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Abstract—A cquiring downlink channel state information (CSI)
at the base station is vital for optimizing performance in massive
Multiple input multiple output (MIMO) Frequency-Division Du-
plexing (FDD) systems. While deep learning architectures have
been successful in facilitating UE-side CSI feedback and gNB-
side recovery, the undersampling issue prior to CSI feedback is
often overlooked. This issue, which arises from low density pilot
placement in current standards, results in significant aliasing
effects in outdoor channels and consequently limits CSI recovery
performance. To this end, this work introduces a new CSI
upsampling framework at the gNB as a post-processing solution
to address the gaps caused by undersampling. Leveraging the
physical principles of discrete Fourier transform shifting theorem
and multipath reciprocity, our framework effectively uses uplink
CSI to mitigate aliasing effects. We further develop a learning-
based method that integrates the proposed algorithm with the
Iterative Shrinkage-Thresholding Algorithm Net (ISTA-Net) ar-
chitecture, enhancing our approach for non-uniform sampling
recovery. Our numerical results show that both our rule-based
and deep learning methods significantly outperform traditional
interpolation techniques and current state-of-the-art approaches
in terms of performance.

Index Terms—Deep unfolding, CSI upsampling, massive
MIMO, CSI recovery.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) improves
spectrum and energy efficiency in wireless systems, but re-
quires accurate downlink (DL) channel state information (CSI)
acquisition at the base station or gNodeB (gNB). In frequency-
division duplexing (FDD) systems, DL CSI acquisition de-
pends on UE feedback, which can be costly due to its large
number of channel coefficients. Efficient compressive CSI
feedback is crucial to conserve uplink (UL) bandwidth and
UE power for practical deployment of massive MIMO in FDD
wireless networks.

Cellular CSI has a limited delay spread, which is a char-
acteristic of radio physics. Efficient user equipment (UE)
feedback can take advantage of this delay spread sparsity to
compress CSI. One approach to efficient CSI compression
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and recovery is the use of a deep autoencoder framework, as
demonstrated in [1]. This framework includes an encoder at
the UE and a decoder at the serving gNB. Other related works
have also demonstrated superior CSI recovery or lightweight
design using various autoencoder models, such as [2]-[5]. In
addition to autoencoders, more recent works have utilized the
underlying channel correlation to aid and improve the recovery
of DL CSI at BSs. These approaches include using previous
CSI [2], [6], CSI of nearby UEs [7], and UL CSI [8]-[10].
Further advances have focused on reducing model complexity
and storage size to facilitate practical and low-cost deploy-
ment of DL-based CSI compressive feedback architecture in
wireless networks, as demonstrated in [3], [5].

A notable issue often overlooked in the previous CSI
feedback framework is the implicit assumption of dense pilot
placement. It is presumed that high-quality CSI feedback
leads to accurate recovery of the full CSI. Yet, the primary
function of CSI reference signals (CSI-RS) in the current
5G standard, as referenced in [11], [12], is tailored for
subband-level precoder index feedback, overlooking detailed
CSI structural information. The recovery of full DL CSI,
specifically at the subcarrier-level DL CSI, necessitates
significantly higher pilot placement density. This increased
density is crucial to effectively capture the rapid frequency
domain variations due to large-delay multipaths. This factor is
fundamental in explaining why normalized mean square error
(NMSE) performance typically degrades more in outdoor
channels, which have a higher presence of large-delay
multipaths, compared to indoor scenarios. However, adhering
to the current standard’s CSI-RS placement density introduces
severe aliasing effects, hindering the recovery of the full DL
CSI. To our knowledge, there has been no previous research
dedicated to addressing this aliasing problem in CSI feedback.

Super-resolution (SR), as detailed in [13], is a captivating
technique in computer vision that focuses on enhancing image
resolution. This technique involves upsampling low-resolution
(LR) images to provide more detailed and clearer elements,
such as edges, thereby improving the overall image quality.
In [14], a SR-CNN has been shown to achieve superior
performance by applying a convolutional neural networks
to interpolation. More recently, Gao et al. in [15] implicit
diffusion model (IDM), a method for upsampling LR images
using implicit neural representation alongside a denoising
diffusion model. Additionally, Fang et al., as cited in [16],
developed a hybrid network combining CNN and transformer
technology, offering a comparatively lightweight solution



relative to IDM. However, it is important to note that these
methods are not directly applicable to CSI upsampling, due
to the inherent differences between the nature of CSIs and
images.

From the perspective of signal processing and information
theory, the loss of high-frequency variations during sampling
often makes it impossible to reconstruct the original signals
from its downsampled version, due to the information gap that
arises. In computer vision, deep learning models effectively
learn extensive prior information from images to bridge this
gap, leveraging common features such as facial features,
colors, textures, edges, and shapes. For instance, when a
deep learning model identifies a specific patch as a face, it
greatly reduces the uncertainty in upsampling LR images,
as it expects only facial features in that area. However, this
approach differs from the SR task in computer vision, as the
details in CSIs are random and more challenging to be learned
as prior information for a deep learning model. To address
this, we propose utilizing UL CSI information to counteract
aliasing effects due to insufficient pilot sampling rate, by
exploiting multipath reciprocity. This approach aims to fill the
information gap inherent in the CSI upsampling process.

Our primary objective is to address the undersampling
issue caused by CSI-RS pilot placement in CSI feedback of
the existing cellular network standard. We introduce a CSI
upsampling methodology utilizing UL CSI, which assists in
designing a bandpass filter to mitigate the undersampling
problem. We meticulously craft a physics-inspired deep learn-
ing architecture that leverages UL CSI for effective aliasing
suppression. Our key contributions can be summarized as
follows:

o We develop a low-complexity and rule-based technique,
termed UL Masking, which leverages DFT shifting the-
orem in uniformly sampled signals and multipath reci-
procity to create a bandpass filter that suppresses aliasing
peaks.

o We establish a deep learning framework, SRCsiNet, that
unfolds and expands the UL Masking approach. This
framework enhances the utilization of the DFT shifting
theorem and multipath reciprocity.

o We train our framework end-to-end, compelling the non-
aliasing selection map generation module to construct
an effective bandpass filter for aliasing suppression. This
filter is then implemented in the subsequent CSI attention
and refinement module within the beam-delay domain.

o We introduce a novel CSI upsampling strategy that inte-
grates the strengths of ISTA-Net and our proposed SRC-
siNet. This approach facilitates non-uniform sampling
recovery and proficient aliasing suppression.

II. SYSTEM MODEL

A. DL CSI Preprocessing

We consider a single-cell MIMO FDD link where a gNB
with NN, antennas serves a plurality of single-antenna UEs.
Following 3GPP technical specifications, sparse pilot symbols

(i.e., CSI-RS) are uniformly distributed in frequency domain
for DL channel acquisition. Assuming each subband contains
Ny subcarriers with a spacing of Af and a pilot spacing of
Dgs subcarriers, adjacent CSI-RSs are seperated by Dgs-A f
Hz. We denote h; € CMr*1 a3 CSI-RS DL CSI of the i-th
antenna at gNB at M pilot positions. Let superscript (-)7
denote the conjugate transpose. By collecting CSI of each
gNB, a pilot sampled DL CSI matrix Hgg relates to the full
DL CSI matrix H € CY«*"7 via

H
HRS :HQDRS = [hl h2 oo } E CNQXI\/ff’

hy,

a

where Qpys = [€1,€14 Dyss -+ €140 —1) Dgs] € CVF¥M s
a downsampling matrix with pilot rate Dgs with e; € CNs
being the i-th column vector of an identity matrix of size IVy.

B. DL CSI Feedback

Autoencoder has shown successes for CSI compression.
An encoder at UE compresses its estimated DL CSI based
on reference signals for UL feedback and a decoder at gNB
recovers the CSI according to the feedback from UE. Before
compression and after recovery, some works [1], [17] may or
may not transform CSI into the domain with sparse features as
pre-processing, which usually only pose slight impact. Many
have exploited convolutional and fully connected layers to
compress and recover the DL pilot CSI via

q= fen(HRS + N)v
Decoder: ﬁRS = fa(Q).

Encoder:

We note that the size of the codeword q € (C% for UL
feedback is determined by a specific compression ratio C'R.
We can evaluate the feedback loss by the NMSE of the pilot
DL CSI:

~ 2
R D HHRS,d — HRS,dH
L()SSFB(HRs, HRS) = Z ||H H2 F
RS,d|| p

d=1
where subscript d denotes the d-th random test.

)

C. Aliasing Issue

The gNB now designs its precoder based on the full-size
DL CSI, moving away from the limited CSI-RS DL CSIs. Our
primary interest shifts towards the total discrepancy between
the actual full DL CSAI, denoted as H, and the estimated full
DL CSI, denoted as H. The discrepancy is given as follows:

~ 2
N
Loss = NMSE(H,H) = Y *————F
d=1

ﬁ = fT(fde(fen(HRS + N)))’

where f;(-) is the upsampling operation and H € CN+*Ns is
the estimated DL CSI after upsampling/interpolation.

As shown in Fig. 1, the total discrepancy in recovering the
full DL CSI, denoted as Loss, arises from three main factors:
channel estimation (CE) noise N, feedback loss Lossgg, and
upsampling/interpolation loss Lossy. The CE loss, resulting
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Fig. 1. Illustration of the total discrepancy related to the losses at different
stages. A1, Ag and Az denote the distortions from channel estimation at UE
side, feedback from UE to gNB, and upsampling, respectively.

from imperfect CE at the UE side, has been effectively
addressed by rule-based methods like Least Square (LS) and
MMSE estimation [18], as well as advanced learning-based
denoising networks [19], [20]. Feedback loss, due to limited
CSI feedback, has been extensively explored in existing CSI
feedback frameworks [1], [9]. However, there has been less
focus on upsampling loss. This loss occurs when interpolating
full DL CSIs from a limited number of known estimated
pilot DL CSIs. While feedback loss Losspg is typically
predominant in indoor propagation channels, the insufficient
density of current CSI-RS placements means that upsampling
loss Losss becomes a significant challenge in recovering DL
CSIs with large delay spread (i.e., fast-varying in frequency
domain).

Prior research often assumes adequate pilot density in the
frequency domain for all types of channels. However, the
density of pilot placement in CSI-RS, as specified in cellular
network standards [21], falls short for outdoor scenarios,
particularly for channels with a high delay spread. This leads
to a significant issue: the CSI-RS DL CSI matrix, Hgg,
may experience aliasing due to downsampling, rendering it
impossible to accurately recover the full DL CSI, H. Let
us define the pilot sample rate in frequency as Sg and the
maximum delay tap as Aty seconds. If 2%% < Atmaxs
the channels captured from CSI-RS are considered to be
aliased signals. Generally, recovering aliased signals (i.e.,
aliased downsampled (DS) CSI) to their original form (i.e.,
full CSI) is not feasible. However, if the DS signals satisfy
certain constraints, we may recover the full CSI with aids of
side information, which will be introduced in the following
sections.

Previous studies often assume an overly idealistic approach
to upsampling/interpolation, which can be a critical operation
in channels with a large delay spread, and results in a

bottleneck in reducing the total discrepancy'. To enhance the
overall performance, our focus should shift to improving this
critical operation rather than the other two.

III. UL-CSI AIDED UPSAMPLIGN WITH ALIASING
SUPPRESSION

A. CSI Upsampling with Side Information

For an arbitrary channel H € CNa*"7 in frequency domain
and its DS version Hgs = HQp,, € CNexMj by a factor
of Dgs. If we upsample the Hgg by inserting Dgs — 1
zeros between any two consecutive samples along frequency
domain, we have

HDS[:7j] _ {H[aj]v V] S quSa (1)
07 \V/] ¢ \IIRSa
where Wgg = {0, Dgs, ..., (M — 1)Dgs} is a downsampling
index set. Note that Hps consists of the entries of Hgg at
frequencies with pilots and zeros elsewhere. By DFT/IDFT
transformation, the full and DS DL CSI in beam-delay (BD)
domain can be obtained as follows:

Hpp = FagHFpp € CNeXVs |

Hpspp = FagHpsFrp € CNVe* N7 ()

where Fap € CNa*Na and Fpp € CN#*Ns are DFT and
IDFT transformation matrices, respectively. The subscripts AB
and FD denote the transformation from antenna/frequency to
beam/delay domains, respectively. Note that we use subscript
BD, AD, AF to denote CSI in beam-delay, angle-delay, and
angle-frequency domains, respectively. We use no subscript to
denote CSI in the orignal domain which is antenna-frequency
domain.

Given the DFT shifting theorem [22], after IDFT transfor-
mation, we have the following relationship between the full
and DS DL CSIs:

Hpsgpli, j] =
Hgp(i, j] + Hepli, j + M|+
...+ Hgpli,j + My (Dgs — 1)] (3)

WVO<j < My
Drs J f

Hps gp [z, mod(j, My)], otherwise

Note that Hpg pp is periodic in the delay domain with a period
of My = Ny/Dgs. If Hgpli,j| # 0 for any j > My,
we can say that the aliasing effect occurs and it cannot be
recovered to the original version H in general cases since
we can only measure Hpspp, the sum of the multipaths.
However, since Hpg pp is periodic in the delay domain with a
period of M, which matches the wrapped-around effect due
to downsampling, the IDFT transformation unwraps the delay

IAs the three operations (estimation, feedback, and interpolation) are
sequential, the one causing the largest loss becomes the bottleneck in reducing
the total discrepancy. This operation is termed the critical operation.



bins of Hpp to the original delay positions. Thus, H can be
recovered if Hppli, 5] in the delay domain satisfies the two
requirements shown below:

« Bin Isolation Property: for any non-zero Hpgspplé, j]
in Eq.(3), only one from the Dgg aliased copies
Hgpli, j], Hep[i,j + N¢/Dgs], ..., Hep[i, j + N (Dgrs —
1)/Dgs] is non-zero. Namely, the delay bins (i.e.,
Hgpli,jl,j > My) and the low-delay bin (ie.,
Hpgpli, j], 7 < M) are isolated after wrapped-around in
its DS version. If the bin isolation property holds, each
non-zero DS signal Hpgpp[i,j] in delay domain maps
to a scaled unique delay bin in the original signal (i.e.,
HDS,BD[iaj] = HBD[i7’I’Lk]/DRs). Note that nj can only
be j, j+ My,..., or j+ (Drs — 1) Mjy.

« Knowledge of bin locations: we have the perfect knowl-
edge map ® € CN+*Ns with ones at the positions with
non-zero values in the the full CSI matrix Hgp|, j| and
zeros elsewhere.

Fig. 2 shows a simple illustration for the single antenna case
with the intermediate results of the proposed CSI upsampling
approach using the bin location information. If the full CSI
matrix Hpp satisfies the above two requirements, Hgp can be
ideally obtained by

Hgp = Drs® o Hpspp ~ Hpp.

Note that o denotes the element-wise product operation. ®
acts like a bandpass filter in BD domain. Although the two
requirements are ideal, they lead us to a rationale to deal with
aliasing problems. That is, to deal with sparse signals, we can
suppress aliasing peaks with the knowledge of the non-zero bin
locations as a bandpass filter. In practice, DL CSI is somehow
sparse so that a quasi bin isolation property can hold. As for
the knowledge of bin locations of DL CSI, we can estimate it
according to UL CSI at base stations.

B. Multipath Reciprocity

Typically, acquiring the exact delay bin location information
without the original DL CSI, denoted as Hpp, is challenging.
However, in communications systems, the DL. CSI Hpp is
often closely correlated with the UL CSI, which is readily
available at base stations, especially in terms of magnitudes in
the BD domain. Although DL and UL CSIs do not exhibit full
correlation in FDD wireless systems, as illustrated in Fig. 3,
they often share similar large-scale multipath geometries. This
multipath reciprocity results in comparable delay and angle
profiles, a finding supported by field tests and mathematical
analysis [23], [24]. Therefore, UL CSI in the BD domain is
typically considered a reliable estimate for the AD profiles of
DL CSI. Owing to the relatively high pilot placement density
in UL CSI, there are no aliasing effects, allowing for the design
of a bandpass filter to mitigate aliasing effects in DL CSlIs.

In modern communication systems, as depicted in Fig. 4,
the pilot placement density in the frequency domain of the
Sounding Reference Signal (SRS) is much higher (every two
subcarriers) compared to that of CSI-RS (every 12 subcar-
riers). Consequently, the maximum non-aliasing delay (i.e.,
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Fig. 2. Illustration of CSI upsampling with side information. (A) shows

the original CSI magnitude in delay domain. (B) demonstrates the CSIRS
CSI magnitude in delay domain when Drg = 2. We can find that the high
negative delay peak wraps around (R = 1) into the low delay region, leading
aliasing effect. (C) shows the DS CSI magnitude in delay domain by inserting
zero inbetween samples of CSIRS CSI in frequency domain. The green curve
represents an ideal binary bandpass filter ® to be the side information. (D)
is the resulting DL CSI magnitude in delay domain after applying the binary
bandpass filter ®.

Fig. 3. Tlustration of multipath reciprocity between UL and DL propagation
channels.

measurable delay) of UL CSI is approximately six times
greater than that of DL CSI, virtually eliminating aliasing
effects in UL CSIs. Based on the principle of multipath
reciprocity, this work proposes designing the bandpass filter
® using UL CSI information.

C. UL Masking: UL-Assisted CSI Upsampling with Aliasing
Suppression
Assume that we have perfect UL CSI Hy. According to
the multipath reciprocity between UL and DL CSIs, we can
design a two-dimensional bandpass filter based on the UL CSI
magnitude in BD domains as follows:
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Fig. 4. Comparison of SRS and CSI-RS placement density.

BuLli. j] = 0, [HuLspli,j]| <T,
oLt 1, |Huspli,j]| > T,

Hyrgp = FagHu L Frp € (CN“XNf,

where we set T = R - /P and P is the average power of
Huyrsp. We next can estimate the BD domain DL CSI by

Hgp = Pyr o Hpspp-

Due to the multipath reciprocity, the filter can effectively
suppress the aliased copies as long as we design a proper
threshold 7" which determines the pass band in delay and
angle domains. However, it is challenging to find a reasonable
threshold 7" for all CSIs.

IV. PHYSIC-INSPIRED AI-DRIVEN ALIASING
SUPPRESSION

Previous works [5], [7], [25] have been successfully applied
to in CSI compression and recovery. Enough pilot sampling
rate was usually assumed. In fact, following the 3GPP 5G
NR standard [21], UEs estimate the channels from CSI-RS
and send channel state feedback. However, the frequency
density of CSI-RS is not sufficient to capture the fast channel
variation along frequency domain. Even if a perfect CSI
feedback is achieved, the aliasing loss due to downsampling
is theoretically not possible to be recovered.

A. Model Architecture

There are plenty of successful network architecture which
can enhance image details while maintaining visual fidelity
after SR operation. In a sense of information theory, the model
learns prior information from the training data to fill the
information gap between the target and desired images. There
are lots of common features in images such as facial features,
colors textures, edges and shapes. For example, as long as the
deep learning model can recognize a specific patch as a face, it
can largely lower the uncertainty to upsample the LR images
since there exists nothing else except facial features. However,
unlike SR task in computer vision, the details of CSIs are
random and difficult to learn as prior information stored in the
deep learning model. To fill the information gap, we propose to

utilzie UL CSI information by exploiting multipath reciprocity
against aliasing effects due to an insufficient pilot sampling
rate.

This section introduces a general learning framework
designed to effectively upsample LR tensors into SR
equivalents. This process is akin to the SR challenge in
computer vision, where numerous successful networks
[14]-[16] have been developed to enhance image details
while preserving visual fidelity after SR operation. From the
perspective of information theory , the model employs prior
knowledge obtained from training data to fill the gap between
actual and desired images. Certain image features, including
facial characteristics, colors, textures, edges, and shapes, are
common across various images. These features are retained
as prior knowledge within the model, ready to be utilized as
necessary to aid in image processing tasks. For instance, if
a deep learning model identifies a particular segment as part
of a face, it significantly reduces the uncertainty involved in
upscaling LR images, since the expected features are confined
to those associated with faces.

However, unlike the SR task in computer vision, the in-
tricacies of CSI are random and challenging to learn as
pre-existing information within a deep learning model. To
overcome this information gap, we propose leveraging UL
CSI data, exploiting the principle of multipath reciprocity to
counteract the aliasing effects stemming from an inadequate
pilot sampling rate. Fig. 5 gives a high-level understanding of
the proposed architecture. This framework is designed to be
deployed at base stations and consists of three modules: a)
non-aliasing selection map generation, b) true peak recovery,
and c) CSI attention and refinement which are described in
detail as follows:

1) True Peak Recovery

This module aims to upsample LR DL CSIs by inserting
zeros and transform them into the beam and delay domains.
By doing so, we can have a DL CSI map in BD domain which
is periodic in delay domain. According to the DFT shifting
invariance property, we can map the aliasing delay bins to
its original positions by inserting D — 1 zeros in between
samples. On the other hand, this will also lead to more false
peaks in the repetition map at the false delay positions. To
implement, we basically follow Egs. (1) and (2) to generate the
desired repetition map Hpp ps. We describe these operations
as a linear function frpr(-) such that Hgpps = frer(Hgs)-

2) Non-aliasing Selection Map Generation (Bandpass Filter

Design)

This module aims to generate a bandpass filter in the BD
domain which can suppress aliasing peaks at wrong delay
positions. Regarding the multipath reciprocity, we can reply
on UL CSI to infer where the true peaks are. Instead of
using a rule-based approach mentioned in the previous section,
we adopt a neural network to design a bandpass filter. We
first transform the HR UL CSI into BD domain as Hgpuyp
with the same size of the matrix Hppps to be filtered. We
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Fig. 5. General architecture of the proposed physic-inspired Al-driven aliasing
suppression framework. This framework consists of two parts. The first part
is CSI compression and recovery which are deployed at UE and base station
sides, respectively. The other part is the SR operation for the LR CSIs.
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Fig. 6. Network architecture of SRCsiNet. It consists of three modules: 1)
Non-aliasing selection map generation, 2) True peak generation and 3) CSI
attention and refinement.

then feed Hppy, into three convolutional layers with two
ReLU activations at the outputs of the first two convolutional
layers. We then utilize a sigmoid function as the last activation
function to output the bandpass filter ®y since it perfectly
matches the soft filtering purpose (i.e., model cannot only yield
zeros to suppress aliasing delay positions and ones elsewhere,
but also yield values between 0 and 1 to represent the model
uncertainty and provide flexibility). We called it as Bandpass
Filter Design (BFD) Block. For brevity, we can express the
output of the branch of the model as

@UL = fBFD(HUL)~ (4)

3) CSI Attention and Refinement

This module aims to filter out the aliasing peaks and do
refinement to generate the final DL CSI estimates which can
be expressed as H = far(®@uyL o Hppps). The function fagr(-)
aims to further refine and smooth the filtered result which
may have some artifacts due to the imperfect bandpass filter
@y and the overlapped delay bins in Hpp ps. We apply two
residual blocks with SRCNN block [14] as the backbone to
refine the estimate first in BD domain and then in AF domain.

B. Loss Function Design
This network aims to minimize the upsampling loss Loss4
which is defined as

D
1 ~ 2
Loss1(Oppp, Oar) = ) E HHd _ HdHF’
d
1 & ,
= 2w @0 Hanps) ~ .

D
1
) ZHfAR(fBFD(HUL,d) oHgpps) — Hd||i ,
d

where Oppp and O g are trainable parameters of the functions
feep () and far(:), respectively.

V. EFFICIENT CHANNEL STATE FEEDBACK WITH
ALIASING SUPPRESSION FROM NON-UNIFORM
SAMPLING

The true delay position information can significantly im-
prove the CSI recovery for high-delay scenarios. In the per-
spective of the information theory, if we can increase the
mutual information between the input and the desired output,
we can further improve the CSI recovery accuracy.

According to the 3GPP 5G-NR standards [21], the primary
and secondary synchronization signals (PSS and SSS) play
crucial roles in cell identification and frame synchronization,
appearing periodically every 25 subframes (approximately
25ms) and spanning 64-128 subcarriers in bandwidth. Beyond
these primary functions, as depicted in Fig. 7, UEs can also
utilize PSS and SSS to estimate DL CSI, treating these
signals as virtual pilots for DL CSI acquisition. Furthermore,
the Physical Broadcast Channel (PBCH), instrumental for
broadcasting system information and aiding UEs in network



access, also contributes to DL CSI estimation by UEs, acting
as additional virtual pilots. This dense placement of virtual
pilots (SSS, PSS, and PBCH) aids in detecting multipath
effects with large delays, which CSI-RS might miss, despite
the mismatch in bandwidth coverage with the bandwidth part
(BWP) designated for UEs.

In an ideal scenario, combining the channels from sparse
uniform pilots (CSI-RS) with those from dense virtual pilots
would enable us to harness the strengths of both pilot types,
leading to more accurate CSI recovery. However, the effec-
tiveness of our proposed architecture, SRCsiNet, hinges on
maintaining a uniform sampling relationship between input
and output to exploit the Inverse Discrete Fourier Transform
(IDFT) shifting invariance property.

This section will introduce the integration of a compres-
sive sensing-based deep learning model into SRCsiNet, to
address the challenges posed by a non-uniform pilot setup
while effectively employing a bandpass filter. We will begin
by outlining the compressive sensing-based CSI upsampling
method, followed by an introduction to a novel framework,
SRISTA-Net.

A. Compressive sensing based CSI upsampling

As illustrated in Fig. 7, considering the extra subcarrier-
level DL CSIs, we can express the non-uniform pilot DL CSI,
termed as LR DL CSI for simplicity, as

Hix[i, /] = {H[l’.] e )
O,V_] ¢ \IIP7
where ¥ p = WrgU W is the union of Wgg and ¥y = {1, I+
1,...,1 + P — 1} with I being the smallest subcarrier index
in SSS, PSS or PBCH. W, is the index set of the consecutive
pilots with size of P. We can reformulate the LR DL CSI
based on the full AD DL CSI as

Hir = HI[:;, ®p] = HFppFILI[:, Op)

~ 6

= HADF]{E‘]’)I[Z, (bp] = HADFDF7 ( )
where Frp = Fppl;, ®p] € CN7xI%l s the trimmed DFT
transformation matrix.

Mathematically, the goal of compressive sensing reconstruc-
tion is to infer the original signal x € CV from a low-
dimensional measurement y = ®&x € CM, where M <« N.
By transposing Eq.(6), we have an exact projection of the
problem of interest to a compressive sensing reconstruction
problem (i.e., y = Higl[i,:]T, ® = Fl,, x = Hapli,:|¥
where ¢ = 1,...,N,). This inversion is typically ill-posed
problem. However, it can be solved by compressive sensing re-
construction since the sparsity of the original CSIs regularizes
the possible outputs.

B. ISTA-Net Framework

Previous works have proposed a deep unfolding approach
called ISTA-Net [26]. The basic idea of ISTA-Net is to map
the previous ISTA [27] approach updating steps to a deep
learning network. This architecure consists of a fixed number
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Fig. 7. Tllustration of virtual pilots (i.e., PBCH, SSS and PSS) and non-
uniform pilot DL CSI. With the sparse uniform pilots (CSI-RS) and the dense
virtual pilots, we can have an effective non-uniform DL CSI.

of phases, each of the phase performs one iteration in classic
ISTA algorithm.

Fig. 8 shows the deep learning network of the ISTA-Net. For
each phase in ISTA-Net, it consists of two modules, namely
the r*) module and the x(*) module. The following items
describe the operation in k-th phase as follows:

o r(®) Module: This aims to produce the intermediate result
which is the same as the ISTA algorithm. This step is t20
optimize the channel fidelity | FZL,x*~1) — Hyg]i, :]TH :
To maintain the ISTA architecture while increasing tth
channel similarity, a trainable step size p(*) to vary
across different phases is adopted so that the output of
this module with input x*~1) for i-th antenna can be
represented as:

r(F) = x(b=1) _ p(k)fm(ﬁgnx(k*l) — Hir[i, :}T)- (7

o x(*) Module: It aims to compute x(*) according to the
intermediate result r(*), which is given by

x®) = F®) (5o f1(FE (xk), 9*)Y), ®)

where a pair of functions F (¥) and F*) which are inverse
of each other such that F*)(F*)(.)) = Z(-) with Z(-)
being an identity function. Such a constraint on F (k) and
F*) is called symmetry constraint.

C. SRISTA-Net Framework

The ISTA-Net can deal with non-uniform sampling but
cannot exploit side information. Thus, in this subsection, we
propose a new framework which combines ISTA-Net and the
proposed SRCsiNet for exploiting the advantages of the two
networks, which is termed as SRISTA-Net.
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Fig. 8. Network architecture of ISTA-Net.

Fig. 9 shows the deep learning network of the proposed
network SRISTA-Net. We incorporate the SRCsiNet features
into ISTA-Net by appending an additional block, Reciprocity
Assisting (RA) Block, before the r*) module. This block aims
to suppress the aliasing effects of the input x*~1) prior to
solving the proximal mapping by applying the UL CSI assisted
bandpass filter according to multipath reciprocity. We feed
the magnitude of UL CSI Hyppp in the BD domain into
two convolutional layers with ReLU and sigmoid functions,
respectively, to obtain a bandpass filter ®yy .

Intuitively, for early phases, the model tends to heavily rely
on UL CSI information and vice versa. Therefore, we design
a weight matrix W) ¢ CNa*Ns to adjust the dependency to
the UL CSI at the k-th phase. We can rewrite the output of
RA block as

=WH ody orgg +(1-wWhk) oré’g,

)
where r](;g is the r(*) after transformation to BD domain. We
then feed the output into the x(*) module in ISTA-Net for
minimizing the L1-norm constraints.

R¥) (™) Hyp pp)

D. Loss Function Design

Given the training data pair {(Hps, HyLpp, H)}2_,,
SRISTA-Net first transform Hpg into its AD version Hpg ap
as input and feed in the UL CSI information Hyp gp in each
phase to generate the output xfi ) Note that Hy, x, ") and r(k)
are all in the AF domain. To reduce the discrepancy between
H,; and x5)¢ while maintaining the symmetry constraint

F®E(FE)()) = Z(-),Vk = 1, ..., K, we design the following
loss function:
Eall(@) = £discrepancy + 'YLsymmelrw (10)
D 2
K
Ediscrepancy = ZHX‘(i ) _ Hd‘ 5’ (11
d=1
symmetry - Z ZH-FUC (k)) —q (12)

d=1 k=1

where q(k) = R® (r(k) Hyppp) is the output of the RA
block at the k-th phase. D, K and -y are the total number of
training data size, the total number of SRISTA-Net phases,
and the regularization parameter, respectively. In this paper,
we follow the original manuscript of ISTA-Net for the value
of v=0.01.

E. Initialization

Like traditional iterative compressive sensing reconstruc-
tion, the proposed approach requires an initialization denoted
by x(© as illustrated in Fig 9. From Eq.(6), we know
Hig[i,:]T = FFDHAD[ )7,V¥i = 1,..., N,. We take the LS
solution to this problem for 1n1t1ahzat10n such that

x() = F;D(FIY;DF;D)_IHER (13)

VI. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

Tests were focused on outdoor channels using widely used
channel model software, QuaDriGa. The simulator considers
a gNB with an 8 x 4 UPA and 32-element ULA serving
single-antenna UESs, respectively, with half-wavelength uni-
form spacing. 2000 UEs uniformly distribute in the cell
coverage which is rectangular region with size of 250(m)x
300 (m). The scenario features given in 3GPP TR 38.901
UMa were followed, using Ny = 667 subcarriers with 15K-
Hz spacing and My = 55 pilots with a downsampling ratio of
Dgs = 12 as a common setting if not specified and assuming
precise CSI estimates at the UEs. The NMSE metric was used
to assess performance.

For DL-based models, we conducted training with a batch
size of 32 for 1500 epochs, starting with a learning rate of
0.001 and setting an early stop criterion that validation loss
does not improve for 100 epochs. We generated the outdoor
datasets using QuaDRiGa channel simulators. We consider 16
TTIs for each out of 2000 UEs. In total, the dataset consists
of 32,000 channels. We used one-tenth of the channels for
testing and validation, respectively. The remaining four-fifths
channels are for training.

For the ease to evaluate the degree of aliasing, it is common
to use delay spread as a performance metric. A channel
with larger delay spread tends to suffer aliasing effects more
severely since it contains more high-delay multipaths. We
cluster all the 3200 test CSI data into 3 clusters according to
their RMS delay spread: low (smaller than 500 ns), medium
(inbetween 500 ns and 1000 ns), high-delay spread (larger than
1000 ns). The low, medium and high delay spread clusters have
883, 1221 and 1095 test cases and are denoted as CL1, CL2
and CL3, respectively.

B. UL Assisted Bandpass Filter Design for Anti-aliasing
Fig. 10 displays the NMSE performance of the UL masking
method at various R levels compared to traditional interpo-
lation across different CSI-RS placement densities. At a high
CSI-RS density (Dgrs = 3), the performance disparity between
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Fig. 9. Network architecture of SRISTA-Net. For the construction of W) we employ a pair of 2D convolutional layers followed by max pooling operations.
This approach is designed to refine the output, focusing it more acutely on specific segments of the side information. Subsequently, integrating a sigmoid layer

as the terminal activation mechanism compels W) to execute a binary fusion of the processed and unprocessed outcomes, specifically between ®yr, o ryy
. As for the generation of ®y, we apply BFD block in Eq. 4 mentioned in the previous section.

and r](;f))

these approaches is minimal, notable mainly in the complete
test dataset and CL1. However, a typical Dgg value, being
either 12 or 24, introduces a more significant aliasing effect.
For Dgrs = 12, the performance divergence becomes more
pronounced, as the NMSE metrics show effective mitigation
of aliasing effects, particularly in the high-delay-spread cluster,
CL3.

In Fig. 11, the NMSE performance of the UL masking
approach at varying R levels for Dgrg = 3,6,12 is depicted.
This figure reveals the sensitivity of the proposed method
to the choice of the UL masking parameter R. In cases of
CSI with intense aliasing effects, a higher R is necessary to
effectively suppress the aliasing copies. Conversely, a large R
might be excessively aggressive for channels with a low delay
spread, potentially compromising the integrity of the actual
delay peaks.

C. SRCsiNet

In addition to the two upsampling approaches mentioned in
the previous subsection, we compare them with the proposed
learning-based SRCsiNet and SR network, SRCNN [14] and
a deep unfolding framework, ISTA-Net [26]. Fig. 12 shows
the NMSE performance of these alternatives for complete
dataset and the three clusters. We can discover that ISTA-
Net performs better than UL masking approach in CL1 due
to the advantage of unfolding compressive sesning approach
but performs poorly in CL3. That is because ISTA-Net does
not introduce side information for dealing the aliasing effect.
Clearly, by introducing UL CSI and providing flexibility in
designing the bandpass filter, the overall performance can be
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Fig. 10. NMSE performance of the proposed UL-assisted anti-aliasing

and traditional linear interpolation for different CSI-RS placement densities
(Dcstrs = 3,12).

improved by approximately 8 dB, which is significant. Fig.
13 shows the visualization of SRCsiNet. We can find that
the bandpass filter design can effectively suppress the aliasing
peaks and retain the delicate detail of the true peaks at the
same time.
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D. End-to-end CSI Recovery

In this subsection, we would like to demonstrate the im-
portance of optimizing upsampling discrepancy for improving
the overall performance. Table I shows the NMSE performance
from the end-to-end, feedback, and upsampling operation for
SRISTA-Net, Interpolation and ISTA-Net. End-to-end NMSE
performance would be bounded by either feedback loss or
upsampling discrepancy. Yet, we can first discover that the
end-to-end performance is generally bounded by upsampling
loss in the considered UMa channels. This means that up-
sampling loss plays an critical role for improving the overall
performance. Lastly, we can also find that the end-to-end
NMSE performance improvement is about 6-10 dB as com-
pared to other upsampling approaches without introducing UL
CSI information.

E. Solving Overfitting problem

The SRISTA-Net architecture, necessitating 0.2 million pa-
rameters, faces a significant challenge due to its size relative
to the training data, often leading to overfitting issues. This
subsection highlights the effectiveness of Data Augmentation
(DA) in our approach. Table II presents the NMSE per-
formance for varying numbers of virtual pilots, comparing
scenarios before and after implementing DA. A major hurdle
in deploying learning-based models at gNB is the acquisition

of real CSI data. In our experiments, the training of the
deep learning model utilized less than 30,000 data points.
We observed that overfitting becomes a significant issue when
relying solely on the original training dataset. To counter this
issue, we implemented circular shifting, as suggested by [28],
on the original training data in the angle domain, effectively
doubling the training dataset size. This augmentation was
found to markedly enhance NMSE performance, demonstrat-
ing the benefits of increased training data.

F. Temporal Sensitivity of SRISTA-Net

SRISTA-Net significantly surpasses other alternatives in
NMSE performance. However, it is important to note that
previous experiments were conducted under the assumption
that both CSI-RS and virtual pilots are present within the
same time slot?>. Table III details the NMSE performance of
SRISTA-Net, accounting for varying time gaps between CSI-
RS and virtual pilots, alongside different counts of virtual
pilots. Given the 10 ms periodicity of PBCH, PSS, and SSS,
the maximum theoretical time difference between CSI-RS and
virtual pilots is limited to under 5 ms. Our findings reveal
that SRISTA-Net’s performance is highly susceptible to even
minimal time differences, such as 5 ms. Interestingly, the
NMSE performance in scenarios with a 5-ms gap is observed
to be inferior compared to cases without any virtual pilots. In
conclusion, when CSI-RS and virtual pilots coexist in the same
time slot, leveraging the additional information is beneficial.
Otherwise, it is preferable to upscale the DL CSI without
incorporating data from virtual pilots.

G. Complexity and Storage Requirements

Table IV outlines the complexity and storage requirements
of all previously mentioned approaches. It is observed that
while SRISTA-Net and ISTA-Net have similar model sizes
and required similar complexities, SRISTA-Net significantly
surpasses ISTA-Net in terms of performance. However, this
comparison also highlights a drawback of deep unfolding
methods. Due to the recursive application of convolutional
operations on full-size data, these models exhibit higher com-
plexity relative to others. Fortunately, the upsampling module
in these models is implemented at the gNB. Considering

21t’s assumed here that the CSI remains constant within the same time slot
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TABLE I
THE END-TO-END NMSE PERFORMANCE OF SRISTA-NET, INTERPOLATION AND ISTA-NET FOR DIFFERENT NUMBERS OF VIRTUAL PILOTS UNDER
COMPRESSION RATIO IS 4.

P=0

P =64 P =128

DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net
ALL | CL1 CL2 | CL3 ALL | CL1 CL2 CL3 ALL | CL1 CL2 | CL3
Loss -12.8 | -16.2 | -12.5 | -9.8 Loss -155 | -194 | -158 | -11.9 Loss -17.5 | -21.6 | -17.9 | -13.7
Lossgg | -14.5 | -16.7 | -13.6 | -12.6 Lossgg | -19.6 | -23.2 | -19.7 | -16.3 Losspg | -22.2 | -26.2 | -22.7 | -18.6
Lossy | -17.2 | -24.5 | -18.0 | -12.6 Lossy | -17.6 | -22.3 | -18.7 | -13.4 Lossy | -19.4 | -24.0 | -20.1 | -15.3

DualNet-MP + Interpolation DualNet-MP + Interpolation DualNet-MP + Interpolation
ALL | CL1 CL2 | CL3 ALL | CL1 CL2 CL3 ALL | CL1 CL2 | CL3
Loss -2.7 -8.3 -1.9 0.7 Loss -3.2 -8.9 -2.3 0.2 Loss -3.6 -9.4 -2.8 -0.1
Lossgg | -14.5 | -16.7 | -13.6 | -12.6 Losspg | -19.6 | -232 | -19.7 | -16.3 Losspg | -22.2 | -26.2 | -22.7 | -18.6
Lossy -2.7 -8.6 -1.9 0.7 Lossy -3.2 -9.0 -2.3 0.3 Losst -3.6 -9.5 -2.8 -0.1

DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net
ALL | CL1 CL2 | CL3 ALL | CL1 CL2 CL3 ALL | CL1 CL2 | CL3
Loss -6.7 | -13.5 | -8.1 -1.9 Loss -13.3 | -183 | -14.2 -9.0 Loss -143 | -19.5 | -154 | -10.0
Losspg | -14.5 | -16.7 | -13.6 | -12.6 Lossgg | -19.6 | -232 | -19.7 | -16.36 Losspg | -22.2 | -26.2 | -22.7 | -18.6
Lossy -72 | -15.8 | -9.1 -2.1 Lossy | -14.5 | -20.5 | -15.9 -9.9 Lossy | -15.3 | -20.8 | -16.5 | -10.8
TABLE II TABLE III

NMSE PERFORMANCE OF THE SRISTA-NET WITH AND WITHOUT DATA
AUGMENTATION (DA).

P Method ALL CL1 CL2 CL3
0 SRISTA-Net -14.62 | -21.34 | -1541 | -10.12
SRISTA-Net + DA | -16.88 | -23.15 | -17.73 | -12.43
256 SRISTA-Net -17.20 | -22.48 | -18.34 | -12.83
SRISTA-Net + DA | -20.55 | -23.89 | -20.81 | -17.18

the demands of future Al-enhanced cellular systems, a gNB
equipped with multiple GPUs is envisioned, enabling real-
time operation of such complex models. Nonetheless, there is
an ongoing need to reduce the complexity of deep unfolding
approaches, potentially through techniques like pruning [29],
[30] or other methods of model size reduction.

VII. CONCLUSIONS

The paper addresses a key challenge in massive MIMO
FDD systems: the acquisition of DL CSI at the base station
(gNB), which is crucial for optimal performance. It identifies a
significant issue in current systems, where the undersampling
of CSI due to low-density pilot placement leads to aliasing

NMSE PERFORNACE OF SRISTA-NET FOR DIFFERENT TIME
DIFFERENCES BETWEEN CSI-RS AND VIRTUAL PILOTS.

P =64
Time
Difference ALL CL1 CL2 CL3
Oms -17.6 -22.3 | -18.7 | -13.4
Sms -13.6 -15.0 | -14.1 | -11.2
10ms 9.2 -10.1 9.5 -7.4
One-shot
P=0 -17.2 245 | -18.0 | -12.6
P=128
Time
Difference ALL CL1 CL2 CL3
Oms -19.40 | -24.0 | -20.1 | -15.3
Sms -11.7 -12.5 | -11.9 | -10.3
10ms -6.2 -6.6 -6.3 -5.5
One-shot
P=0 -17.2 245 | -18.0 | -12.6

effects, impairing CSI recovery. To deal with this issue, the
paper proposes a novel CSI upsampling framework for gNB,
designed as a post-processing tool to fill the gaps caused by
undersampling. This framework utilizes the principles of the



TABLE IV

STORAGE (PARA: MODEL PARAMETERS) AND COMPLEXITY (FLOPS)

COMPARISON.

PARA | FLOPs
Interpolation | O 109K
UL Masking | 0 206K
SRCNN 63K 55.5M
ISTA-Net 196K | 2G
SRCsiNet 7K 3.1M
SRISTA-Net | 215K | 2.01G

DFT shifting theorem and multipath reciprocity, employing
UL CSI to reduce aliasing effects. Additionally, the paper
presents a learning-based approach that combines the proposed
algorithm with the ISTA-Net architecture, aiming to improve
non-uniform sampling recovery. The paper reports that both
the rule-based and the deep learning methods demonstrate
superior performance over traditional interpolation methods
and current advanced techniques.
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