTPs that are at
least 6 decimal digits, meeting the current interface for a TOTP.

Evaluation. With all of this in mind, we can evaluate how an
MPC-based SocloTy construction would fare in the real world. Our
implementation consists of a BGW MPC [11] with extensions to
support churn derived from Fluid MPC [20]. The underlying MPC
requires communication between nodes to compute the result of

463

Table 7: MPC-based SocloTy time distributions for varying
the (party size, threshold) pairs. All times are in milliseconds.

l Experiment [TOTPQ’S}:"S (MPC) l
(n=51t=3) X =1903.05, s = 60.63
(n=61t=4) X = 2464.53, s = 170.26
(n=7,t=5) X = 3342.50, s = 116.07
(n=81t=6) x = 5103.57, s = 317.38
(n=9t=7) X = 6461.75, s = 508.85
(n=10,¢t=38) X =19435.92, s = 1129.71
(n=11,t=9) X = 24728.66, s = 1031.36
(n=12,t=10) | x =28632.24, s = 10212.52

a multiplication (referred to as m,,,;; in [20]), as well as to hand-
off shares to another party if exiting the network (s;,4ns in [20]).
Communication between device is handled via a gRPC protocol that
transmits share data between parties. We wrote a circuit TOTPMIMC
that implements the TOTP evaluation using MiMC to build the PRF.

We present a benchmark of the MiMC protocol execution on
a smaller version of our simulated smart home used in Section 5,
with 6 Raspberry Pi 3B+ devices, 3 Raspberry Pi 2B devices, and 3
Raspberry Pi Zero devices, for a total of 12 devices. To align our
comparison to the evaluation presented in Section 5, we use the
same configurations of (n,t) as the benchmarks in Figure 8.

The results of this evaluation can be found in Table 7, which
lists results for the average x and standard deviation s of the MPC
protocol executions at each configuration. Note that executions
take multiple seconds even at small (party size, threshold) pairs.
While our proposed SocloTy construction was efficient enough
for end-to-end deployment on even an ESP32 (Section 5.3), we
were unable to effectively run the MPC implementation on smaller
classes of devices than the Raspberry Pi 3B+ and 2B. Also, our
proposed construction scaled well to even 17 participants in the

Proceedings on Privacy Enhancing Technologies 2024(1)

network, while the MPC approach slows considerably even atn = 8,
likely due to its quadratic computation complexity. Lastly starting
at n = 10, the Raspberry Pi Zero nodes join the protocol, slowing
the computation significantly.

Our results are visualized in Figure 11. For each (n, t) configura-
tion, we plotted both the TDPRF-based SocloTy (from Figure 8) and
our MPC-based SocloTy execution results. Within the results for
a configuration, the lower boxplot with an orange median is the
TDPRE result, and the upper boxplot with a blue median is the MPC
result. Clearly, the MPC-based SocloTy evaluation is has a much
higher execution time (by several orders of magnitude) — and is
more variable — when compared to our proposed TDPRF approach.
Thus, based on this experimental analysis, and despite several MPC-
specific optimizations, an MPC-based SocloTy solution is clearly
far too inefficient for our use case.

464

Jois et al.

	Abstract
	1 Introduction
	2 Background
	3 Designing At-Home Cryptography
	3.1 Case Studies
	3.2 Design Goals
	3.3 Threat Model

	4 SocIoTy
	4.1 Preliminaries
	4.2 Protocol Description
	4.3 Security Analysis
	4.4 Deployment Flexibility
	4.5 Instantiating the TDPRF

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Scalability Benchmarks
	5.3 End-to-End Deployment

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Additional Evaluation Results
	B MPC-based SocIoTy

