On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

Sepanta Zeighami' Cyrus Shahabi'

Abstract

A fundamental problem in data management is
to find the elements in an array that match a
query. Recently, learned indexes are being ex-
tensively used to solve this problem, where they
learn a model to predict the location of the items
in the array. They are empirically shown to outper-
form non-learned methods (e.g., B-trees or binary
search that answer queries in O(log n) time) by
orders of magnitude. However, success of learned
indexes has not been theoretically justified. Only
existing attempt shows the same query time of
O(logn), but with a constant factor improvement
in space complexity over non-learned methods,
under some assumptions on data distribution. In
this paper, we significantly strengthen this result,
showing that under mild assumptions on data
distribution, and the same space complexity as
non-learned methods, learned indexes can answer
queries in O(log log n) expected query time. We
also show that allowing for slightly larger but still
near-linear space overhead, a learned index can
achieve O(1) expected query time. Our results
theoretically prove learned indexes are orders of
magnitude faster than non-learned methods, theo-
retically grounding their empirical success.

1. Introduction

It has been experimentally observed, but with little theoret-
ical backing, that the problem of finding an element in an
array has very efficient learned solutions (Galakatos et al.,
2019; Kraska et al., 2018; Ferragina & Vinciguerra, 2020;
Ding et al., 2020). In this fundamental problem in data
management, the goal is to find, given a query, the elements
in the dataset that match the query (e.g., find the student
with grade=q, for a number ¢, where “grade=q” is the query
on a dataset of students). Assuming the query is on a single

"Univerisity of Southern California. Correspondence to:
Sepanta Zeighami <zeighami@usc.edu>, Cyrus Shahabi <sha-
habi@usc>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

attribute (e.g., we filter students only based on grade), and
that data is sorted based on this attribute, binary search finds
the answer in O(log n) for an ordered dataset with n records.
Experimental results, however, show that learning a model
(called a learned index (Kraska et al., 2018)) that predicts
the location of the query in the array can provide accurate
estimates of the query answers orders of magnitude faster
than binary search (and other non-learned approaches). The
goal of this paper is to present a theoretical grounding for
such empirical observations.

More specifically, we are interested in answering exact
match and range queries over a sorted array A. Exact match
queries ask for the elements in A exactly equal to the query
q (e.g., grade=q), while range queries ask for elements that
match a range [q, ¢'] (e.g., grade is between ¢ and ¢). Both
queries can be answered by finding the index of the largest
element in A that is smaller than or equal to ¢, which we call
the rank of ¢, rank(q). Range queries require the extra step,
after obtaining rank(q), of scanning the array sequentially
from q up to ¢’ to obtain all results. The efficiency of meth-
ods answering range and exact match queries depends on
the efficiency of answering rank(q), which is the operation
analyzed in the rest of this paper.

In the worst-case, and without further assumption on the
data, binary search finds rank(g) optimally, and in O(log n)
operations. Materializing the binary search tree and vari-
ations of it, e.g., B-Tree (Bayer & McCreight, 1970) and
CSS-trees (Rao & Ross, 1999), utilize caching and hard-
ware properties to improve the performance in practice but
theoretical number of operations remains O(log n) (we con-
sider data in memory and not external storage). On the other
hand, learned indexes have been empirically shown to out-
perform non-learned methods by orders of magnitude. Such
approaches learn a model that predicts rank(q). At query
time, a model inference provides an estimate of rank(q), and
a local search is performed around the estimate to find the
exact index. An example is shown in Fig. 1, where for the
query 13, the model returns index 3, while the correct index
is 5. Then, assuming the maximum model error is €, a binary
search on e elements of A within the model prediction (i.e.,
the purple sub-array in Fig. 1) finds the correct answer. The
success of learned models is attributed to exploiting patterns
in the observed data to learn a small model that accurately
estimates the rank of a query in the array.

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

—rank(q) — learned index
Index

e7/correct 5
index
modcl

& estim: ate>
2

1
0

at most

€
elements

—

Filter with
binary -
search

5 1015 20 ¢
q=13

Figure 1. A learned index used to solve the rank problem.

However, to date, no theoretical result has justified their
superior practical performance. Ferragina & Vinciguerra
(2020) shows a worst-case bound of O(log n) on query time,
the same as traditional methods, but experimentally shows
orders of magnitude difference. The only existing result
that shows any theoretical benefit to learned indexing is Fer-
ragina et al. (2020), that shows constant factor better space
utilization while achieving O (log n) query time under some
assumptions on data distribution. The question remains
whether theoretical differences, beyond merely constant
factors, exist between learned and traditional approaches.

We answer this question affirmatively. We show that
(i) Using the same space overhead as traditional indexes
(e.g., a B-tree), and under mild assumptions on the
data distribution, a learned index can answer queries in
O(log log n) operations on expectation, a significant
and asymptotic improvement over the O(logn) of
traditional indexes;

(ii) With the slightly higher but still near-linear space con-
sumption O (n'*¢), for any € > 0, a learned index can
achieve O(1) expected query time; and

(iii) Under stronger assumptions on data distribution, we
show that O(loglogn) expected query time is also
possible with O(1) space overhead (O(1) space over-
head is similar to performing binary search without
building any auxiliary data structure).

We present experiments showing these asymptotic bounds
are achieved in practice.

These results show order of magnitude benefit in terms
of expected query time, where the expectation is over the
sampling of the data, and not worst-case query time (which,
unsurprisingly, is O(logn) in all cases). Intuitively, this
means that although there may exist data instances where
a learned index is as slow as binary search, for many data
instances (and on expectation), it is fast and sub-logarithmic.
Analyzing expected query time allows us to incorporate
properties of the data distribution. Our results hold assuming
certain distribution properties: query time in (i) and (ii)
is achieved assuming bounded p.d.f of data distribution
(() also assumes non-zero p.d.f), while (iii) assumes the
c.d.f of data distribution is efficiently computable. Overall,
data distribution had been previously hypothesized to be an
important factor on the performance of a learned index (e.g.,
Kraska et al. (2018)). This paper shows how such properties
can be used to analyze the performance of a learned index.

2. Preliminaries and Related Work

2.1. Problem Definition

Setup. We are given an array A C D", consisting of n ele-
ments, where D C R is the domain of the elements. Unless
otherwise stated, assume D = [0, 1]; we discuss extensions
to other bounded or unbounded domains in Sec. 3.4. A is
sorted in ascending order, where a; refers to the i-th ele-
ment in this sorted order and A[i : j] denotes the sorted
subarray containing {a;, ..., aj}. We assume A is created
by sampling 7 i.i.d random variables and then sorting them,
where the random variables follow a continuous distribution
X, with p.d.f f, and c.d.f . We use the notation A ~ x to
describe the above sampling procedure.

Rank Problem. Our goal is to answer the rank problem:
given the array A and a query g, return the index i* =
Y1 Lafij<q» where I is the indicator function. i* is the
index of the largest element no greater than ¢ and is 0 if no
such element exists. Furthermore, if ¢ € A, g will be at
index ¢* 4+ 1. We define the rank function of an array A as
ra(q) = > i—1 Laji<q- The rank function takes a query as
an input and outputs the answer to the rank problem. We
drop the dependence on A if it is clear from context and
simply use 7(q).

The rank problem is therefore the problem of designing a
computationally efficient method to evaluate the function
7(q). Let R4(q;) be a function approximator, with param-
eters ¢ that correctly evaluates r(g). The parameters 6 of
R4 are found at a preprocessing step and are used to per-
form inference at query time. Let 7'(R 4, ¢) be the number
of operations performed by R4 to answer the query g and
let S(R.4) be the space overhead of Ry, i.e., the number
of bits required to store § (note that S(R4) does not in-
clude storage required for the data itself, but only considers
the overhead of indexing). We study the expected query
time of any query q as Ea, [T(Ra, q)], and the expected
space overhead as T 4., [S(R.4)]. In our analysis of space
overhead, we assume integers are stored using their binary
representation so that & integers that are at most M are
stored in O(klog M) bits (i.e., assuming no compression).

Learned indexing. A learned indexing approach solves
the rank problem as follows. A function approximator (e.g.,
neural network or a piecewise linear approximator) 7 4 (g; 0)
is first learned that approximates r up to an error e, i.e.,
I 4a—7|loc < €. Then, at the step called error correction, an-
other function, h(i, ¢), takes the estimate ¢ = 74(q; #) and
corrects the error, typically by performing a binary search
(or exponential search when € is not known a priori (Ding
et al., 2020)) on the array, A. That is, given that the estimate
7 4 is within € of the true index of ¢ in A, a binary search
on the 2¢ element in A that are within € of 74(q; 6) finds
the correct answer. Letting RA(q; 0) = h(fa(q,0),q), we
obtain that for any function approximator, 74 with non-zero

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

error €, we can obtain an exact function with expected query
time of 4~ [T'(7 4, ¢)] + O(log €) and space overhead of
E A~y [S(74)] since binary search requires no additional
storage space. In this paper, we show the existence of func-
tion approximators, R 4 that can achieve sub-logarithmic
query time with various space overheads.

2.2. Related Work

Learned indexes. The only existing work theoretically
studying a learned index is Ferragina et al. (2020). It shows,
under assumptions on the gaps between the keys in the ar-
ray, as n — oo and almost surely, one can achieve logarith-
mic query time with a learned index with a constant factor
improvement in space consumption over non-learned in-
dexes. We significantly strengthen this result, showing sub-
logarithmic expected query time under various space over-
heads. Our assumptions are on the data distribution itself
which is more natural than assumption on the gaps, and our
results hold for any n (and not as n — 00). Though scant
in theory, learned indexes have been extensively utilized
in practice, and various modeling choices have been pro-
posed under different settings, e.g., Galakatos et al. (2019);
Kraska et al. (2018); Ferragina & Vinciguerra (2020); Ding
et al. (2020) to name a few. Our results use a hierarchical
model architecture, similar to Recursive Model Index (RMI)
(Kraska et al., 2018) and piecewise approximation similar
to Piecewise Geometric Model index (PGM) (Ferragina &
Vinciguerra, 2020) to construct function approximators with
sub-logarithmic query time.

Non-Learned Methods. Binary search trees, B-Trees
(Bayer & McCreight, 1970) and many other variants (Rao
& Ross, 1999; Lehman & Carey, 1985; Bayer, 1972), exist
that solve the problem in O(log n) query time, which is the
best possible in the worst case in comparison based model
(Navarro & Rojas-Ledesma, 2020). The space overhead for
such indexes is O(nlogn) bits, as they have O(n) nodes
and each node can be stored in O(logn) bits. We also note
in passing that if we limit the domain of elements to a finite
integer universe and do not consider range queries, various
other time/space trade-offs are possible (Pétrascu & Thorup,
2006), e.g., using hashing (Fredman et al., 1984).

3. Asymptotic Behaviour of Learned Indexing
3.1. Constant Time and Near-Linear Space

We first consider the case of constant query time.
Theorem 3.1. Suppose the p.d.f, f,(z), is bounded, i.e.,
fx(x) < pforall x € D, where p < co. There exists a
learned index with space overhead O(p'Tn'™<), for any
€ > 0, with expected query time of O(log %) operations for
any query. p is a constant independent of n, and for any
constant €, asymptotically in n, space overhead is O(n'*°)
and expected query time is O(1).

The theorem shows the surprising result that we can in
fact achieve constant query time with a learned index of

Index —rala) e 74(4:9) Index rale) —— nhq)
6 1 6
____ -
‘ T tant >

3 47 Ny Consan ~max err. v
T S recursively
t search

0 I 0
5 10 15 20 9 5 10 15 20 9

Figure 2. Approximation with a Fjgure 3. Approximation with
piecewise constant function c.df

size O(n'*€). Although the space overhead is near-linear,
this overhead is asymptotically larger than the overhead of
traditional indexes (with overhead O(n logn)) and thus the
query time complexities are not directly comparable.

Interestingly, the function approximator that achieves the
bound in Theorem 3.1 is a simple piecewise constant func-
tion approximator, which can be seen as a special case of
the PGM model that uses piece-wise linear approximation
(Ferragina & Vinciguerra, 2020). Our function approxima-
tor is constructed by uniformly dividing the space into k
intervals and for each interval finding a constant that best
approximates the rank function in that interval. Such a
function approximator is shown as 74(q; 6) in Fig. 2 for
k = 5. Obtaining constant query time requires such a func-
tion approximator to have constant error. It is, however,
non-obvious why and when only O(n!*¢) pieces will be
sufficient on expectation to achieve constant error. In fact,
for the worst-case (and not the expected case), for a heavily
skewed dataset, achieving constant error would require an
arbitrarily large k&, as noted by Kraska et al. (2018).

However, Theorem 3.1 shows as long as the p.d.f. of the data
distribution is bounded, O(n'*¢) pieces will be sufficient
for constant query time on expectation. Intuitively, the
bound on the p.d.f. is used to argue that the number of data
points sampled in a small region is not too large, which is in
turn used to bound the error of the function approximation.

Finally, dependence on p in Theorem 3.1 is expected, as
performance of learned indexes depends on the dataset char-
acteristics. p captures such data dependencies, showing that
such data dependencies only affect space overhead by a con-
stant factor. From a practical perspective, our experiments
in Sec. 5.2 show that for many commonly used real-world
benchmarks for learned indexes, trends predicted by Theo-
rem 3.1 hold with p = 1. However, Sec. 5.2 also shows that
for datasets where learned indexes are known to perform
poorly, we observe large values of p. Thus, p can be used
to explain why and when learned indexes perform well or
poorly in practice.

3.2. Log-Logarithmic Time and Constant Space
Requiring constant query time, as in the previous theorem,
can be too restrictive. Allowing for slightly larger query
time, we have the following result.

Theorem 3.2. Suppose c.d.f of data distribution F\ (x) can

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

\Lquery piecewise
_ model
Level 1 Model 1.1
— m)
Level 2 Model 2.1 Model 2.2 | v
m,\ { ‘\
|
Model 3.1 Model 3.2 | | Model 3.3 | | Model 3.4 | | Model 3.5 | e
Level
loglogn

\LEstimated position
Figure 4. RMI of height log log n with piecewise constant models

be evaluated exactly with O(1) operations and O(1) space
overhead. There exists a learned index with space overhead
O(1), where for any query q, the expected query time is
O(loglogn) operations.

The result shows that we can obtain O(loglogn) query
time if the c.d.f of the data distribution is easy to compute.
This is the case for the uniform distribution (whose c.d.f
is a straight line), or more generally any distribution with
piece-wise polynomial c.d.f. In this regime, we only utilize
constant space, and thus our bound is comparable with per-
forming a binary search on the array, which takes O(logn)
operations, showing that the learned approach enjoys an
order of magnitude theoretical benefit.

Our model of the rank function is n x F), where I, is the
c.d.f of the data distribution. As Fig. 3 shows, our search
algorithm proceeds recursively, at each iteration reducing
the search space by around +/n. Intuitively, the y/n is due
to the Dvoretzky-Kiefer-Wolfowitz (DKW) bound (Massart,
1990), which is used to show that with high probability the
answer to a query, ¢ is within y/n of nF) (q). Reducing
the search space, s, by roughly /s at every level by re-
cursively applying DKW, we obtain the total search time
of O(loglogn) (note that binary search only reduces the
search space by a factor of 2 at every iteration).

3.3. Log-Logarithmic Time and Quasi-Linear Space
Finally, we show that the requirement of Theorem 3.2 on
the c.d.f. is not necessary to achieve O(loglogn) query
time, provided quasi-linear space overhead is allowed. The
following theorem shows that a learned index can achieve
O(loglogn) query time under mild assumptions on the data
distribution and utilizing quasi-linear space.

Theorem 3.3. Suppose p.d.f of data distribution f,(x) is
bounded and more than zero, i.e., p1 < fy(x) < pa for all
x € D, where p1 > 0 and py < co. There exists a learned
index with expected query time equal to O(loglogn) oper-
ations and space overhead O(Z—fnlog n), for any query.
Specifically, Z—f is a constant independent of n, so that,

asymptotically in n, space overhead is O(nlogn).

This regime takes space similar to data size, and is where
most traditional indexing approaches lie, e.g., binary trees

and B-trees, where they need O(n logn) storage (the logn
is due to the number of bits needed to store each node
content) and achieve O(log n) query time.

The learned index that achieves the bound in Theorem 3.3
is an instance of the Recursive Model Index (RMI) (Kraska
et al., 2018). Such a learned index defines a hierarchy of
models, as shown in Fig. 4. Each model is used to pick a
model in the next level of the tree until a model in the leaf
level is reached, whose prediction is the estimated position
of the query in the array. Unlike RMI in (Kraska et al.,
2018), its height or size of the model within each node is
not constant and set based on data size.

Intuitively, the hierarchy of models is a materialization of
a search tree based on the recursive search used to prove
Theorem 3.2. At any level of the tree, if the search space is
s elements (originally, s = n) a model is used to reduce the
search space to roughly +/s. It is however non-trivial why
and when such a model should exist across all levels and how
large the model should be. We use the relationship between
the rank function and the c.d.f (through DKW bound), and
the properties of the data distribution to show that a model
of size around /s is sufficient with high probability. Note
that models at lower levels of the hierarchy approximate
the rank function only over subsets of the array, but with
increasingly higher accuracy. A challenge is to show that
such an approximability result holds across all models and
all subsets of the array, which is why a lower bound on the
p.d.f. is needed in this theorem.

Similar to p in Theorem 3.1, p; and p5 capture data charac-
teristics in Theorem 3.3, showing constant factor dependen-
cies on the model size. Our experiments in Sec. 5.2 show
that for most commonly used real-world benchmarks for
learned indexes, trends predicted by Theorem 3.3 hold with
Z—f = 1. However, Sec. 5.2 also shows that for datasets
where learned indexes are known to perform poorly, 5—?
is large, so that z—f can be used to explain why and when
learned indexes perform well or poorly in practice.

3.4. Distributions with Other Domains

So far, our results assume that the domain of data distribu-
tion is [0, 1]. The result can be extended to distributions
with other bounded domains, [r, s] forr,s € R, r < s, by
standardizing x as X=". This transformation scales p.d.f
of x by s — r. Note that scaling the p.d.f does not affect
Theorem 3.3, since both p; and p, will be scaled by s — r,
yielding the same ratio Z—f. On the other hand, p in Theo-
rem 3.1 will be scaled by s — r. Overall, bounded domain
can be true in many scenarios, as the data can be from some
phenomenon that is bounded, e.g., age, grade, data over a
period of time. Next, we extend our results to distributions
with unbounded domains.

Lemma 3.4. Suppose a learned index, R, achieves expected

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

query time t(n) and space overhead s(n) on distributions
with domain [0, 1] and bounded (and non-zero) p.d.f. There
exists a learned index, R’ with expected query time t(n) + 1
and space overhead O(s(n)logn) on any sub-exponential
distribution with bounded (and non-zero) p.d.f.

Combining Lemma 3.4 with Theorems 3.1 and 3.3, our re-
sults cover various well-known distributions, e.g., Gaussian,
squared of Gaussian and exponential distributions.

Proof of lemma 3.4 builds the known learned index for
bounded domains on log n different bounded intervals. This
achieves the desired outcome due to the tail behavior of
sub-exponential distributions (i.e., for distributions with tail
at most as heavy as exponential, see Vershynin (2018) for
definition). The tail behaviour allows us to, roughly speak-
ing, assume that the domain of the function is O(logn),
because observing points outside this range is unlikely. We
note that other distributions with unbounded domain can
also be similarly analyzed based on their tail behaviour, with
heavier tails leading to higher space consumption.

4. Proofs

Proofs of the theorems are all constructive. PCA Index
(Sec. 4.1) proves Theorem 3.1, RDS algorithm proves The-
orem 3.2 and RDA Index proves Theorem 3.3. Without loss
of generality, we assume the bounded domain D is [0, 1].
The proof for the unbounded domain case (i.e., Lemma 3.4)
is deferred to Appendix A. Proof of technical lemmas stated
throughout this section can also be found in Appendix A.
4.1. Proof of Theorem 3.1: PCA Index

We present and analyze Piece-wise Constant Approximator
(PCA) Index that proves Theorem 3.1.

4.1.1. APPROXIMATING RANK FUNCTION

We show how to approximate the rank function r with a
function approximator 7. To achieve constant query time,
approximation error should be a constant independent of n
with high probability, and we also should be able to evaluate
7 in constant time.

Lemma 4.1 shows these properties hold for a piece-wise
constant approximation to r. Such a function is presented
in Alg. 1 (and an example was shown in Fig. 2). Alg. 1
uniformly divides the function domain into k intervals, so
that the ¢-th constant piece is responsible for the interval
I = [i x £,(i + 1) x 4]. Since r(q) is a non-decreasing
function, the constant with the lowest infinity norm error
approximating r over I; is 3(r(%) + (%)) (line 6). Let
7k, be the function returned by PCF(A4, k, 0, 1).

Lemma 4.1. Under the conditions of Theorem 3.1 and for
k> n'tplt3, the error of 7, is bounded as

R 2 1
([— oo > 2 +1) < ~.
€ n

Proof of Lemma 4.1. Let e; = sup,¢y, |7(x;0) — r(x)| be

Algorithm 1 PCA Index Construction
Require: A sorted array A, number of pieces k, approxi-
mation domain lower and upper bounds [and u
Ensure: Piecewise constant approximation of r over [I, u]
1: procedure PCF(A, k, [, u)
2: P <+ array of length £ storing the pieces
o v ligh
0+ 0
for i < Oto k do
Pli] < L(ra(l+ ai) + ra(l + a(i + 1))
Scurr [3(ra(l+ a(i+ 1)) —ra(l+ ai))|

§ + max{d, Scurr
return P, 0

A A

the maximum error in the i-th piece of 7. e; can be bounded
by the number of points sampled in I; as follows.

Proposition 4.2. Let s; = |{j|a; € I;}| be the number of
points in A that are in I;. We have e; < s;

Using Prop. 4.2, we have || — 7||oc < maX;eqi,.. k) Si-
Prop. 4.2 is a simple fact that relates approximation er-
ror to statistical properties of data distribution. Define
Smaz = MAX;e(1,... k) Si and observe that s,,,,, 1S a random
variable denoting the maximum number of points sampled
per interval, across k equi-length intervals. The following
lemma shows that we can bound s,,,,, With a constant and
with probability %, as long as k is near-linear in n.

Lemma 4.3. For any c with ¢ > 3, and if k >
4227 1+ 1
n T p T we have P(Symq2 > €) < 5

Setting ¢ = % + 1, we see k > n't¢p!*% holds, so that
Lemma 4.3 together with Prop. 4.2 prove Lemma 4.1. [

4.1.2. INDEX CONSTRUCTION AND QUERYING

Let k = [n!*2p'+1]. We use PCF(4, k, 0, 1) to obtain
7t and 9, where ¢ is the maximum observed approximation
error. As Alg. 1 shows, 7, can be stored as an array, P, with
k elements. To perform a query, the interval, ¢, a query falls
into is calculated as i = |gk] and the constant responsible
for that interval, P[i], returns the estimate. Given maximum
error ¢, we perform a binary search on the subarray A[l : u),
for I = P[i] — 6 and u = P[i] + ¢ to obtain the answer.

4.1.3. COMPLEXITY ANALYSIS

P has O(n'* %) entries, and each can be stored in O(n?).
Thus, total space complexity is O(n'*¢). Regarding query
time, the number of operations needed to evaluate 7 is
constant. Thus, the total query time of the learned index is
O(log d). Lemma 4.1 bounds 9, so that the query time for
any query is at most 1og(%+ 1) with probability at least 1 — %
and at most log n with probability at most % Consequently,
the expected query time is at most O(log(2 + 1) x (1 —
1) +logn x L) which is O(1) for any constant e > 0. [

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

4.2. Proof of Theorem 3.2: RDS Algorithm
We present and analyze Recursive Distribution Search (RDS)
Algorithm that proves Theorem 3.2.

4.2.1. APPROXIMATING RANK FUNCTION

We approximate the rank function using the c.d.f of the data
distribution, which conditions of Theorem 3.2 imply is easy
to compute. As noted by Kraska et al. (2018), rank(q) =
nk,(q), where F,, is the empirical c.d.f. Using this together
with DKW bound (Massart, 1990), we can establish that
rank(q) is within error y/n of nF, with high probability.
However, error of /n is too large: error correction to find
rank(q) would require O(log v/n) = O(logn) operations.

Instead, we recursively improve our estimate by utilizing
information that becomes available from observing elements
in the array. After observing two elements, a; and a; in A
(¢ < 7), we update our knowledge of the distribution of
elements in A[i + 1 : j — 1] as follows. Define F}7 (x) =

% Informally, any element X in A[i+1 : j—1]

is a random variable sampled from x and knowing the value
of a; and a; implies that X' € [a;, a;], so that the conditional
cd.fof X is

P (X <zla; < X <aj) =F)(2).
Xrox

We then use DKW bound to show F}7 is a good estimate
of the rank function for the subarray A[i + 1 : j — 1],
defining the rank function for the subarray A[i+1: j—1] as
ri(q) = Zi;H I,.<q. Formally, the following lemma
shows that given observations A[i] = a; and A[j] = a; the
elements of A[i + 1: j — 1] are i.i.d random variables with
the conditional c.d.f F{/(z) and uses the DKW bound to
bound the approximation error of using the conditional c.d.f
to approximate the conditional rank function.

Lemma 4.4. Consider two indexes i, j, where 1 <1 < j <
nanda; < a;. Letk =j —i— 1. For k > 2, we have

IP(stip 79 () — kF} (2)] > 1/0.5k loglog k) < @.

4.2.2. QUERYING

We use Lemma 4.4 to recursively search the array. At every
iteration, the search is over a subarray A[i : j] (initially, i=1
and j = n). We observe the values of a; and a; and use
Lemma 4.4 to estimate which subarray is likely to contain
the answer to the query. This process is shown in Alg. 2.
In lines 5-7 the algorithm observes a; and a; and attempts
to answer the query based on those two observations. If it
cannot, lines 8-11 use Lemma 4.4 and the observed values
of a; and a; to estimate which subarray contains the answer.
Line 12 then checks if the estimated subarray is correct,
i.e., if the query does fall inside the estimated subarray. If
the estimate is correct, the algorithm recursively searches
the subarray. Otherwise, the algorithm exits and performs
binary search on the current subarray. Finally, line 3 exits
when the size of the dataset is too small. The constant 25 is
chosen for convenience of analysis (see Sec. 4.2.3).

Algorithm 2 Recursive Distribution Search Algorithm

Require: A sorted array A of size n searched from index @
to j, a query q
Ensure: Rank of ¢ in A[i : j]
1: procedure SEARCH(A, q, i, 7)
2: k+—j—i—1
if £ < 25 then
return i-1+BINARYSEARCH(A, ¢, 1, j)
if a; > ¢ then return 0
if a; = ¢ then return 1
ifa; <gthenreturnj —i+1
i i+ 1+kx F(q)
9: r < +/0.5kloglog k
10 1+ |i—r]
1w [i+r]
12: if a; > g or a, < g then
13: return i — 14+BINARYSEARCH(A, q, i, j)
14: return [— 1+ SEARCH(A, ¢, [, u)

A A S

4.2.3. COMPLEXITY ANALYSIS

To prove Theorem 3.2, it is sufficient to show that expected
query time of Alg. 2 is O(loglogn) for any query. The
algorithm recursively proceeds. At each recursion level, the
algorithm performs a constant number of operations unless
it exits to perform a binary search. Let the depth of recursion
be h and let k; be the size of the subarray at the i-th level of
recursion (so that binary search at i-th level takes O (log k;)).
Let B; denote the event that the algorithm exits to perform
binary search at the ¢-th iteration. Thus, for any query ¢, the

expected number of operations is
h

Eax[T(7,q)] = Z 1+ coP(Bi, Bi—1,....B1) logk;
i=1
for constants c; and c;. Note thaEIP(B,», Bi1, ...B1) <
P(B;|Bi-1,....B1), where P(B;|B;_1,B1) is the prob-
ability that the algorithm reaches ¢-th level of recursion and
exits. By Lemma 4.4, this probability bounded by log#k»'

Thus E s~ [T'(7,)] is O(h).

To analyze the depth of recursion, recall that at the last
level, the size of the array is at most 25. Furthermore, at
every iteration the size of the array is reduced to at most

24/0.5nloglogn+ 2. Forn > 25, 24/0.5nloglogn+2 <

3
nt, so that the size of the array at the ¢-th recursions is at
most n(1)" and the depth of recursion is O(loglogn). Thus,
the expected total time is O(loglogn) .

4.3. Proof of Theorem 3.3: RDA Index
We present and analyze Recursive Distribution Approxima-
tor (RDA) Index that proves Theorem 3.3.

4.3.1. APPROXIMATING RANK FUNCTION
We use ideas from Theorems 3.1 and 3.2 to approximate
the rank function. We use Alg. 2 as a blueprint, but instead

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

of the c.d.f, we use a piecewise constant approximation
to the rank function. If we can efficiently approximate
the rank function for subarray Ali — 1 : j + 1], 7%/, to
within accuracy O(+/kloglogk) where k = j — i — 1,
we can merely replace line 8 of Alg. 2 with our function
approximator and still enjoy the O(loglogn) query time.
Indeed, the following lemma shows that this is possible
using the piecewise approximation of Alg. 1 and under mild
assumptions on the data distribution. Let ;" be the function
returned by PCF(A[i + 1 : j — 1], ¢, a;, a;) with ¢ pieces.

Lemma 4.5. Consider two indexes i, j, where 1 <1 < j <
nanda; < aj. Letk = j—1— 1. For k > 2, under the
conditions of Theorem 3.3 and for t > %\/E we have
P([|r*7 — 77 o > (1/0.5loglog k + 1)Vk) < L
log k

Proof of Lemma 4.5. Alg. 1 finds the piecewise constant
approximator to 7% with t pieces with the smallest infinity
norm error. Thus, we only need to show the existence of an
approximation with ¢ pieces that satisfies conditions of the
lemma. To do so, we use the relationship between %/ and
the conditional c.d.f. Intuitively, Lemma 4.4 shows that 77
and the conditional c.d.f are similar to each other and thus,
if we can approximate conditional c.d.f well, we can also
approximate r*/. Formally, by triangle inequality and for
any function approximator 7 we have

[9 = #llog < IF7 — KE og + [IRET = #loc (1)
Combining this with Lemma 4.4 we obtain

- - 1
P(||r" —7||oo > v/ 0.5k log log k+||kF;<’J—7ﬁ||oc) <

~ logk’

Finally, Lemma 4.6 stated below shows how we can approx-
imate the conditional c.d.f and completes the proof. O

Lemma 4.6. Under the conditions of Lemma 4.5, there

exists a piecewise constant function approximator, 1, with
Z—f\/@pieces such that ||# — kFy7 o < VE.

4.3.2. INDEX CONSTRUCTION AND QUERYING

Lemma 4.5 is an analog of Lemma 4.4, showing a function
approximator enjoys similar properties as the c.d.f. How-
ever, different function approximators are needed for every
subarray (for c.d.f.s we merely needed to scale and shift
them differently for different subarrays). Given that there
are O(n?) different subarrays, a naive implementation that
creates a function approximator for each subarray takes
space quadratic in data size. Instead, we only approximate
the conditional rank function for certain sub-arrays while
still retaining the O(+/k loglog k) error bound per subarray.

Construction. Note that 7(¢) = 0 only if ¢ < aq, so we
can filter this case out and assume r(q) € {1,...,n}. RDA
is a tree, shown in Fig. 4, where each node is associated
with a model. When querying the index, we traverse the tree
from the root, and at each node, we use the node’s model to
choose the next node to traverse. Traversing down the tree

Algorithm 3 RDA Index Construction
Require: A sorted array A of size n sampled from a distri-
bution x with CDF F), a query ¢
Ensure: The root node of the learned index
1: procedure BUILDTREE(A, i, j)

2: k+—j—i+1 > size of Afi : j]
3: if £ < 61 then

4: return Leaf node with content Ai : j]

5: fye PCRA[i: j], [22VE], ai, a))

6: k'« [2VE(1+/0.5loglogk) + 2]

7: ife > %/ then

8: return Leaf node with content AJi : j]

9: C < array of size [£] containing children
10: for z < Oto [] do
11: Cz] + BUILDTREE(A, zK/, (z + 2)k')
12: return Non-leaf node with children C and

. !
model 7 withmax_err %

narrows down the possible answers to 7(g). We say that a
node N covers arange Sy, if we have r(q) € Sy for any
query, g, that traverses the tree and reaches N. We call |Sy |
node N’s coverage size. Coverage size is the size of search
space left to search after reaching a node. The root node, N,
covers {1, ...,n} with coverage size n and the coverage size
decreases as we traverse down the tree. Leaf nodes have
coverage size independent of n with high probability, so that
finding r(q) takes constant time after reaching a leaf. Each
leaf node stores the subarray corresponding to the range it
covers as its content.

RDA is built by calling BUILDTREE(A, 1, n), as presented
in Alg. 3. BUILDTREE(A4, 4, j) returns the root node, N,
of a tree, where N covers {4, ..., j}. If the coverage size
of N is smaller than some prespecified constant (line 3,
analogous to line 3 in Alg. 2), the algorithm turns IV into a
leaf node. Otherwise, in line 5 it uses Lemma 4.5 to create
the model # for IV, where # approximates '~ 171 (recall
that %7 is the index function for subarray A[i + 1 : j — 1]).
If the error of 7 is larger than predicted by Lemma 4.5, the
algorithm turns NV into a leaf node and discards the model
(this is analogous to line 12 in Alg. 2). Finally, for k" as
in line 6, the algorithm recursively builds [%] children for
N. Each child has a coverage size of 2k’ and the ranges
are spread at &’ intervals (line 11). This ensures that the set
R={f—ef—ec+1, .. 7+e}, (with |R| <k ensured
by line 7) is a subset of the range covered by one of N’s
children. Furthermore, for any query ¢, € is the maximum
error of 7, so r(q) € R. Thus, the construction ensures that
for any query ¢ that reaches N, r(q) is in the range covered
by one of the children of N.

Performing Queries. As Alg. 4 shows, to traverse the tree
for a query ¢ from a node N, we find the child of N whose
covered range contains r(q). When ¢ is N.mode1l estimate

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

Mo=0.1) — AN©0=0.01) — Uniform —e— £=0.1 --=- £=0.01
b) S

"""" logx(n)

—e— RDA 92(n) n
(a) Time Complexity (b) Space Complexi

ace Com lexil

No. Operations
- n
4 =]

=
o

No. Operations
-
2

N
=
-
=)
™

e

o

P

e

No. Operations
—
o
Index Size

-
o
-
=)
©

10762 16° 10¢ 105 10° 107 102 16% 10% 105 108 107
n n

Figure 5. Constant Query and Near-Linear Space

Algorithm 4 RDA Index Querying
Require: The root node, IV, of a learned index, a query ¢
Ensure: Rank of query ¢

1: procedure QUERY(NV, ¢q)

2 if N is a leaf node then

return BINARYSEARCH(/N.content)

i + N.model(q)
k <~ N.max_err(q)
2 | 5]
return QUERY(N.children[z], q)

NN AW

with maximum error k, z = LZ k| gives the index of the

child whose range covers { LZ kj2k ,([5£]+2)2k} and
contains {L — i+ k} as a subset and therefore contains
r(q). Thus, the child at index z is recursively searched.

4.3.3. COMPLEXITY ANALYSIS

The query time analysis is very similar to the analysis in
Sec. 4.2.3 and is thus deferred to Appendix A. Here, we
show the space overhead complexity.

All nodes at a given tree level have the same coverage size.
If the coverage size of nodes at level i is z;, then the number
of pieces used for approximation per node is O(% /%) and

the total number of nodes at level i is at most O(Z-). Thus,

total number of pieces used at level i is cZ—‘f \}72_ for some
K

constant c. Note that if the coverage size at level 7 is k,
the coverage size at level 7 + 1 is 4v/k(1 + /0.5 loglog k)
which is more than k. Thus, zi > n(3)" and C%L

\/Z_ii

c” 2 W The total number of pieces is therefor at most

cnf2 > io oslogn =) < 3cn 2 for some constant .
Each piece has magnitude n and can be written in O(log n)

bits, so total overhead is O(£2n logn) bits. O

5. Experiments

We empirically validate our theoretical results on synthetic
and real datasets (specified in each experiment).

For each experiment, we report index size and number of
operations. Index size is the number of stored integers by
each method. Number of operations is the total number of
memory operations performed by the algorithm and is used
as a proxy for the total number of instructions performed
by CPU. The two metrics differ by a constant factors in our
algorithm (our methods perform a constant number of oper-

102 10 10* 105 105 107
n

Figure 6. Log-Logarithmic
Query and Constant Space

102 108 10 105 106 107 102 10° 10* 105 10° 107
n n

Figure 7. Log-Logarithmic Query and Quasi-Linear
Space

ations between memory accesses), but the latter is compiler
dependent and difficult to compute. To report the number of
operations, we randomly sample a set of 1000 queries () and
a set of A of 100 different arrays from the distribution . Let
ng, 4 be the number of operations for each query in ¢ € Q

on an array A € A. We report max,eq %, which
is the maximum (across queries) of the average (across
datasets) number of operations.

5.1. Results on Synthetic Datasets

Constant Query Time and Near-Linear Space. We show
that the construction presented in Sec. 4.1 achieves the
bound of Theorem 3.1. We consider Uniform and two Gaus-
sian (with ¢ = 0.1 and ¢ = 0.01) distributions. We vary
Gaussian standard deviation to show the impact of the bound
on p.d.f (as required by Theorem 3.1). Uniform p.d.f. has
bound 1, and bound on Gaussian p.d.f with standard devia-
tion o is a\}ﬁ' We present results for e = 0.1 and e = 0.01,

where € is the space complexity parameter in Theorem 3.1.

Fig. 5 shows the results. It corroborates Thoerem 3.1, where
Fig. 5 (a) shows constant query time achieved by near-linear
space shown in Fig. 5 (b). We also see for larger €, query
time actually decreases, suggesting our bound on query time
is less tight for larger €. Furthermore, recall that PCA Index
scales the number of pieces by p'*% to provide the same
bound on query time for all distributions (where p is the
bound on p.d.f). We see an artifact of this in Fig. 5 (b),
where when p increases index size also increases.

Log-Logarithmic Query Time and Constant Space. We
show that the construction presented in Sec. 4.2 achieves
the bound of Theorem 3.2. The theorem applies to distri-
butions with efficiently computable c.d.f.s, so we consider
distributions over [0, 1] with F\ (z) = z' for ¢ € {1,4,16}.
Att = 1, we have the uniform distribution and for larger ¢
the distribution becomes more skewed. Fig. 6 corroborates
the log-logarithmic bound of Theorem 3.2. Moreover, the
results look identical across distributions (multiple lines are
overlaid on top of each other in the figure), showing similar
performance for distributions with different skew levels.

Log-Logarithmic Query Time and Quasi-Linear Space.
We show that the construction presented in Sec. 4.3.3
achieves the bound of Theorem 3.3. We consider Uni-
form and two Gaussian (¢ = 0.1 and ¢ = 0.01) distri-
butions. The results are presented in Fig. 7. It corroborates

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

—eo— WL IOT - BK - FB

—— OSM —e— WK

=5 n
p=1 —e— p=10
(a) p=0.5 (b) p=1 10 (c) p=5 (d) p=10
40|
© ® © ©
g .| g% A § 6 / 52.0 %
2,20 2 e 2 2 T 104
& & _ &4 o~/ v |8 K] _
<10l 510 s e S15 o
z z Z ole z
0 0 [= 107 10° 10* 105 10° 10
n

107 10° 10° 10° 106 10 102 10% 10% 105 105 10
n n

Figure 8. Constant Query Time on Real Datasets

—o— WL I0OT —e— BK

b)2=1

—e— FB

(a) 2=0.5

102 10° 10* 10° 105 10
n

—o— OSM —e— WK
(c) 2=10

102 10 10% 10° 105 10
n

Figure 9. Near-Linear
Space on Real Datasets

—e— £=05 —e— £=10 n

log2(n)

9>

=1 —e— £1=20

(d) 2=20

N\

[N}
=

>

~

Z;i.é.'

o

No. Operations
o
ol
AN
\
\l
u&
No. Operations
o
ol
No. Operations
-
w

-
o
=
o

Y]
=}
Size
-
(=}

>

— 102

\
»
/

No. Operations
-
wul

=
o

/

102 10 10* 105 10° 10 102 108 10* 105 10° 10
n n

Figure 10. Log-Logarithmic Query on Real Datasets

Theorem 3.3, where Fig. 7 (a) shows constant query time
achieved by quasi-linear space shown in Fig. 7 (b). Similar
to the previous case results look identical across distribu-
tions (multiple lines are overlaid on top of each other in the
figure). Comparing Fig. 7 (a) and Fig. 6, we observe that
using a piecewise function approximator achieves similar
results as using c.d.f for rank function approximation.

5.2. Results on Real Datasets

Setup. On real datasets, we do not have access to the data
distribution and thus we do not know the value of p in
Theorem 3.1 or p; and py in Theorem 3.3. Thus, for each
dataset, we perform the experiments for multiple values of
p and p; or ps to see at what values the trends predicted by
the theorems emerge. Since we do not have access to the
c.d.f, Theorem 3.2 is not applicable.

We use 6 real datasets commonly used for benchmarking
learned indexes. For each real dataset, we sample n data
points uniformly at random for different values of n from
the original dataset, and queries are generated uniformly at
random from the data range. The datasets are WL and IOT
from Ferragina & Vinciguerra (2020); Kraska et al. (2018);
Galakatos et al. (2019) and BK, FB, OSM, WK from Mar-
cus et al. (2020) described next. WL: Web Logs dataset
containing 714M timestamps of requests to a web server.
IOT: timestamps of 26M events recorded by IoT sensors in-
stalled throughout an academic building. BK: popularity of
200M books from Amazon, where each key represents the
popularity of a particular book. FB: 200M randomly sam-
pled Facebook user IDs, where each key uniquely identifies
a user. OSM: cell IDs of 800M locations from Open Street
Map, where each key represents an embedded location. WK:
timestamps of 200M edits from Wikipedia, where each key
represents the time an edit was committed.

Results. Figs. 8 and 9 show time and space complexity of
the PCA algorithm (Theorem 3.1) on the real datasets for
various values of p. Note that value of p affects the number

102 108 10* 105 10° 10
n

102 10 10 105 10° 10
102 108 10* 105 10° 10 n
n

Figure 11. Quasi-Linear
Space on Real Datasets

of pieces used, as described by Lemma 4.1. Furthermore,
Figs. 10 and 11 show time and space complexity of the RDA
algorithm (Theorem 3.3) on the real datasets for various
ratios of %. Note that value of £2 affects the number of
pieces used per node, as described by Lemma 4.5.

For all except OSM datasets, trends described by Theo-
rems 3.1 and 3.3 hold for values of p and Z—’f as small as 1.
This shows our theoretical results hold on real datasets, and
the distribution dependent factors, p and %, are typically
small in practice. However, on OSM dataset value of p and
’;—'f may be as large as 10 and 20 respectively. In fact, Marcus
et al. (2020) shows that non-learned methods outperform
learned methods on this dataset. As such, our results provide
a possible explanation (large values of p) for learned meth-
ods not performing as well on this dataset. Indeed, OSM
is a one-dimensional projection of a spatial dataset using
Hilbert curves (see Marcus et al. (2020)), which distorts
the spatial structure of the data and can thus lead to sharp
changes to the c.d.f (and therefore large p).

6. Conclusion

We theoretically showed and empirically verified that a
learned index can achieve sub-logarithmic expected query
time under various storage overheads and mild assumptions
on data distribution. All our proofs are constructive, using
piecewise and hierarchical models that are common in prac-
tice. Our results provide evidence why learned indexes per-
form better than traditional indexes in practice. Future work
includes relaxing assumptions on data distribution, finding
necessary conditions for sub-logarithmic query time and
analyzing the trade-offs of different modeling approaches.

Acknowledgements

This research has been funded in part by NSF grants CNS-
2125530 and 1IS-2128661, and NIH grant SRO1LM014026.
Opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of any sponsors, such as NSF.

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

References

Bayer, R. Symmetric binary b-trees: Data structure and
maintenance algorithms. Acta informatica, 1(4):290-306,
1972.

Bayer, R. and McCreight, E. Organization and maintenance
of large ordered indices. In Proceedings of the 1970
ACM SIGFIDET (Now SIGMOD) Workshop on Data
Description, Access and Control, pp. 107-141, 1970.

Ding, J., Minhas, U. F, Yu, J., Wang, C., Do, J., Li, Y.,
Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D.,
et al. Alex: an updatable adaptive learned index. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 969-984, 2020.

Ferragina, P. and Vinciguerra, G. The pgm-index: a fully-
dynamic compressed learned index with provable worst-
case bounds. Proceedings of the VLDB Endowment, 13
(8):1162-1175, 2020.

Ferragina, P., Lillo, F., and Vinciguerra, G. Why are learned
indexes so effective? In International Conference on
Machine Learning, pp. 3123-3132. PMLR, 2020.

Fredman, M. L., Komlés, J., and Szemerédi, E. Storing a
sparse table with O (1) worst case access time. Journal of
the ACM (JACM), 31(3):538-544, 1984.

Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R.,
and Kraska, T. Fiting-tree: A data-aware index structure.
In Proceedings of the 2019 International Conference on
Management of Data, pp. 1189-1206, 2019.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis,
N. The case for learned index structures. In Proceedings
of the 2018 International Conference on Management of
Data, pp. 489-504, 2018.

Lehman, T. J. and Carey, M. J. A study of index structures
for main memory database management systems. Techni-
cal report, University of Wisconsin-Madison Department
of Computer Sciences, 1985.

Marcus, R., Kipf, A., van Renen, A., Stoian, M., Misra, S.,
Kemper, A., Neumann, T., and Kraska, T. Benchmarking
learned indexes. Proceedings of the VLDB Endowment,
14(1):1-13, 2020.

Massart, P. The tight constant in the dvoretzky-kiefer-
wolfowitz inequality. The annals of Probability, pp. 1269—
1283, 1990.

Navarro, G. and Rojas-Ledesma, J. Predecessor search.
ACM Computing Surveys (CSUR), 53(5):1-35, 2020.

10

Pétrascu, M. and Thorup, M. Time-space trade-offs for
predecessor search. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, pp.
232-240, 2006.

Rao, J. and Ross, K. A. Cache conscious indexing for
decision-support in main memory. Proceedings of the
25th VLDB Conference, 1999.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

A. Proofs

Proof of Lemma 3.4. Assume w..o.g that the sub-
exponential distribution is centered. Let Z; be the event that
any point in the array is larger than [or smaller than —{ for a
positive number /. Since the distribution is sub-exponential
and using union bound, P(Z;) < 2ne~'¥ for some constant
K. To have 2ne ¥ < @ we get that 2nlogn < el
and | > £ log(2nlogn). Solet ! = [2log2n] and we
have P(Z;) < loén. Now, to construct &’ we first check
if any point in A 1s larger than [or smaller than —I. If so,
we don’t build the index and only do binary search. Oth-
erwise, create 2[instances of R index, with the i-th index
covering the range [—! + i, —! 4 ¢ + 1]. Note that interval
[-l+1i,—1+ i+ 1] has length 1, so that scaling and translat-
ing the distribution to interval [0, 1] does not impact the p.d.f
of the distribution. Queries use one of the learned models to
find the answer. Thus, the query time is O (log n) with prob-
ability 1, and it is ¢(n) with probability 1 — -, which
is O(t(n)). The space overhead is now O(s(n)logn). O
Proof of Lemma 4.4. Recall that X1,..., X,, are i.i.d random
variables sampled from x. Furthermore, the array A is a
reordering of the random variables so that A[i] = X, for
some index s;. That is, each element A[{] is itself a random
variable and equal to one of X7, ..., X,,. A[i] = a;isa
random event.

Fork=j—i—1>2let{X,,,... X, } C{X1,...., X}
be the elements of the sub-array A[i + 1 : j — 1], which we
denote by X, € Ali+1:j—1]for1 < z < k. Note that
Xy oy Xy, is not sorted, but the subarray Afi + 1 : j — 1]
is the random variables X, , ..., X, in a sorted order. For
any random variable X,._ for some z € {1,...,k}, we first
obtain it’s conditional c.f.d given the observations A[i] = a;
and A[j] = a;. The conditional c.d.f can be written as
P(X,. < z|Ali] = a;, A[j] = a;). @)

Let X = {X1,...X,} \ {X,.}. Given that X,._ € A[i +1:
j — 1], the event A[i] = a;, A[j] = aj, is equivalent to the
conjunction of the following events: (i) at most ¢ — 1 of
r.v.s in X are less than a;, (ii) at least i of r.v.s in X are

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

less than or equal to a;, (iii) at most j — 2 of r.v.s in X are
less than a;, (iv) at least j — 1 of r.v.s in X are less than
or equal to a;, and (v) a; < X, < a;. This is because (i)
and (ii) imply A[i] = a;, while (iii)-(v) imply A[j] = a;.
Conversely, A[i] = a; and X, € A[i +1: j — 1] imply (i)
and (i), A[j] = aj and X, € A[i +1: j — 1] imply (iii)
and (iv), and Afi]| = a;, A[j] = a;, X, € A[i+1:j5 —1]
imply (v).

Now, denote by ¢(X) the event described by (i)-(iv), so that
Eq.2is
P(X, <z|¢(X),a <X, <aj).

X, is independent from all r.v.s in X, so that Eq. 2 simpli-
fies to

P(X,, <zl|a; <X, <a;)=F(x),
For all X,, € {X,,,..,X,, }. Thus, the rvs in
{X,,, ..., Xy, } have the conditional c¢.d.f F} (x).

A similar argument to the above shows that r.v.s in any
subset of X, ,...,X,, are independent, given Ali]
ai, Alj] = a;. Specifically, let X C {X,,,..., X,,} for
|X | > 2. Then, the joint c.d.f of r.v.s in X can be written as

P(Vycx X < x|Ali] = a;, Alj] = ay). 3)

Similar to before, define X = {X1, ..., X,,} \ X. Given that
VyexX € Ali +1:4— 1], the event A[i] = a;, A[j] = a;
is equivalent to the conjunction of the following events: (i)
at most i — 1 of r.v.s in X are less than a;, (ii) at least i of
r.v.sin X are less than or equal to a;, (iii) at most j —1— | X|
of r.v.s in X are less than a;, (iv) at least j — | X| of r.v.s in
X are less than or equal to a;, and (v) VX € X , we have
ai < X < aj. Now let ¢(X) be the event described by
(1)-(iv), so that Eq. 3 can be written as
P(VXEXX < $|¢(X),VX6)~(G,‘ <X < aj).
All r.v.s in X are independent from all r.v.s in X, so that
Eq. 3 simplifies to
P(VyexX <a|Vycgai < X <ay).

Finally, all r.v.s in X are also independent from each other,
so we obtain that Eq. 3 is equal to

HXEXP(X<x|aZ-§X§aj), “4)
Proving the independence of r.v.s in X conditioned on
Ali] = a;, A[j] = a;.
To summarize, we have shown that X, , ..., X, r.v.s condi-
tioned on A[i] = a;, A[j] = a; are k i.i.d random variables
with the c.d.f 9 (x). Moreover, 7'}/ (z) is the empirical
c.d.f of the £ r.v.s. By DKW bound (Massart, 1990) and for

t >0, we have1
P(sup | (@) — F(2)] 2) < 207
Rearranging and substituting ¢ = /0.5 log log k proves the

lemma. O

Proof of Lemma 4.6. k = j — 1 — 1. Divide the range

&

11

[a;, a;] into ¢ uniformly spaced pieces, so that the z-th piece
approximates kFy7 over I. = [a; + 255", a; + (2 +
1)%—%], which is an interval of length “==*. Let P(x) be
the constant in the Taylor expansion of kF;(J around some

point in I,,. By Taylor’s remainder theorem,

. iy fx(c) a; — a;
EIGJE IPle) kFX ()] < & Fx(aj)_Fx(ai) . t

(5)
for some ¢ € I,, where we have used the fact that the
derivative of the c.d.f is the p.d.f, and that any two point in
I are at most “—* apart.

By mean value theorem, there exist a ¢ € I, so that
Fx(og)=Fy(as) fx (). This together with Eq. 5 yields

aj;—a;

. 1 k
sup |P(x) — kY (x)] <k X fX(C,) x = < p2r
zER (@)t T pit

Setting ¢ > %\/E ensures Z—i% < V/kloglogk so that

[P(x) — kF;(J(;v)HOO < +v/kloglogk

O

Proof of Query Time Complexity of Theorem 3.3. The al-
gorithm traverses the tree recursively proceeds. At each
recursion level, the algorithm performs a constant number
of operations unless it perform a binary search. Let the
depth of recursion be h and let k; be the coverage size of
the node at the ¢-th level of recursion (so that binary search
at i-th level takes O(log k;)). Let B; denote the event that
the algorithm performs binary search at the i-th iteration.
Thus, for any query g, the expected number of operations is
h

EANX[T(TA’7 q)] = Z c1 + CQ]P(B»L‘, Bi—la Bl) log k’l
i=1
for constants c; and cy. Note thaE]P(Bi, Bi1, ...B1) <
P(B;|Bi-1,B1), where P(B;|B;_1,B1) is the prob-
ability that the algorithm reaches i-th level of tree and
performs binary search. By Lemma 4.5, this probability

bounded by 7. Thus Ea, [T(7, q)] is O(h).

To analyze the depth of recursion, recall that at the last
level, the size of the array is at most 61. Furthermore, at
every iteration the size of the array is reduced by 4(y/n)(1+
v0.51loglogn). Forn > 61, 4(y/n)(1++/0.5Ioglogn) <
n° for some constant ¢ < 1, so that the size of the array at
the i-th recursions is at most n¢ and the depth of recursion is
O(loglogn). Thus, the expected total time is O(loglogn)

0.

Proof of Prop. 4.2. Note that r 4 () is a non-decreasing step
function, where each step has size 1. Let s; be the number
of steps of 74 () in the interval I;. Therefore,

rae) —ra(@)] < si. ©)
for any x,2’ € I;,. Therefore, for x € I;, substituting

On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing

#(x;0) = ra(i x 1) into Eq. 6 we get

e; < 8;. N
Furthermore, points of discontinuity (i.e., steps) of 74 (x) oc-
cur when « = A[j] for j € [n]. Therefore, s; = |{j|A[j] €
I;}|. That is, s; is equal to the number of points in A that
are sampled in the range ;. O

Proof of Lemma 4.3. Specifically, we bound the probability
that s,,,2 > ¢, for some constant ¢. In other words, we
bound the probability of the event, F, that any interval has
more than ¢ points sampled in it, for any ¢ > 3. Let §; =
F\ (1) — F\(+4) be the probability that a point falls inside
I;, so that &5 is the probability that a set of ¢ sampled points
fall inside I;. Taking the union bound over all possible
subsets of size ¢, we get that the probability, p;, that the ¢-th

interval has c points or more is at most

pi< (")oe < %
c ct
Where the second inequality follows from Sterling’s approx-

imation. By mean value theorem, there exists ¢ € [1, ‘-]
such that F, (“F1) — F\ () = fy(c)(3). Therefore, §; < £.

Thus, by union bound

P(E) <

Dy =)

w‘n'Mw
L
o)
Q3
=

1 . .
1431 and substitute into Eq. 8, we

O

Now set k > n'Te1p
obtain that P(E) <

o

1
P

12

