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Abstract

A fundamental problem in data management is

to find the elements in an array that match a

query. Recently, learned indexes are being ex-

tensively used to solve this problem, where they

learn a model to predict the location of the items

in the array. They are empirically shown to outper-

form non-learned methods (e.g., B-trees or binary

search that answer queries in O(log n) time) by

orders of magnitude. However, success of learned

indexes has not been theoretically justified. Only

existing attempt shows the same query time of

O(log n), but with a constant factor improvement

in space complexity over non-learned methods,

under some assumptions on data distribution. In

this paper, we significantly strengthen this result,

showing that under mild assumptions on data

distribution, and the same space complexity as

non-learned methods, learned indexes can answer

queries in O(log log n) expected query time. We

also show that allowing for slightly larger but still

near-linear space overhead, a learned index can

achieve O(1) expected query time. Our results

theoretically prove learned indexes are orders of

magnitude faster than non-learned methods, theo-

retically grounding their empirical success.

1. Introduction

It has been experimentally observed, but with little theoret-

ical backing, that the problem of finding an element in an

array has very efficient learned solutions (Galakatos et al.,

2019; Kraska et al., 2018; Ferragina & Vinciguerra, 2020;

Ding et al., 2020). In this fundamental problem in data

management, the goal is to find, given a query, the elements

in the dataset that match the query (e.g., find the student

with grade=q, for a number q, where ªgrade=qº is the query

on a dataset of students). Assuming the query is on a single
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attribute (e.g., we filter students only based on grade), and

that data is sorted based on this attribute, binary search finds

the answer in O(log n) for an ordered dataset with n records.

Experimental results, however, show that learning a model

(called a learned index (Kraska et al., 2018)) that predicts

the location of the query in the array can provide accurate

estimates of the query answers orders of magnitude faster

than binary search (and other non-learned approaches). The

goal of this paper is to present a theoretical grounding for

such empirical observations.

More specifically, we are interested in answering exact

match and range queries over a sorted array A. Exact match

queries ask for the elements in A exactly equal to the query

q (e.g., grade=q), while range queries ask for elements that

match a range [q, q′] (e.g., grade is between q and q′). Both

queries can be answered by finding the index of the largest

element in A that is smaller than or equal to q, which we call

the rank of q, rank(q). Range queries require the extra step,

after obtaining rank(q), of scanning the array sequentially

from q up to q′ to obtain all results. The efficiency of meth-

ods answering range and exact match queries depends on

the efficiency of answering rank(q), which is the operation

analyzed in the rest of this paper.

In the worst-case, and without further assumption on the

data, binary search finds rank(q) optimally, and in O(log n)
operations. Materializing the binary search tree and vari-

ations of it, e.g., B-Tree (Bayer & McCreight, 1970) and

CSS-trees (Rao & Ross, 1999), utilize caching and hard-

ware properties to improve the performance in practice but

theoretical number of operations remains O(log n) (we con-

sider data in memory and not external storage). On the other

hand, learned indexes have been empirically shown to out-

perform non-learned methods by orders of magnitude. Such

approaches learn a model that predicts rank(q). At query

time, a model inference provides an estimate of rank(q), and

a local search is performed around the estimate to find the

exact index. An example is shown in Fig. 1, where for the

query 13, the model returns index 3, while the correct index

is 5. Then, assuming the maximum model error is ϵ, a binary

search on ϵ elements of A within the model prediction (i.e.,

the purple sub-array in Fig. 1) finds the correct answer. The

success of learned models is attributed to exploiting patterns

in the observed data to learn a small model that accurately

estimates the rank of a query in the array.
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error ϵ, we can obtain an exact function with expected query

time of EA∼χ[T (r̂A, q)] +O(log ϵ) and space overhead of

EA∼χ[S(r̂A)] since binary search requires no additional

storage space. In this paper, we show the existence of func-

tion approximators, R̂A that can achieve sub-logarithmic

query time with various space overheads.

2.2. Related Work

Learned indexes. The only existing work theoretically

studying a learned index is Ferragina et al. (2020). It shows,

under assumptions on the gaps between the keys in the ar-

ray, as n→∞ and almost surely, one can achieve logarith-

mic query time with a learned index with a constant factor

improvement in space consumption over non-learned in-

dexes. We significantly strengthen this result, showing sub-

logarithmic expected query time under various space over-

heads. Our assumptions are on the data distribution itself

which is more natural than assumption on the gaps, and our

results hold for any n (and not as n → ∞). Though scant

in theory, learned indexes have been extensively utilized

in practice, and various modeling choices have been pro-

posed under different settings, e.g., Galakatos et al. (2019);

Kraska et al. (2018); Ferragina & Vinciguerra (2020); Ding

et al. (2020) to name a few. Our results use a hierarchical

model architecture, similar to Recursive Model Index (RMI)

(Kraska et al., 2018) and piecewise approximation similar

to Piecewise Geometric Model index (PGM) (Ferragina &

Vinciguerra, 2020) to construct function approximators with

sub-logarithmic query time.

Non-Learned Methods. Binary search trees, B-Trees

(Bayer & McCreight, 1970) and many other variants (Rao

& Ross, 1999; Lehman & Carey, 1985; Bayer, 1972), exist

that solve the problem in O(log n) query time, which is the

best possible in the worst case in comparison based model

(Navarro & Rojas-Ledesma, 2020). The space overhead for

such indexes is O(n log n) bits, as they have O(n) nodes

and each node can be stored in O(log n) bits. We also note

in passing that if we limit the domain of elements to a finite

integer universe and do not consider range queries, various

other time/space trade-offs are possible (PătrasËcu & Thorup,

2006), e.g., using hashing (Fredman et al., 1984).

3. Asymptotic Behaviour of Learned Indexing

3.1. Constant Time and Near-Linear Space

We first consider the case of constant query time.

Theorem 3.1. Suppose the p.d.f, fχ(x), is bounded, i.e.,

fχ(x) ≤ ρ for all x ∈ D, where ρ < ∞. There exists a

learned index with space overhead O(ρ1+ϵn1+ϵ), for any

ϵ > 0, with expected query time of O(log 1
ϵ
) operations for

any query. ρ is a constant independent of n, and for any

constant ϵ, asymptotically in n, space overhead is O(n1+ϵ)
and expected query time is O(1).

The theorem shows the surprising result that we can in

fact achieve constant query time with a learned index of
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size O(n1+ϵ). Although the space overhead is near-linear,

this overhead is asymptotically larger than the overhead of

traditional indexes (with overhead O(n log n)) and thus the

query time complexities are not directly comparable.

Interestingly, the function approximator that achieves the

bound in Theorem 3.1 is a simple piecewise constant func-

tion approximator, which can be seen as a special case of

the PGM model that uses piece-wise linear approximation

(Ferragina & Vinciguerra, 2020). Our function approxima-

tor is constructed by uniformly dividing the space into k

intervals and for each interval finding a constant that best

approximates the rank function in that interval. Such a

function approximator is shown as r̂A(q; θ) in Fig. 2 for

k = 5. Obtaining constant query time requires such a func-

tion approximator to have constant error. It is, however,

non-obvious why and when only O(n1+ϵ) pieces will be

sufficient on expectation to achieve constant error. In fact,

for the worst-case (and not the expected case), for a heavily

skewed dataset, achieving constant error would require an

arbitrarily large k, as noted by Kraska et al. (2018).

However, Theorem 3.1 shows as long as the p.d.f. of the data

distribution is bounded, O(n1+ϵ) pieces will be sufficient

for constant query time on expectation. Intuitively, the

bound on the p.d.f. is used to argue that the number of data

points sampled in a small region is not too large, which is in

turn used to bound the error of the function approximation.

Finally, dependence on ρ in Theorem 3.1 is expected, as

performance of learned indexes depends on the dataset char-

acteristics. ρ captures such data dependencies, showing that

such data dependencies only affect space overhead by a con-

stant factor. From a practical perspective, our experiments

in Sec. 5.2 show that for many commonly used real-world

benchmarks for learned indexes, trends predicted by Theo-

rem 3.1 hold with ρ = 1. However, Sec. 5.2 also shows that

for datasets where learned indexes are known to perform

poorly, we observe large values of ρ. Thus, ρ can be used

to explain why and when learned indexes perform well or

poorly in practice.

3.2. Log-Logarithmic Time and Constant Space

Requiring constant query time, as in the previous theorem,

can be too restrictive. Allowing for slightly larger query

time, we have the following result.

Theorem 3.2. Suppose c.d.f of data distribution Fχ(x) can
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be evaluated exactly with O(1) operations and O(1) space

overhead. There exists a learned index with space overhead

O(1), where for any query q, the expected query time is

O(log log n) operations.

The result shows that we can obtain O(log log n) query

time if the c.d.f of the data distribution is easy to compute.

This is the case for the uniform distribution (whose c.d.f

is a straight line), or more generally any distribution with

piece-wise polynomial c.d.f. In this regime, we only utilize

constant space, and thus our bound is comparable with per-

forming a binary search on the array, which takes O(log n)
operations, showing that the learned approach enjoys an

order of magnitude theoretical benefit.

Our model of the rank function is n× Fχ, where Fχ is the

c.d.f of the data distribution. As Fig. 3 shows, our search

algorithm proceeds recursively, at each iteration reducing

the search space by around
√
n. Intuitively, the

√
n is due

to the Dvoretzky-Kiefer-Wolfowitz (DKW) bound (Massart,

1990), which is used to show that with high probability the

answer to a query, q is within
√
n of nFχ(q). Reducing

the search space, s, by roughly
√
s at every level by re-

cursively applying DKW, we obtain the total search time

of O(log log n) (note that binary search only reduces the

search space by a factor of 2 at every iteration).

3.3. Log-Logarithmic Time and Quasi-Linear Space

Finally, we show that the requirement of Theorem 3.2 on

the c.d.f. is not necessary to achieve O(log log n) query

time, provided quasi-linear space overhead is allowed. The

following theorem shows that a learned index can achieve

O(log log n) query time under mild assumptions on the data

distribution and utilizing quasi-linear space.

Theorem 3.3. Suppose p.d.f of data distribution fχ(x) is

bounded and more than zero, i.e., ρ1 ≤ fχ(x) ≤ ρ2 for all

x ∈ D, where ρ1 > 0 and ρ2 <∞. There exists a learned

index with expected query time equal to O(log log n) oper-

ations and space overhead O(ρ2

ρ1

n log n), for any query.

Specifically,
ρ2

ρ1

is a constant independent of n, so that,

asymptotically in n, space overhead is O(n log n).

This regime takes space similar to data size, and is where

most traditional indexing approaches lie, e.g., binary trees

and B-trees, where they need O(n log n) storage (the log n
is due to the number of bits needed to store each node

content) and achieve O(log n) query time.

The learned index that achieves the bound in Theorem 3.3

is an instance of the Recursive Model Index (RMI) (Kraska

et al., 2018). Such a learned index defines a hierarchy of

models, as shown in Fig. 4. Each model is used to pick a

model in the next level of the tree until a model in the leaf

level is reached, whose prediction is the estimated position

of the query in the array. Unlike RMI in (Kraska et al.,

2018), its height or size of the model within each node is

not constant and set based on data size.

Intuitively, the hierarchy of models is a materialization of

a search tree based on the recursive search used to prove

Theorem 3.2. At any level of the tree, if the search space is

s elements (originally, s = n) a model is used to reduce the

search space to roughly
√
s. It is however non-trivial why

and when such a model should exist across all levels and how

large the model should be. We use the relationship between

the rank function and the c.d.f (through DKW bound), and

the properties of the data distribution to show that a model

of size around
√
s is sufficient with high probability. Note

that models at lower levels of the hierarchy approximate

the rank function only over subsets of the array, but with

increasingly higher accuracy. A challenge is to show that

such an approximability result holds across all models and

all subsets of the array, which is why a lower bound on the

p.d.f. is needed in this theorem.

Similar to ρ in Theorem 3.1, ρ1 and ρ2 capture data charac-

teristics in Theorem 3.3, showing constant factor dependen-

cies on the model size. Our experiments in Sec. 5.2 show

that for most commonly used real-world benchmarks for

learned indexes, trends predicted by Theorem 3.3 hold with
ρ2

ρ1

= 1. However, Sec. 5.2 also shows that for datasets

where learned indexes are known to perform poorly, ρ2

ρ1

is large, so that ρ2

ρ1

can be used to explain why and when

learned indexes perform well or poorly in practice.

3.4. Distributions with Other Domains

So far, our results assume that the domain of data distribu-

tion is [0, 1]. The result can be extended to distributions

with other bounded domains, [r, s] for r, s ∈ R, r < s, by

standardizing χ as χ−r
s−r

. This transformation scales p.d.f

of χ by s − r. Note that scaling the p.d.f does not affect

Theorem 3.3, since both ρ1 and ρ2 will be scaled by s− r,

yielding the same ratio ρ2

ρ1

. On the other hand, ρ in Theo-

rem 3.1 will be scaled by s− r. Overall, bounded domain

can be true in many scenarios, as the data can be from some

phenomenon that is bounded, e.g., age, grade, data over a

period of time. Next, we extend our results to distributions

with unbounded domains.

Lemma 3.4. Suppose a learned index, R̂, achieves expected
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query time t(n) and space overhead s(n) on distributions

with domain [0, 1] and bounded (and non-zero) p.d.f. There

exists a learned index, R̂′ with expected query time t(n) + 1
and space overhead O(s(n) log n) on any sub-exponential

distribution with bounded (and non-zero) p.d.f.

Combining Lemma 3.4 with Theorems 3.1 and 3.3, our re-

sults cover various well-known distributions, e.g., Gaussian,

squared of Gaussian and exponential distributions.

Proof of lemma 3.4 builds the known learned index for

bounded domains on log n different bounded intervals. This

achieves the desired outcome due to the tail behavior of

sub-exponential distributions (i.e., for distributions with tail

at most as heavy as exponential, see Vershynin (2018) for

definition). The tail behaviour allows us to, roughly speak-

ing, assume that the domain of the function is O(log n),
because observing points outside this range is unlikely. We

note that other distributions with unbounded domain can

also be similarly analyzed based on their tail behaviour, with

heavier tails leading to higher space consumption.

4. Proofs

Proofs of the theorems are all constructive. PCA Index

(Sec. 4.1) proves Theorem 3.1, RDS algorithm proves The-

orem 3.2 and RDA Index proves Theorem 3.3. Without loss

of generality, we assume the bounded domain D is [0, 1].
The proof for the unbounded domain case (i.e., Lemma 3.4)

is deferred to Appendix A. Proof of technical lemmas stated

throughout this section can also be found in Appendix A.

4.1. Proof of Theorem 3.1: PCA Index

We present and analyze Piece-wise Constant Approximator

(PCA) Index that proves Theorem 3.1.

4.1.1. APPROXIMATING RANK FUNCTION

We show how to approximate the rank function r with a

function approximator r̂. To achieve constant query time,

approximation error should be a constant independent of n

with high probability, and we also should be able to evaluate

r̂ in constant time.

Lemma 4.1 shows these properties hold for a piece-wise

constant approximation to r. Such a function is presented

in Alg. 1 (and an example was shown in Fig. 2). Alg. 1

uniformly divides the function domain into k intervals, so

that the i-th constant piece is responsible for the interval

Ii = [i × 1
k
, (i + 1) × 1

k
]. Since r(q) is a non-decreasing

function, the constant with the lowest infinity norm error

approximating r over Ii is 1
2 (r(

i
k
) + r( i+1

k
)) (line 6). Let

r̂k be the function returned by PCF(A, k, 0, 1).

Lemma 4.1. Under the conditions of Theorem 3.1 and for

k ≥ n1+ϵρ1+
ϵ
2 , the error of r̂k is bounded as

P(∥r̂k − r∥∞ ≥
2

ϵ
+ 1) ≤ 1

n
.

Proof of Lemma 4.1. Let ei = supx∈Ii
|r̂(x; θ)− r(x)| be

Algorithm 1 PCA Index Construction

Require: A sorted array A, number of pieces k, approxi-

mation domain lower and upper bounds l and u

Ensure: Piecewise constant approximation of r over [l, u]
1: procedure PCF(A, k, l, u)

2: P ← array of length k storing the pieces

3: α← (u−l)
k

4: δ ← 0
5: for i← 0 to k do

6: P [i]← 1
2 (rA(l + αi) + rA(l + α(i+ 1))

7: δcurr ←
⌈

1
2 (rA(l + α(i+ 1))− rA(l + αi))

⌉

8: δ ← max{δ, δcurr}
return P , δ

the maximum error in the i-th piece of r̂. ei can be bounded

by the number of points sampled in Ii as follows.

Proposition 4.2. Let si = |{j|aj ∈ Ii}| be the number of

points in A that are in Ii. We have ei ≤ si

Using Prop. 4.2, we have ∥r̂ − r∥∞ ≤ maxi∈{1,...,k} si.

Prop. 4.2 is a simple fact that relates approximation er-

ror to statistical properties of data distribution. Define

smax = maxi∈{1,...,k} si and observe that smax is a random

variable denoting the maximum number of points sampled

per interval, across k equi-length intervals. The following

lemma shows that we can bound smax with a constant and

with probability 1
n

, as long as k is near-linear in n.

Lemma 4.3. For any c with c ≥ 3, and if k ≥
n1+ 2

c−1 ρ1+
1

c−1 we have P(smax ≥ c) ≤ 1
n

.

Setting c = 2
ϵ
+ 1, we see k ≥ n1+ϵρ1+

ϵ
2 holds, so that

Lemma 4.3 together with Prop. 4.2 prove Lemma 4.1.

4.1.2. INDEX CONSTRUCTION AND QUERYING

Let k = ⌈n1+ ϵ
2 ρ1+

ϵ
4 ⌉. We use PCF(A, k, 0, 1) to obtain

r̂k and δ, where δ is the maximum observed approximation

error. As Alg. 1 shows, r̂k can be stored as an array, P , with

k elements. To perform a query, the interval, i, a query falls

into is calculated as i = ⌊qk⌋ and the constant responsible

for that interval, P [i], returns the estimate. Given maximum

error δ, we perform a binary search on the subarray A[l : u],
for l = P [i]− δ and u = P [i] + δ to obtain the answer.

4.1.3. COMPLEXITY ANALYSIS

P has O(n1+ ϵ
2 ) entries, and each can be stored in O(n

ϵ
2 ).

Thus, total space complexity is O(n1+ϵ). Regarding query

time, the number of operations needed to evaluate r̂k is

constant. Thus, the total query time of the learned index is

O(log δ). Lemma 4.1 bounds δ, so that the query time for

any query is at most log( 4
ϵ
+1) with probability at least 1− 1

n

and at most log n with probability at most 1
n

. Consequently,

the expected query time is at most O(log( 4
ϵ
+ 1) × (1 −

1
n
) + log n× 1

n
) which is O(1) for any constant ϵ > 0.
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4.2. Proof of Theorem 3.2: RDS Algorithm

We present and analyze Recursive Distribution Search (RDS)

Algorithm that proves Theorem 3.2.

4.2.1. APPROXIMATING RANK FUNCTION

We approximate the rank function using the c.d.f of the data

distribution, which conditions of Theorem 3.2 imply is easy

to compute. As noted by Kraska et al. (2018), rank(q) =
nFn(q), where Fn is the empirical c.d.f. Using this together

with DKW bound (Massart, 1990), we can establish that

rank(q) is within error
√
n of nFχ with high probability.

However, error of
√
n is too large: error correction to find

rank(q) would require O(log
√
n) = O(log n) operations.

Instead, we recursively improve our estimate by utilizing

information that becomes available from observing elements

in the array. After observing two elements, ai and aj in A

(i < j), we update our knowledge of the distribution of

elements in A[i+ 1 : j − 1] as follows. Define F i,j
χ (x) =

Fχ(x)−Fχ(ai)
Fχ(aj)−Fχ(ai)

. Informally, any element X in A[i+1 : j−1]
is a random variable sampled from χ and knowing the value

of ai and aj implies that X ∈ [ai, aj ], so that the conditional

c.d.f of X is

P
X∼χ

(X ≤ x|ai ≤ X ≤ aj) = F i,j
χ (x).

We then use DKW bound to show F i,j
χ is a good estimate

of the rank function for the subarray A[i + 1 : j − 1],
defining the rank function for the subarray A[i+1 : j−1] as

ri,j(q) =
∑j−1

z=i+1 Iaz≤q. Formally, the following lemma

shows that given observations A[i] = ai and A[j] = aj the

elements of A[i+ 1 : j − 1] are i.i.d random variables with

the conditional c.d.f F i,j
χ (x) and uses the DKW bound to

bound the approximation error of using the conditional c.d.f

to approximate the conditional rank function.

Lemma 4.4. Consider two indexes i, j, where 1 ≤ i < j ≤
n and ai < aj . Let k = j − i− 1. For k ≥ 2, we have

P(sup
x
|ri,j(x)− kF i,j

χ (x)| ≥
√

0.5k log log k) ≤ 1

log k
.

4.2.2. QUERYING

We use Lemma 4.4 to recursively search the array. At every

iteration, the search is over a subarray A[i : j] (initially, i=1

and j = n). We observe the values of ai and aj and use

Lemma 4.4 to estimate which subarray is likely to contain

the answer to the query. This process is shown in Alg. 2.

In lines 5-7 the algorithm observes ai and aj and attempts

to answer the query based on those two observations. If it

cannot, lines 8-11 use Lemma 4.4 and the observed values

of ai and aj to estimate which subarray contains the answer.

Line 12 then checks if the estimated subarray is correct,

i.e., if the query does fall inside the estimated subarray. If

the estimate is correct, the algorithm recursively searches

the subarray. Otherwise, the algorithm exits and performs

binary search on the current subarray. Finally, line 3 exits

when the size of the dataset is too small. The constant 25 is

chosen for convenience of analysis (see Sec. 4.2.3).

Algorithm 2 Recursive Distribution Search Algorithm

Require: A sorted array A of size n searched from index i

to j, a query q

Ensure: Rank of q in A[i : j]
1: procedure SEARCH(A, q, i, j)

2: k ← j − i− 1
3: if k < 25 then

4: return i-1+BINARYSEARCH(A, q, i, j)

5: if ai > q then return 0

6: if ai = q then return 1

7: if aj ≤ q then return j − i+ 1

8: î← i+ 1 + k × F i,j
χ (q)

9: r ←
√
0.5k log log k

10: l← ⌊̂i− r⌋
11: u← ⌈̂i+ r⌉
12: if al > q or ar < q then

13: return i− 1+BINARYSEARCH(A, q, i, j)

14: return l − 1+ SEARCH(A, q, l, u)

4.2.3. COMPLEXITY ANALYSIS

To prove Theorem 3.2, it is sufficient to show that expected

query time of Alg. 2 is O(log log n) for any query. The

algorithm recursively proceeds. At each recursion level, the

algorithm performs a constant number of operations unless

it exits to perform a binary search. Let the depth of recursion

be h and let ki be the size of the subarray at the i-th level of

recursion (so that binary search at i-th level takes O(log ki)).
Let Bi denote the event that the algorithm exits to perform

binary search at the i-th iteration. Thus, for any query q, the

expected number of operations is

EA∼χ[T (r̂, q)] =

h
∑

i=1

c1 + c2P(Bi, B̄i−1, ....B̄1) log ki

for constants c1 and c2. Note that P(Bi, B̄i−1, ....B̄1) ≤
P(Bi|B̄i−1, ....B̄1), where P(Bi|B̄i−1, ....B̄1) is the prob-

ability that the algorithm reaches i-th level of recursion and

exits. By Lemma 4.4, this probability bounded by 1
log ki

.

Thus EA∼χ[T (r̂, q)] is O(h).

To analyze the depth of recursion, recall that at the last

level, the size of the array is at most 25. Furthermore, at

every iteration the size of the array is reduced to at most

2
√
0.5n log log n+2. For n ≥ 25, 2

√
0.5n log log n+2 ≤

n
3

4 , so that the size of the array at the i-th recursions is at

most n( 3

4
)i and the depth of recursion is O(log log n). Thus,

the expected total time is O(log log n) .

4.3. Proof of Theorem 3.3: RDA Index

We present and analyze Recursive Distribution Approxima-

tor (RDA) Index that proves Theorem 3.3.

4.3.1. APPROXIMATING RANK FUNCTION

We use ideas from Theorems 3.1 and 3.2 to approximate

the rank function. We use Alg. 2 as a blueprint, but instead

6



On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

of the c.d.f, we use a piecewise constant approximation

to the rank function. If we can efficiently approximate

the rank function for subarray A[i − 1 : j + 1], ri,j , to

within accuracy O(
√
k log log k) where k = j − i − 1,

we can merely replace line 8 of Alg. 2 with our function

approximator and still enjoy the O(log log n) query time.

Indeed, the following lemma shows that this is possible

using the piecewise approximation of Alg. 1 and under mild

assumptions on the data distribution. Let r̂
i,j
t be the function

returned by PCF(A[i+ 1 : j − 1], t, ai , aj ) with t pieces.

Lemma 4.5. Consider two indexes i, j, where 1 ≤ i < j ≤
n and ai < aj . Let k = j − i − 1. For k ≥ 2, under the

conditions of Theorem 3.3 and for t ≥ ρ2

ρ1

√
k we have

P(∥ri,j − r̂
i,j
t ∥∞ ≥ (

√

0.5 log log k + 1)
√
k) ≤ 1

log k
.

Proof of Lemma 4.5. Alg. 1 finds the piecewise constant

approximator to ri,j with t pieces with the smallest infinity

norm error. Thus, we only need to show the existence of an

approximation with t pieces that satisfies conditions of the

lemma. To do so, we use the relationship between ri,j and

the conditional c.d.f. Intuitively, Lemma 4.4 shows that ri,j

and the conditional c.d.f are similar to each other and thus,

if we can approximate conditional c.d.f well, we can also

approximate ri,j . Formally, by triangle inequality and for

any function approximator r̂ we have

∥ri,j − r̂∥∞ ≤ ∥ri,j − kF i,j
χ ∥∞ + ∥kF i,j

χ − r̂∥∞. (1)

Combining this with Lemma 4.4 we obtain

P(∥ri,j−r̂∥∞ ≥
√

0.5k log log k+∥kF i,j
χ −r̂∥∞) ≤ 1

log k
.

Finally, Lemma 4.6 stated below shows how we can approx-

imate the conditional c.d.f and completes the proof.

Lemma 4.6. Under the conditions of Lemma 4.5, there

exists a piecewise constant function approximator, r̂, with
ρ2

ρ1

√
k pieces such that ∥r̂ − kF i,j

χ ∥∞ ≤
√
k.

4.3.2. INDEX CONSTRUCTION AND QUERYING

Lemma 4.5 is an analog of Lemma 4.4, showing a function

approximator enjoys similar properties as the c.d.f. How-

ever, different function approximators are needed for every

subarray (for c.d.f.s we merely needed to scale and shift

them differently for different subarrays). Given that there

are O(n2) different subarrays, a naive implementation that

creates a function approximator for each subarray takes

space quadratic in data size. Instead, we only approximate

the conditional rank function for certain sub-arrays while

still retaining the O(
√
k log log k) error bound per subarray.

Construction. Note that r(q) = 0 only if q < a1, so we

can filter this case out and assume r(q) ∈ {1, ..., n}. RDA

is a tree, shown in Fig. 4, where each node is associated

with a model. When querying the index, we traverse the tree

from the root, and at each node, we use the node’s model to

choose the next node to traverse. Traversing down the tree

Algorithm 3 RDA Index Construction

Require: A sorted array A of size n sampled from a distri-

bution χ with CDF Fχ, a query q

Ensure: The root node of the learned index

1: procedure BUILDTREE(A, i, j)

2: k ← j − i+ 1 ▷ size of A[i : j]
3: if k ≤ 61 then

4: return Leaf node with content A[i : j]

5: r̂, ϵ← PCF(A[i : j], ⌈ρ2

ρ1

√
k⌉, ai, aj)

6: k′ ← ⌈2
√
k(1 +

√
0.5 log log k) + 2⌉

7: if ϵ > k′

2 then

8: return Leaf node with content A[i : j]

9: C ← array of size ⌈ k
k′
⌉ containing children

10: for z ← 0 to ⌈ k
k′
⌉ do

11: C[z]← BUILDTREE(A, zk′, (z + 2)k′)

12: return Non-leaf node with children C and

model r̂ with max err
k′

2

narrows down the possible answers to r(q). We say that a

node N covers a range SN , if we have r(q) ∈ SN for any

query, q, that traverses the tree and reaches N . We call |SN |
node N ’s coverage size. Coverage size is the size of search

space left to search after reaching a node. The root node, N ,

covers {1, ..., n} with coverage size n and the coverage size

decreases as we traverse down the tree. Leaf nodes have

coverage size independent of n with high probability, so that

finding r(q) takes constant time after reaching a leaf. Each

leaf node stores the subarray corresponding to the range it

covers as its content.

RDA is built by calling BUILDTREE(A, 1, n), as presented

in Alg. 3. BUILDTREE(A, i, j) returns the root node, N ,

of a tree, where N covers {i, ..., j}. If the coverage size

of N is smaller than some prespecified constant (line 3,

analogous to line 3 in Alg. 2), the algorithm turns N into a

leaf node. Otherwise, in line 5 it uses Lemma 4.5 to create

the model r̂ for N , where r̂ approximates ri−1,j+1 (recall

that ri,j is the index function for subarray A[i+ 1 : j − 1]).
If the error of r̂ is larger than predicted by Lemma 4.5, the

algorithm turns N into a leaf node and discards the model

(this is analogous to line 12 in Alg. 2). Finally, for k′ as

in line 6, the algorithm recursively builds ⌈ k
k′
⌉ children for

N . Each child has a coverage size of 2k′ and the ranges

are spread at k′ intervals (line 11). This ensures that the set

R̂ = {r̂ − ϵ, r̂ − ϵ + 1, ..., r̂ + ϵ}, (with |R̂| ≤ k′ ensured

by line 7) is a subset of the range covered by one of N ’s

children. Furthermore, for any query q, ϵ is the maximum

error of r̂, so r(q) ∈ R̂. Thus, the construction ensures that

for any query q that reaches N , r(q) is in the range covered

by one of the children of N .

Performing Queries. As Alg. 4 shows, to traverse the tree

for a query q from a node N , we find the child of N whose

covered range contains r(q). When î is N .model estimate

7
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A. Proofs

Proof of Lemma 3.4. Assume w.l.o.g that the sub-

exponential distribution is centered. Let Zl be the event that

any point in the array is larger than l or smaller than−l for a

positive number l. Since the distribution is sub-exponential

and using union bound, P(Zl) ≤ 2ne−lK for some constant

K. To have 2ne−lK ≤ 1
logn

we get that 2n log n ≤ elK

and l ≥ 1
K

log(2n log n). So let l = ⌈ 2
k
log 2n⌉ and we

have P(Zl) ≤ 1
logn

. Now, to construct R̂′ we first check

if any point in A is larger than l or smaller than −l. If so,

we don’t build the index and only do binary search. Oth-

erwise, create 2l instances of R̂ index, with the i-th index

covering the range [−l + i,−l + i+ 1]. Note that interval

[−l+ i,−l+ i+1] has length 1, so that scaling and translat-

ing the distribution to interval [0, 1] does not impact the p.d.f

of the distribution. Queries use one of the learned models to

find the answer. Thus, the query time is O(log n) with prob-

ability 1
logn

, and it is t(n) with probability 1− 1
logn

, which

is O(t(n)). The space overhead is now O(s(n) log n).

Proof of Lemma 4.4. Recall that X1,..., Xn are i.i.d random

variables sampled from χ. Furthermore, the array A is a

reordering of the random variables so that A[i] = Xsi for

some index si. That is, each element A[i] is itself a random

variable and equal to one of X1, ..., Xn. A[i] = ai is a

random event.

For k = j − i− 1 ≥ 2, let {Xr1 , ..., Xrk} ⊆ {X1, ..., Xn}
be the elements of the sub-array A[i+ 1 : j − 1], which we

denote by Xrz ∈ A[i+ 1 : j − 1] for 1 ≤ z ≤ k. Note that

Xr1 , ..., Xrk is not sorted, but the subarray A[i+ 1 : j − 1]
is the random variables Xr1 , ..., Xrk in a sorted order. For

any random variable Xrz for some z ∈ {1, ..., k}, we first

obtain it’s conditional c.f.d given the observations A[i] = ai
and A[j] = aj . The conditional c.d.f can be written as

P(Xrz < x|A[i] = ai, A[j] = aj). (2)

Let X̄ = {X1, ...Xn} \ {Xrz}. Given that Xrz ∈ A[i+ 1 :
j − 1], the event A[i] = ai, A[j] = aj , is equivalent to the

conjunction of the following events: (i) at most i − 1 of

r.v.s in X̄ are less than ai, (ii) at least i of r.v.s in X̄ are
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less than or equal to ai, (iii) at most j − 2 of r.v.s in X̄ are

less than aj , (iv) at least j − 1 of r.v.s in X̄ are less than

or equal to aj , and (v) ai ≤ Xrz ≤ aj . This is because (i)

and (ii) imply A[i] = ai, while (iii)-(v) imply A[j] = aj .

Conversely, A[i] = ai and Xrz ∈ A[i+ 1 : j − 1] imply (i)

and (ii), A[j] = aj and Xrz ∈ A[i + 1 : j − 1] imply (iii)

and (iv), and A[i] = ai, A[j] = aj , Xrz ∈ A[i+ 1 : j − 1]
imply (v).

Now, denote by ϕ(X̄) the event described by (i)-(iv), so that

Eq. 2 is

P(Xrz < x|ϕ(X̄), ai ≤ Xrz ≤ aj).
Xrz is independent from all r.v.s in X̄ , so that Eq. 2 simpli-

fies to

P(Xrz < x|ai ≤ Xrz ≤ aj) = F i,j
χ (x),

For all Xrz ∈ {Xr1 , ..., Xrk}. Thus, the r.v.s in

{Xr1 , ..., Xrk} have the conditional c.d.f F i,j
χ (x).

A similar argument to the above shows that r.v.s in any

subset of Xr1 , ..., Xrk are independent, given A[i] =
ai, A[j] = aj . Specifically, let X̃ ⊆ {Xr1 , ..., Xrk} for

|X̃| ≥ 2. Then, the joint c.d.f of r.v.s in X̃ can be written as

P (∀X∈X̃X < x|A[i] = ai, A[j] = aj). (3)

Similar to before, define X̄ = {X1, ..., Xn}\X̃ . Given that

∀X∈X̃X ∈ A[i+ 1 : i− 1], the event A[i] = ai, A[j] = aj
is equivalent to the conjunction of the following events: (i)

at most i− 1 of r.v.s in X̄ are less than ai, (ii) at least i of

r.v.s in X̄ are less than or equal to ai, (iii) at most j−1−|X̃|
of r.v.s in X̄ are less than aj , (iv) at least j − |X̃| of r.v.s in

X̄ are less than or equal to aj , and (v) ∀X ∈ X̃ , we have

ai ≤ X ≤ aj . Now let ϕ(X̄) be the event described by

(i)-(iv), so that Eq. 3 can be written as

P (∀X∈X̃X < x|ϕ(X̄), ∀X∈X̃ai ≤ X ≤ aj).

All r.v.s in X̃ are independent from all r.v.s in X̄ , so that

Eq. 3 simplifies to

P (∀X∈X̃X < x|∀X∈X̃ai ≤ X ≤ aj).

Finally, all r.v.s in X̃ are also independent from each other,

so we obtain that Eq. 3 is equal to

ΠX∈X̃P (X < x|ai ≤ X ≤ aj), (4)

Proving the independence of r.v.s in X̃ conditioned on

A[i] = ai, A[j] = aj .

To summarize, we have shown that Xr1 , ..., Xrk r.v.s condi-

tioned on A[i] = ai, A[j] = aj are k i.i.d random variables

with the c.d.f F i,j
χ (x). Moreover, 1

k
r
i,j
A (x) is the empirical

c.d.f of the k r.v.s. By DKW bound (Massart, 1990) and for

t ≥ 0, we have

P(sup
x
|1
k
r
i,j
A (x)− F i,j

χ (x)| ≥ t√
k
) ≤ 2e−2t2 .

Rearranging and substituting t =
√
0.5 log log k proves the

lemma.

Proof of Lemma 4.6. k = j − i − 1. Divide the range

[ai, aj ] into t uniformly spaced pieces, so that the z-th piece

approximates kF i,j
χ over Iz = [ai + z

aj−ai

t
, ai + (z +

1)
aj−ai

t
], which is an interval of length

aj−ai

t
. Let P (x) be

the constant in the Taylor expansion of kF i,j
χ around some

point in Iz . By Taylor’s remainder theorem,

sup
x∈Iz

|P (x)− kF i,j
χ (x)| ≤ k × fχ(c)

Fχ(aj)− Fχ(ai)
× aj − ai

t

(5)

for some c ∈ Iz , where we have used the fact that the

derivative of the c.d.f is the p.d.f, and that any two point in

Iz are at most
aj−ai

t
apart.

By mean value theorem, there exist a c′ ∈ Iz so that
Fχ(aj)−Fχ(ai)

aj−ai
= fχ(c

′). This together with Eq. 5 yields

sup
x∈R

|P (x)− kF i,j
χ (x)| ≤ k × fχ(c)

fχ(c′)
× 1

t
≤ ρ2

ρ1

k

t
.

Setting t ≥ ρ2

ρ1

√
k ensures ρ2

ρk

k
t
≤
√
k log log k so that

∥P (x)− kF i,j
χ (x)∥∞ ≤

√

k log log k

Proof of Query Time Complexity of Theorem 3.3. The al-

gorithm traverses the tree recursively proceeds. At each

recursion level, the algorithm performs a constant number

of operations unless it perform a binary search. Let the

depth of recursion be h and let ki be the coverage size of

the node at the i-th level of recursion (so that binary search

at i-th level takes O(log ki)). Let Bi denote the event that

the algorithm performs binary search at the i-th iteration.

Thus, for any query q, the expected number of operations is

EA∼χ[T (r̂, q)] =

h
∑

i=1

c1 + c2P(Bi, B̄i−1, ....B̄1) log ki

for constants c1 and c2. Note that P(Bi, B̄i−1, ....B̄1) ≤
P(Bi|B̄i−1, ....B̄1), where P(Bi|B̄i−1, ....B̄1) is the prob-

ability that the algorithm reaches i-th level of tree and

performs binary search. By Lemma 4.5, this probability

bounded by 1
log ki

. Thus EA∼χ[T (r̂, q)] is O(h).

To analyze the depth of recursion, recall that at the last

level, the size of the array is at most 61. Furthermore, at

every iteration the size of the array is reduced by 4(
√
n)(1+√

0.5 log log n). For n ≥ 61, 4(
√
n)(1+

√
0.5 log log n) ≤

nc for some constant c < 1, so that the size of the array at

the i-th recursions is at most nci and the depth of recursion is

O(log log n). Thus, the expected total time is O(log log n)
.

Proof of Prop. 4.2. Note that rA(x) is a non-decreasing step

function, where each step has size 1. Let si be the number

of steps of rA(x) in the interval Ii. Therefore,

|rA(x)− rA(x
′)| ≤ si, (6)

for any x, x′ ∈ Ii. Therefore, for x ∈ Ii, substituting
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r̂(x; θ) = rA(i× 1
k
) into Eq. 6 we get

ei ≤ si. (7)

Furthermore, points of discontinuity (i.e., steps) of rA(x) oc-

cur when x = A[j] for j ∈ [n]. Therefore, si = |{j|A[j] ∈
Ii}|. That is, si is equal to the number of points in A that

are sampled in the range Ii.

Proof of Lemma 4.3. Specifically, we bound the probability

that smax ≥ c, for some constant c. In other words, we

bound the probability of the event, E, that any interval has

more than c points sampled in it, for any c ≥ 3. Let δi =
Fχ(

i+1
k
)−Fχ(

i
k
) be the probability that a point falls inside

Ii, so that δci is the probability that a set of c sampled points

fall inside Ii. Taking the union bound over all possible

subsets of size c, we get that the probability, pi, that the i-th

interval has c points or more is at most

pi ≤
(

n

c

)

δci ≤
(en)c

cc
δci ,

Where the second inequality follows from Sterling’s approx-

imation. By mean value theorem, there exists c ∈ [ i
k
, i+1

k
]

such that Fχ(
i+1
k
)−Fχ(

i
k
) = fχ(c)(

1
k
). Therefore, δi ≤ ρ

k
.

Thus, by union bound

P (E) ≤
k

∑

i=1

(en)c

cc
(
ρ

k
)c = k

(en)c

cc
(
ρ

k
)c. (8)

Now set k ≥ n1+ 2

c−1 ρ1+
1

c−1 and substitute into Eq. 8, we

obtain that P (E) ≤ 1
n

.
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