
Optimization and Bayes: A Trade-off for
Overparameterized Neural Networks

Zhengmian Hu, Heng Huang
Department of Computer Science

University of Maryland
College Park, MD 20740

huzhengmian@gmail.com,henghuanghh@gmail.com

Abstract

This paper proposes a novel algorithm, Transformative Bayesian Learning
(TransBL), which bridges the gap between empirical risk minimization (ERM) and
Bayesian learning for neural networks. We compare ERM, which uses gradient
descent to optimize, and Bayesian learning with importance sampling for their gen-
eralization and computational complexity. We derive the first algorithm-dependent
PAC-Bayesian generalization bound for infinitely wide networks based on an exact
KL divergence between the trained posterior distribution obtained by infinitesi-
mal step size gradient descent and a Gaussian prior. Moreover, we show how to
transform gradient-based optimization into importance sampling by incorporating
a weight. While Bayesian learning has better generalization, it suffers from low
sampling efficiency. Optimization methods, on the other hand, have good sampling
efficiency but poor generalization. Our proposed algorithm TransBL enables a
trade-off between generalization and sampling efficiency.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success in machine learning and related
applications. It repeatedly outperformed conventional machine learning approaches, resulting in
ground-breaking research such as human-level performance in computer vision [31], substantial
progress in natural language processing [10], and mastering the game of Go [65].

The success of DNNs is the result of a critical combination of the complexity and generalization.
On the one hand, universal approximation theorem [34] guarantees that any continuous function can
be approximated arbitrarily well by using a deep network. On the other hand, deep architectures,
together with large-scale training data and back-propagation algorithm, present a good generalization
ability towards unseen data.

Although expressive power and generalization ability are both desirable on their own, they are
mutually incompatible. Being one of the main contributions of statistical learning theory, the probably
approximately correct (PAC) learning [69] allows us to establish an upper bound of generalization
gap by capacity of a hypothesis space. Generally speaking, if a model is capable of fitting random
labels, then it must generalize poorly.

Recent result [79] shows that overparameterized DNNs do fit random label perfectly. However, it is
observed that more steps of stochastic gradient descent (SGD) are needed to train a neural network to
fit random labels. This phenomenon suggests that the learning capability of DNNs increases with the
number of training steps. In light of this observation, the algorithm-dependent generalization bounds
which control the complexity by maximum training steps are preferred over uniform convergence
bounds.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this paper, we follow the PAC-Bayesian approach to derive our algorithm-dependent generalization
bounds. PAC-Bayesian bounds were first introduced by McAllester [53] and further developed
in [61, 52, 13]. These bounds apply for stochastic learning algorithms and focus on expected
generalization error over a probability on parameter space. The generalization is related to the KL
divergence between the output distribution of a learning algorithm and a prior distribution.

Typically, deep neural networks contain a large number of parameters and are trained by numerous
training epochs through some gradient descent updates. The training dynamics of deep neural
networks is complicated, and hence direct theoretical analysis on the KL divergence is intractable.
Fortunately, such situation can be largely simplified in the infinite width limit [55, 73, 42, 51, 18,
39, 43, 76, 3]. Under this limit, the output distribution of stochastic neural networks drawn from the
prior is approximated by a Gaussian distribution. Moreover, the training dynamics of gradient-based
optimization is governed by the kernel gradient descent, which guarantees that the evolution of
network output only depends on the function values themselves. Thus, our first problem to study in
this paper is: Q1 – In the infinitely wide neural network limit, can we theoretically derive the formula
of this KL divergence?

Optimizing the PAC-Bayesian bound of expected error gives rise to the Gibbs measure. It is also
widely termed as posterior, as it shares the same form as posterior in Bayes’ rule, given that error
is interpreted as likelihood. Drawing samples from this posterior is very hard in practice. Markov
Chain Monte Carlo (MCMC) methods have been explored for deep Bayesian learning. However, it
suffers from slow convergence and high computational cost on high- dimensional parameter spaces.
Non-exact minimization of PAC-Bayesian bound gives rise to variational approximation (VA) which
is more computationally efficient, but biased due to the difference between variational distribution
and true posterior.

Given that MCMC and VA have their own disadvantages in Bayesian learning, our paper investigates
the second problem: Q2 – Does there exist a Bayesian learning method with non-diminishing
sampling efficiency even for infinite wide neural network?

Finally, we notice that the gradient-based optimization is efficient in training DNNs, but comes with
larger generalization error. Bayesian learning, on the other hand, optimizes the expected loss but
has lower efficiency. Our third question to study is: Q3 – Does there exist an interpolation between
optimization and Bayesian learning for trade-off between computation efficiency and generalization
error?

In this paper, we give positive answers to above three questions and the main contributions of this
paper are summarized as follows:

1) We analyze the infinitely wide neural network trained by gradient flow, or equivalently infinitesimal
step size gradient descent. We show that the infinite width limit largely simplifies the training dynam-
ics, and the KL divergence between the output distribution and Gaussian prior can be formulated as a
function of training time and training data.
2) As a byproduct of our analysis on the generalization and sampling efficiency, we prove that
the trace of Hessian for DNN is not diminishing under infinite width limit and depends on the
initialization and training. To the best of our knowledge, this dynamics of Hessian trace is new and
maybe of independent interest.
3) We show that if the determinant of Jacobian of optimization flow is available, we can compute
a weight for each optimized predictor, such that the weighted output distribution is just posterior.
The sampling efficiency in infinite width limit is also derived. We call this type of algorithm
as Transformative Bayesian Learning (TransBL) because it is transformed from an optimization
procedure.
4) We show that modifying the additional weight in TransBL gives rise to an interpolation between
optimization and Bayesian learning. The behaviour of TransBL is increasingly similar to optimization
when the weight is changed toward being uniform. This interpolation doesn’t alter training dynamics,
thus enables flexible trade-off between sampling efficiency and generalization.

2 Background

We first explain the setting and briefly review PAC-Bayesian and Bayesian learning as background.
Other related works is discussed in Appendix A.

2

Problem Setup Given input space X and label space Y , we assume that labeled training data are
drawn independently from an unknown data distribution D over X × Y . The training set is denoted
as Strain = {(sa, za)|1, . . . ,m}, where m is the size of the training sample. A predictor is a function
h : X → R and the set of predictors is denoted asH. We introduce two losses l : R×Y → [0, 1] and
ls : R×Y → R, where the first one is used to measure the error rate and the second smooth surrogate
loss with polynomially bounded second order derivative is used for providing learning signal in
gradient-based training. We define expected loss as R(h) = E(s,z)∼D[l(h(s), z)] and empirical loss
as r(h) = 1

m

∑m
a=1 l(h(sa), za). The expected loss is the central quantity which we are interested in

but cannot be unobserved in general. Therefore, the currently popular approach to statistical learning
is to derive an upper bound of expected loss.

PAC-Bayesian Bounds We will follow the PAC-Bayesian approach to the generalization problem.
Theorem 1 (Theorem 1.2.6. in [13]). For any positive λ and δ ∈ (0, 1), with at least 1− δ in the
probability of training samples, for all distribution q on spaceH, we have

Eh∼q[R(h)] ≤ Φ−1
λ
m

(
Eh∼q[r(h)] +

DKL(q∥p) + log 1
δ

λ

)
.

The KL divergence is DKL(q∥p) = Ex∼q[log
q(x)
p(x)] and the auxiliary function is defined as

Φ−1
a (v) =

1− exp(−av)
1− exp(−a) ≤

av

1− exp(−a) .

Although there are huge amounts of research on PAC-Bayesian approach, all of them rely on the KL
divergence between output distribution q of stochastic predictor learned from certain algorithm and a
prior p, therefore the analysis of this KL divergence is a natural question.

Bayesian Learning We define Gibbs measure as pλ(θ) = 1
Zλ

e−λr(θ)p(θ) and partition function
as Zλ = Eθ∼p[e

−λr(θ)]. The Gibbs measure is related to posterior in Bayesian inference [24], and
minimize right-hand side in theorem 1, inducing a much tighter bound:

Eh∼q[R(h)] ≤Φ−1
λ
m

(− 1

λ
log(Zλδ)) ≤

1

m(1− exp
(
− λ

m

)
)
log

1

Zλδ
.

Despite the fact that expected loss is optimized, Bayesian learning bears significantly more difficulty
than popular optimization-based algorithms. It is noted that the sampling from a high dimensional
distribution with irregular shape may lead to high fluctuations and low efficiency, yet in typical neural
network, the number of parameters to be trained is very large, and loss landscape is complicated.
Many sampling techniques have been developed and explored, but the state-of-the-art is still far from
satisfactory. In this paper, we concentrate on theoretical understanding of the Bayesian approach and
consider a special class of importance sampling in Section 4 where we can compare the computation
efficiency of Bayesian method and optimization approach.

3 Training by Optimization

We now derive the KL divergence under deterministic optimization setting. We assume all predictors
are parameterized by some parameters θ ∈ Θ. The expected loss R(h) and empirical loss r(h) could
therefore be regarded as functions of parameter θ. An optimization flow is a function f : Θ → Θ,
which typically relies on the training data to update the model’s parameters θ and minimize the
empirical loss r(h). The updating can be achieved through various methods such as single or multiple
steps of gradient descent, gradient flow with infinitesimally small step sizes, or more sophisticated
methods detailed in Appendix B. We require the Jacobian determinant Jf (θ) = det(∇f(θ)) exists
and the optimization flow is a bijective, i.e. the inverse f−1 exists everywhere. This is satisfied for
gradient flow and gradient descent when step size is smaller than 1

L . More situations where this
assumption holds is discussed in Appendix B. The starting point of optimization is initialized from a
prior distribution p(θ), and we define a corresponding energy V (θ) = − log p(θ) + C where C is a
parameter independent constant. The output distribution q could be characterized as follows:

Prq(θ ∈ A) = Prp(f(θ) ∈ A), q(θ) = p(f−1(θ))
∣∣Jf−1(θ)

∣∣.
3

The KL divergence between output distribution and prior can be derived as follows:

DKL(q∥p) =Eθ∼q[log
q(θ)

p(θ)
] = Eθ∼p[log

q(f(θ))

p(f(θ))
] = Eθ∼p[log

p(θ)

p(f(θ))
− log |Jf (θ)|].

Based on a physics analog of Helmholtz free energy change in isothermal process, we define energy
term and entropy term separately:

∆fV (θ) = V (f(θ))− V (θ), ∆fS(θ) = log |Jf (θ)|.
The energy term only depends on the prior. If Gaussian prior is used, ∆fV (θ) corresponds to the
change of squared norm of parameters. Although the KL divergence is positively related to the
energy term, and energy term is monotonically increasing with norm of trained parameters, naively
compressing parameters to reduce parameter norm doesn’t lead to decrease in KL divergence, because
the decrease in energy term is offset by the change in entropy term.

The entropy term determines the gain or loss of entropy caused by an optimization procedure. The
pure gain means that the optimization flow maps a region of parameter space into another region
with larger area. For example, consider the simple function f(x) = 2x in a one-dimensional setting.
The Jacobian of this function, which describes how much the function stretches or compresses space,
is constant at 2. Imagine we start with an input x that is uniformly distributed within the interval
[0, 1]. After applying the function, the output f(x) becomes uniformly distributed over this larger
interval [0, 2]. Therefore the entropy increase by log(2). However, most optimization procedures
pursue minimization of certain objective function which is only small in an extremely small region
of parameter space, and thus loss of entropy is inevitable. In Section 7, we show that for gradient
descent algorithm, the loss of entropy is related to the local curvature. We also extend the discussion
to algorithms with enriched state space, such as Momentum SGD and Adagrad in Appendix F.2.

Finally, we have
DKL(q∥p) = Eθ∼p[∆fV (θ)−∆fS(θ)] (1)

The above KL divergence represents an increase in free energy, or the information gain from the
training, depending on the point of view. Both energy term and entropy term can be evaluated
empirically, though the computational cost depends on the choice of optimization method, network
architecture and prior.

4 Transformative Bayesian Learning

In this section, we introduce a class of importance sampling algorithms solving the Bayesian learning
problem. These algorithms are based on the optimization flow, energy change, and loss of entropy
discussed in Section 3.

The most simple example of TransBL algorithm comes from using the output distribution q of an
optimization flow f as the proposal distribution. For any function F on parameter space Θ, we have

Eθ∼pλ
[F (θ)] =Eθ∼q

[
F (θ)

pλ(θ)

q(θ)

]
=

1

Zλ
Eθ∼p

[
F (f(θ))e−λr(f(θ)) p(f(θ))

q(f(θ))

]
=

1

Zλ
Eθ∼p

[
F (f(θ))e−λr(f(θ))e−∆fV (θ)e∆fS(θ)

] (2)

The above expectation could be regarded as attaching an additional weight to the stochastic predictor
obtained from ordinary optimization, and we should use a weighted average of the results obtained
by different initialization. This process doesn’t involve any more training of parameter θ than the
optimization procedure that TransBL is based on, though additional computation might be required
for the value of ∆fV (θ) and ∆fS(θ).

The unnormalized weight of above importance sampling is wλ(θ) = e−λr(f(θ))e−∆fV (θ)e∆fS(θ).
That means not all results obtained by training are treated equally. In particular, the solution with
lower empirical loss, lower energy increase, and producing higher entropy is more important than
others.

One benefit of TransBL is that we can measure the computation efficiency by comparing it to the
training by optimization. A simple way to do this is to calculate the ratio of effective sample size and

4

sample size:

effλ =
(Eθ∼p[wλ(θ)])

2

Eθ∼p[w2
λ(θ)]

(3)

We define the above value as sampling efficiency, and a non-diminishing efficiency at certain
limit indicates that Bayesian learning is at most a constant factor slower than optimization. The
numerator of the above expression is determined by the partition function because Eθ∼p[wλ(θ)] = Zλ.
Therefore, only the denominator depends on the optimization procedure, and we expect Eθ∼p[w

2
λ(θ)]

to be as small as possible for efficient Bayesian learning. Notice that this quantity again relies on
energy change ∆fV (θ) and entropy change ∆fS(θ). We will give theoretical analysis of these two
values for infinitely wide neural network in Section 7.

4.1 An Illustrative Example

For illustration purpose, we consider a univariate loss function that presents two distinct global
minima with zero loss. One of these is characterized as a sharp minimum, while the other represents
a flat minimum. A direct initialization from the prior, followed by training using gradient flow, often
results in an ensemble with significant deviation from the posterior. This is because the optimization
process fails to recognize the presence of the sharp minimum, while insights from PAC Bayesian
indicate that the flat minimum is surrounded by a higher posterior probability density. TransBL
method applies a small weight to the solution found within the sharp minimum. Consequently,
TransBL can adeptly recreate the posterior, as shown in the Figure 6b. Due to space limitations, all
figures for the illustration are moved to Appendix F.1.

5 Connections between Bayesian Learning and Optimization

5.1 A Bayesian Perspective for Optimization

We show that, in order to achieve low expected loss, the optimization flow in deep learning should
reshape the initial distribution to a good estimation of posterior. A formal argument relies on applying
Donsker and Varadhan’s variational formula [17] to obtain the following equation:

Eθ∼q[r(θ)] +
1

λ
DKL(q∥p) = −

1

λ
logEθ∼p[exp(−λr(θ))] +

1

λ
DKL(q∥pλ) (4)

The first term is independent of training procedure and only relies on the definition of prior. The
second term measures the KL divergence between output distribution and Gibbs measure. This is
also the gap between expected loss bound obtained by some training methods and the optimal one.
Notice that the above KL divergence could also be expressed in terms of weight for TransBL, energy
change, and entropy loss:

DKL(q∥pλ) = logZλ+Eθ∼p[− logwλ(θ)] = logZλ+Eθ∼p[λr(f(θ))+∆fV (θ)−∆fS(θ)]. (5)

5.2 Efficiency of Optimization Flows for TransBL

In this section, we show that, in order to achieve high sampling efficiency, the optimization flow in
deep learning is again expected to reshape the initial distribution to a good estimation of posterior.
The only difference to the previous section is that the deviation between output distribution and
posterior is measured under a different divergence.

In order to see this, we define χ2 divergence as Dχ2(p∥q) = Ex∼q[(
p(x)
q(x))

2]− 1.

Theorem 2. For sampling efficiency of TransBL whose proposal distribution is q, we have:

DKL(pλ∥q) ≤ log
(
1 +Dχ2(pλ∥q)

)
= − log effλ (6)

With the above result, we can establish the equivalence between optimal generalization bound
and optimal sampling efficiency, i.e. an optimization flow is optimal in the sense it minimizes
the expected loss upper bound if and only if the sampling efficiency of TransBL is 1. A more
general correspondence between generalization and sampling efficiency is desired. However, the
complication lies in different divergences used in two quantities. By comparing Eq. (4) and Eq. (6),

5

we see that χ2 divergence is used for measuring sampling efficiency. Although an upper bound of
KL divergence DKL(pλ∥q) could be obtained, this is not directly comparable to the DKL(q∥pλ) used
in generalization bound because of asymmetry of KL divergence. That difference also justifies the
interpolation between optimization and Bayesian learning shown in the next section.

6 Interpolation of Optimization and Bayesian Learning

We recall that the output distribution q for the optimization and the posterior pλ for Bayesian learning
are connected by an additional weight wλ: pλ(θ) = 1

Zλ
wλ(f

−1(θ))q(θ). These two distributions
have distinct properties. The distribution q bears worse generalization, but is easy to sample from
given an established optimization oracle. The posterior pλ, on the other hand, is better shaped,
but hard to sample from. Therefore, a natural question is whether we can find a distribution pβλ as
intermediate and interpolation between them.

Given our formulation of TransBL, it turned out to be quite easy to construct such an interpolation by
modifying the weight. For a function vβ : R+ → R+ where β is the parameter used for interpolation,
we can define a modified weight as vβ(wλ(θ)). The interpolation distribution is

pβλ(θ) =
1

Zβ
λ

vβ(wλ(f
−1(θ)))q(θ), Zβ

λ = Eθ∼p[vβ(wλ(θ))].

Note that the superscript doesn’t mean power but means the interpolation is controlled by β. The
expectation of a function F (θ) on pβλ could be computed similarly as Eq. (2):

Eθ∼pβ
λ
[F (θ)] =

1

Zβ
λ

Eθ∼p[F (f(θ))vβ(wλ(θ))].

We note Eq. (4) still holds when we change q into pβλ, and the gap between the expected loss bound
obtained by pβλ and the posterior is:

DKL(p
β
λ∥pλ) = log

Zλ

Zβ
λ

+
1

Zβ
λ

Eθ∼p

[
log

(
vβ(wλ(θ))

wλ(θ)

)
vβ(wλ(θ))

]
.

Notice that the above identity degenerates into Eq. (5) if we use vβ(·) = 1, which corresponds to the
original optimization.

The sampling efficiency of pβλ is again defined as the ratio of effective sample size and sample size:
effβλ = (Eθ∼p[vβ(wλ(θ)]))

2/Eθ∼p[vβ(wλ(θ))
2] and enjoys a relation similar to Theorem 2:

DKL(p
β
λ∥q) ≤ log

(
1 +Dχ2(pβλ∥q)

)
= − log effβλ.

6.1 Trade-off between Generalization and Sampling Efficiency

According to Eq. (5), we can see that the generalization is highly affected by extremely small wλ(θ).
A small weight indicates that the optimization produces certain parameters too often. This issue could
be addressed by assigning a small weight for these parameters in importance sampling. On the other
hand, the sampling efficiency of Bayesian learning is very sensitive to large value of wλ(θ), according
to Eq. (3). The high weight appears on the regime where output probability is low but posterior
density is high. That essentially means the optimization oracle is not effective in exploring certain
region, and the only way to bypass this bottleneck of Bayesian learning is changing the optimization
oracle to produce a distribution with heavier tail than posterior. Due to the exponential dependence on
energy change in weight, the distribution of weight is typically heavy-tailed, therefore the efficiency is
low. Fortunately, this issue could be largely alleviated with interpolation. Since generalization bound
is insensitive to large value of weight, it is possible to apply appropriate modification to weights such
that the sampling efficiency is improved and generalization doesn’t deteriorate too much.

Searching for the Pareto optimality among various trade-off methods is not a concern in this paper,
although obviously this is an important issue and is a subject for future work. In this paper, we only

consider a simple weight clipping method:vβ(w) =
{
w w ≤ β

β otherwise
.

6

At the limit of β → 0, pβλ degenerates to output distribution q of optimization. At the limit of β →∞,
pβλ converges to posterior pλ. A lower bound of sampling efficiency effβλ ≥ (Zβ

λ/β)
2 could be

established. More importantly, weight clipping always achieves smaller generalization bounds than
optimization, and higher sampling efficiency than Bayesian learning.

Theorem 3. For parameters β ∈ (0,∞), DKL(p
β
λ∥pλ) and effβλ are both monotonically decreasing

functions of β.

7 Overparameterized Neural Network

The energy change ∆fV (θ) and entropy change ∆fS(θ) play a pivot role in previous sections. All
quantities of interest, including KL divergence in the PAC-Bayesian bounds, weights in TransBL and
sampling efficiency, depend on these two terms. Therefore, it is essential to understand the dynamics
of these quantities. In this section, we will explore some simple infinitely wide neural network. In
particular, this analysis will provide us insight for further developments in the deep Bayesian learning
and PAC-Bayesian bounds.

7.1 Network Definition

We consider a feedforward network with d fully connected layers. The parameter θ =
vec(W1, . . . ,Wd) is a vector of flattened weights. For a specific input sa, the forward propaga-
tion of the network is defined as follows:

x0(θ, sa) = sa, yi(θ, sa) = ciWixi−1(θ, sa), xi(θ, sa) = σi(yi(θ, sa)).

The output yd(θ, sa) is a scalar. The point-wise function σi(y) is an activation function with
bounded first to fourth order derivative. The hidden layer width at i-th layer is ni such that
yi(θ, sa), xi(θ, sa) ∈ Rni . Wi ∈ Rni×ni−1 are trainable weights. The coefficient ci = 1/

√
ni−1

is used to ensure the output lies in a proper scale at infinite width limit, and is widely adopted in
previous works [43, 51, 70, 40, 39, 3, 18, 59]. The network is initialized with Gaussian prior, such
that (Wi)j,k ∼ N (0, 1).

We introduce the following notation to simplify the result. For a multi-variable scalar function f(X),
∇Xf(X) is a row vector when X is a vector. If X is a matrix, then (∇Xf(X))i,j = ∂f(X)

∂Xj,i
and

∇Xf(X) share the same shape as XT . For a multi-variable vector-value function F (X), we define
(∇XF (X))i,j =

∂Fi(X)
∂Xj

.

The network is trained by gradient flow or infinitesimal step size gradient descent. Let output vector
be (Y (θ))a = yd(θ, sa) and total loss function as L(Y) =

∑m
a=1 l

s(Ya, za), the gradient flow is
defined as:

d

dt
θ(t) = −(∇Y L(Y (θ(t)))∇θY (θ(t)))T .

7.2 Energy Term

The energy for the prior is defined as V (θ) =
∑d

i=1
1
2∥Wi∥2Fro. We define y

(i)
d (θ, sa) =

Tr(∇Wiyd(θ, sa)Wi) and the dynamics of V (θ(t)) is:

d

dt
V (θ(t)) = −∇Y L(Y (θ(t)))

d∑
i=1

Y (i)(θ(t)). (7)

We find that y(i)d (θ, sa) can be computed by a group of auxiliary vector as Eq. (27) detailed in the
appendix, and could be regarded as the tangent vector at output space by propagating a tangent vector
Wi from i-th layer.

For deriving the dynamics of (Y (i)(θ))a = y
(i)
d (θ, sa), we define Θ(i)(θ) = (∇θY

(i)(θ))(∇θY (θ))T

and it follows
d

dt
Y (i)(θ(t)) = −Θ(i)(θ(t))(∇Y L(Y (θ(t))))T . (8)

We note that the definition of Y (d) follows Y = Y (d), therefore Θ(d), as a gradient Gram matrix, is
just neural tangent kernel (NTK) which has been studied in [39, 3, 18].

7

7.3 Entropy Term

We write down the gradient flow in an abstract form d
dtθ(t) = −g(θ(t)) and denote the solution as

θ(t) = f(t, θ(0)) = θ(0) −
∫ t

0
g(θ(t))dt. This gradient flow is a special example of optimization

flow in Section 3. Here the entropy change is ∆tS(θ) = log Jf(t,·)(θ). According to Liouville
formula, we have d

dt (∆tS(θ(0))) = −divg(θ(t)) = −Tr(∇g(θ(t))). Given that the gradient has
form g(θ) = −(∇Y L(Y (θ))∇θY (θ))T , the entropy change could be formulated as follows:

d

dt
(∆tS(θ(0))) =− Tr

(
∇Y∇Y L(Y (θ(t)))Θ(d)(θ(t))

)
−

m∑
a=1

∇YaL(Y (θ(t))) Tr(Ha(θ(t))).

(9)
The content in the first trace term in Eq. (9) is called Gauss-Newton matrix, which only represents
curvature information of loss ls. The matrix Ha = ∇θ∇θYa is the Hessian of yd(θ, sa). It is known
that spectral norm of Hessian vanishes for wide neural network [47]. However, we find that the trace
is not constant and depends on initialization and training. For all 1 ≤ i ≤ j < k ≤ d, α = 1, . . . , nj ,
we introduce auxiliary vectors (ξ(i,j))α = c2i ∥xi−1∥2∥∇yi

(yj)α∥2 and γ
(j)
k = (∇xj

yk)σ
′′
j (yj).

Notice that we left out parameters (θ, sa) for concision.
Theorem 4. Let ⊙ be element-wise product, we have

Tr(Ha(θ(t))) =

d−1∑
j=1

(∇xjyd)

(
σ′′
j (yj)⊙

(
j∑

i=1

ξ(i,j)

))
.

The above formula is a multi-variable version of (fd−1 ◦ · · · ◦ f1)
′′ =

∑d−1
j=1(fd−1 ◦ · · · ◦

fj+1)
′f ′′

j ((fj−1 ◦ · · · ◦ f1)′)2. ξ(i,j) plays the role of squared gradient and is a kind of diagonal NTK
in middle layers.

We define (Γ(i)(θ))a = γ
(i)
d (θ, sa) and matrices Φ(i)(θ) = (∇θΓ

(i)(θ))(∇θY (θ))T . Then we have
for all 1 ≤ i < d,

d

dt
Γ(i)(θ(t)) = −Φ(i)(θ(t))(∇Y L(Y (θ(t))))T . (10)

7.4 Infinite Width Limit

The dynamics in previous two sections can be dramatically simplified in infinite width limit.
Theorem 5. When hidden layers width n = n1, . . . , nd−1 approaches infinity, the random vectors
Y (i)(θ(0)) and Γ(i)(θ(0)) at initialization converges in law to a multivariate Gaussian distribution
with zero mean and covariance matrix Σ. Moreover, the following quantities converge in probability
to constant and don’t change during finite training time:

Θ(i)(θ(t))→ Θ(i), Φ(i)(θ(t))→ Φ(i), (ξ(i,j)(θ(t), sa))α → (Ξ(i,j))a. (11)

The specific formulas of Σ, Θ(i), Φ(i), and Ξ(i,j) are shown in Appendix D.

The last line of above limits is for all α = 1, . . . , nj , therefore theorem 4 could be simplified to:

Tr(Ha(θ(t))) =

d−1∑
j=1

(Γ(j)(θ(t)))a

(
j∑

i=1

(Ξ(i,j))a

)
.

Theorem 5 demonstrates a function space picture, where the dynamics of Y (i)(θ(t)) and Γ(i)(θ(t))
only depend on these values themselves but not on internal dynamics of the network. The auxiliary
vectors Y (i)(θ(t)) and Γ(i)(θ(t)) could be obtained by solving ODEs (8) and (10), d

dtV and d
dtS

can be integrated according to Eqs. (7) and (9). Therefore, the KL divergence is accessible as an
expectation in Eq. (1). Based on this KL divergence, we can obtain the final result of the PAC Bayes
bound formulated as a function of training time and training data. The complete formula of this PAC
Bayes bound is shown in Appendix F.4.

In order to get a sense of the how the generalization bound and sampling efficiency are influenced by
training time, we show the asymptotic behaviour under mild assumption on loss function.

8

100 101

Training Time

0.00

0.05

0.10

0.15

T
ra

in
in

g
L

os
s

Function Space

Parameter Space

100 101

Training Time

−0.2

−0.1

0.0

V
(θ

(t
))
−
V

(θ
(0

)) Function Space

Parameter Space

100 101

Training Time

−6

−4

−2

0

H
es

si
an

T
ra

ce

Function Space

Parameter Space

Figure 2: Comparison of dynamics in parameter space and function space.

Corollary 6. If there exist C1, C2 such that
∣∣∣ d
dy l

s(y, t)
∣∣∣ ≤ C1,

∣∣∣ d2

dy2 l
s(y, t)

∣∣∣ ≤ C2, then

DKL(qt∥p) ≤ O(1)t + O(1)t2, effλ ≥ O(1) exp
(
−O(1)t−O(1)t2

)
for any finite t, where O(1)

represents positive constant irrelevant to t, qt is the output distribution of an infinitely wide network
after training for t length of time, and effλ is the sampling efficiency of importance sampling with qt
as proposal distribution.

8 Experiments

We first illustrate that Hessian trace doesn’t vanish for overparameterized network and our analysis
induces an efficient estimation of this value. Next, we verify our theoretical finding by comparing
the dynamics of an overparameterized network in function space and parameter space. Finally, we
demonstrate the interpolation of sampling and optimization.

8.1 Non-Diminishing Hessian Trace and Efficient Estimation

0.0 0.5 1.0 1.5 2.0 2.5
τ

−4

−2

0

2

4

H
es
si
an

T
ra
ce

Our Approximation

Hutchinson

−10 0 10
Hessian Trace

Figure 1: Hessian trace for one randomly initial-
ized network (left) and the probability density of
Hessian trace at initialization (right).

We consider a three hidden layers feedforward
network with 2048 as hidden layer width and
tanh as nonlinear function.

The synthetic dataset is constructed on a unit
circle. We choose 20 values τ uniformly
distributed between 0 to π and we let 2-
dimensional input to the network be s(τ) =
[cos(τ) sin(τ)].

For each input s(τ), we are concerned about
Hessian trace Tr(∇θ∇θyd(θ, s(τ))). Fast Hes-
sian trace estimation by itself is a challenging
problem, due to the high dimensional parame-
ters and complex structure of the network. We
follow previous works [36, 6, 78] and adopt Hutchinson’s method to estimate the ground truth value
of Hessian trace.

On the other hand, our analysis on the dynamics of overparameterized network reveals that certain
factors which Hessian trace depends on are insensitive to initialization and training, therefore could
be estimated by a fixed value to reduce computation. More details are shown in Appendix F.3. We
apply the Hutchinson’s method with 1000 independent random Rademacher vectors. The 3σ interval
is plotted in the Figure 1. It is shown that our approximation aligns with ground truth well. Based on
this approximation, the distribution of Hessian is also calculated in Figure 1.

8.2 Comparing the Dynamics in Parameter Space and Function Space

We use the same toy model as the previous section and set target values to be t(τ) = 1
2 sin(3τ) and

loss to be mean squared error (MSE). For dynamics in parameter space, we run SGD with finite step
size 0.01 and mini-batch size 1. For dynamics in function space, we solve Eqs. (7) to (10) with fixed
matrices Θ(i), Φ(i) and Ξ(i,j). The result is plotted in Figure 2, where for SGD, the training time is
defined as step size times iteration number. The ground truth of Hessian trace on one input is again
estimated by Hutchinson’s method. We can see from all three kinds of outputs that the function space

9

dynamics produces similar output as SGD. The error between them is attributed to discretization
error for finite step size and finite width fluctuation.

8.3 Interpolation of Optimization and Bayesian Learning

We consider one-shot learning on Fashion-MNIST [75]. We randomly select two classes for binary
classification and select one sample for each class as training dataset. We use a single hidden layer
network with width being 1024 and softplus activation. We use loss l(y, t) = 1/(1 + exp(yt))
and surrogate loss ls(y, t) = log(1 + exp(−yt)) for gradient descent. For Gibbs measure, we fix
λ = 180. The entropy change is approximately evaluated by integrating Eq. (9) with finite step size
and fixed Θ(d).

We train 105 independent network and the results are shown in Figure 3. The shadow region represents
3σ interval. We first notice that during the training, the expectation of TransBL prediction is stable, yet
the variance decreases, indicating the distribution of ensemble is becoming closer to Gibbs measure.
This could be verified in middle figure in Figure 3, as the distribution of weights concentrates toward
the partition function logZλ ≈ −43.6.

2 4 6 8 10
Training Time

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

GD Train

GD Test

TransBL Test

−120 −100 −80 −60 −40

log(w)

No Training

Trained

−80 −70 −60 −50 −40
log β

10−2

10−1

100

S
am

p
li

n
g

E
ffi

ci
en

cy

0.750

0.775

0.800

0.825

0.850

T
es

t
A

cc
u

ra
cy

Figure 3: Test accuracy for ensemble trained by GD and TransBL with β = exp(−40) for weight
clipping (left). Distribution of weights in TransBL (middle). Trade-off between sampling efficiency
and test accuracy (right).

We also show a clear trade-off between sampling efficiency and test accuracy for TransBL with weight
clipping, where the parameter β plays a pivotal role in balancing these aspects. When β is set high,
the model leans towards a Bayesian posterior framework. Although this setting noticeably reduces
the number of effective samples obtained, we observed an enhancement in the model’s generalization
ability, as depicted in the right figure of Figure 3. Conversely, with a smaller β, the model’s behavior
tends to resemble that of a typical deep ensemble, indicating a high sampling efficiency but worse
generalization.

9 Conclusion

We study the generalization and sampling efficiency of Bayesian learning with special attention
to overparameterized network. We show that both KL divergence, which governs generalization
in PAC-Bayesian theory, and χ2 divergence, which determines sampling efficiency for importance
sampling, are related to the change of energy and entropy loss during training. The dynamics of these
two quantities in DNNs are studied, leading to a function space picture in infinite width limit. Our
study also contributes to the understanding of DNNs Hessian trace, due to its involvement in entropy
loss. By considering importance sampling with output distribution from gradient-based optimization
as proposal distribution, we bridge the gap between optimization and Bayesian learning problems,
and provide a flexible interpolation for accuracy-computation trade-off.

Acknowledgement

This work was partially supported by NSF IIS 1838627, 1837956, 1956002, 2211492, CNS 2213701,
CCF 2217003, DBI 2225775.

10

References
[1] Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via stochastic gradient

fisher scoring. In ICML, pages 1591–1598. PMLR, 2012.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural
networks, going beyond two layers. In Advances in Neural Information Processing Systems, volume 32,
2019.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, pages 242–252. PMLR, 2019.

[4] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep nets
via a compression approach. In ICML, pages 254–263. PMLR, 2018.

[5] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In ICML, pages 322–332. PMLR,
2019.

[6] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

[7] Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. arXiv preprint arXiv:1706.08498, 2017.

[8] Jeremy Bernstein and Yisong Yue. Computing the information content of trained neural networks. arXiv
preprint arXiv:2103.01045, 2021.

[9] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In ICML, pages 1613–1622. PMLR, 2015.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901, 2020.

[11] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in Neural Information Processing Systems, 32:10836–10846, 2019.

[12] Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3349–3356, 2020.

[13] O Catoni. Pac-bayesian supervised classification: The thermodynamics of statistical learning. institute of
mathematical statistics lecture notes—monograph series 56. IMS, Beachwood, OH. MR2483528, 5544465,
2007.

[14] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In ICML,
pages 1683–1691. PMLR, 2014.

[15] Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Conditional gaussian pac-bayes. arXiv
preprint arXiv:2110.11886, 2021.

[16] Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–676,
2017.

[17] Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
expectations for large time—iii. Communications on pure and applied Mathematics, 29(4):389–461, 1976.

[18] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In ICML, pages 1675–1685. PMLR, 2019.

[19] David Duvenaud, Dougal Maclaurin, and Ryan Adams. Early stopping as nonparametric variational
inference. In Artificial Intelligence and Statistics, pages 1070–1077. PMLR, 2016.

[20] Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In International
Conference on Learning Representations, 2020.

11

[21] Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In UAI 2017. AUAI Press,
2017.

[22] Cong Fang, Hanze Dong, and Tong Zhang. Mathematical models of overparameterized neural networks.
Proceedings of the IEEE, 109(5):683–703, 2021.

[23] MA Ganaie, Minghui Hu, et al. Ensemble deep learning: A review. arXiv preprint arXiv:2104.02395,
2021.

[24] Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-bayesian theory meets
bayesian inference. In Advances in Neural Information Processing Systems, volume 29, 2016.

[25] Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International
statistical review, 70(3):419–435, 2002.

[26] Peter W Glynn and Chang-han Rhee. Exact estimation for markov chain equilibrium expectations. Journal
of Applied Probability, 51(A):377–389, 2014.

[27] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pages 297–299. PMLR, 2018.

[28] Alex Graves. Practical variational inference for neural networks. Advances in neural information processing
systems, 24, 2011.

[29] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In International
Conference on Learning Representations, 2020.

[30] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In ICML, pages 1225–1234. PMLR, 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[32] Jeremy Heng and Pierre E Jacob. Unbiased hamiltonian monte carlo with couplings. Biometrika, 106(2):
287–302, 2019.

[33] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(5), 2013.

[34] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[35] Zhengmian Hu and Heng Huang. On the random conjugate kernel and neural tangent kernel. In Interna-
tional Conference on Machine Learning, pages 4359–4368. PMLR, 2021.

[36] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

[37] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are
bayesian neural network posteriors really like? In ICML, volume 139, pages 4629–4640. PMLR, 2021.

[38] Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased markov chain monte carlo methods with
couplings. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(3):543–600,
2020.

[39] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems, volume 31, 2018.

[40] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[41] Pitas Konstantinos, Mike Davies, and Pierre Vandergheynst. Pac-bayesian margin bounds for convolutional
neural networks-technical report. arXiv preprint arXiv:1801.00171, 2017.

[42] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and Yasaman
Bahri. Deep neural networks as gaussian processes. In ICLR, 2018.

12

[43] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32:8572–8583, 2019.

[44] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only converges to
minimizers. In Conference on learning theory, pages 1246–1257. PMLR, 2016.

[45] Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis Haupt, and Tuo Zhao. On tighter generalization bound for
deep neural networks: Cnns, resnets, and beyond. arXiv preprint arXiv:1806.05159, 2018.

[46] Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. In Uncertainty in
Artificial Intelligence, pages 897–907. PMLR, 2021.

[47] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models: when and why
the tangent kernel is constant. Advances in Neural Information Processing Systems, 33, 2020.

[48] Stephan M, t, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18:1–35, 2017.

[49] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4
(3):448–472, 1992.

[50] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Early stopping is nonparametric variational
inference. arXiv preprint arXiv:1504.01344, 2015.

[51] Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

[52] Andreas Maurer. A note on the pac bayesian theorem. arXiv preprint cs/0411099, 2004.

[53] David A McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):355–363, 1999.

[54] Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is sgd a bayesian sampler? well,
almost. Journal of Machine Learning Research, 22, 2021.

[55] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

[56] Kirill Neklyudov and Max Welling. Orbital mcmc. In International Conference on Artificial Intelligence
and Statistics, pages 5790–5814. PMLR, 2022.

[57] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of
over-parametrization in generalization of neural networks. In ICLR, 2018.

[58] Theodore Papamarkou, Jacob Hinkle, M Todd Young, and David Womble. Challenges in markov chain
monte carlo for bayesian neural networks. arXiv preprint arXiv:1910.06539, 2019.

[59] Daniel Park, Jascha Sohl-Dickstein, Quoc Le, and Samuel Smith. The effect of network width on stochastic
gradient descent and generalization: an empirical study. In ICML, pages 5042–5051. PMLR, 2019.

[60] Konstantinos Pitas. Dissecting non-vacuous generalization bounds based on the mean-field approximation.
In International Conference on Machine Learning, pages 7739–7749. PMLR, 2020.

[61] Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. Journal of
machine learning research, 3(Oct):233–269, 2002.

[62] Daniel Seita, Xinlei Pan, Haoyu Chen, and John Canny. An efficient minibatch acceptance test for
metropolis-hastings. In Proceedings of the Twenty-Seventh International Joint Conference oncArtificial
Intelligence, pages 5359–5363, 7 2018.

[63] Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects of
depth and initialization. In International Conference on Machine Learning, pages 19522–19560. PMLR,
2022.

[64] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling. Advances in
Neural Information Processing Systems, 32, 2019.

[65] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

13

[66] Taiji Suzuki. Generalization bound of globally optimal non-convex neural network training: Transportation
map estimation by infinite dimensional langevin dynamics. Advances in Neural Information Processing
Systems, 33:19224–19237, 2020.

[67] Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140. American Mathemati-
cal Soc., 2012.

[68] Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines, Arnaud Doucet,
Alain Durmus, and Christian X Robert. Neo: Non equilibrium sampling on the orbits of a deterministic
transform. Advances in Neural Information Processing Systems, 34, 2021.

[69] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

[70] Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

[71] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

[72] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In ICML,
pages 681–688. Citeseer, 2011.

[73] Christopher KI Williams. Computing with infinite networks. Advances in neural information processing
systems, pages 295–301, 1997.

[74] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of general-
ization. In Advances in Neural Information Processing Systems, volume 33, pages 4697–4708, 2020.

[75] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[76] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

[77] Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
Advances in Neural Information Processing Systems, 32, 2019.

[78] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks through
the lens of the hessian. In 2020 IEEE International Conference on Big Data (Big Data), pages 581–590.
IEEE, 2020.

[79] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

[80] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical stochastic
gradient mcmc for bayesian deep learning. In ICLR, 2020.

[81] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-vacuous general-
ization bounds at the imagenet scale: a PAC-bayesian compression approach. In ICLR, 2019.

14

A Related Works

Generalization of Overparameterized Network Generalization for neural network has been
studied based on stability [11, 12] norm [7, 57, 41, 27, 45], compression [4] , and special function
class [5, 2]. [21, 81] achieves non-vacuous PAC-Bayesian generalization bounds based compression
and perturbation robustness. Clerico et al. [15] derives PAC-Bayes bound and learning method for
training a Gaussian process. A realizable PAC-Bayesian bound is also derived in [8] with sampling
realizable networks instead of training by gradient descent. Mean field theory [22, 60, 66] could also
be applied to obtain generalization bound.

Early Stopping Restricting training time is a popular trick in deep learning. Related theoretical
explanation includes a uniform stability approach [30], which related stability generalization bounds
with training time, and a variational inference approach [19], which bound marginal likelihood with
entropy. Compared to these works, our Corollary 6, although only applies for infinitely wide network,
provides two new points of view. First we relates KL divergence with training time, thus provide a
PAC-Bayes explanation for early stop. Second, we control the worst-case sampling efficiency with
training time, thus provide a novel computational argument.

Bayesian Deep Learning A comprehensive introduction of Bayesian Deep Learning and its relation
to generalization is provided in [74]. It is known that sampling from the Gibbs measure is costly
[37]. Bulk of work on Bayesian deep learning based on variational approximation [49, 33, 28, 9] has
been developed. Despite the theoretical difficulty of exact Bayesian deep learning, various heuristic
methods including SGD [48, 54], deep ensemble [23], and cyclic step size [80] have been shown to
be successful in practice.

Hessian of Overparameterized Network The convergence of various stochastic Hessian trace
estimation methods are analyzed in [6]. There has been work focusing on empirical evaluation of
Hessian of neural network [78]. Existing result in [47] shows that spectral norm of Hessian vanish in
infinite width limit. Our paper contributes to this fields in two aspect. First, we show that Hessian
trace doesn’t vanish in infinite width limit. Second, we propose a novel Hessian trace estimation
method in Appendix F.3, which is much more efficient than commonly used Hutchinson’s method.

MCMC : Markov Chain Monte Carlo (MCMC) utilize a kernel that leaves Bayesian posterior as
stationary distribution. One source of bias of MCMC is finite number of iterations. The mixing
time of MCMC suffer from curse of dimension, making it impractical to run MCMC till converge.
Several orbit MCMC [68, 56] has been explored, seeking to incorporate non-equilibrium map into
the transition kernel to reduce mixing time. They typically use damped Hamiltonian system or
momentum gradient descent to bypass the entropy loss due to network curvature, thus suffer from
increased χ2 divergence as discussed in Appendix F.2. Telescopic sum argument [26] with coupling
technique [38, 32] have also been proposed to tackle this problem. Another source of bias is inaccurate
implementation of transfer kernel. The discretization error of various Langevin dynamics method has
been analyzed [1, 16, 64]. The bias from noisy loss function [62] and noisy gradient [72, 14] could
be reduced but could not vanish. Papamarkou et al. [58] summarize more challenges of MCMC that
leads to lack of convergence.

B Discussion on the strength of assumption

We required f to be a bijective and Jf exist everywhere. This assumption is not as restrictive as it
seems.

1. For gradient descent, f(θ) = θ − h∇l. If l ∈ C2,∇l is L-Lipschitz and h ≤ 1/L, then f is
a diffeomorphism (Proposition 4.5 [44]), thus satisfying our assumption. In optimization
literature, the above sufficient condition is mild and standard assumption to ensure the
convergence of GD.

2. For gradient flow, d
dtθ = −∇l. Our assumption immediately follows existence and unique-

ness of ODE solution. For example, if l ∈ C2 and ∇l is L-Lipschitz, then ft(θ) is defined
for all t and θ (Corollary 2.6 [67]) and is a diffeomorphism (Theorem 2.10 [67]).

15

3. Momentum SGD and Adagrad always satisfy our assumption on enriched state space
(Appendix F.2).

4. Same assumption was also used in previous research [50]. Moreover, many previous works
use assumptions that imply our assumption as discussed in 1.

In Section 7, we only analyze the infinitesimal step-size. The main reason for this choice is that it
allows the training dynamics of neural networks to be described by an ordinary differential equation
(ODE), which simplifies the analysis. While it’s possible that our approach could still be viable
with discrete step sizes, it would make the theoretical analysis much more challenging. Practically,
only discrete step sizes are implementable in experiments. However, our findings show that the
theoretical predictions based on infinitesimal steps align closely with the experimental outcomes, as
demonstrated in Figure 2.

One strong assumption imposed by this paper is an infinite width for the neural network. This
assumption is vital for the feasibility of our theoretical analysis in Section 7 and is a common
stance in numerous theoretical studies of neural networks [55, 73, 42, 51, 18, 39, 43, 76, 3]. The
infinite-width perspective simplifies the dynamics and analysis but, admittedly, deviates from the
practical, finite-width architectures typically used in real-world applications. Several researchers
[29, 20, 35, 46, 63] have tried to understand the impact of finite width, known as "finite-width
corrections". Delving into this adds complexity to the theoretical analysis, and hence it’s left as a
potential topic for future research. Moreover, we find that the dynamics in function space, derived
from the theory of infinitely wide networks, closely resembles the behavior of actual finite-width
networks, as can be seen in Figure 2.

C Additional Proofs

Proof of Theorem 2. First we show that sampling efficiency is determined by the χ2 divergence.

1

effλ
=

Eθ∼p[w
2
λ(θ)]

Z2
λ

=
1

Z2
λ

Eθ∼q

[(
e−λr(f(θ)) p(f(θ))

q(f(θ))

)2
]
= Eθ∼q

[(
pλ(θ)

q(θ)

)2
]
= Dχ2(pλ∥q) + 1

(12)
The inequality in Eq. (6) is from Theorem 5 in [25].

Proof of Theorem 3. Based on some algebra and calculus, we have

(Zβ
λ)

2 d

dβ
DKL(p

β
λ∥pλ) =

(
Eθ∼p[log

β

wλ(θ)
1(wλ(θ) ≥ β)]

)
× (Eθ∼p[wλ(θ)1(wλ(θ) < β)]) ≤ 0

For sampling efficiency, we have

Eθ∼p[vβ(wλ(θ))]
d

dβ
log

1

effβλ
= 2Eθ∼p[1(wλ(θ) ≥ β)]× (

βEθ∼p[vβ(wλ(θ))]

Eθ∼p[vβ(wλ(θ))2]
− 1) ≥ 0

Proof of Eq. (27). We discard the parameter θ, sa without loss of generality.

∇Wi
yd = cixi−1∇yi

yd (13)

∀j ≥ i, ∇yj
yj+1y

(i)
j =cj+1Wj+1∇yj

xjy
(i)
j

=cj+1Wj+1∇yj diag(σ
′
j(yj))y

(i)
j

=y
(i)
j+1

(14)

16

We finish the proof by combining above results.

Tr(∇Wi
ydWi) =Tr(cixi−1∇yi

ydWi)

=Tr(∇yi
ydciWixi−1)

=Tr
(
∇yi

ydy
(i)
i

)
=Tr

(
∇yd−1

yd . . .∇yi
yi+1y

(i)
i

)
=y

(i)
d

(15)

Proof of Theorem 4.

∇Wi
yd =cixi−1∇yi

yd
=(cixi−1)(∇yd−1

yd . . .∇yi
yi+1)

=(cixi−1)((cdWd) diag(σ
′
d−1(yd−1)) . . . ci+1Wi+1 diag(σ

′
i(yi)))

(16)

Only σ′
j(yj) for i ≤ j < d depends on Wi in the above formula.

∇(Wi)α,β
yd =(cixi−1)β(∇xjyd diag(σ

′
j(yj))∇(yi)αyj) (17)

∇(Wi)α,β
∇(Wi)α,β

yd =(cixi−1)β(
d−1∑
j=i

(∇xj
yd)(σ

′′
j (yj)⊙∇(Wi)α,β

yj ⊙∇(yi)αyj))

=(cixi−1)
2
β(

d−1∑
j=i

(∇xjyd)(σ
′′
j (yj)⊙∇(yi)αyj ⊙∇(yi)αyj))

(18)

ni∑
α=1

ni−1∑
β=1

∇(Wi)α,β
∇(Wi)α,β

yd =
d−1∑
j=i

(∇xj
yd)(σ

′′
j (yj)⊙ ξ(i,j)) (19)

TrH =
d∑

i=1

ni∑
α=1

ni−1∑
β=1

∇(Wi)α,β
∇(Wi)α,β

yd

=
d∑

i=1

d−1∑
j=i

(∇xj
yd)(σ

′′
j (yj)⊙ ξ(i,j))

=
d−1∑
j=1

(∇xjyd)(σ
′′
j (yj)⊙ (

j∑
i=1

ξ(i,j)))

(20)

D Analysis of Infinitely Wide Network

We first give the analytic form of limits in Theorem 5.

The covariant matrix Σ is defined recursively. We first define series of Gaussian random variables
y
(i)
k (sa), γ

(i)
k (sa), where variables with different subscript k are independent. We also let yk(sa) =

y
(d)
k (sa). The covariance of y(i)k (sa) and y

(j)
k (sb) are denoted as Σk[y

(i)(sa), y
(j)(sb)]. Similarly,

17

we can define Σk[y
(i)(sa), γ

(j)(sb)] and Σk[γ
(i)(sa), γ

(j)(sb)].

Σ1[y
(i)(sa), y

(j)(sb)] = Σ1[y
(i)(sa), γ

(j)(sb)] = Σ1[γ
(i)(sa), γ

(j)(sb)] = sTa sb/n0

Σk+1[y
(i)(sa), y

(j)(sb)] = E[Ii,k(yk(sa), y(i)k (sa))Ij,k(yk(sb), y
(j)
k (sb))]

Σk+1[y
(i)(sa), γ

(j)(sb)] = E[Ii,k(yk(sa), y(i)k (sa))Jj,k(yk(sb), γ
(j)
k (sb))]

Σk+1[γ
(i)(sa), γ

(j)(sb)] = E[Ji,k(yk(sa), γ(i)
k (sa))Jj,k(yk(sb), γ

(j)
k (sb))]

Ii,k(yk, y
(i)
k) =

{
σk(yk) i > k

σ′
k(yk)y

(i)
k i ≤ k

Ji,k(yk, γ
(i)
k) =


σk(yk) i > k

σ′′
k (yk) i = k

σ′
k(yk)γ

(i)
k i < k

(21)

In the infinite width limit, the covariance at initialization of (Y (i)(θ(0)))a and (Y (j)(θ(0)))b is
Σd[y

(i)(sa), y
(j)(sb)]. Similarly, the covariance at initialization of (Y (i)(θ(0)))a and (Γ(j)(θ(0)))b

is Σd[y
(i)(sa), γ

(j)(sb)], the covariance at initialization of (Γ(i)(θ(0)))a and (Γ(j)(θ(0)))b is
Σd[γ

(i)(sa), γ
(j)(sb)].

Other matrices limits are

(Θ(i))a,b =
d∑

j=1

d−1∏
k=j

E[σ′
k(yk(sa))σ

′
k(yk(sb))]

Σj [y
(i)(sa), y(sb)] (22)

+

d∑
j=1

d−1∑
k=max(i,j)

d−1∏
l=j
l ̸=k

E[σ′
l(yl(sa))σ

′
l(yl(sb))]

E[y(i)k (sa)σ
′′
k (yk(sa))σ

′
k(yk(sb))]Σj [y(sa), y(sb)],

(23)

(Φ(i))a,b =
d∑

j=i+1

d−1∏
k=j

E[σ′
k(yk(sa))σ

′
k(yk(sb))]

Σj [γ
(i)(sa), y(sb)]

+

i∑
j=1

E[σ′′′
i (yi(sa))σ

′
i(yi(sb))]

d−1∏
k=j
k ̸=i

E[σ′
k(yk(sa))σ

′
k(yk(sb))]

Σj [y(sa), y(sb)]

(24)

+
d∑

j=1

d−1∑
k=max(i+1,j)

d−1∏
l=j
l ̸=k

E[σ′
l(yl(sa))σ

′
l(yl(sb))]

E[γ(i)
k (sa)σ

′′
k (yk(sa))σ

′
k(yk(sb))]Σj [y(sa), y(sb)],

(25)

(Ξ(i,j))a =

(
j−1∏
k=i

E[σ′
k(yk(sa))σ

′
k(yk(sa))]

)
Σi[y(sa), y(sa)]. (26)

Before embarking on the proof, we first give an intuition of above results. We first notice that
y
(i)
d (θ, sa) can be defined recursively:

∀j ≤ i ≤ d, y
(i)
j (θ, sa) = yj(θ, sa),

∀i ≤ j < d, y
(i)
j+1(θ, sa) = cj+1Wj+1 diag(σ

′
j(yj(θ, sa)))y

(i)
j (θ, sa).

(27)

18

We can give a similar definition by forward propagation for γ
(i)
j (θ, sa) =

(∇xi
yj(θ, sa))σ

′′
i (yi(θ, sa)), which covers the case when j ≤ i:

∀j ≤ i ≤ d, γ
(i)
j (θ, sa) = yj(θ, sa),

γ
(i)
i+1(θ, sa) = ci+1Wi+1σ

′′
i (γ

(i)
i (θ, sa)),

∀i < j < d, γ
(i)
j+1(θ, sa) = cj+1Wj+1 diag(σ

′
j(yj(θ, sa)))γ

(i)
j (θ, sa).

(28)

Therefore, both y
(i)
d and γ

(i)
d can be regarded as output from some other "neural network". We

compares these forward pass with original neural network as follows:
∀i ≤ j < d, yj+1(θ, sa) = cj+1Wj+1σj(yj(θ, sa)). (29)

Both y
(i)
d and γ

(i)
d propagate in a same way as original network until i-th layer. After that, y(i)d

propagate by linear transformation, with matrix diag(σ′
j(yj(θ, sa))) being controlled by original

network. γ(i)
d uses a different activation function σ′′

i which is different than original network with σi

in i-th layer, and propagate by linear transformation in a similar way as y(i)d .

When we consider the yd, y(i)d and γ
(i)
d as output from a multiple branch neural network, the Σ in

Eq. (21) is just conjugate kernel, and Θ(i),Φ(i),Ξ(i,j) in Eq. (22) are fragment of NTK of the larger
network.

Proof of Theorem 5. We first prove the convergence to Gaussian distribution. It follows the proof of
convergence of Θ(i),Φ(i),Ξ(i,j). Finally we prove that these values don’t change during training.

We note that in the forward propagation as shown in Eqs. (27) to (29), we only need to perform
two kind of operations: matrix vector multiplication and map vector into matrix by diag. The latter
operation could be rewrite into element-wise product which is a non-linear element-wise vector
operation, e.g. diag(σ′

j(yj(θ, sa)))y
(i)
j (θ, sa) = σ′

j(yj(θ, sa))⊙ y
(i)
j (θ, sa).

Therefore, the calculation of yd, y(i)d and γ
(i)
d readily satisfies the standard of Tensor Program which is

firstly introduced in [77] and further developed in [76]. Since we require the continuous polynomially
bounded third order derivative for σ, the general result in [76] for Tensor Program could applies, and
the convergence in law of outputs to Gaussian distribution and almost surely convergence of NTK at
initialization is justified. What is left is the computation of the covariance and NTK at the infinite
width limit.

The variance could be computed recursively. Given that the covariance matrix of each previous layer
is established, and the convergence to Gaussian distribution of each element in previous layer, it is
easy to verify the covariance matrix for next layer follows Eq. (21).

We next compute the NTK limit. Note that Θ(d), as gradients inner product, is exactly the same NTK
that has been studied in [39, 3, 18]. Moreover, (Ξ(i,j))α is just the diagonal NTK if we consider a
sub neural network which coincide with original network in previous j − 1 layers, but use one single
hidden unit (yj)α at j-th layer as output. Therefore, we only need to take care about Θ(i) and Φ(i)

for i < d.

(Θ(i))a,b =(∇θy
(i)
d (sa))

T∇θyd(sb)

=
d∑

j=1

Tr
(
∇Wjy

(i)
d (sa)

T∇Wjyd(sb)
) (30)

∇Wjy
(i)
d (sa) = cjx

(i)
j−1(sa)∇yjy

(i)
d (sa) +

d−1∑
k=max(i,j)

cjxj−1(sa)(∇xk
yd(sa)

T ⊙ y
(i)
k (sa)⊙ σ′′

k (yk(sa)))
T∇yjyk(sa)

(31)
The first term is easy to calculate and shares similar form with classical NTK after computing the
trace Tr

(
∇Wj

y
(i)
d (sa)

T∇Wj
yd(sb)

)
.

∇yjy
(i)
d (sa) = cdWd diag(σ

′
i−1(yi−1(sa))) . . . cj+1Wj+1 diag(σ

′
j(yj(sa))) = ∇yjyd(sa) (32)

19

Combining above results, we have

(Θ(i))a,b =
d∑

j=1

∇yjyd(sa)∇yjyd(sb)
T c2j (x

(i)
j−1(sa)xj−1(sb)) (33)

The limit of first term is
a.s.
lim∇yjyd(sa)∇yjyd(sb)

T =
∏d−1

k=j E[σ′
k(yk(sa))σ

′
k(yk(sb))]. In order to

calculate the second term c2j (x
(i)
j−1(sa)xj−1(sb)), we note that Ew∼N (0,I)[ww

T] = I and (Wj)α is
a standard normal random vector, then we have

c2j (x
(i)
j−1(sa)xj−1(sb)) = E[(cj(Wj)αx

(i)
j−1(sa))

T cj(Wj)αxj−1(sb)] = E[c2j (y
(i)
j (sa)yj(sb))]

so the limit is Σj [y
(i)(sa), y(sb)].

All other terms comes from second order derivative of non-linear
unit σk and doesn’t show up in classical NTK result. We note in
Tr
(
(cjxj−1(sa)(∇xk

yd(sa)
T ⊙ y

(i)
k (sa)⊙ σ′′

k (yk(sa)))
T∇yj

yk(sa))
T∇Wj

yd(sb)
)

=

(c2jxj−1(sa)
Txj−1(sb))(∇yj

yd(sb)∇yj
yk(sa)

T (∇xk
yd(sa)

T ⊙ y
(i)
k (sa) ⊙ σ′′

k (yk(sa)))),
c2jxj−1(sa)

Txj−1(sb) = O(1) converge to a fixed value, in∇yjyd(sb)∇yjyk(sa)
T ⊙∇xk

yd(sa) =

∇xk
yd(sb) diag σ

′
k(yk(sa))∇yj

yk(sb)∇yj
yk(sa)

T ⊙∇xk
yd(sa),∇yj

yk(sb)∇yj
yk(sa)

T converges
to fixed values times identity matrix, and ∇xk

yd(sb)
T∇xk

yd(sb) also converges to fixed values
times identity matrix. The rest terms converge to its expectation which contains y(i)k (sa), σ′′

k (yk(sa))
and σ′

k(yk(sb)).

(Φ(i))a,b =(∇θγ
(i)
d (sa))

T∇θyd(sb)

=

i∑
j=1

Tr
(
∇Wjγ

(i)
d (sa)

T∇Wjyd(sb)
)
+

d∑
j=i+1

Tr
(
∇Wjγ

(i)
d (sa)

T∇Wjyd(sb)
) (34)

Note that γ(i)
d (θ, sa) = (∇xi

yd(θ, sa))σ
′′
i (yi(θ, sa)) and when j ≤ i the value yi(θ, sa) depends on

Wi. Therefore we conduct a separate discussion. When j > i, the limit value could be derived in a
way similar to (Θ(i))a,b. For j ≤ i,

∇Wjγ
(i)
d (sa) =cjx

(i)
j−1(sa)∇yjγ

(i)
d (sa)

+
d−1∑
k=j

cjxj−1(sa)(∇xk
yd(sa)

T ⊙ γ
(i)
k (sa)⊙ σ′′

k (yk(sa)))
T∇yj

yk(sa)
(35)

The summations are again from the second order derivative of non-linear unit and the limit could be
derived in a similar way to Φ(i). We focus on first term is somewhat different since it depends on
third order derivative of non-linear unit.

∇yjγ
(i)
d (sa) = cdWd diag(σ

′
i−1(yi−1(sa))) . . . ci+1Wi+1 diag(σ

′′′
i (yi(sa))) cj+1Wj+1 diag(σ

′
j(yj(sa)))

(36)
∇yj

γ
(i)
d (sa) differs from∇yj

y
(i)
d (sa) and∇yj

yd(sa) in one term σ′′′
i (yi(sa)) and that fact is reflected

in Eq. (25).

Finally we prove that Θ(i),Φ(i),Ξ(i,j) are constant during training. Since these values are all
inner product of gradients, we just need to show gradients ∇Wj

yd(θ, sa), ∇Wj
y
(i)
d (θ, sa) and

∇Wj
γ
(i)
d (θ, sa) doesn’t change too much. We write down the formula of these gradient without the

20

summation terms which could be controlled similarly.

∇Wj
yd(θ, sa) = cjσj−1(yj−1(θ, sa))∇yj

yd(θ, sa)

∇Wj
y
(i)
d (θ, sa) = cjσ

′
j−1(yj−1(θ, sa))⊙ y

(i)
j−1(θ, sa)∇yj

yd(θ, sa) ∀j > i

∇Wj
y
(i)
d (θ, sa) = cjσj−1(yj−1(θ, sa))∇yj

yd(θ, sa) ∀j ≤ i

∇Wj
γ
(i)
d (θ, sa) = cjσ

′
j−1(yj−1(θ, sa))⊙ γ

(i)
j−1(θ, sa)∇yj

yd(θ, sa) ∀j > i+ 1

∇Wjγ
(i)
d (θ, sa) = cjσ

′′
j−1(yj−1(θ, sa))∇yjyd(θ, sa) ∀j = i+ 1

∇Wj
γ
(i)
d (θ, sa) = cjσj−1(yj−1(θ, sa))∇yi+1

yd(θ, sa)(ci+1Wi+1)× ∀j < i+ 1

diag(σ′′′
i (yi(θ, sa)))∇yj

yi(θ, sa)

(37)

We rely on following Local Lipschitz property to prove the stability of gradients during training.

Lemma 7 (Local Lipschitz Condition). Let vj−1(θ) to denote any of following values:

σj−1(yj−1(θ, sa)),

σ′
j−1(yj−1(θ, sa))⊙ y

(i)
j−1(θ, sa),

σ′
j−1(yj−1(θ, sa))⊙ γ

(i)
j−1(θ, sa),

σ′′
j−1(yj−1(θ, sa)),

(38)

there is a constant K > 0 such that for every R > 0, with probability increasing to 1 at limit of
n→∞, or equivalently, with high probability over random initialization (w.h.p.o.r.i.) of θ, for any
θ1, θ2 ∈ B(θ,R), where B(θ,R) = {θ′ | ∥θ′ − θ∥ < R}, the following holds

∥vj(θ1)− vj(θ2)∥ ≤ K∥θ1 − θ2∥,
∥vj(θ1)∥ ≤ K

√
n.

(39)

Moreover, let vj(θ) to denote any of following values:

∇yj
yd(θ, sa),

∇yi+1
yd(θ, sa)(ci+1Wi+1) diag(σ

′′′
i (yi(θ, sa)))∇yj

yi(θ, sa),
(40)

there is a constant K > 0 such that for every R > 0, w.h.p.o.r.i. of θ, for any θ1, θ2 ∈ B(θ,R),

∥vj(θ1)− vj(θ2)∥ ≤
1√
n
K∥θ1 − θ2∥,

∥vj(θ1)∥ ≤ K.

(41)

By using the norm upper bound in Lemma 7, we have that for any R > 0 and θ ∈ B(θ(0), R), the
gradient norm Tr

(
(∇Wj

yd(θ, sa))
T∇Wj

yd(θ, sa)
)
= c2j∥σj−1(yj−1(θ, sa))∥2

∥∥∇yj
yd(θ, sa)

∥∥2 ≤
K is bounded w.h.p.o.r.i. . For any finite training time, R could be selected large enough to ensure
θ(t) ∈ B(θ(0), R) during training. The norm bound of difference in Lemma 7 also ensures that
the change of gradient norm is bounded by 1√

n
K∥θ(t)− θ(0)∥ in B(θ(0), R) w.h.p.o.r.i. which is

diminishing at the limit n→ 0.

Proof of Lemma 7. All vectors vj in Lemma 7 could be computed sequentially by three kinds of
operations: matrix multiplication ζ = Wε, element-wise non-linearity ε = ϕ(ζ) with ϕ having
bounded derivative and element-wise multiplication ε = ϕ(ζ)⊙ζ ′, where the element-wise non-linear
function ϕ is bounded and Lipschitz.

For the first kind of operation, given that W follows standard normal distribution, we have the ζ is
also normally distributed and enjoy following high probability bound.

21

Eq. (2.19) of [71] For n dimensional standard Gaussian random vector ζ ∼ N (0, In), for any t

Pr
(
∥ζ∥2 ≥ n+ t

)
≤ 2e−nt2/8. (42)

Therefore we have that for ζ = Wε, ∥ζ∥ ≤ K
√
n∥ε∥ for some K with high probability.

For element-wise non-linearity ε = ϕ(ζ) where ζ is a standard Gaussian random vector with i.i.d.
coordinates, we derive the Chernoff bound as follows.

Pr
(
∥ϕ(ζ)∥ ≥ K

√
n
)
=Pr

(
n∑

i=1

ϕ(ζi)
2 ≥ K2n

)

= inf
t≥0

Pr

(
exp

(
t

n∑
i=1

ϕ(ζi)
2

)
≥ exp

(
tK2n

))

≤ inf
t≥0

E[exp
(
t
∑n

i=1 ϕ(ζi)
2
)
)]

etK2n

= inf
t≥0

e−tK2n
n∏

i=1

E[exp
(
tϕ(ζi)

2
)
)]

≤ inf
t≥0

e−tK2n
n∏

i=1

E[exp
(
t(O(1) +O(1)ζ2i)

)
)]

≤e−O(1)K2n+O(1)n

(43)

Therefore, we have ∥ε∥ = ∥ϕ(ζ)∥ ≤ K
√
n w.h.p.o.r.i. for large enough K.

For element-wise multiplication ε = ϕ(ζ)⊙ ζ ′, since ϕ is bounded, ∥ε∥ ≤ O(1)∥ζ ′∥ all the time.

Recursively apply above three operations gives the bound of norm ∥vj∥.
In order to control the norm of difference, we note that for matrix multiplication:

∥W1ε1 −W2ε2∥ =∥W1ε1 −W1ε2 +W1ε2 −W2ε2∥
≤∥W1(ε1 − ε2)∥+ ∥W1 −W2∥op∥ε2∥
≤∥W1(ε1 − ε2)∥+ ∥W1 −W2∥Fro∥ε2∥

(44)

The first term could be controlled with high probability as ∥W1(ε1 − ε2)∥ ≤ ∥W0(ε1 − ε2)∥ +
∥(W1 −W0)(ε1 − ε2)∥ ≤ K

√
n∥ε1 − ε2∥ + R∥ε1 − ε2∥ ≤ O(1)

√
n∥ε1 − ε2∥ for large enough

n, and W0 is the parameter at initialization, R is the maximum distance between W1 and W0.

For element-wise non-linearity ε = ϕ(ζ), since ϕ is Lipschitz, we have the difference as
∥ε1 − ε2∥ = ∥ϕ(ζ1)− ϕ(ζ2)∥ ≤ O(1)∥ζ1 − ζ2∥ (45)

For element-wise multiplication ε = ϕ(ζ) ⊙ ζ ′, since ϕ is bounded and Lipschitz, we have the
difference as

∥ε1 − ε2∥ =∥ϕ(ζ1)⊙ ζ ′1 − ϕ(ζ2)⊙ ζ ′2∥
≤∥(ϕ(ζ1)− ϕ(ζ2))⊙ ζ ′1∥+ ∥ϕ(ζ2)⊙ (ζ ′1 − ζ ′2)∥
≤O(1)∥(ζ1 − ζ2)⊙ ζ ′1∥+O(1)∥ζ ′1 − ζ ′2∥
≤O(1)∥ζ1 − ζ2∥+O(1)∥ζ ′1 − ζ ′2∥

(46)

The first term is reduced by noticing ζ ′1 has O(1) elements.

Recursively apply above three operations gives the bound of norm of difference.

Proof of Corollary 6. According to Theorem 5, in the infinite width limit, we have

d

dt

(
d∑

i=1

Y (i)(θ(t))

)
= −(

d∑
i=1

Θ(i))(∇Y L)T

d

dt

(
d−1∑
i=1

Γ(i)(θ(t))

)
= −(

d−1∑
i=1

Φ(i))(∇Y L)T
(47)

22

We use O(1) to denote constants that is irrelevant to t. Given that∇Y L are bounded, we have∥∥∥∥∥
d∑

i=1

Y (i)(θ(t))

∥∥∥∥∥ ≤
∥∥∥∥∥

d∑
i=1

Y (i)(θ(0))

∥∥∥∥∥+O(1)t∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(t))

∥∥∥∥∥ ≤
∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥+O(1)t
(48)

It follows that the Hessian is also bounded.

Tr{Ha(θ(t))} ≤ O(1)
∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥+O(1)t (49)

The time derivative and finite time change of energy and entropy is∣∣∣∣ ddtV (θ(t))

∣∣∣∣ ≤ O(1)
∥∥∥∥∥

d∑
i=1

Y (i)(θ(0))

∥∥∥∥∥+O(1)t
|∆tV (θ(0))| = |V (θ(t))− V (θ(0))| ≤ O(1)

∥∥∥∥∥
d∑

i=1

Y (i)(θ(0))

∥∥∥∥∥t+O(1)t2∣∣∣∣ ddt (∆tS(θ(0)))

∣∣∣∣ ≤ O(1) +O(1)
∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥+O(1)t
|∆tS(θ(0))| ≤ O(1)

∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥t+O(1)t+O(1)t2

(50)

The KL divergence is
DKL(qt∥p) =E[∆tV (θ(0))−∆tS(θ(0))]

≤E
[
O(1)

∥∥∥∥∥
d∑

i=1

Y (i)(θ(0))

∥∥∥∥∥t+O(1)
∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥t+O(1)t+O(1)t2
]

≤O(1)t+O(1)t2

(51)

The last inequality is because
∑d

i=1 Y
(i)(θ(0)) follows Gaussian distribution and the expectation of

norm is finite.

The sampling efficiency could also be controlled.
1

effλ
=

1

Z2
λ

E[exp(−2λr(θ(t))− 2∆tV (θ(0)) + 2∆tS(θ(0)))]

≤ 1

Z2
λ

E[exp(−2∆tV (θ(0)) + 2∆tS(θ(0)))]

≤O(1)E
[
exp

(
O(1)

∥∥∥∥∥
d∑

i=1

Y (i)(θ(0))

∥∥∥∥∥t+O(1)
∥∥∥∥∥
d−1∑
i=1

Γ(i)(θ(0))

∥∥∥∥∥t+O(1)t+O(1)t2
)]

≤O(1) exp
(
O(1)t+O(1)t2

)
E
[
exp

(
O(1)

∥∥∥∥[∑d
i=1 Y

(i)(θ(0))∑d−1
i=1 Γ(i)(θ(0))

]∥∥∥∥t)]
≤O(1) exp

(
O(1)t+O(1)t2

)
(52)

The first inequality comes from r(θ) ≥ 0. The last inequality follows from the fact that,
for random vectors with tail similar to log-normal distribution, the expectation exists. More
specifically, let σi(Σ) is eigenvalues of covariance matrix Σ, we have Ex∼N (0,Σ)[exp(c∥x∥)] ≤∏

i Eyi∼N (0,σi(Σ))[exp(c∥yi∥)] =
∏

i exp
(
c2σ2

i (Σ)/2
)
(1 + erf(cσi(Σ)/2))).

E Additional Experiment Results

In Figure 4, we show the correlation between KL divergence and generalization gap during training.
We also show how weight distribution evolves.

23

2 4 6 8 10
Training Time

0

1

2

3

4

5

D
K
L
(q
t‖
p)

KL Divergence

0.02

0.04

0.06

0.08

L
os

s
G

ap

Loss Gap

2 4 6 8 10
Training Time

−120

−100

−80

−60

−40

lo
g
(w

)

Figure 4: The KL divergence, training and testing loss gap, and time dependence of weight distribution
of experiment in Section 8.3.

F Additional Discussion on Algorithms

F.1 An illustrative example of TransBL

(a) Prior (b) Loss (c) Posterior

Figure 5: Bayesian learning process

(a) Gradient flow (b) TransBL

Figure 6: Illsutration of TransBL

transformed by adding a weight

In the presented motivating example, we explore a univariate loss function that presents two distinct
global minima with zero loss. One of these is characterized as a sharp minimum, while the other
represents a flat minimum. If the function were to be randomly initialized and then optimized, it
might converge to either of the two localities. However, insights from PAC Bayesian indicate that the
flat minimum is surrounded by a higher posterior probability density. A direct initialization from the
prior, followed by training using gradient flow, often results in a significant deviation of the ensemble
from the posterior. This is primarily because the optimization process fails to recognize the presence
of a sharp minimum. The intuitive approach of the TransBL method is to apply a small weight to the
solution found within the sharp minimum. Consequently, TransBL can adeptly recreate the posterior,
as depicted in the Figure 6b.

Furthermore, we demonstrate the interpolation between the ensemble distribution obtained from
optimization and Bayesian posterior through weight clipping in Section 6.1. In Figure 7a, with
β = 0.2, the curve leans more towards the optimization result, revealing a broader spread and

24

less-defined peaks. This shows a scenario where optimization has a stronger influence than Bayesian
learning. Yet with β = 5, the distribution is almost akin to what one would expect from a Bayesian
posterior. In essence, the parameter β serves as a tuning knob, allowing us to interpolate and traverse
the spectrum from pure optimization-driven results to outcomes heavily influenced by Bayesian
learning. This interpolation mechanism offers a flexible approach to merge the strengths of both
methodologies.

(a) β = 0.2 (b) β = 1 (c) β = 5

Figure 7: Interpolation between optimization and Bayesian learning

F.2 Optimization Algorithms

In the main paper, we analyze the change of energy ∆V and entropy ∆S for gradient descent (GD).
However, with finite step size, GD might not be reversible. Another difficulty lies in the computation
of entropy change. As shown in Eq. (9), the entropy change is related to the curvature of loss ls and
Hessian trace of neural network, where the second part is hard to compute exactly.

We note that this problem could be alleviated for algorithms with enriched state space, but at a price
of lower sampling efficiency.

Momentum SGD For parameter x and momentum v, the Momentum SGD with fraction γ, step
size h and gradient oracle g can be formulated into following two steps:{

v ← γv + g(x)

x← x− v
. (53)

By defining y = [x v], Momentum SGD turns into a transform T (y) composed by two sub
transforms T (y) = L2 ◦ L1(y) that correspond to two lines separately.

The determinant of Jacobian for L1 is det(γI) = γd, where d is dimension of parameters. The
determinant of Jacobian for L2 is 1, therefore, the determinant of Jacobian for Momentum SGD is
γd.

Adagrad For parameter x, first-order momentum v and second-order momentum m, the Adagrad
is: 

m← m+ g(x)2

v ← γv + (1− γ) g(x)√
m

x← x− hv

. (54)

The square, square root and division in above formula are all element-wise.

Similar to Momentum SGD, the whole transform of Adagrad could be decomposed into three sub
transform. The first and third step are both volume-preserving, and second step compress momentum
by γ in each dimension. Therefore the determinant of Jacobian for Adagrad is γd.

Both above two algorithms enjoy simple form of Jacobian determinant. However, the sampling
efficiency degenerates since χ2 divergence increases when we consider joint probability distribution
of parameter and auxiliary variables, like momentum.

25

F.3 Approximate DNN Hessian Trace by Forward Propagation

We first recall that due to Theorem 4, we have

Tr(Ha(θ(t))) =
d−1∑
j=1

(∇xj
yd)

(
σ′′
j (yj)⊙

(
j∑

i=1

ξ(i,j)

))
.

Our motivation is based on the stability of ξ(i,j). We have shown in Theorem 5 that in the infinite
width limit, ξ(i,j) converge to a vector with same elements and is stable during training. For the wide
but finite width network, this property is largely preserved.

If we replace ξ(i,j) with its limit value, we obtain following formula:

Tr(Ha(θ(t))) ≈
d−1∑
j=1

(∇xj
yd(θ(t), sa))σ

′′
j (yj(θ(t), sa))

(
j∑

i=1

(Ξ(i,j))a

)
.

In order to calculate the above value efficiently, we notice that above summation can be regarded as
propagation of a tangent vector.

We first change the network definiton into

x0(θ, sa) = sa,

yi(θ, sa) = ciWixi−1(θ, sa), ∀i = 1, . . . , d,

xi(θ, sa) = σi(yi(θ, sa)) + bi, ∀i = 1, . . . , d− 1.

Notice that compared to original network, we add vectors bi, and when bi is set as 0, the output is
same as original network.

It can be easily seen that ∇xj
yd = ∇bjyd, therefore we could just let

σ′′
j (yj(θ(t), sa))

(∑j
i=1(Ξ

(i,j))a

)
be the tangent vector for bi and let it propagates along

the forward pass, the result tangent vector in output space is just an estimation of Tr(Ha(θ(t))).

F.4 Final PAC Bayes bound

Eθ∼qt [R(θ)] = Φ−1
λ
m

(
Eθ∼qt [r(θ)] +

DKL(qt||p) + log 1
δ

λ

)
DKL(qt||p) = E{(Y (i)

0 ,Γ
(i)
0)}d

i=1∼Σ
[Vt − St]

V0 = 0, S0 = 0

Yt = Y
(d)
t

d

dt
Vt = −∇L(Yt)

d∑
i=1

Y
(i)
t

d

dt
St = −Tr(∇2L(Yt)Θ

(d))−∇L(Yt)
d∑

j=1

j∑
i=1

Γ(i) ⊙ Ξ(i,j)

d

dt
Y

(i)
t = −Θ(i)∇L(Yt)

⊤

d

dt
Γ
(i)
t = −Φ(i)∇L(Yt)

⊤

(55)

The closed form solution of the KL divergence is hard to obtain, but the numerical solution can be
computed efficiently on a computer (as shown in Figure 4) by solving the above ODE.

26

	Introduction
	Background
	Training by Optimization
	Transformative Bayesian Learning
	An Illustrative Example

	Connections between Bayesian Learning and Optimization
	A Bayesian Perspective for Optimization
	Efficiency of Optimization Flows for TransBL

	Interpolation of Optimization and Bayesian Learning
	Trade-off between Generalization and Sampling Efficiency

	Overparameterized Neural Network
	Network Definition
	Energy Term
	Entropy Term
	Infinite Width Limit

	Experiments
	Non-Diminishing Hessian Trace and Efficient Estimation
	Comparing the Dynamics in Parameter Space and Function Space
	Interpolation of Optimization and Bayesian Learning

	Conclusion
	Related Works
	Discussion on the strength of assumption
	Additional Proofs
	Analysis of Infinitely Wide Network
	Additional Experiment Results
	Additional Discussion on Algorithms
	An illustrative example of TransBL
	Optimization Algorithms
	Approximate DNN Hessian Trace by Forward Propagation
	Final PAC Bayes bound

