
Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Zhengmian Hu 1 2 Xidong Wu 2 Heng Huang 1

Abstract

Negative and positive curvatures affect optimiza-
tion in different ways. However, a lot of existing
optimization theories are based on the Lipschitz
smoothness assumption, which cannot differen-
tiate between the two. In this paper, we propose
to use two separate assumptions for positive and
negative curvatures, so that we can study the dif-
ferent implications of the two. We analyze the
Lookahead and Local SGD methods as concrete
examples. Both of them require multiple copies
of model parameters and communication among
them for every certain period of time in order
to prevent divergence. We show that the mini-
mum communication frequency is inversely pro-
portional to the negative curvature, and when the
negative curvature becomes zero, we recover the
existing theory results for convex optimization.
Finally, both experimentally and theoretically, we
demonstrate that modern neural networks have
highly unbalanced positive/negative curvatures.
Thus, an analysis based on separate positive and
negative curvatures is more pertinent.

1. Introduction
Lipschitz smoothness, which provides both upper and lower
bounds for the Hessian matrix, is a common assumption for
analyzing the convergence of optimization methods when
the convexity is not guaranteed by the problem formulation.
While this assumption is enough to establish convergence for
many problems, it blurs certain structure of the underlying
optimization problem by imposing symmetric upper bound
and lower bounds for Hessian, which could lead to overly
conservative convergence condition.

1Department of Computer Science, University of Maryland,
College Park, MD, USA. 2Department of Electrical and Computer
Engineering, University of Pittsburgh, Pittsburgh, PA, USA.. Cor-
respondence to: Zhengmian Hu <huzhengmian@gmail.com>,
Heng Huang <henghuanghh@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

In this paper, we propose to use separate upper and lower
smoothness assumptions to guide the analysis of noncon-
vex optimization problems. New proof techniques are also
developed under these new assumptions. We show that pos-
itive and negative eigenvalues of the Hessian matrix play
different roles in the convergence analysis: positive curva-
ture determines the maximum step size for gradient descent,
while negative curvature controls the synchronization error
when multiple parameters are optimized independently, thus
controlling the minimum averaging frequency.

Based on this intuition, we derive tighter analysis via incor-
porating both upper and lower smoothness conditions for
two recently popular optimization algorithms: Lookahead
(Zhang et al., 2019) and Local SGD (Zinkevich et al., 2010;
Konečný et al., 2016; McMahan et al., 2017; Stich, 2019).
Compared to regular gradient descent, they both involve
multiple copies of model parameters and require to average
them from time to time to prevent exponential divergence.
For Lookahead, we show that look-ahead too far could pre-
vent convergence and the maximum horizon is bounded by
the inverse negative curvature. Moreover, our analysis also
captures the very rarely considered increasing Lookahead
steps. We show that, when decreasing step size is used,
Lookahead steps could simultaneously increase without hin-
dering convergence. For Local SGD, we derive a better
convergence condition than the previously known results
and show that the minimum communication frequency is
determined by the negative negative curvature. However,
the requirement for linear-speed up is still the same.

Apart from using negative curvature upper bound as a pre-
condition, we also explain why we can expect practical deep
learning to enjoy milder negative curvature than positive cur-
vature. Our experiments show that modern neural networks
have very unbalanced positive and negative curvatures, mak-
ing the Lipschitz smoothness assumption not tight. Thus,
analysis based on separate positive and negative curvatures
is more realistic. We further analyze theoretically why the
negative curvature of neural networks is unbalanced, which
is affected by network structure and loss function. We also
establish an upper bound for the negative curvature based
on first-order and zeroth-order information, which explains
the change of negative curvature during training.

1



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

2. Related Works
Weakly convex. Our Assumption 4.3 is essentially the same
as weakly convexity, which means the perturbed function
F (x) + L−

2 ∥x∥2 is convex. Previous research works on
weakly convexity (Davis et al., 2018; Davis & Drusvyatskiy,
2019; Zhu et al., 2019) mainly focus on non-smooth opti-
mization, and the implication on communication complexity
is still not clear. Chen et al. (2021) explores the distributed
sub-gradient method for weakly convex problem, however,
they don’t show the connection between communication
frequency and L− because they use bounded gradient norm
assumption to bypass the exponential divergence. More
explanations can be found in Appendix A.

Lookahead. The Lookahead optimizer (Zhang et al., 2019),
although is typically implemented as a serial algorithm, can
be regarded as a two-agent optimization method (Wang
et al., 2020b), where one agent minimizes the original objec-
tive function and the other agent optimizes a null objective
F (x) = 0. Its generalization property has been studied via
uniform stability in (Zhou et al., 2021).

Local SGD (Zinkevich et al., 2010; Konečný et al., 2016;
McMahan et al., 2017; Stich, 2019) is a popular method to
improve communication efficiency of parallel mini-batch
SGD. The convergence of local SGD has been studied un-
der convex (Khaled et al., 2020; Glasgow et al., 2022) and
nonconvex (Yu et al., 2019b; Wang & Joshi, 2021; Jiang &
Agrawal, 2018; Glasgow et al., 2022) settings. This type of
algorithm has been generalized to various setup, including
heterogeneous data (Khaled et al., 2020; Gorbunov et al.,
2021; Woodworth et al., 2020), client sampling (McMahan
et al., 2017; Yang et al., 2021), control variates (Karim-
ireddy et al., 2020; Khanduri et al., 2021), momentum (Yu
et al., 2019a; Wang et al., 2020a), quantization (Reisizadeh
et al., 2020; Basu et al., 2019), adaptive step size (Xie et al.,
2019; Reddi et al., 2021). However, all these works rely on
Lipschitz smoothness. Our result is complimentary to these
works by providing tighter analysis for vanilla method and
draw connection between negative curvature and minimum
communication frequency.

Second-order stationary point. Escaping from saddle
points and finding local minima is widely considered as a
central problem in nonconvex optimization. Various per-
turbed gradient methods (Ge et al., 2015; Jin et al., 2017;
Li, 2019) and negative curvature descent methods (Xu et al.,
2018; Allen-Zhu & Li, 2018; Fang et al., 2018; Zhou et al.,
2018) have been developed to achieve second-order station-
ary point. However, these methods don’t scale well into
deep learning. Moreover, practical deep learning has been
successful with SGD, which is only guaranteed to find the
first-order stationary point. Our Theorem 7.2 helps explain
this seemingly contradiction, by showing that for stochastic
compositional optimization, where outer function is convex,

and inner function is smooth, minimum Hessian eigenvalue
is controlled by first-order and zeroth-order information,
thus optimizing them naturally leads to second-order sta-
tionary point.

Eigenvalues of the Hessian. Imbalanced negative and posi-
tive curvatures have been observed in many empirical stud-
ies (Ghorbani et al., 2019; Sankar et al., 2020; Sagun et al.,
2016). An open-source framework to compute Hessian
information for DNNs by power iteration and stochastic
Lanczos method was developed in (Yao et al., 2020).

Proximal point methods and Gauss-Newton methods.
Proximal point algorithms have been developed to leverage
the weak convexity or convexity of outer function in compo-
sitional optimization (Burke, 1985; Nesterov, 2007; Duchi
& Ruan, 2018; Tran-Dinh et al., 2020; Gargiani et al., 2020).
Li et al. (2020) study a multi-agent proximal method called
FedProx. More discussions can be found in Appendix A.

3. Preliminary
In this paper, we consider the following optimization prob-
lem:

min
x∈Rd

F (x) = Eξ∼D[Fξ(x)]

Throughout the paper, we assume F (x) is differentiable and
the minimum exists. In some theorems, we also assume the
variance of stochastic gradient to be bounded:

Assumption 3.1 (Bounded Variance). There exist a σ ≥ 0,
such that for any x ∈ Rd, we have

Eξ∼D[∥∇Fξ(x)−∇F (x)∥2] ≤ σ2.

4. Beyond Lipschitz Smoothness
The following Lipschitz smoothness condition is standard
for analyzing smooth optimization:

Assumption 4.1 (Lipschitz smoothness). ∀x, y ∈
Rd, ∥∇F (y)−∇F (x)∥ ≤ L∥y − x∥.

If F (x) is twice differentiable, Lipschitz smoothness im-
plies −LI ≼ ∇∇F ≼ LI . Due to the symmetric upper
and lower bounds, there is no way to distinguish the nega-
tive and positive curvatures. To derive tighter analysis, we
decompose the smoothness condition into two parts:

Assumption 4.2 (Upper smoothness). ∀x, y ∈
Rd, ⟨∇F (y)−∇F (x), y − x⟩ ≤ L+∥y − x∥2.

Assumption 4.3 (Lower smoothness). ∀x, y ∈
Rd, ⟨∇F (y)−∇F (x), y − x⟩ ≥ −L−∥y − x∥2.

Clearly, Lipschitz smoothness implies upper and lower
smoothness with L+ = L− = L by definition. The re-
verse is also true:

2



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Lemma 4.4. Assumptions 4.2 and 4.3 implies Assump-
tion 4.1 with L = max(L−, L+).

These separate smoothness conditions allow us to derive
tighter analysis when L+ is different from L−. We will
show in Section 7 that for deep neural network, L+ could be
much larger than L−, thus a symmetric bound by Lipschitz
smoothness is not tight.

Moreover, each one of upper and lower smoothness is
strictly weaker than the Lipschitz smoothness. This en-
forces us to differentiate clearly which curvature we are
considering, and only use its own consequence but not the
consequence of their both in analysis.

The main consequence of bounded positive curvature is the
widely-known gradient descent lemma. Lemmas 5.2 and F.1
in our following analysis fall into this category.

On the contrary, the effects of negative curvature were less
used explicitly in existing optimization literature. We show
that there are two main ways to utilize the negative curva-
ture. First, it gives an upper bound on the function value
at average point minus the average of function values at
a group of points. An illustration is shown in Figure B.1
(in Appendix). This effect is particularly relevant in the
averaging among multiple copies of model parameter, as
shown in Lemmas 5.1 and 6.6. Second, it induces exponen-
tial divergence for infinitesimally close trajectories. In order
to see that, we can consider gradient flow dx

dt = −∇F (x),
and for two trajectories x and x′, we have

d∥x− x′∥2
dt

=− 2⟨∇F (x)−∇F (x′), x− x′⟩

≤2L−∥x− x′∥2.
An illustrative example is shown in Figure B.2 (in Ap-
pendix). For gradient descent, we derive a discrete version
of the above inequality in Lemma 6.1.

5. Lookahead

Algorithm 1 Lookahead Algorithm

Input: Initial point z0, outer/inner iteration number
T, τ > 0, outer/inner step size α, γ > 0.
for t = 0 to T − 1 do
xt,0 = zt
for l = 0 to τ − 1 do

Sample ξt,l ∼ D.
xt,l+1 = xt,l − γ∇Fξt,l(xt,l)

end for
zt+1 = zt + α(xt,τ − zt)

end for
Output: zT .

The Lookahead algorithm with fixed step size γ and Looka-

fast weights xt,l

slow weights zt

Figure 1: A counter example showing that Lookahead with
too large horizon doesn’t converge.

head steps τ is summarized in Algorithm 1. Two copies
of weights, namely fast weights xt,l and slow weights zt,
are maintained in Lookahead. The slow weights are only
updated every τ steps. Although practical Lookahead ap-
pears to be not sensitive to large τ , we show that there exists
some situations where the convergence of Lookahead with
large τ is not guaranteed by constructing a counterexample
in Figure 1.

Thus, a natural question is: how far can we look ahead
without breaking the convergence guarantee? Wang et al.
(2020b) provided an upper bound for τ based on Lipschitz
smoothness assumption, but their result is not tight. More
specifically, their maximum horizon is controlled by Lip-
schitz smoothness constant γτ = O(1/L). In the follow-
ing analysis, we improve that result into γτ = O(1/L−).
Please notice that L− is always smaller than or equal to L,
thus our result is tighter.

We next explain the main idea of our proof. First, we use
the lower smoothness to control the ”loss increase” due to
the averaging.

Lemma 5.1. Under Assumption 4.3, we have the following
inequality for xt,τ and zt generated from Algorithm 1:

F (zt+1)− F (zt) ≤α (F (xt,τ )− F (zt))

+
L−

2
α(1− α)∥xt,τ − zt∥2

We then apply the well-known gradient descent lemma as a
consequence of upper smoothness.

Lemma 5.2. Under Assumptions 3.1 and 4.2, we have fol-
lowing inequality for any l ≥ 0 and xt,l generated from
Algorithm 1:

E[F (xt,l+1)− F (xt,l)] ≤− γ(1− γL+

2
)E∥∇F (xt,l)∥2

+
γ2L+

2
σ2

3



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Combining the above two lemmas, we obtain the final
convergence result. In order to simplify the presentation,
we define two kinds of average in terms of expectation:
Et[·] = 1

T

∑T−1
t=0 (·), and El[·] = 1

τ

∑τ−1
l=0 (·).

Theorem 5.3. Under Assumptions 3.1, 4.2 and 4.3, if γ ≤
(L+ + (1− α)L−τ)

−1, we have the following inequality
for Algorithm 1:

EtElE∥∇F (xt,l)∥2 ≤ 2

αTτγ

(
F (z0)−min

z
F (z)

)

+(L++ (1−α)L−)γσ2. (1)

We note that our analysis technique is different from the
existing one. We control the “loss increase” coming from
the averaging directly with lower smoothness, which only
involves the negative curvature in Lemma 5.1. Wang et al.
(2020b) instead consider an auxiliary average sequence yk,
and apply the gradient descent lemma for it, with gradient
error being controlled by Lipschitz smoothness. This differ-
ent point of view leads us to a tighter result than Wang et al.
(2020b):

Corollary 5.4. Under Assumptions 3.1, 4.2 and 4.3, for
any s < 1

(1−α)L− , and all small enough γ ≤ (1 − s(1 −
α)L−)/L+, the convergence result Eq. (1) in Theorem 5.3
holds with τ = s/γ.

In the Corollary 5.4, we define horizon as s = γτ and we
show that the maximum horizon is bounded by negative
curvature, and is irrelevant to positive curvature. One in-
teresting consequence is that for a convex loss function,
we can look ahead arbitrarily far without worrying about
convergence.

Corollary 5.5. Under Assumptions 3.1, 4.2 and 4.3, for

any s < 1
(1−α)L− , we can define K0 =

(
sL+

1−s(1−α)L−

)2
,

such that we can find appropriate γ = O
(
s/
√
K
)

,τ =

O
(√

K
)

,T = O
(√

K
)

for all large enough K ≥ K0,
that satisfy γτ = s and τT ≤ K, and

1

Tτ

T−1∑

t=0

τ−1∑

l=0

E∥∇F (xt,l)∥2 = O
(
1/
√
K
)
. (2)

The O
(
1/
√
K
)

convergence rate is the same as the exist-
ing result. However, our result has a milder convergence
condition γτL− = O(1).

5.1. Diminishing Learning Rate with Non-diminishing
Horizon

When variance reduction techniques are not used, decreas-
ing step-size is needed to tackle the noise from stochastic

gradient. In a typical Lookahead optimizer, the inner loop
steps are fixed, thus the horizon decreases with step size.
However, we notice that even if we increase the inner loop
steps, the convergence is still guaranteed if horizon doesn’t
exceed an upper bound related to negative curvature. The
Lookahead with variable look ahead steps and step size is
described in Algorithm 3 which is similar to Algorithm 1
and is moved to Appendix due to the limit of space.

Theorem 5.6. Under Assumptions 3.1, 4.2 and 4.3, we
define horizon for each outer iteration as st = γtτt. For
each given t, we define El[·] = 1

τt

∑τt−1
l=0 (·). If γtL++(1−

α)L−st ≤ 1 for all iterations 0 ≤ t ≤ T − 1, we have the
following inequality for Algorithm 3:

Et[stElE∥∇F (xt,l)∥2] ≤
2

αT

(
F (z0)−min

z
F (z)

)
(3)

+ Et[stγt](L
+ + (1− α)L−)σ2.

The following corollary shows that look ahead steps could
be tuned according to the step size to ensure that the same
horizon is used during training. The convergence is empiri-
cally verified in Figure H.1 (in Appendix). Notice that total
iteration is K = O

(
T 2
)
, therefore the final convergence

rate is Õ(1/T ) = Õ(1/
√
K).

Corollary 5.7. Under the same assumptions and definition
as Theorem 5.6, we additionally assume the horizons for
each iteration are the same, such that st = s < 1

(1−α)L− .

By letting τt = (1 + t) sL+

1−s(1−α)L− and γt =
s
τt

, we have
the following convergence result:

Et,lE∥∇F (xt,l)∥2 ≤ 2

αTs

(
F (z0)−min

z
F (z)

)

+
ln(T + 1)

T
γ0(L

++ (1−α)L−)σ2.

More generally, we derive the following convergence condi-
tion for arbitrary step size and horizon schedule. Even when
we restrict to cases where inner loop steps are fixed, the
following corollary is still tighter than the existing result.

Corollary 5.8. Under Assumptions 3.1, 4.2 and 4.3, if
for any t > 0, we have γtL

+ + (1 − α)L−st ≤ 1 and∑∞
t=0 st = ∞,

∑∞
t=0 stγt < ∞, then we have the follow-

ing convergence result for Algorithm 3:

lim inf
t→∞

ElE∥∇F (xt,l)∥2 = 0,

lim inf
t→∞

min
0≤l≤τt−1

E∥∇F (xt,l)∥2 = 0.

5.2. Quadratic Case: Lookahead Further to Generalize
Better

Previous discussion shows that we can choose a horizon
as large as s = γτ ≤ 1

(1−α)L− for Lookahead, without

4



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

loss of convergence guarantee. However, it is still not clear
whether larger horizon is a good choice to have. To an-
swer this question, we derive PAC-generalization bound for
quadratic loss case and show that look ahead further could
help generalization.

FS(x) =
1

|S|
∑

x′∈S

1

2
(x− x′)Λ(x− x′),

x∗ =
1

|S|
∑

x∈S
x, S ∼ Dn.

For a data distribution D, the training dataset and quadratic
loss are defined as above. We assume Λ to be positive
definite. In order to choose a horizon as large as possible, we
consider infinitesimal step size, such that gradient descent
turns into gradient flow:

dxt,l

dl
= −Λ(xt,l−x∗), xt,0 = zt, zt+1 = αxt,τ+(1−α)zt.

The dynamics of Lookahead for this quadratic loss can be
derived as follows:
Lemma 5.9. If z0 is initialized from a standard Gaussian
distribution, then zt also follows Gaussian distribution with
the following mean and covariance:

µt = (I − (α exp(−Λτ) + (1− α)I)t)x∗,

Σt = (α exp(−Λτ) + (1− α)I)2t.

We will follow the PAC-Bayesian approach to the general-
ization problem.
Theorem 5.10 (Alquier et al. (2016)). Give a prior distribu-
tion π, for any positive λ and δ ∈ (0, 1], with at least 1− δ
in the probability of of training samples S ∼ Dn, for all
distribution pz , we have

Ez∼pz
[ES′∼Dn [FS′(z)]] ≤Ez∼pz

[FS(z)] +
1

λ
KL(pz∥π)

+ Ψπ,D

(
λ, n, ln

(
1

δ

))
.

Notice that the last term Ψπ,D
(
λ, n, ln

(
1
δ

))
in above bound

doesn’t depend on training, therefore we only need to study
the KL divergence term.
Theorem 5.11. If z0 is initialized from a standard Gaussian
distribution, we fix the total training time K = Tτ , then
KL(N (µT ,ΣT )∥N (0, I)) is a strictly and monotonically
increasing function for T ∈ N+.

The above theorem indicates that for fixed training time, the
shorter each inner loop is, the worse the generalization error
we have. This result is different from existing generalization
bound in (Zhou et al., 2021), because the paper (Zhou et al.,
2021) builds on uniform stability with a main focus on effect
of α, while our result rely on PAC-Bayesian generalization
bound and mainly focus on effect of τ .

6. Local SGD

Algorithm 2 Local SGD

Input: Initial point z0, outer/inner iteration number
T, τ > 0, step size γ > 0.
for t = 0 to T − 1 do

for each worker i = 1 to N do in parallel
xi,t,0 = zt
for l = 0 to τ − 1 do

Sample ξi,t,l ∼ D.
xi,t,l+1 = xi,t,l − γ∇Fξi,t,l(xi,t,l)

end for
end for
zt+1 = 1

N

∑N
i=1 xi,t,τ

end for
Output: zT .

The procedure of local SGD is shown in Algorithm 2. We
only consider identical data, such that the divergence be-
tween different nodes only comes from negative curvature
and random fluctuation. A group of parallel workers main-
tain their own local weights xi,t,l and update them with SGD.
These local weights are aggregated and averaged every τ
iterations. Clearly, choosing a large τ reduces the communi-
cation frequency, and is desired in distributed machine learn-
ing problems. In this section, we provide tighter analysis
for the minimum communication required for convergence.
We relax the convergence condition from γτL = O(1) into
two separate conditions γτL− = O(1) and γL+ = O(1).
The final convergence condition is summarized in Figure 2.
The area surrounded by the red dash line represents our new
convergence result.

6.1. Convergence with Linear Speedup

We first give a convergence result that is capable to demon-
strate linear speedup, but comes with an artifact in the con-
vergence condition. Due to the negative curvature, different
local weights diverge exponentially fast:

Lemma 6.1. Under Assumptions 3.1 and 4.3, for two dif-
ferent workers i ̸= j in Algorithm 2, we have:

1

2
E∥xi,t,l − xj,t,l∥2

≤γL−
l−1∑

l′=0

E∥xi,t,l′ − xj,t,l′∥2 + γ2lσ2

+
1

2
γ2

l−1∑

l′=0

E∥∇F (xi,t,l′)−∇F (xj,t,l′)∥2. (4)

We define the average for all workers in the form of expecta-

5



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

ln γ

ln τ

− lnL−− lnL+− ln(NL+)

γτL− = O(1) γ2τL2 = O(1) γL+ = O(1)

Converge
Theorem 6.4
Theorem 6.7

γτL2N = O(L+)

Converge
Theorem 6.7

Linear Speedup
Theorem 6.4

Figure 2: Different convergence conditions for local SGD.

tion: Ei[·] = 1
N

∑N
i=1(·). Then we have:

EiE∥xi,t,l − Ei[xi,t,l]∥2

≤2γL−
l−1∑

l′=0

EiE∥xi,t,l′ − Ei[xi,t,l′ ]∥2 + γ2l
N − 1

N
σ2

+ γ2
l−1∑

l′=0

EiE∥∇F (xi,t,l′)− Ei[∇F (xi,t,l′)]∥2. (5)

The above lemma shows that exponential diverging rate
is 2γL−, thus to make sure different local weights stay
close enough, we need to choose a small enough τ . Two
conditions about τ are introduced in the following lemma.
The first γ(τ−1) = O(1/L−) is only related to the negative
curvature, and effectively terminates exponential divergence
in its early stage. The second γ2L2(τ−1) = O(1) is related
to the Lipschitz smoothness constant L, which comes from
the fact that we are controlling gradient error instead of
parameter divergence. We introduce this technical condition
to make sure a gradient variance term can be controlled.
Details and proof can be found in Appendix F.1. This is an
artifact, and can be avoided by a different analysis as we
will show in Section 6.2.

Lemma 6.2. Under Assumptions 3.1, 4.1 and 4.3, if
γL−(τ − 1) ≤ 1

4 and γ2L2(τ − 1) ≤ 1
2 , then

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]−∇F (Ei[xi,t,l])∥2

≤γ2L2τ(τ − 1)
N − 1

N
σ2. (6)

With the help of upper smoothness, we derive the following
descent lemma for each outer loop.

Lemma 6.3. Under the same assumptions as Lemma 6.2
and Assumption 4.2, we have:

E[F (zt+1)− F (zt)]

≤− γ

2

τ−1∑

l=0

E∥∇F (Ei[xi,t,l])∥2

+
γ2τ

2N
(L+ + γL2(τ − 1)(N − 1))σ2

+
γ

2
(−1 + γL+)

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]∥2. (7)

The final convergence result is a direct consequence of the
above descent lemma.
Theorem 6.4. Under Assumptions 3.1 and 4.1 to 4.3, if
γL−(τ − 1) ≤ 1

4 , γL+ ≤ 1 and γ2L2(τ − 1) ≤ 1
2 , then

we have the following inequality for Algorithm 2:

Et,lE∥∇F (Ei[xi,t,l])∥2≤
2

Tτγ

(
F (z0)−min

z
F (z)

)
(8)

+
γ(L++γL2(τ−1)(N−1))

N
σ2.

Note that the coefficients for noise term contain two
parts. L+ comes from the positive curvature, and the
γL2(τ − 1)(N − 1) term represents the extra noise due
to the parameter aggregation. In order to achieve lin-
ear speed up, we need to make sure the second term
doesn’t overweight the first one. This essentially means
γL2(τ − 1) = O(L+/(N − 1)).

Since L = max(L−, L+), we know that linear speedup
condition is simultaneously decided by both negative and
positive curvatures. However, for modern deep learning, we
typically have L+ ≫ L−, thus L = L+, and whether linear
speedup is possible is mainly decided by positive curvature.

6



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Corollary 6.5. Under the same assumptions as Theorem 6.4,
for large enough K, we can always find appropriate γ =

O
(√

N
K

)
, τ = O

( √
K

LN3/2

)
, T = O

(
L
√
KN3/2

)
such

that

Et,lE∥∇F (Ei[xi,t,l])∥2=O
(
F (z0)−minz F (z) + Lσ2

√
NK

)
.

Although above linear speedup is ideal for scalability, it is
difficult to obtain in practice because the required commu-
nication frequency 1/τ needs to increase with the num-
ber of workers. When the communication overhead is
the bottleneck, τ might be enlarged to improve the over-
all performance. However, it sacrifices linear speedup. In
this case, our analysis gives tighter convergence conditions
γL−(τ − 1) = O(1) and γ2L2(τ − 1) = O(1). This
compares favorably than previous results which require
γL(τ − 1) = O(1).

6.2. Convergence without Linear Speedup

In this section, we show that γ2L2(τ − 1) = O(1) con-
dition in the above analysis is an artifact and violating it
doesn’t necessarily lead to divergence. To prove that, we
use lower smoothness to bound the difference in function
value, instead of divergence between local parameters as in
Lemma 6.1.

Lemma 6.6. Under Assumption 4.3, we have the following
inequality for xt,τ and zt generated from Algorithm 2:

F (zt+1)− F (zt) ≤Ei[F (xi,t,τ )− F (zt)]

+
L−

2
Ei∥xi,t,τ − Ei[xi,t,τ ]∥2 (9)

Based on the above lemma and gradient descent lemma F.1,
which only depends on positive curvature, we obtain the
following convergence result:

Theorem 6.7. Under Assumptions 3.1, 4.2 and 4.3, if
γ ≤ (L+ + L−τ)

−1, we have the following inequality for
Algorithm 2:

Et,l,i[E∥∇F (xi,t,l)∥2] ≤
2

Tτγ

(
F (z0)−min

z
F (z)

)

+ γ(L+ + L−)σ2 (10)

The above convergence condition effectively says γL+ =
O(1) and γL−τ = O(1). This is milder than Theorem 6.4
and completes the final picture in Figure 2.

7. Negative Curvature for Stochastic
Compositional Optimization

Previous sections assume bounded negative curvature as a
precondition, and show that if L− is smaller than L+, we

(a) With cross-entropy loss.

10 0 10 20 30 40
Eigenvlaue

10 7

10 5

10 3

10 1

101

D
en

si
ty

(b) With linear loss.

10 5 0 5 10
Eigenvlaue

10 7

10 5

10 3

10 1

101

D
en

si
ty

Figure 3: Estimated Hessian eigenspectrum for ResNet-18
at random initialization.

have a tighter convergence condition. In this section, we
instead ask how negative curvature looks like, and why we
can expect the negative curvature to have smaller magnitude
compared to positive curvature in practical deep learning.
Answering these questions clearly requires more structure
on the underlying loss function. Thus, we change our prob-
lem formulation to the following stochastic compositional
optimization:

min
x∈Rd

F (x) = Eξ[ϕξ(fξ(x))] (11)

We assume that for any ξ, ϕξ is convex and both fξ : Rd →
Rd′

and ϕξ : Rd′ → R are differentiable. In a typical
classification problem with deep neural network, ξ is the
mini-batch including both inputs and outputs, fξ(x) is the
output logits, and ϕξ is the cross-entropy loss w.r.t. ground
truth label.

This compositional formulation is enough to explain why
neural networks have imbalanced positive and negative cur-
vature. In order to show that, we compare the Hessian spec-
trum for randomly initialized ResNet-18 (He et al., 2016)
with cross-entropy loss and linear loss. As shown in Fig-
ure 3, convex cross-entropy loss induces a bias toward posi-
tive curvature. If linear loss is used, then the network has no
preference for positive or negative curvature at initialization.

To provide an intuitive explanation, we assume that1 both
ϕξ and fξ are deterministic, d′ = 1 and ϕ is twice-

1These assumptions are solely for illustration and we do not
rely on them in all theorems.

7



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

(a)

0 25 50 75 100 125 150 175 200
#epochs

10−5

10−4

10−3

10−2

10−1

100

101

0 5 10 15 20 25 30

10−3

10−1

√
F (x)

√
Eξ‖∇φξ‖2

−λmin(∇∇F (x))

(b)

0 100 200
#epochs

101

−
λ
m
in

(∇
∇
F

(x
))

/
√
E ξ
‖∇

φ
ξ
‖2

Figure 4: Dynamics of minimum Hessian eigenvalue, function value, and gradient during training.

differentiable, and the loss Hessian can be expressed as
∇2F = ∇f⊤ϕ′′∇f + ϕ′∇2f . Note that the first term is
always positive semidefinite, as we assume ϕ to be convex.
Therefore, the negative curvature can only stem from the
second term.

In the following sections, we study the magnitude of neg-
ative curvature and how it depends on network definition
and training. Following theorems solely focus on the bound
of negative curvature, because the upper bound does not
exhibit the same property and could potentially be much
larger. We start with a simple global lower bound of
negative curvature. We say a vector-valued function f
is Lf -Lipschitz smooth under operator norm if ∀x, x′ ∈
Rd, ∥∇f(x)−∇f(x′)∥op ≤ Lf∥x− x′∥.
Theorem 7.1. If for any ξ, the convex function ϕξ(y) is
Gϕ-Lipschitz continuous and fξ(x) is Lf -Lipschitz smooth
under operator norm, then F (x) satisfies lower smoothness
as in Assumption 4.3 with L− = GϕLf .

This theorem is not new (Davis et al., 2018), however, to
the best of our knowledge, it is the first time it is used to
explain why some networks have lighter negative curvature
than others.

7.1. Control negative curvature with special networks

Theorem 7.1 tells us that the smoother network has lighter
negative curvature. We verify that with two types of net-
works.

Wide network is known to be smoother (Allen-Zhu et al.,
2019). Liu et al. (2020) show that operator norm of Hessian
converges to 0 at infinite width limit. Thus, we increase
the number of channels for ResNet-18 and measure the
most severe negative curvature at initialization. It is shown
in Figure 5a that wider network enjoys lighter negative

(a) Wide network.

70 80 90 100 110 120 130
#channels

40

45

50

L

(b) Lazy network.

100 101

100

101

L

Figure 5: Estimated minimum negative curvature for differ-
ent networks.

curvature.

Another way to control negative curvature is related to the
lazy regime (Chizat et al., 2019). If fξ(x) is Lf -Lipschitz
smooth, for any γ > 0, we can define fξ,γ(x) = γfξ(

x
γ ).

It is easy to verify that fξ,γ(x) is also Lipschitz smooth
with Lf,γ = γ−1Lf . The numerical evaluation is shown in
Figure 5b.

8



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

7.2. Control Negative Curvature with First-order or
Zeroth-order Information

The unbalance of positive curvature and negative curvature
not only exists in initialization but also increase during the
neural network training as shown in Figure 6, indicating a
global lower bound on negative curvature is not enough.

0 25 50 75 100 125 150 175 200
#epochs

101

102

−λmax(∇∇F (x))/λmin(∇∇F (x))

Figure 6: Dynamics of ratio of minimum and maximum
Hessian eigenvalues.

In this section, we provide a novel local bound of nega-
tive curvature. We say a vector-valued function f is Lf -
Lipschitz smooth under Frobenius norm if for any x, x′ ∈
Rd, we have ∥∇f(x)−∇f(x′)∥Fro ≤ Lf∥x− x′∥.
Theorem 7.2. If for any ξ, fξ is Lf -Lipschitz smooth under
Frobenius norm, and ϕξ,fξ,F are all twice-differentiable,
then we have inequality (a) shown below. Moreover, if we
assume ϕξ to be Lϕ-Lipschitz smooth and miny ϕξ(y) = 0,
then we also have inequality (b).

∇∇F (x)
(a)
≽−Lf

√
Eξ

∥∥∇ϕξ(y)|y=fξ(x)

∥∥2I
(b)
≽−Lf

√
2LϕF (x)I.

The inequality (b) may not be tight, especially for cross-
entropy, where the positive curvature is light at low loss
region. Figure 4a shows that inequality (a) largely captures
the dynamics of the negative curvature. The change of ratio
shown in Figure 4b comes from changing smoothness of
neural network fξ during training.

8. Conclusion
We propose to use separate smoothness assumptions for
negative and positive curvatures in non-convex optimiza-
tion theory to highlight their different implications. Mini-
mum communication frequency is shown to only depend
on negative curvature. This leads us to tighter convergence
condition for Lookahead and Local SGD methods when
negative curvature and positive curvature are imbalanced.
We also show that for practical deep learning, due to the
compositional loss with convex outer function, negative and
positive curvatures are indeed imbalanced.

Acknowledgement
This work was partially supported by NSF IIS 1838627,
1837956, 1956002, 2211492, CNS 2213701, CCF 2217003,
DBI 2225775.

References
Allen-Zhu, Z. and Li, Y. NEON2: finding local minima via

first-order oracles. In Advances in Neural Information
Processing Systems, pp. 3720–3730, 2018.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019.

Alquier, P., Ridgway, J., and Chopin, N. On the properties
of variational approximations of gibbs posteriors. The
Journal of Machine Learning Research, 17(1):8374–8414,
2016.

Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-
local-sgd: Distributed sgd with quantization, sparsifica-
tion and local computations. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Burke, J. V. Descent methods for composite nondifferen-
tiable optimization problems. Mathematical Program-
ming, 33(3):260–279, 1985.

Chen, S., Garcia, A., and Shahrampour, S. On distributed
non-convex optimization: Projected subgradient method
for weakly convex problems in networks. IEEE Transac-
tions on Automatic Control, 2021.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Davis, D. and Drusvyatskiy, D. Stochastic model-based
minimization of weakly convex functions. SIAM Journal
on Optimization, 29(1):207–239, 2019.

Davis, D., Drusvyatskiy, D., MacPhee, K. J., and Paquette,
C. Subgradient methods for sharp weakly convex func-
tions. Journal of Optimization Theory and Applications,
179(3):962–982, 2018.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Duchi, J. Derivations for linear algebra and optimization.
Berkeley, California, 3(1):2325–5870, 2007.

Duchi, J. C. and Ruan, F. Stochastic methods for composite
and weakly convex optimization problems. SIAM Journal
on Optimization, 28(4):3229–3259, 2018.

9



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider: Near-
optimal non-convex optimization via stochastic path-
integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

Gargiani, M., Zanelli, A., Diehl, M., and Hutter, F.
On the promise of the stochastic generalized gauss-
newton method for training dnns. arXiv preprint
arXiv:2006.02409, 2020.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from sad-
dle points—online stochastic gradient for tensor decom-
position. In Conference on learning theory, pp. 797–842.
PMLR, 2015.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

Glasgow, M. R., Yuan, H., and Ma, T. Sharp bounds for fed-
erated averaging (local sgd) and continuous perspective.
In International Conference on Artificial Intelligence and
Statistics, pp. 9050–9090. PMLR, 2022.

Gorbunov, E., Hanzely, F., and Richtárik, P. Local sgd: Uni-
fied theory and new efficient methods. In International
Conference on Artificial Intelligence and Statistics, pp.
3556–3564. PMLR, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016.

Jiang, P. and Agrawal, G. A linear speedup analysis of
distributed deep learning with sparse and quantized com-
munication. Advances in Neural Information Processing
Systems, 31, 2018.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional Conference on Machine Learning, pp. 1724–1732.
PMLR, 2017.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143. PMLR, 2020.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
theory for local sgd on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020.

Khanduri, P., Sharma, P., Yang, H., Hong, M., Liu, J., Ra-
jawat, K., and Varshney, P. Stem: A stochastic two-sided
momentum algorithm achieving near-optimal sample and

communication complexities for federated learning. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Konečný, J., McMahan, H. B., Yu, F. X., Richtarik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. In NIPS
Workshop on Private Multi-Party Machine Learning,
2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, 2009.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Li, Z. Ssrgd: Simple stochastic recursive gradient descent
for escaping saddle points. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large
non-linear models: when and why the tangent kernel is
constant. Advances in Neural Information Processing
Systems, 33:15954–15964, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nesterov, Y. Modified gauss-newton scheme with worst-
case guarantees for its global performance. Optimization
Methods and Software, 22, 2007.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. In International Conference on
Learning Representations, 2021.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial
Intelligence and Statistics, pp. 2021–2031. PMLR, 2020.

Sagun, L., Bottou, L., and LeCun, Y. Eigenvalues of the
hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Bala-
subramanian, V. N. A deeper look at the hessian eigen-
spectrum of deep neural networks and its applications to
regularization. arXiv preprint arXiv:2012.03801, 2020.

Stich, S. U. Local SGD converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2019.

10



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Tran-Dinh, Q., Pham, N., and Nguyen, L. Stochastic gauss-
newton algorithms for nonconvex compositional opti-
mization. In International Conference on Machine Learn-
ing, pp. 9572–9582. PMLR, 2020.

Wang, J. and Joshi, G. Cooperative sgd: A unified frame-
work for the design and analysis of local-update sgd algo-
rithms. Journal of Machine Learning Research, 22:1–50,
2021.

Wang, J., Tantia, V., Ballas, N., and Rabbat, M. Slowmo:
Improving communication-efficient distributed sgd with
slow momentum. In International Conference on Learn-
ing Representations, 2020a.

Wang, J., Tantia, V., Ballas, N., and Rabbat, M. Looka-
head converges to stationary points of smooth non-convex
functions. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8604–8608. IEEE, 2020b.

Woodworth, B. E., Patel, K. K., and Srebro, N. Minibatch
vs local sgd for heterogeneous distributed learning. Ad-
vances in Neural Information Processing Systems, 33:
6281–6292, 2020.

Xie, C., Koyejo, O., Gupta, I., and Lin, H. Local adaalter:
Communication-efficient stochastic gradient descent with
adaptive learning rates. arXiv preprint arXiv:1911.09030,
2019.

Xu, Y., Jin, R., and Yang, T. First-order stochastic algo-
rithms for escaping from saddle points in almost linear
time. Advances in neural information processing systems,
31, 2018.

Yang, H., Fang, M., and Liu, J. Achieving linear speedup
with partial worker participation in non-IID federated
learning. In International Conference on Learning Rep-
resentations, 2021.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Py-
hessian: Neural networks through the lens of the hessian.
In 2020 IEEE international conference on big data (Big
data), pp. 581–590. IEEE, 2020.

Yu, H., Jin, R., and Yang, S. On the linear speedup analysis
of communication efficient momentum sgd for distributed
non-convex optimization. In International Conference on
Machine Learning, pp. 7184–7193. PMLR, 2019a.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 5693–5700, 2019b.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. Lookahead
optimizer: k steps forward, 1 step back. Advances in
Neural Information Processing Systems, 32, 2019.

Zhou, D., Xu, P., and Gu, Q. Stochastic nested variance re-
duction for nonconvex optimization. Advances in Neural
Information Processing Systems, 31, 2018.

Zhou, P., Yan, H., Yuan, X., Feng, J., and Yan, S. Towards
understanding why lookahead generalizes better than sgd
and beyond. Advances in Neural Information Processing
Systems, 34, 2021.

Zhu, Z., Ding, T., Robinson, D., Tsakiris, M., and Vidal, R.
A linearly convergent method for non-smooth non-convex
optimization on the grassmannian with applications to
robust subspace and dictionary learning. Advances in
Neural Information Processing Systems, 32, 2019.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. Paral-
lelized stochastic gradient descent. Advances in neural
information processing systems, 23, 2010.

11



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

A. Comparison to related works
Chen et al. (2021) generalize convergence of the stochastic subgradient method for the non-smooth weakly convex problem
(Davis et al., 2018; Davis & Drusvyatskiy, 2019) into distributed setting. They assume the norm of subgradient to be
bounded as ∥∂F∥ ≤ G, which leads to following significant differences when compared to our analysis.

First, they use bounded gradient norm to bypass exponential divergence. Due to this assumption, even without com-
munication, two local copies only diverge in a constant speed d

dt∥∆t∥ = d
dt∥xt − x′

t∥ ≤ 2G, instead of exponentially
d
dt∥∆t∥ ≤ L−∥∆t∥. This makes their proof easier to establish, as no matter how frequent the communication is, the
divergence between local copies are always bounded linearly by the step size, as shown in Lemma II.6 of Chen et al. (2021).

More importantly, this assumption blurs the effect of negative curvature. The main take away for this paper is that minimum
communication complexity is controlled by negative curvature. This claim comes from a delicate balance between the
convergence of local optimization and divergence among multiple parameter copies. However, they simplify the divergence
between different parameter copies dramatically using bounded gradient norm assumption, thus cannot show the connection
between negative curvature and communication requirement.

Li et al. (2020) consider federated learning under a proximal operator formulation. For each client, the following auxiliary
optimization problem is approximated locally:

minFk(z; zt) = Fk(z) +
µ

2
∥z − zt∥2.

The distance penalty term µ restricts the local updates to be closer to the global weights. A separate Hessian lower bound is
also introduced in their paper but due to a different reason than our paper, i.e. to ensure the above optimization is strongly
convex such that the solution exists and is unique.

More importantly, the analysis of their paper is not tight and failed to show the distinct effects of positive and negative
curvature. Specifically, their convergence condition in Theorem 4 (Li et al., 2020) is dominated by L instead of L−. One
consequence is that, even in convex case, µ ≈ 0 is not acceptable, as shown in Corollary 7 (Li et al., 2020). Instead, our
analysis highlights the dependence on L−, and gives tighter convergence condition. We show that the smaller L− is, the less
communication is required. In convex case, our theory holds for arbitrarily large horizon s = γτ .

B. Additional illustration for Section 4

upper bound based on L−

target function

linear approximation

Figure B.1: Upper bound based on lower smoothness.

12



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

0 2 4 6
time

10−1

100

‖x
−
x
′ ‖

(a)

gradient flow

(b)

Figure B.2: Exponential divergence for gradient flow on nonconvex objective function.

0 2 4 6
time

10−2

10−1

100

‖x
−
x
′ ‖

(a)

gradient flow

(b)

Figure B.3: Similar to Figure B.2 but with different initialization.

13



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

C. Additional algorithm

Algorithm 3 Lookahead Method with Variable Step Size and Synchronization Period

Input: Initial point z0, outer iteration number T > 0, outer step size α > 0. For each iteration 0 ≤ t ≤ T − 1, the inner
iteration number τt > 0 and inner step size γt > 0.
for t = 0 to T − 1 do
xt,0 = zt
for l = 0 to τt − 1 do

Sample ξt,l ∼ D.
xt,l+1 = xt,l − γt∇Fξt,l(xt,l)

end for
zt+1 = zt + α(xt,τt − zt)

end for
Output: zT .

D. Basic lemmas
Lemma D.1. Under Assumptions 4.2 and 4.3, for any x, y ∈ Rn, we have

−L−

2
∥y − x∥2 ≤ F (y)− F (x)− ⟨∇F (x), y − x⟩ ≤ L+

2
∥y − x∥2. (12)

Proof of Lemma D.1. Since F (x) is differentiable, we have

F (y)− F (x) =

∫ 1

0

⟨∇F (x+ s(y − x)), y − x⟩ds. (13)

We can apply the upper smoothness as follows,

F (y)− F (x)− ⟨∇F (x), y − x⟩ =
∫ 1

0

1

s
⟨∇F (x+ s(y − x))−∇F (x), s(y − x)⟩ds (14)

≤
∫ 1

0

1

s
L+∥s(y − x)∥2ds (15)

=
1

2
L+∥y − x∥2. (16)

The lower smoothness condition can be used similarly.

F (y)− F (x)− ⟨∇F (x), y − x⟩ =
∫ 1

0

1

s
⟨∇F (x+ s(y − x))−∇F (x), s(y − x)⟩ds (17)

≥−
∫ 1

0

1

s
L−∥s(y − x)∥2ds (18)

=− 1

2
L−∥y − x∥2. (19)

Proof of Lemma 4.4. We first relax Lemma D.1 with L+, L− ≤ L, such that for all x, y ∈ Rd, we have

−L

2
∥y − x∥2 ≤ F (y)− F (x)− ⟨∇F (x), y − x⟩ ≤ L

2
∥y − x∥2. (20)

We now define ∆g = ∇F (y)−∇F (x), and ∆x = y − x. It is sufficient to show that ∥∆g∥ ≤ L∥∆x∥.

14



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

With x̄ = x+y
2 , we apply Eq. (20) for x̄+ ε∆g and x̄− ε∆g based on linear model at x:

F (x̄+∆g)− F (x)− ⟨∇F (x),
∆x

2
+ ε∆g⟩ ≤ L

2

∥∥∥∥
∆x

2
+ ε∆g

∥∥∥∥
2

,

−
(
F (x̄−∆g)− F (x)− ⟨∇F (x),

∆x

2
− ε∆g⟩

)
≤ L

2

∥∥∥∥
∆x

2
− ε∆g

∥∥∥∥
2

.

Adding above two inequality gives

F (x̄+∆g)− F (x̄−∆g)− 2ε⟨∇F (x),∆g⟩ ≤L

2

∥∥∥∥
∆x

2
+ ε∆g

∥∥∥∥
2

+
L

2

∥∥∥∥
∆x

2
− ε∆g

∥∥∥∥
2

=L

(∥∥∥∥
∆x

2

∥∥∥∥
2

+ ε2∥∆g∥2
)

Similarly, we apply Eq. (20) for x̄+ ε∆g and x̄− ε∆g based on linear model at y:

F (x̄−∆g)− F (y)− ⟨∇F (y),−∆x

2
− ε∆g⟩ ≤ L

2

∥∥∥∥
∆x

2
+ ε∆g

∥∥∥∥
2

,

−
(
F (x̄+∆g)− F (y)− ⟨∇F (y),−∆x

2
+ ε∆g⟩

)
≤ L

2

∥∥∥∥
∆x

2
− ε∆g

∥∥∥∥
2

.

Adding above two inequality gives

F (x̄−∆g)− F (x̄+∆g) + 2ε⟨∇F (y),∆g⟩ ≤L

(∥∥∥∥
∆x

2

∥∥∥∥
2

+ ε2∥∆g∥2
)

Adding with inequality from linear model at x, we obtain

2ε∥∆g∥2 = 2ε⟨∇F (y)−∇F (x),∆g⟩ ≤2L

(∥∥∥∥
∆x

2

∥∥∥∥
2

+ ε2∥∆g∥2
)

Letting ε = 1
2L , we obtain

1

L
∥∆g∥2 ≤ L

2
∥∆x∥2 + 1

2L
∥∆g∥2

This implies ∥∆g∥ ≤ L∥∆x∥.

Lemma D.2. For a differentiable function F (x), if for any x, y ∈ Rd, we have

−L−

2
∥y − x∥2 ≤ F (y)− F (x)− ⟨∇F (x), y − x⟩ ≤ L+

2
∥y − x∥2,

then we have

⟨∇F (y)−∇F (x), y − x⟩ ≤ L+∥y − x∥2

⟨∇F (y)−∇F (x), y − x⟩ ≥−L−∥y − x∥2.

Proof of Lemma D.2. We first define F−(x) = F (x) + L−

2 ∥x∥2. Then we have

F−(y)− F−(x)− ⟨∇F−(x), y − x⟩

=F (y)− F (x)− ⟨∇F (x), y − x⟩+ L−

2
∥y∥2 − L−

2
∥x∥2 − L−⟨x, y − x⟩

=F (y)− F (x)− ⟨∇F (x), y − x⟩+ L−

2
∥y − x∥2

≥0.

15



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Thus F−(x) is a convex function and we have

⟨∇F−(y)−∇F−(x), y − x⟩ ≥ 0. (21)

By substituting the definition of F−(x), we obtain

⟨∇F (y)−∇F (x), y − x⟩ ≥ −L−∥y − x∥2.

The upper smoothness can be proved similarly with a slightly different convex auxiliary function F+(x) = L
2 ∥x∥

2 −
F (x).

Lemma D.3. If a vector-valued function f : Rd → Rd′
is differentiable and L-Lipschitz smooth under operator norm, then

we have

∥f(x′)− f(x)− ⟨∇f(x), x′ − x⟩∥ ≤ L

2
∥x′ − x∥2.

Proof of Lemma D.3. Since f is differentiable, we have

f(x′)− f(x) =

∫ 1

0

⟨∇f(x+ s(x′ − x)), x′ − x⟩ds,

f(x′)− f(x)− ⟨∇f(x), x′ − x⟩ =
∫ 1

0

⟨∇f(x+ s(x′ − x))−∇f(x), x′ − x⟩ds,

∥f(x′)− f(x)− ⟨∇f(x), x′ − x⟩∥ =

∥∥∥∥
∫ 1

0

⟨∇f(x+ s(x′ − x))−∇f(x), x′ − x⟩ds
∥∥∥∥

≤
∫ 1

0

∥⟨∇f(x+ s(x′ − x))−∇f(x), x′ − x⟩∥ds

≤
∫ 1

0

∥∇f(x+ s(x′ − x))−∇f(x)∥op∥x′ − x∥ds

≤
∫ 1

0

Ls∥x′ − x∥2ds = L

2
∥x′ − x∥2.

Lemma D.4. For a random variable ξ, a vector vξ ∈ Rd′
and a series of symmetric matrices Aξ,i, we have


Eξ

d′∑

i=1

vξ,iAξ,i




2

≼


Eξ

d′∑

i=1

A2
ξ,i




Eξ

d′∑

i=1

v2ξ,i


 .

Proof of Lemma D.4. We first define v̂ξ,i =
vξ,i√

Eξ

∑d′
i=1 v2

ξ,i

. Then we have

0 ≼ Eξ

d′∑

i=1


Aξ,i − v̂ξ,iEθ

d′∑

j=1

Aθ,j v̂θ,j




2

= Eξ

d′∑

i=1

A2
ξ,i −


Eξ

d′∑

i=1

v̂ξ,iAξ,i




2

We can multiply both side with Eξ

∑d′

i=1 v
2
ξ,i and reorder the terms to obtain the final Cauchy–Schwarz inequality.

Lemma D.5. If a vector-valued function f : Rd → Rd′
is twice-differentiable and L-Lipschitz smooth under Frobenius

norm, then we have

d′∑

i=1

(∇∇fi)
2 ≼ L2I.

16



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Proof of Lemma D.5. We first define A =
∑d′

k=1(∇∇fk)
2 and it follows

Ai,i′ =




d′∑

k=1

(∇∇fk)
2




i,i′

=
d′∑

k=1

d∑

j=1

∇xi
∇xj

fk∇xj
∇x′

i
fk

In order to prove A ≼ L2I , we just need to show that for every v ∈ Rd, vTAv =
∑d

i,i′=1 vivi′Ai,i′ ≤ L2. We will prove
that by the fact that f is L-Lipschitz smooth under Frobenius norm:

∥∇f(x+ sv)−∇f(x)∥Fro
s

≤ L.

By taking limit at s → 0, we obtain
∥∥∥∥∥
∑

i

vi∇xi
∇f

∥∥∥∥∥
Fro

≤ L.

We expand the definition of Frobenius norm to obtain

∥∥∥∥∥
∑

i

vi∇xi
∇f

∥∥∥∥∥

2

Fro

=
d′∑

k=1

d∑

j=1

(∑

i

vi∇xi
∇xj

fk

)2

=
d∑

i,i′=1

vivi′Ai,i′ ≤ L2.

Notice the last equality use the fact that Hessian is symmetric: ∇x′
i
∇xjf = ∇xj∇x′

i
f .

E. Lookahead
Proof of Lemma 5.1. We define a linear approximation of original function F (y;x) = F (x) + ⟨∇F (x), y − x⟩. According
to Lemma D.1, we have

F (y)− F (y;x) ≥ −L−

2
∥y − x∥2. (22)

We use the combine linearity of F (y;x) and above inequality as follows,

F (zt+1) =F (zt+1; zt+1)

=αF (xt,τ ; zt+1) + (1− α)F (zt; zt+1)

≤α

(
F (xt,τ ) +

L−

2
∥xt,τ − zt+1∥2

)
+ (1− α)

(
F (zt) + +

L−

2
∥zt − zt−1∥2

)

=α (F (xt,τ )− F (zt)) +
L−

2

[
α(1− α)2 + (1− α)α2

]
∥xt,τ − zt∥2 + F (zt)

=α (F (xt,τ )− F (zt)) +
L−

2
α(1− α)∥xt,τ − zt∥2 + F (zt)

Proof of Lemma 5.2. According to Lemma D.1, we have

F (xt,l+1)− F (xt,l) ≤⟨∇F (xt,l), xt,l+1 − xt,l⟩+
L+

2
∥xt,l+1 − xt,l∥2

=− γ⟨∇F (xt,l),∇Fξt,l(xt,l)⟩+
γ2L+

2

∥∥∇Fξt,l(xt,l)
∥∥2

17



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

E[F (xt,l+1)− F (xt,l)] ≤− γE⟨∇F (xt,l),∇Fξt,l(xt,l)⟩+
γ2L+

2
E
∥∥∇Fξt,l(xt,l)

∥∥2

=− γE∥∇F (xt,l)∥2 +
γ2L+

2
E
∥∥∇Fξt,l(xt,l)

∥∥2

≤− γE∥∇F (xt,l)∥2 +
γ2L+

2

(
E∥∇F (xt,l)∥2 + σ2

)

Proof of Theorem 5.3. By Lemma 5.2, we have

E[F (xt,τ )− F (zt)] ≤− γ(1− γL+

2
)
τ−1∑

l=0

E∥∇F (xt,l)∥2 +
γ2L+τ

2
σ2.

In order to apply Lemma 5.1, we first control E∥xt,τ − zt∥2 as follows

E∥xt,τ − zt∥2 =E

∥∥∥∥∥−
τ−1∑

l=0

γ∇Fξt,l(xt,l)

∥∥∥∥∥

2

≤ γ2τ
τ−1∑

l=0

E
∥∥∇Fξt,l(xt,l)

∥∥2

≤γ2τ
τ−1∑

l=0

E∥∇F (xt,l)∥2 + γ2τσ2

By Lemma 5.1, we have

E[F (zt+1)− F (zt)] ≤αE[F (xt,τ )− F (zt)] +
L−

2
α(1− α)E∥xt,τ − zt∥2

≤− αγ(1− γL+

2
)

τ−1∑

l=0

E∥∇F (xt,l)∥2 +
αγ2L+τ

2
σ2

+
L−

2
α(1− α)γ2τ

τ−1∑

l=0

E∥∇F (xt,l)∥2 +
L−

2
α(1− α)γ2τσ2

=− αγ(1− γL+

2
− γ(1− α)L−τ

2
)

τ−1∑

l=0

E∥∇F (xt,l)∥2

+
αγ2τ

2
(L+ + (1− α)L−)σ2

If γ(L+ + (1− α)L−τ) ≤ 1, we have

E[F (zt+1)− F (zt)] ≤− αγ

2

τ−1∑

l=0

E∥∇F (xt,l)∥2 +
αγ2τ

2
(L+ + (1− α)L−)σ2 (23)

E[F (zT )− F (z0)] ≤− αγ

2

T−1∑

t=0

τ−1∑

l=0

E∥∇F (xt,l)∥2 +
αγ2Tτ

2
(L+ + (1− α)L−)σ2

1

Tτ

T−1∑

t=0

τ−1∑

l=0

E∥∇F (xt,l)∥2 ≤ 2

αTτγ

(
F (z0)−min

z
F (z)

)
+ (L+ + (1− α)L−)γσ2

Proof of Corollary 5.5. We may choose τ = ⌈
√
K⌉, γ = s

τ , and T = ⌊K
τ ⌋. In order to apply Theorem 5.3, we only need to

ensure γL+ + (1− α)L−s ≤ 1. This can be ensured by letting K ≥ K0 =
(

sL+

1−s(1−α)L−

)2

18



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

E.1. Diminishing learning rate with non-diminishing horizon

Proof of Theorem 5.6. Based on a similar argument as Theorem 5.3, we can reach following inequality:

E[F (zt+1)− F (zt)] ≤− αγt
2

τt−1∑

l=0

E∥∇F (xt,l)∥2 +
αγ2

t τt
2

(L+ + (1− α)L−)σ2

=− αγtτt
2

1

τt

τt−1∑

l=0

E∥∇F (xt,l)∥2 +
αγtst
2

(L+ + (1− α)L−)σ2

=− αst
2

ElE∥∇F (xt,l)∥2 +
αγtst
2

(L+ + (1− α)L−)σ2

The first line in above inequality can simply obtained from Eq. (23) by changing γ and τ into γt and τt.

Then we compute the telescoping sum:

E[F (zT )− F (z0)] ≤−
T−1∑

t=0

αst
2

ElE∥∇F (xt,l)∥2 +
α
∑T−1

t=0 γtst
2

(L+ + (1− α)L−)σ2

Recall that F (zT )− F (z0) ≥ min
z

F (z)− F (z0). After reorder the terms, we have

αT

2
Et[stElE∥∇F (xt,l)∥2] ≤

(
F (z0)−min

z
F (z)

)
+

αT

2
Et[stγt](L

+ + (1− α)L−)σ2.

Dividing αT
2 from both side of the above inequality gives the final result.

Proof of Corollary 5.7. It is easy to check that γtL+ + (1 − α)L−st =
1+ts(1−α)L−

1+t . Since s(1 − α)L− < 1, we have
γtL

+ + (1− α)L−st ≤ 1 for all t. Therefore Theorem 5.6 applies. We just need to give to control Et[γt] based on upper
bound for harmonic series

Et[γt] =
1

T

T−1∑

t=0

γt =
1− s(1− α)L−

L+

1

T

T−1∑

t=0

1

1 + t
≤ 1− s(1− α)L−

L+

ln(1 + T )

T
.

Proof of Corollary 5.8. First, we define the total horizon as ST =
∑T−1

t=0 st. Then, we have

1

ST

T−1∑

t=0

stElE∥∇F (xt,l)∥2 ≥ min
t

ElE∥∇F (xt,l)∥2 ≥ min
t,l

E∥∇F (xt,l)∥2.

Due to Theorem 5.6, we have

1

ST

T−1∑

t=0

stElE∥∇F (xt,l)∥2 ≤ 2

αST

(
F (z0)−min

z
F (z)

)
+

∑T−1
t=0 stγt
ST

(L+ + (1− α)L−)σ2

According to our assumptions, the RHS of above inequality converge to 0 at limit of T → ∞.

E.2. Quadratic case: Lookahead further to generalize better

Proof of Lemma 5.9. First, we note that the gradient descent for quadratic loss can be solve exactly:

d(xt,l − x∗)
dl

= −Λ(xt,l − x∗),

xt,l − x∗ = exp(−Λl)(xt,0 − x∗).

19



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Let C = exp(−Λτ), we then obtain the update rule for zt:

zt+1 = (αC + (1− α)I)zt + α(1− C)x∗.

For simplicity, we define A = αC + (1− α)I , B = α(1− C)x∗.

If zt ∼ N (µt,Σt), then we have

µt+1 = E[zt+1] = AE[zt] +B = Aµt +B,

Σt+1 = E[(zt+1 − µt+1)(zt+1 − µt+1)
T ] = AΣtA.

Based on µ0 = 0, Σ0 = I , we now derive the formula for µt and Σt:

µt = Atµ0 +
t−1∑

t′=0

At′B = (I −At)(I −A)−1B = (I −At)x∗

Σt = AtΣ0A
t = A2t

Notice in the first line, we use the fact (I −A)−1 = (α(I − C))−1.

Proof of Theorem 5.11. According to Duchi (2007), we can compute KL divergence as follows:

KL(N (µT ,ΣT )∥N (0, I)) =
1

2

(
∥µT ∥2 +TrΣT − ln |ΣT | − d

)

Let λi be eigenvalues of Λ and x∗
i be the projection of x∗ along eigenvectors of Λ, we have

∥µT ∥2 =
d∑

i=1

x∗
i
2(1− ((1− α) + α exp(−λiτ))

T ),

TrΣT − ln |ΣT | =
d∑

i=1

(
((1− α) + α exp(−λiτ))

2T − 2T ln(((1− α) + α exp(−λiτ)))
)
.

Notice both values above are functions of ((1 − α) + α exp(−λiτ))
T , and 1 − x, x2 − lnx2 are strictly monotonically

decreasing with 0 < x < 1, we only need to prove that ((1 − α) + α exp(−λiτ))
T is strictly monotonically decreasing

with respect to T .

((1− α) + α exp(−λiτ))
T = ((1− α)1

1
T + α(exp(−λiK))

1
T )T

Since exp(−λiK) < 1, the above Hölder mean strictly monotonically decrease with respect to T .

F. Local SGD
F.1. Convergence with linear speedup

Proof of Lemma 6.1. We define ui,j,t,l = xi,t,l − xj,t,l. Then we have

⟨ui,j,t,l+1 − ui,j,t,l, ui,j,t,l⟩ =
1

2

[
∥ui,j,t,l+1∥2 − ∥ui,j,t,l∥2 − ∥ui,j,t,l+1 − ui,j,t,l∥2

]

=
1

2

[
∥ui,j,t,l+1∥2 − ∥ui,j,t,l∥2

]

− 1

2
γ2
∥∥∇Fξi,t,l(xi,t,l)−∇Fξj,t,l(xj,t,l)

∥∥2

Due to Assumption 3.1, we have

E⟨ui,j,t,l+1 − ui,j,t,l, ui,j,t,l⟩ ≥
1

2

[
E∥ui,j,t,l+1∥2 − E∥ui,j,t,l∥2

]

− 1

2
γ2E∥∇F (xi,t,l)−∇F (xj,t,l)∥2 − γ2σ2(1− δi,j)

20



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

The term δi,j above equals 1 if and only if i = j, otherwise is 0.

By noting ui,j,t,0 = 0, we have following telescoping sum

l−1∑

l′=0

E⟨ui,j,t,l′+1 − ui,j,t,l′ , ui,j,t,l′⟩ ≥
1

2
E∥ui,j,t,l∥2 −

1

2
γ2

l−1∑

l′=0

E∥∇F (xi,t,l′)−∇F (xj,t,l′)∥2

− γ2lσ2(1− δi,j) (24)

On the other hand, based on Assumption 4.3, we have

E⟨ui,j,t,l+1 − ui,j,t,l, ui,j,t,l⟩ =− γE⟨∇Fξi,t,l(xi,t,l)−∇Fξj,t,l(xj,t,l), xi,t,l − xj,t,l⟩
=− γE⟨∇F (xi,t,l)−∇F (xj,t,l), xi,t,l − xj,t,l⟩
≤γL−E∥xi,t,l − xj,t,l∥2 = γL−E∥ui,j,t,l∥2 (25)

Substituting Eq. (25) into Eq. (24) gives

1

2
E∥ui,j,t,l∥2 ≤γL−

l−1∑

l′=0

E∥ui,j,t,l′∥2

+
1

2
γ2

l−1∑

l′=0

E∥∇F (xi,t,l′)−∇F (xj,t,l′)∥2 + γ2lσ2(1− δi,j)

This proves Eq. (4). By taking expectation Ei,j [·] for above inequality and substituting following terms, we obtain Eq. (5).

1

2
Ei,j∥ui,j,t,l∥2 =

1

2
Ei,j∥xi,t,l − xj,t,l∥2 = Ei∥xi,t,l − Ei[xi,t,l]∥2,

1

2
Ei,j∥∇F (xi,t,l)−∇F (xj,t,l)∥2 = Ei∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2,

Ei,j [δi,j ] =
1

N
.

Proof of Lemma 6.2.

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]−∇F (Ei[xi,t,l])∥2

=
τ−1∑

l=0

EEi∥∇F (xi,t,l)−∇F (Ei[xi,t,l])∥2 −
τ−1∑

l=0

EEi∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2

≤L2
τ−1∑

l=0

EEi∥xi,t,l − Ei[xi,t,l]∥2 −
τ−1∑

l=0

EEi∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2 (26)

21



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

We now control the first term based on Lemma 6.1.

τ−1∑

l=0

EiE∥xi,t,l − Ei[xi,t,l]∥2

≤2γL−
τ−1∑

l=0

l−1∑

l′=0

EiE∥xi,t,l′ − Ei[xi,t,l′ ]∥2

+ γ2
τ−1∑

l=0

l−1∑

l′=0

EiE∥∇F (xi,t,l′)− Ei[∇F (xi,t,l′)]∥2 + γ2
τ−1∑

l=0

l
N − 1

N
σ2

≤2γL−(τ − 1)
τ−1∑

l=0

EiE∥xi,t,l − Ei[xi,t,l]∥2

+ γ2(τ − 1)
τ−1∑

l=0

EiE∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2 + γ2 τ(τ − 1)

2

N − 1

N
σ2

If 2γL−(τ − 1) ≤ 1
2 , we have

τ−1∑

l=0

EiE∥xi,t,l − Ei[xi,t,l]∥2 ≤2γ2(τ − 1)
τ−1∑

l=0

EiE∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2

+ γ2τ(τ − 1)
N − 1

N
σ2

Substituting it into Eq. (26) give us

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]−∇F (Ei[xi,t,l])∥2

≤γ2L2τ(τ − 1)
N − 1

N
σ2 + (−1 + 2γ2L2(τ − 1))

τ−1∑

l=0

EEi∥∇F (xi,t,l)− Ei[∇F (xi,t,l)]∥2

According to our assumption, we have 2γ2L2(τ − 1) ≤ 1. therefore, the second term in above inequality can be dropped.
This proves Eq. (6).

Proof of Lemma 6.3. Based on Assumption 4.2, we commence with the gradient descent lemma or Lemma D.1:

E[F (Ei[xi,t,l+1])− F (Ei[xi,t,l])] ≤E⟨∇F (Ei[xi,t,l]),Ei[xi,t,l+1 − xi,t,l]⟩

+
L+

2
E∥Ei[xi,t,l+1 − xi,t,l]∥2

=− γE⟨∇F (Ei[xi,t,l]),Ei[∇Fξi,t,l(xi,t,l)]⟩

+
γ2L+

2
E
∥∥Ei[∇Fξi,t,l(xi,t,l)]

∥∥2

≤− γE⟨∇F (Ei[xi,t,l]),Ei[∇F (xi,t,l)]⟩

+
γ2L+

2
E∥Ei[∇F (xi,t,l)]∥2 +

γ2L+

2N
σ2.

The last inequality follows the fact that ξi,t,l and ξj,t,l are independent for i ̸= j. We next apply following substitution:

E⟨∇F (Ei[xi,t,l]),Ei[∇F (xi,t,l)]⟩ =
1

2
E∥∇F (Ei[xi,t,l])∥2 +

1

2
E∥Ei[∇F (xi,t,l)]∥2

− 1

2
E∥Ei[∇F (xi,t,l)]−∇F (Ei[xi,t,l])∥2.

22



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Computing the telescoping sum, we have

E[F (zt+1)− F (zt)] =E[F (Ei[xi,t,τ ])− F (Ei[xi,t,0])]

≤− γ

2

τ−1∑

l=0

E∥∇F (Ei[xi,t,l])∥2 +
γ2L+τ

2N
σ2

+
γ

2
(−1 + γL+)

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]∥2

+
γ

2

τ−1∑

l=0

E∥Ei[∇F (xi,t,l)]−∇F (Ei[xi,t,l])∥2

By applying Lemma 6.2, we obtain Eq. (7).

Proof of Theorem 6.4. Actually, Eq. (8) is an immediate consequence of Eq. (7) by telescoping sum and noting that
−1 + γL+ ≤ 1, F (zt) > min

z
F (z).

Proof of Corollary 6.5. Given that γ = O
(√

N
K

)
, τ = O

( √
K

LN3/2

)
, T = O

(
L
√
KN3/2

)
, it is easy to check that for

K = Ω
(
max

(
L2

N , L+2
N
))

, we have γL−(τ − 1) = O
(

L−

LN

)
= O(1), γL+ = O(1) and γ2L2(τ − 1) = O(1).

Therefore, with appropriate constant, Theorem 6.4 applies.

F.2. Convergence without linear speedup

Proof of Lemma 6.6. According to Lemma D.1, for each worker i, we have

F (xi,t,τ ) ≥ F (Ei[xi,t,τ ]) + ⟨∇F (Ei[xi,t,τ ]), xi,t,τ − Ei[xi,t,τ ]⟩ −
L−

2
∥xi,t,τ − Ei[xi,t,τ ]∥2

Taking average Ei[·] for above inequality gives

Ei[F (xi,t,τ )] ≥ F (Ei[xi,t,τ ])−
L−

2
Ei∥xi,t,τ − Ei[xi,t,τ ]∥2

By reordering terms and substituting Ei[xi,t,τ ] = zt+1, we obtain Eq. (9).

Lemma F.1. Under Assumptions 3.1 and 4.2, we have following inequality for any l ≥ 0 and xt,l generated from
Algorithm 2:

E[F (xi,t,l+1)− F (xi,t,l)] ≤ −γ(1− γL+

2
)E∥∇F (xi,t,l)∥2 +

γ2L+

2
σ2 (27)

Proof of Lemma F.1. According to Lemma D.1, we have

F (xi,t,l+1)− F (xi,t,l) ≤⟨∇F (xi,t,l), xi,t,l+1 − xi,t,l⟩+
L+

2
∥xi,t,l+1 − xi,t,l∥2

=− γ⟨∇F (xi,t,l),∇Fξi,t,l(xi,t,l)⟩+
γ2L+

2

∥∥∇Fξi,t,l(xi,t,l)
∥∥2

E[F (xi,t,l+1)− F (xi,t,l)] ≤− γE⟨∇F (xi,t,l),∇Fξi,t,l(xi,t,l)⟩+
γ2L+

2
E
∥∥∇Fξi,t,l(xi,t,l)

∥∥2

=− γE∥∇F (xi,t,l)∥2 +
γ2L+

2
E
∥∥∇Fξi,t,l(xi,t,l)

∥∥2

≤− γE∥∇F (xi,t,l)∥2 +
γ2L+

2

(
E∥∇F (xi,t,l)∥2 + σ2

)

23



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Proof of Theorem 6.7. By Lemma F.1, we have

E[F (xi,t,τ )− F (zt)] ≤− γ(1− γL+

2
)
τ−1∑

l=0

E∥∇F (xi,t,l)∥2 +
γ2L+τ

2
σ2.

In order to apply Lemma 6.6, we first control E∥xi,t,τ − zt∥2 as follows

EiE[∥xi,t,τ − Ei[xi,t,τ ]∥2] ≤EiE[∥xi,t,τ − zt∥2] = EiE

∥∥∥∥∥−
τ−1∑

l=0

γ∇Fξi,t,l(xi,t,l)

∥∥∥∥∥

2

≤γ2τ
τ−1∑

l=0

EiE
∥∥∇Fξi,t,l(xi,t,l)

∥∥2

≤γ2τ
τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 + γ2τσ2

By Lemma 6.6, we have

E[F (zt+1)− F (zt)] ≤Ei[F (xi,t,τ )− F (zt)] +
L−

2
Ei∥xi,t,τ − Ei[xi,t,τ ]∥2

≤− γ(1− γL+

2
)
τ−1∑

l=0

E∥∇F (xi,t,l)∥2 +
γ2L+τ

2
σ2

+
L−

2
γ2τ

τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 +
L−

2
γ2τσ2

=− γ(1− γL+

2
− γL−τ

2
)
τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 +
γ2τ

2
(L+ + L−)σ2

If γ(L+ + L−τ) ≤ 1, we have

E[F (zt+1)− F (zt)] ≤− γ

2

τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 +
γ2τ

2
(L+ + L−)σ2

E[F (zT )− F (z0)] ≤− γ

2

T−1∑

t=0

τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 +
γ2Tτ

2
(L+ + L−)σ2

1

Tτ

T−1∑

t=0

τ−1∑

l=0

EiE∥∇F (xi,t,l)∥2 ≤ 2

Tτγ

(
F (z0)−min

z
F (z)

)
+ γ(L+ + L−)σ2

G. Negative curvature for stochastic compositional optimization
Proof of Theorem 7.1. We will show that for any ξ, ϕξ(fξ(x)) satisfies lower smoothness with L− = GϕLf .

We define e = fξ(x
′) − fξ(x) − ⟨∇fξ(x), x

′ − x⟩ and y = fξ(x). Based on Lemma D.3, we have ∥e∥ ≤ Lf

2 ∥x′ − x∥2.
Moreover, due to convexity of ϕξ, we have

ϕξ(fξ(x
′))− ϕξ(fξ(x)) ≥⟨∇yϕξ(fξ(x)), f(x

′)− f(x)⟩
=⟨∇yϕξ(fξ(x)), ⟨∇fξ(x), x

′ − x⟩⟩+ ⟨∇yϕξ(fξ(x)), e⟩
=⟨∇xϕξ(fξ(x)), x

′ − x⟩+ ⟨∇yϕξ(fξ(x)), e⟩
≥⟨∇xϕξ(fξ(x)), x

′ − x⟩ − ∥∇yϕξ(fξ(x))∥∥e∥

≥⟨∇xϕξ(fξ(x)), x
′ − x⟩ − GϕLf

2
∥x′ − x∥2

Then we can apply Lemma D.2 to obtain the lower smoothness of ϕξ(fξ(x)).

24



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

Proof of Theorem 7.2. For a given ξ, we let y = fξ(x). For conciseness, we left out parameter when there is no ambiguity
in following calculation.

∇∇F (x) = Eξ


∇fT

ξ ∇y∇yϕξ∇fξ +
d′∑

i=1

∇yi
ϕξ∇∇fi




Since ϕξ is always convex, we know ∇fT
ξ ∇y∇yϕξ∇fξ ≽ 0. Therefore

−∇∇F (x) ≼ Eξ




d′∑

i=1

(−∇yi
ϕξ)∇∇fξ,i


.

According to Cauchy–Schwarz inequality for symmetric matrices in Lemma D.4, we have

−∇∇F (x) ≼Eξ




d′∑

i=1

(−∇yiϕξ)∇∇fξ,i




≼

√√√√
(
Eξ

d′∑

i=1

(∇∇fξ,i)2

)(
Eξ

d′∑

i=1

(∇yi
ϕξ)2

)
.

According to Lemma D.5, we have

Eξ

d′∑

i=1

(∇∇fξ,i)
2 ≤ L2

fI.

According to convexity and Lϕ-Lipschitz smoothness of ϕξ, we have

Eξ

d′∑

i=1

(∇yi
ϕξ)

2 =Eξ∥∇yϕξ(y)∥2

≤Eξ[2Lϕ(ϕξ(y)−min
y

ϕξ(y))]

=2LϕF (x)

Combining above inequalities gives us

−∇∇F (x) ≼ Lf

√
Eξ∥∇yϕξ(y)∥2I ≼ Lf

√
2LϕF (x)I.

H. Additional experiments

0 50 100 150 200
#epochs

0.4

0.6

0.8

1.0

tr
ai

n 
ac

c

SGD
LA
LA constant horizon

0 50 100 150 200
#epochs

0.4

0.6

0.8

te
st

 a
cc

SGD
LA
LA constant horizon

Figure H.1: Convergence of ResNet-18 on CIFAR-10.

25



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

70 80 90 100 110 120 130
#channels

375

400

425

450

475

L
+

80 100 120
#channels

9.0

9.5

10.0

10.5

L
+

/L

Figure H.2: Additional result for wide network.

100 101
150

200

250

300

350

400

L
+

100 101

101

102

L
+

/L

Figure H.3: Additional result for lazy network.

I. Experiment setup
We train ResNet-18 on CIFAR-10 (Krizhevsky et al., 2009) with Cutout regularization (DeVries & Taylor, 2017) for
Figure H.1. We use SGD with initial step size γ = 0.1, Lookahead with τ = 5 and same initial step size, and Lookahead
with constant horizon with same initial τ and γ. At epochs 60, 120, 160, step size γ for all algorithm decreases by 5 times.
For Lookahead with constant horizon, the τ also increase 5 times at these epochs. Thus after 160 epochs, Lookahead with
constant horizon uses τ = 625. This experiment takes less than 2 hours on a NVIDIA Titan Xp graphic card.

Figure 3 is generated by stochastic Lanczos method (Yao et al., 2020) for a randomly initialized and a small batch randomly
sampled from CIFAR-10 with 128 batch size. The network is initialized with Kaiming initialization. The linear loss is
constructed by sampling a random weight vector from an isotropic Gaussian distribution. These two images takes less than
4 minutes to generate on a NVIDIA RTX A5000 graphic card.

We use a customized ResNet-18 in Figures 5a and H.2 for flexible channel numbers. We choose 9 different width in total,
from 64 to 128 with a step as 8. For each width, we generate 50 random network. The variance of random neural network is
high. In order to reduce the variance, we didn’t sample independent networks for different widths. Instead, we sample 50
largest networks and then cast them into smaller networks. Besides cutting the large tensor into a smaller one, we tune the
magnitude of weights to ensure the smaller network still follows Kaiming initialization. This experiment takes less than 10
hours on a NVIDIA RTX A5000 graphic card.

We use another customized ResNet-18 in Figures 5b and H.3 to implement the lazy network fξ,γ(x) = γfξ(
x
γ ). During

forward propagation, each parameter is multiplied by a factor 1
γ , and output is multiplied by a factor γ. The magnitude

of parameters are changed to ensure exactly same output. We choose 6 different γ in total, including 1, 2, 4, 8, 16, 32, and
sample 10 independent networks for each γ. This experiment takes around 1 hour on a NVIDIA RTX A5000 graphic card.

We train a ResNet-18 with no data-augmentation on CIFAR-10 in Figures 4 and 6. Since computing Hessian information

26



Beyond Lipschitz Smoothness: A Tighter Analysis for Nonconvex Optimization

is time consuming, we only choose ξ from a small batch of training dataset with 128 batch size for computing F (x) =
Eξ[ϕξ(fξ(x))]. Thus F (x) is just training loss on this minibatch. At the end of each epoch, we apply power iteration to
estimate the largest and smallest eigenvalue of ∇∇F (x) up to 0.1% relative accuracy. This experiment takes less than 12
hours on a NVIDIA Titan Xp graphic card.

27


