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Sampling for prevalence estimation of infection is subject to bias by both over-
sampling of symptomatic individuals and error-prone tests. This results in naïve
estimators of prevalence (ie, proportion of observed infected individuals in the
sample) that can be very far from the true proportion of infected. In this work,
we present a method of prevalence estimation that reduces both the effect of bias
due to testing errors and oversampling of symptomatic individuals, eliminat-
ing it altogether in some scenarios. Moreover, this procedure considers stratified
errors in which tests have different error rate profiles for symptomatic and
asymptomatic individuals. This results in easily implementable algorithms, for
which code is provided, that produce better prevalence estimates than other
methods (in terms of reducing and/or removing bias), as demonstrated by formal
results, simulations, and on COVID-19 data from the Israeli Ministry of Health.
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1 INTRODUCTION

Estimation of disease prevalence is challenging. First, except for the hypothetical case of random errors, imperfect testing
almost always distorts actual proportions. Second, it is not uncommon to have to derive estimates from samples that
under-represent or fail to capture subpopulations that are at greatest risk or of interest. An example is estimating the
general population prevalence of chronic hepatitis C (HCV) because of the challenges of sampling from subpopulations of
former and current injecting drug users, the homeless or incarcerated.1 Other examples include the over-representation
of symptomatic individuals in a sample since these individuals are more likely to get tested than asymptomatic ones, with
which the final estimates of prevalence inflates, since symptomatic individuals are also more likely to be truly infected
than asymptomatic ones.2

This situation became clear during the recent COVID-19 pandemic: besides usual discussions of the error rates of PCR
and rapid tests, surveillance mechanisms have usually relied on convenience sampling or contact tracing. Therefore sam-
pling bias was also present. In the case of convenience sampling, because it passively waits for symptomatic individuals to
get tested, whereas asymptomatic individuals have few reasons to do so. As for contact tracing, because it actively pursues
infected individuals, ignoring the noninfected almost altogether. Besides this, contact tracing has also raised questions
on privacy and individual liberties.3-5 Though this example corresponds to a non-probability COVID-19 sampling setting,
the problem is of course more general. It applies not only to every form of prevalence estimation performed through
testing—probabilistic or not—and even more general forms of selection bias.6-9
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Recently, Díaz-Pachón and Rao introduced a correction for oversampling of the symptomatic group.10 It was a
three-step procedure based on the assumption that all symptomatic individuals in the population were sampled and
infected but it did not address the issue of imperfect testing (ie, the presence of false positives and false negatives). This
implies that the symptomatic and infected individuals in the sample corresponded to the total number of symptomatic
individuals in the population. Thus the asymptomatic group in the population was the complement of the total of symp-
tomatic individuals in the sample. The prevalence among the asymptomatic group was then obtained as a uniform random
variable among the asymptomatic individuals in the population, with no resource to the sample.

In this article, a method that is stronger in all aspects is presented. First, it does not assume that all symptomatic
individuals are sampled, only that symptomatic individuals are overrepresented in the sample. Second, sample values
among the asymptomatic are used to produce an estimator of prevalence that is informed by evidence. Third, testing
errors are considered. And fourth, the proposed correction is extended to stratified errors by symptom status.

The article can be summarized as follows:

1. The researcher observes, from a sample of size NT , the proportion of individuals whose test was positive. This
constitutes the naïve estimator of prevalence p̃∗,1T .

2. The naïve estimator p̃∗,1T is biased in two ways. First, it is subject to testing errors; and second, there is sample bias
because symptomatic individuals are more likely to be tested than asymptomatic ones.

3. Under the assumption that, from a different and independent sample, testing error rates are estimated for group s as
#̂s and $̂s for false positives and false negatives, respectively, it is possible to obtain another estimator p∗,1T that corrects
the effect of errors.

4. From p∗,1T it is possible to obtain another estimator p̂(1) that reduces (and possibly removes) the sampling bias. This
is achieved through applying the principle of maximum entropy to the fraction of symptomatic individuals with the
disease, using the knowledge that symptomatic individuals are more likely to get tested.

With this summary and the information of Table 1, without having to go through the details that led to their derivation,
the reader can obtain corrections following the steps of Algorithm 1 when no testing errors are present and all symp-
tomatic individuals are sampled, Algorithm 2 when no testing errors are present and not all the symptomatic individuals
are sampled, Algorithm 3 when testing errors are present and all symptomatic individuals are sampled (provided that the
testing errors are estimated unbiasedly), and Algorithm 4 when there are testing errors and not all symptomatic individ-
uals are sampled. Section 5 presents an example with real data. Proofs of all the results are consigned to the Appendix, as
well as a set of simulations that assess the behavior of the four algorithms.

T A B L E 1 A population of known size N is divided into symptomatic individuals (s = 1) and asymptomatic ones (s = 0), and
noninfected individuals (i = 0) and infected ones (i = 1).

Quantity
Symptoms s and
infection i I(i)s

Symptoms
s Is

Infection
i I(i)

Population totals N(i)
s Ns N(i)

Population proportion p(i)
s ps p(i)

Sampling probability q
(

I(i)s

)
q(Is) q

(
I(i)

)

Sampling probability approximation q∗
(

I(i)s

)
q∗(Is) q∗

(
I(i)

)

Sampling totals Ns,i
T Ns,∗

T N∗,i
T

Naïve estimator (with errors and sampling bias) p̃s,i
T p̃s,∗

T p̃∗,iT

Naïve estimator (only with sampling bias) p̂s,i
T p̂s,∗

T p̂∗,iT

Corrected estimator for errors ps,i
T ps,∗

T p∗,iT

Corrected estimator for errors and sampling bias p̂(i)
s p̂s p̂(i)

Note: The second column gives the notation for symptoms s and infection i, while the third column marginalizes symptoms, and the fourth one marginalizes
infection. To facilitate reading, the notation is arranged as follows: (a) The letter q is only used for sampling probabilities; (b) all estimators are capped by tildes,
bars, or hats; (c) bold caps refer to naïve estimators; (d) estimators not in bold are corrections of naïve estimators; (e) population proportions do not have any
cap; (f) prevalence values are obtained replacing i in the last column by 1.
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2 SETTING

Consider a population  of size N that is divided into four categories: asymptomatic and noninfected individuals, I(0)0 ,
with size N(0)

0 ; asymptomatic and infected individuals, I(1)0 , with size N(1)
0 ; symptomatic and infected individuals, I(1)1 , with

size N(1)
1 ; and symptomatic and noninfected individuals, I(0)1 , with size N(0)

1 . The population total N is known, whereas
N(1)

1 , N(1)
0 , N(0)

1 , and N(0)
0 are unknown, though their sum is N.

The group of individuals with symptoms s in the population will be denoted by Is = I(0)s ∪ I(1)s , and its total by
Ns = N(0)

s + N(1)
s , for s = 0, 1. Analogously, the group of individuals with infection status i in the population will be denoted

by I(i) = I(i)0 ∪ I(i)1 , and its total by N(i) = N(i)
0 + N(i)

1 , for i = 0, 1.
Now, p(i)

s = N(i)
s ∕N will be the proportion of individuals in the population with symptoms s and infection status i. More

formally, define a random element S∗ taking values in the set I =
{

I(0)0 , I(1)0 , I(0)1 , I(1)1

}
, with density given by

fS∗
(

I(i)s

)
= p(i)

s , (1)

and p(0)
0 + p(1)

0 + p(0)
1 + p(1)

1 = 1. The proportion of individuals in the group Is is then given by ps = p(0)
s + p(1)

s , for s = 0, 1.
And the proportion of individuals in the group I(i) is given by p(i) = p(i)

0 + p(i)
1 , for i = 0, 1. The proportion to be estimated

is p(1) = p(1)
0 + p(1)

1 , corresponding to the infected individuals, and the naïve estimator is biased because the proportion of
symptomatic individuals p1 is overestimated.

2.1 Sampling probabilities

For the jth individual in the population (0 < j ≤ N), define a Bernoulli random variable as follows:

Tj|j ∈ I(i)s =
⎧
⎪
⎨
⎪⎩

1 with probability q
(

I(i)s

)
,

0 with probability 1 − q
(

I(i)s

)
.

(2)

That is, an individual in the category I(i)s will be tested with probability q
(

I(i)s

)
, for s, i = 0, 1.

The sampling probability q
(

I(i)s

)
of individuals with symptoms s and infection i is approximated by

q∗
(

I(i)s

)
=

Ns,i
T

N(i)
s
, (3)

where Ns,i
T is the number of tested individuals from group I(i)s . Analogously to (3), q(Is), the sampling probability among

individuals with symptoms s, is approximated by

q∗(Is) =
Ns,∗

T
Ns

, (4)

where Ns,∗
T = Ns,0

T + Ns,1
T . And q

(
I(i)

)
, the sampling probability among individuals with infection status i, is approximated

by

q∗
(

I(i)
)
=

N∗,i
T

N(i) , (5)

where N∗,i
T = N0,i

T + N1,i
T . Notice that, except when all symptomatic individuals are sampled (in whose case N1 is

known), the approximations q∗(⋅) are not estimators of the sampling probabilities because the population values in their
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4716 ZHOU et al.

denominators are in general unknown. However, when N →∞,

q∗
(

I(i)s

)
→ q

(
I(i)s

)
. (6)

The total of sampled individuals ∑N
j=1Tj is defined as

NT =
∑

s,i
Ns,i

T . (7)

Finally, we define the expected fraction of sampled individuals:

q = p0q(I0) + p1q(I1). (8)

3 NO TESTING ERRORS

In case there is no error in testing, the naïve estimator of p(i)
s can be naturally defined as

p̂s,i
T = fS∗|T

(
I(i)s |T = 1

)
, (9)

the conditional probability of an individual belonging to the group I(i)s , given that they were sampled. The main goal of this
article is to provide a correction for p̂s,i

T , under the assumption that symptomatic individuals are oversampled. A Bayesian
approach, inspired from ideas in publication bias,6 leads to

Proposition 1.

fS∗|T
(

I(i)s |T = 1
)
=

Ns,i
T

NT
. (10)

Then N(i)
s , the population size of I(i)s , disappears from the sample estimator, and (A1) in the Appendix shows that all

information in the sample about the group I(i)s comes from the sampling mechanism q
(

I(i)s

)
. In fact, p(i)

s can be seen as

the message sent, p̂s,i
T as the message received, and q

(
I(i)s

)
= P(T = 1|I(i)s ) as the channel between them distorting the

message.11,12 This interpretation, taken from Shannon’s information diagram, is particularly important to analyze bias as
a modification of the information inherent to the prevalence parameter in Appendix D.13

Analogously to (9) with Proposition 1, the naive estimator of individuals with symptoms s, p̂s,∗
T , and the naive estimator

of individuals with infection status i, p̂∗,iT , are defined as

p̂s,∗
T = fS∗|T(Is|T = 1) =

Ns,∗
T

NT
, (11)

p̂∗,iT = fS∗|T
(

I(i)|T = 1
)
=

N∗,i
T

NT
. (12)

3.1 Correction of sampling bias

According to (A1) in the appendix, some information about the sampling mechanism is needed if any meaningful con-
clusion is going to be obtained. For the scenario considered in this article, this corresponds to symptomatic individuals
being more prone to get tested than asymptomatic ones:

q(I0) < q(I1). (13)
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ZHOU et al. 4717

Also corresponding to the intuition that infected and noninfected individuals inside each category are randomly
sampled,

q
(

I(0)s

)
= q

(
I(1)s

)
, (14)

for s = 0, 1.
We consider two scenarios. First, when all symptomatic individuals are sampled. Second, building on the previous

case, when not all symptomatic are tested, but they are overrepresented in the sample.

3.1.1 All the symptomatic group is sampled

Díaz-Pachón and Rao studied the situation in which, for COVID-19, all symptomatic individuals are tested.10 This
scenario corresponds well to some subpopulations like those of universities or industries, in which all symptomatic
individuals are required to get tested. In this case, (13) becomes

q(I0) < q(I1) = 1,

so the proportion p1 of symptomatic in the population can be fully recovered from the sample as

p1 = p̂1,∗
T

NT
N . (15)

Since, by (14) the sample is assumed to be random among symptomatic individuals,

p̂(1)
1 ∶= p1

N1,1
T

N1,∗
T

= p1
p̂1,1

T

p̂1,∗
T

. (16)

Using now (14) on the asymptomatic group, the prevalence among the asymptomatic is obtained as

p̂(1)
0 ∶= p0

N0,1
T

N0,∗
T

= (1 − p1)
p̂0,1

T

p̂0,∗
T

. (17)

Using (16) and (17), the final sampling-bias corrected prevalence is then taken to be

p̂(1) ∶= p̂(1)
1 + p̂(1)

0 , (18)

and the random sampling inside each group gives that Ep̂(1) = p(1), making the estimator unbiased.
Algorithm 1 summarizes the steps from observations to corrected estimate when there is no testing error and all

symptomatic individuals are tested.

Remark 1. Although the scenario of all sampled individuals is also considered by Díaz-Pachón and Rao in the
context of COVID-19,10 the correction obtained by Algorithm 1 is stronger than theirs in at least two aspects.
First, Díaz-Pachón and Rao considered m ≥ 2 categories of symptoms, so that, if m is large, an individual with
all symptoms is highly likely to be infected; however, with two categories of symptoms, this would correspond
to p1 = p(1)

1 , which seems a very strong assumption. Second, Algorithm 1 takes into account the information
from the sample to obtain p̂(1)

0 (see step 3 or (17)); instead, Díaz-Pachón and Rao proposed to take U uniformly
distributed in the interval [0, 1] and make p̂(1)

0 = Up0.

The following result shows that p̂∗,1T and p̂(1) are asymptotically normal. More specifically, it is proven that p̂∗,1T is not
a consistent estimator of the true prevalence p(1), but p̂(1) is.

 10970258, 2023, 26, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9885, W
iley O

nline Library on [09/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



4718 ZHOU et al.

Algorithm 1. Corrected estimator of prevalence without errors and all symptomatic individuals sampled

1. For p̂1,∗
T = p̂1,0

T + p̂1,1
T , take

p1 = p̂1,∗
T

NT
N .

2. Make

p̂(1)
1 = p1

p̂1,1
T

p̂1,∗
T

.

3. Take p̂(1)
0 = p̂0,1

T
p̂0,∗

T
(1 − p1), where p̂0,∗

T = p̂0,0
T + p̂0,1

T .
4. The estimated total prevalence is: p̂(1) = p̂(1)

0 + p̂(1)
1 .

Theorem 1. Suppose N → ∞ in such a way that p1 = N1∕N is kept fixed. Then

N1∕2

(
p̂∗,1T −

p(1)
0 q(I0) + p(1)

1
p0q(I0) + p1

)

−−→ Z0, (19)

N1∕2
(

p̂(1) − p(1)
) 
−−→ Z1, (20)

as N → ∞, where Z0 ∼ (0,V01 + V02), Z1 ∼ (0,V03) are normally distributed, and V01, V02, and V03 are
defined in the Appendix.

3.1.2 Not all the symptomatic group is sampled

The main difference between this section and the previous one is that, since now the proportion of symptomatic indi-
viduals in the population is not known, it has to be estimated from the sample. Drawing inspiration from cosmological
fine-tuning,14,15 the approach will be to use the information in (13) to generate a maximum entropy distribution, which
is “the least biased estimate possible on the given information.”16 Next we will use (14) to obtain estimators of prevalence
inside each class of symptoms.

Theorem 2. For p̂1,∗
T , p1 ∈ (0, 1), q∗(I0) < q∗(I1) if and only if p̂1,∗

T > p1.

Theorem 2 shows that, given the basic assumption (13), with high probability p1 is bounded above by p̂1,∗
T . On the

other hand, p̂1,∗
T = N1,∗

T ∕NT says that there are at least N1,∗
T infected symptomatic individuals in the population. Therefore,

it makes sense to bound p1 as follows:

N1,∗
T ∕N ≤ p1 ≤ p̂1,∗

T . (21)

By the maximum entropy principle,17 the corrected estimator of p1 is taken to be the expectation of a uniform distribu-
tion over

(
N1,∗

T ∕N, p̂1,∗
T
)
. Formally, let U be a uniform distribution over the interval

(
p̂1,∗

T
NT
N , p̂1,∗

T

)
. The corrected estimator

of p1 is defined as

p̂1 ∶= E(U) =
p̂1,∗

T
2

(NT
N + 1

)
. (22)

From this point on, we proceed analogously to Section 3.1.1, replacing p1 with p̂1 in Equations (16) to (18), to obtain

p̂(1)
1 ∶= p̂1

N1,1
T

N1,∗
T

= p̂1
p̂1,1

T

p̂1,∗
T

, (23)
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ZHOU et al. 4719

p̂(1)
0 ∶= p̂0

N0,1
T

N0,∗
T

=
(
1 − p̂1

)N0,1
T

N0,∗
T

=
(
1 − p̂1

) p̂0,1
T

p̂0,∗
T

, (24)

p̂(1) ∶= p̂(1)
1 + p̂(1)

0 . (25)

Algorithm 2 summarizes the procedure to produce estimators that correct the sampling bias when there is no testing
error and not all symptomatic individuals are sampled.

Algorithm 2. Corrected estimator of prevalence without errors and not all symptomatic individuals sampled

1. For p̂1,∗
T = p̂1,0

T + p̂1,1
T , take

p̂1 =
p̂1,∗

T
2

(NT
N + 1

)
.

2. Make

p̂(1)
1 = p̂1

p̂1,1
T

p̂1,∗
T

.

3. Take p̂(1)
0 = p̂0,1

T
p̂0,∗

T
(1 − p̂1), where p̂0,∗

T = p̂0,0
T + p̂0,1

T .
4. The estimated total prevalence is: p̂(1) = p̂(1)

0 + p̂(1)
1 .

Analogously to the previous asymptotic result, Theorem 3 shows that the naïve and corrected estimators are asymp-
totically normal. However, once again we find that the naïve estimator is not a consistent estimator of the true prevalence.
Moreover, the corrected estimator will only be consistent if E(p̂s) = ps, for s = 0, 1.

Theorem 3. Suppose N →∞ in such a way that p1 = N1∕N is kept fixed. Suppose additionally that, for s = 0, 1,
there exists %s ∈ [0, 1], such that

p̂s
p
−−→ %s (26)

as N →∞, where “
p
−−→” refers to convergence in probability. Then

N1∕2

(
p̂∗,1T −

p(1)
0 q(I0) + p(1)

1 q(I1)
p0q(I0) + p1q(I1)

)

−−→ Z2, (27)

N1∕2
(

p̂(1) − %0
p0

p(1)
0 − %1

p1
p(1)

1

) 
−−→ Z3, (28)

as N → ∞, where Z2 ∼ (0,V11 + V12), Z3 ∼ (0,V13 + V14) are normally distributed random variables, and
V11, V12, V13, and V14 are given in the Appendix.

4 WITH TESTING ERRORS

When testing errors are considered, the naïve estimators have an additional source of bias. Using (10), in this section,
we present first the explicit form of the naïve estimators in the presence of sampling bias and testing errors stratified by
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4720 ZHOU et al.

symptoms. This is the most general form of naïve estimator considered in this article. As a corollary, unstratified errors
are also considered. With naïve estimators in this general form, we then present their respective corrections.

Proposition 2. Let #0 and $0 be the false positive and false negative rate for asymptomatic individuals, respec-
tively, and let #1 and $1 be the false positive and false negative rate for symptomatic individuals, respectively. The
naïve estimators thus become:

p̃0,0
T = (1 − #̌0)p̂0,0

T + $̌0p̂0,1
T ,

p̃0,1
T = #̌0p̂0,0

T +
(
1 − $̌0

)
p̂0,1

T ,

p̃1,0
T = (1 − #̌1)p̂1,0

T + $̌1p̂1,1
T ,

p̃1,1
T = #̌1p̂1,0

T +
(
1 − $̌1

)
p̂1,1

T , (29)

where #̌s and $̌s, the proportion of false positives and false negatives in the sample, for s = 0, 1, approximate #s
and $s respectively.

Analogously to previous definitions, let p̃s,∗
T = p̃s,0

T + p̃s,1
T and p̃∗,iT = p̃0,i

T + p̃1,i
T .

Corollary 1. If errors are not stratified, for s = 0, 1, the estimators of Proposition 2,

p̃s,0
T = (1 − #̌s)p̂s,0

T + $̌sp̂s,1
T ,

p̃s,1
T = #̌sp̂s,0

T +
(
1 − $̌s

)
p̂s,1

T , (30)

are such that #̌s and $̌s, the proportion of false positives and negatives in the sample for symptom class s,
approximate the probabilities # and $ of false positives and false negatives, respectively, independently of s.

Remark 2. The right-hand side of (29) and (30) contains the contribution to the naïve estimator by each group
in the sample weighted by the probability of their errors. However, in either case, the proportions observed by
practitioner are the tilde terms p̃s,i

T in the left-hand side. The hat terms in the right-hand side, corresponding
to (10) are unknown to him.

4.1 Correction of testing errors

According to Remark 2, when testing errors are considered, estimators that correct them are necessary before applying
the correction to sampling bias. This section presents such estimators.

Proposition 3. For s = 0, 1, assume #̂s and $̂s are estimators of #s and $s, respectively, obtained from different
data, satisfying also that they are independent of #̌s and $̌s. Then the estimators with correction for testing errors

ps,0
T = p̂s,∗

T ⋅
p̃s,0

T ∕p̂s,∗
T − $̂s

1 − #̂s − $̂s
=

p̃s,0
T − $̂sp̃s,∗

T

1 − #̂s − $̂s
,

ps,1
T = p̂s,∗

T ⋅
p̃s,1

T ∕p̂s,∗
T − #̂s

1 − #̂s − $̂s
=

p̃s,1
T − #̂sp̃s,∗

T

1 − #̂s − $̂s
(31)

approximate p̂s,0
T and p̂s,1

T respectively. Moreover, ps,0
T ∕ps,∗

T and ps,1
T ∕ps,∗

T are consistent estimators of p(0)
s ∕ps and

p(1)
s ∕ps, if #̂s and $̂s are in turn consistent estimators of #s and $s, respectively.

4.1.1 All symptomatic group is sampled

When all the symptomatic group is sampled, if #̌s and #̂s are unbiased estimators of #s, and $̌s and $̂s are unbiased
estimators of $s, for s = 0, 1, following Algorithm 1, we obtain Algorithm 3 substituting p̂s,i

T by ps,i
T .
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ZHOU et al. 4721

Algorithm 3. Corrected estimator of prevalence with errors and all symptomatic individuals sampled

1. For s = 0, 1, make

p̄s,0
T =

p̃s,0
T − $̂sp̃s,∗

T

1 − #̂s − $̂s
,

p̄s,1
T =

#̂sp̃s,∗
T − p̃s,1

T

#̂s + $̂s − 1
.

2. If #̄s = E#̂s equals E#̌s = #s and if $̄s = E$̂s equals E$̌s = $s, for p̄1,∗
T = p̄1,0

T + p̄1,1
T , take

p̂1 = p̄1,∗
T

NT
N .

3. Make

p̂(1)
1 = p̂1

p̄1,1
T

p̄1,∗
T

.

4. Take p̂(1)
0 = p̄0,1

T
p̄0,∗

T
(1 − p̂1), where p̄0,∗

T = p̄0,0
T + p̄0,1

T .
5. The estimated total prevalence is: p̂(1) = p̂(1)

0 + p̂(1)
1 .

4.1.2 Not all the symptomatic group is sampled

Analogously to Section 3.1.2, replace p̂s,i
T with ps,1

T in Equations (22) to (25), to obtain

p̂1 ∶=
p1,∗

T
2

(NT
N + 1

)
, (32)

p̂(1)
1 ∶= p̂1

p1,1
T

p1,∗
T

, (33)

p̂(1)
0 ∶=

(
1 − p̂1

)p0,1
T

p0,∗
T

, (34)

p̂(1) ∶= p̂(1)
1 + p̂(1)

0 . (35)

This information can be used to generate Algorithm 4. Theorem 4 summarizes the asymptotic behavior of the
estimators involved in this section.

Theorem 4. Suppose the conditions of Theorem 3 hold, and that the estimators prevalences ps,0
T ∕ps,∗

T and
ps,1

T ∕ps,∗
T converge to

%(0)s = $s − $s

1 − #s − $s
+ 1 − #s − $s

(1 − #s − $s)
⋅

p(0)
s

ps
, (36)

%(1)s = #s − #s

1 − #s − $s
+ 1 − #s − $s

(1 − #s − $s)
⋅

p(1)
s

ps
(37)
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4722 ZHOU et al.

Algorithm 4. Corrected estimator of prevalence with errors and not all symptomatic individuals sampled

1. For s = 0, 1, make

p̄s,0
T =

p̃s,0
T − $̂sp̃s,∗

T

1 − #̂s − $̂s
,

p̄s,1
T =

#̂sp̃s,∗
T − p̃s,1

T

#̂s + $̂s − 1
.

2. If #̄s = E#̂s equals E#̌s = #s and if $̄s = E$̂s equals E$̌s = $s, for p̄1,∗
T = p̄1,0

T + p̄1,1
T , take

p̂1 =
p̄1,∗

T
2

(NT
N + 1

)
.

3. Make

p̂(1)
1 = p̂1

p̄1,1
T

p̄1,∗
T

.

4. Take p̂(1)
0 = p̄0,1

T
p̄0,∗

T
(1 − p̂1), where p̄0,∗

T = p̄0,0
T + p̄0,1

T .
5. The estimated total prevalence is: p̂(1) = p̂(1)

0 + p̂(1)
1 .

as N →∞. Suppose further that the proportion of individuals wrongly classified in the sample #̌s, $̌s, s = 0, 1 are
independent. Then

N1∕2

(
p∗,1T −

p0q(I0)%(1)0 + p1q(I1)%(1)1
q

)

−−→ Z4, (38)

N1∕2
[

p̂(1) −
(
%0%(1)0 + %1%(1)1

)] 
−−→ Z5, (39)

as N →∞, where p̂(1) is defined as in (35), Z4 ∼ (0,V5 + V6), Z5 ∼ (0,V7 + V8) are normally distributed
random variables, and V5, V6, V7, and V8 are defined in the Appendix.

Remark 3. If stratification is ignored, throughout all this section just take # = #0 = #1 and #̂ = #̂0 = #̂1. On
the other hand, #̌0 and #̌1 are still distinct quantities, since they correspond to the observed positive error rates
of stratum s = 0 and s = 1 respectively. Then do analogously with the beta terms to obtain $, $̂, $̌1, and $̌2.

5 DATA FROM THE ISRAELI MINISTRY OF HEALTH

In what follows, COVID-19 data from the Israeli Ministry of Health is considered.18 The Ministry of Health publicly
released data for individuals tested for COVID-19 via a PCR assay from a nasal swab sample collected between March 22,
2020 and April 7, 2020. The dataset contains information on the test date, test result, clinical symptoms, gender of the
individual, known contact with an infected individual and a binary indicator of whether the individual was 60 years of age
or older. Symptoms include cough, fever, sore throat, shortness of breath and headache. For the purposes of illustrating
the methodology, we will consider this as the population, consisting of 99 232 tested individuals, among whom 1862 were
symptomatic (have shortness of breath or have at least three of four symptoms: cough, fever, sore throat, and headache)
and 97 370 were asymptomatic. Among the total tested individuals, it was possible to identify 8393 infections through
PCR testing. Among the individuals who tested positive, 1754 were symptomatic. The characteristics of the data set are
presented in Table 2.

 10970258, 2023, 26, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9885, W
iley O

nline Library on [09/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



ZHOU et al. 4723

T A B L E 2 Observed disease status by category of symptoms.

Positive Negative Total

Symptomatic 1754 108 1862

Asymptomatic 6639 90 731 97 370

Total 8393 90 839 99 232

T A B L E 3 Real proportions under stratified errors with different error combinations.

Error Comb. Symptoms Disease Non-disease Total

Comb. 1 Sympt. 1704 158 1862

Asympt. 24 719 72 651 97 370

Total 26 423 72 809 99 232

Comb. 2 Sympt. 1686 176 1862

Asympt. 15 646 81 724 97 370

Total 17 332 81 900 99 232

Comb. 3 Asympt. 1707 155 1862

Asympt. 20 116 77 254 97 370

Total 21 823 77 409 99 232

Error rates will be stratified by symptoms. Thus, let #0 and #1 be the false positive rate for asymptomatic and symp-
tomatic individuals, respectively, and $0 and $1, the false negative rate for asymptomatic and symptomatic individuals,
respectively. Although we do not have exact numbers of stratified false-positive and false-negative rates for PCR tests, a
public report from UK Government Office for Science in 2020 indicated that the median false positive rate in the UK’s
COVID-19 RT-PCR testing program is 2.3% with IQR of 0.8% to 4.0%.19 Moreover, Arévalo-Rodríguez et al stated that
after they collected information among all patients from 34 studies, the summary estimate of the false-negative rate was
13% with range of 1.8% to 58%.20 For the purpose of investigating how the estimates change with different assumed error
rates, we will compare different combinations of error rates within the reasonable ranges according to the literature we
found. The combinations of error rates in the population are assumed to have the values in (40). The actual number of
individuals inside each group can be found in Table 3 after correcting Table 2 for these errors.

Comb. 1 #0 = 1%, #1 = 3%, $0 = 20%, $1 = 2%;
Comb. 2 #0 = 1%, #1 = 4%, $0 = 10%, $1 = 2%;
Comb. 3 #0 = 2%, #1 = 3%, $0 = 15%, $1 = 5%.

(40)

The real prevalence with Comb. 1 is then

p(1) = (1704 + 24 719)∕99 232 = 0.266, (41)

and prevalence among the asymptomatic is 24 719∕97 370 = 0.254.
The real prevalence with Comb. 2 is then

p(1) = (1686 + 15 646)∕99 232 = 0.175, (42)

and prevalence among the asymptomatic is 15 646∕97 370 = 0.161.
The real prevalence with Comb. 3 is then

p(1) = (1707 + 20 116)∕99 232 = 0.220, (43)

and prevalence among the asymptomatic is 20 116∕97 370 = 0.207.
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4724 ZHOU et al.

T A B L E 4 Stratified observed sample for 75% symptomatic and 25% asymptomatic, with all symptomatic individuals sampled.

Error Comb. Symptoms Positive Negative Total

Comb. 1 Symptomatics 1641 221 1862

Asymptomatics 122 499 621

Total 1763 720 2483

Comb. 2 Symptomatics 1642 220 1862

Asymptomatics 94 527 621

Total 1736 747 2483

Comb. 3 Symptomatics 1541 321 1862

Asymptomatics 117 503 620

Total 1658 824 2482

Additionally, in (44) we assume some sample error rates for the combinations (40). We emphasize that the
actual values of (44) are “known unknowns” to the practitioner,21 and it is precisely their effect what needs to be
corrected.

Comb. 1 #̌0 = 0.7%, #̌1 = 3.5%, $̌0 = 25%, $̌1 = 4%;
Comb. 2 #̌0 = 1.2%, #̌1 = 3.6%, $̌0 = 12%, $̌1 = 3%;
Comb. 3 #̌0 = 2.5%, #̌1 = 2.9%, $̌0 = 18%, $̌1 = 10%.

(44)

Finally, active information (defined in Appendix C) is used to compare how well Algorithms 3 and 4 and other pro-
posed estimators in the literature are doing with respect to the real prevalence. The best estimator will be the one with
active information Î+ closer to 0. The competitors will be the method proposed by Díaz-Pachón and Rao, which assumes
all symptomatic individuals are sampled, correcting only for sample bias and ignoring testing errors;10 Diggle’s Bayesian
approach, which corrects for imperfect testing but ignores sampling bias;22 and the Rogan-Gladen estimate, a frequen-
tist method that only corrects for testing errors too.23 Neither of the competitors corrects for sampling bias and testing
errors at the same time. In fact, as much as we searched, we could not find a methodology that simultaneously cor-
rects for imperfect testing and sampling bias; this will be reflected in the analysis. All of the results are presented in
Table 8.

Each of the following protocols presents a table with the sample results. These correspond to the observations given
by (29). These values, the population size, and the estimated error rates from a different study (#̂s and $̂s) will be the input
of an R program, for which the code is available at https://github.com/kalilizhou/BiasCorrection.git, with the four algo-
rithms proposed in this article. The program thus obtains the correction. As a simplifying assumption in the remaining
of this section, we take #̂s = #s and $̂s = $s, for s = 0, 1.

Sampling Protocol 1: In the first scenario, all symptomatic individuals are sampled, as considered by Díaz-Pachón
and Rao.10 The sample consists of 2483 individuals. Among these, 1862 (75%) are symptomatic and 621 (25%) are asymp-
tomatic. The sample error rates are taken from (44). The observed sampling results, corresponding to (29), are given by
Table 4.

According to Table 4, for instance with Comb. 1, the naïve estimator is p̃1,∗
T = 1763∕2483 ≈ 0.71. Since all the symp-

tomatic group is sample, we use Algorithm 3, which produces the corrected estimator p̂(1) = 0.248. Table 8 presents these
results as well as those of the other methods.

In this case, Diggle’s correction was not implemented because it involves combinations in its logarithm that are diffi-
cult to approximate when the sample is moderately large. Under the assumption of sampling all symptomatic individuals,
Díaz-Rao works very well, and RGE performs as poorly as the naïve estimators. Our Algorithm 3 is the best correction
to the the naïve estimate, producing the closest-to-zero actinfo. The corrected estimators of prevalence obtained from
Algorithm 3 almost equal the real prevalence for all combinations of testing errors.

For the next protocols, the assumption that all symptomatic individuals were sampled is removed, which implies that
the Diaz-Rao correction cannot be assessed and Algorithm 4 is followed.
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ZHOU et al. 4725

T A B L E 5 Stratified observed sample for 75% symptomatic and 25% asymptomatic (not all symptomatic individuals sampled).

Error Comb. Symptoms Positive Negative Total

Comb. 1 Sympt. 132 18 150

Asympt. 10 40 50

Total 142 58 200

Comb. 2 Sympt. 132 18 150

Asympt. 8 42 50

Total 140 60 200

Comb. 3 Sympt. 125 25 150

Asympt. 9 41 50

Total 134 66 200

T A B L E 6 Stratified observed sample for 50% symptomatic and 50% asymptomatic.

Error Comb. Symptoms Positive Negative Total

Comb. 1 Sympt. 89 11 100

Asympt. 19 81 100

Total 108 92 200

Comb. 2 Sympt. 89 11 100

Asympt. 15 85 100

Total 104 96 200

Comb. 3 Sympt. 83 17 100

Asympt. 19 81 100

Total 102 98 200

Sampling Protocol 2: The sample consists of 200 individuals. Among these, 150 (75%) are symptomatic and 50
(25%) are asymptomatic. For both the symptomatic and asymptomatic groups, the sampling proportions are taken
according to Table 3. Table 5 shows the observed sample. The summary of results under different methods is shown in
Table 8.

Table 8 shows that, in this sampling scenario, our Algorithm 4 still has the best performance. In fact, Diggle’s and
Rogan-Gladen’s estimates do as poorly as the naïve estimate. Algorithm 4 beats its competitors because it is the only one
that corrects for sampling bias, whereas the other two only correct for testing errors. Notice that the additional information
of Protocol 1 (knowing that all symptomatic individuals were sampled), in comparison to Protocol 2, greatly improves the
performance of the correction, as reflected by the active information.

Sampling Protocol 3: In this scenario there are 100 symptomatic and 100 asymptomatic individuals. Again, the
proportions inside each group were taken from Table 3. The observed sample is given in Table 6. After correct-
ing the estimates, the summary of results under different methods for this sampling protocol is also presented in
Table 8.

Compared to Protocol 2, Protocol 3 has less sampling bias. Therefore, all the methods perform better than in the
previous scenario. But Algorithm 4 still works better than competitors.

Sampling Protocol 4: This sample is truly random, with NT = 200, and it is obtained from Table 3. The observed
sample is presented in Table 7. The results of the different methods for this scenario are presented in Table 8.

In this scenario, without sampling bias, all estimates perform extremely well, with Rogan-Gladen’s frequentist
estimates being optimal. Algorithm 4 works quite well. The results of these two methods are very close to the real
prevalence.
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4726 ZHOU et al.

T A B L E 7 Stratified observed random sample of size 200.

Error Comb. Symptoms Positive Negative Total

Comb. 1 Sympt. 3 1 4

Asympt. 39 157 196

Total 42 158 200

Comb. 2 Sympt. 3 1 4

Asympt. 30 166 196

Total 33 167 200

Comb. 3 Sympt. 3 1 4

Asympt. 37 159 196

Total 40 160 200

T A B L E 8 Comparison among methods of all sampling protocols with different combinations of stratified error rates.

Corrected estimates p̂(1) (active information Î+)
Error
Comb.

Real
prevalence

Sampling
protocol Naïve Díaz-Rao Diggle Rogan-Gladen

Algorithms 3
and 4

Comb. 1 p = 0.266 1 0.710 (0.981) 0.212 (−0.229) - 0.729 (1.009) 0.248 (−0.069)
2 0.710 (0.981) - 0.784 (1.081) 0.729 (1.009) 0.486 (0.602)
3 0.540 (0.707) - 0.592 (0.800) 0.564 (0.751) 0.398 (0.401)
4 0.210 (−0.237) - 0.220 (−0.190) 0.249 (−0.066) 0.244 (−0.086)

Comb. 2 p = 0.175 1 0.699 (1.387) 0.167 (−0.045) - 0.711 (1.402) 0.173 (−0.011)
2 0.700 (1.388) - 0.772 (1.484) 0.712 (1.403) 0.441 (0.926)
3 0.520 (1.091) - 0.570 (1.181) 0.530 (1.109) 0.344 (0.679)
4 0.165 (−0.057) - 0.168 (−0.041) 0.173 (−0.014) 0.168 (−0.047)

Comb. 3 p = 0.220 1 0.668 (1.111) 0.204 (−0.076) - 0.701 (1.159) 0.215 (−0.019)
2 0.670 (1.114) - 0.738 (1.210) 0.703 (1.161) 0.448 (0.713)
3 0.510 (0.841) - 0.558 (0.931) 0.537 (0.892) 0.371 (0.524)
4 0.200 (−0.095) - 0.208 (−0.056) 0.215 (−0.024) 0.209 (−0.050)

Note: Bold values represent the closest value to p in the second column.

Table 8 summarizes the results of all protocols and all combinations of testing errors. Our proposed Algorithms 3
(first row in each combination) and 4 (rows 2-4 in each combination) are always the best in Sampling Protocols 1-3 and
perform as well as the naïve estimator under random sampling (Protocol 4), according to the actinfo assessment. The
result shows the promising ability of our proposed algorithms to correct for both sampling bias and testing errors in
prevalence estimation.

6 DISCUSSION

Timely and accurate prevalence estimation of a disease is one of the most fundamental concepts in epidemiology and
its importance is because it provides a measure of disease burden in a population at a particular point in time. It can
also be part of a compendium of measures used to inform public health prevention policies to help slow the spread of
disease through the population. To provide prevalence estimates that are reliable and generalizable, the sample must be
comprehensive enough to capture all relevant subpopulations in the general population and as mentioned, for a num-
ber of diseases this can be challenging because many of these sub-populations can be hard-to-reach. Thus, sampling bias
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ZHOU et al. 4727

corrections are needed. Interestingly, this article has presented new methodology where biased samples result due to
over-sampling of symptomatic individuals. Such biased samples are here shown to be inconsistent in terms of not con-
verging to the true proportion of infected individuals. In addition, Algorithms 1–4 go further and present corrections both
for sampling bias and testing errors. Such corrections either eliminate bias completely (Algorithms 1 and 3), or reduce
it substantially (Algorithms 2 and 4) when testing error rates are known or can be estimated consistently. However, the
methodology generalizes easily regardless of how the biased samples resulted.

A limitation of our study is that we do not estimate error rates directly from our sample, but take the estimator from
a previous independent sample. If this is not the case, then at least under the random sampling situation, prevalence can
still be estimated using a Bayesian approach described by Diggle.22 This naturally results in increased variability of the
prevalence estimate and relies on a reasonable prior distribution being elicited for the prevalence.

Sample pooling has also been proposed as an efficient way to estimate population prevalence because if the dis-
ease prevalence is low, then little information is accrued from individual tests.24 This is sometimes called group
testing. However, this implicitly assumes random sampling of pools which is clearly not the case considered
here.

Another approach is to use population seroprevalence complex surveys.25,26 While inherently much more difficult
to conduct and analyze, these can also suffer from non-ignorable non-response which can lead to biased estimates of
prevalence. Indeed, biased sampling can be more generally cast within a missing data framework and the impact of
different missing data mechanisms has been studied.27

For some diseases it is becoming more common to use administrative data to estimate disease prevalence since
for many countries these data cover large proportions of the population. Examples include Canada, Denmark, and
Italy among others. This requires some effort to properly assemble these data sources,28 but they have to date not
proven as useful for emerging diseases like COVID-19 where surveillance studies dominated the earlier days of the
pandemic.

In First-World countries, particularly in urban areas, testing practices seem to be well-described by oversampling of
symptomatic individuals, sometimes even testing the whole group in a subpopulation, as it is the case with COVID-19
testing in universities and industries. A possible extension, however, is to consider the opposite situation in which
the symptomatic group is under-sampled, producing an estimator that is biased because it underestimates prevalence.
Such scenario is certainly relevant for COVID-19 too in several Third World countries, and even in difficult-to-reach
subpopulations of First World countries.
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APPENDIX A. GENERAL PROOFS

Proof of Proposition 1.

p̂s,i
T = fS∗|T

(
I(i)s |T = 1

)

=
P
[

T = 1|S∗ = I(i)s

]

P[T = 1] fS∗
(

I(i)s

)

=
q
(

I(i)s

)

P[T = 1] fS∗
(

I(i)s

)
(A1)

=
Ns,i

T ∕N(i)
s

NT∕N
N(i)

s
N

=
Ns,i

T
NT

.

Remember that terms without subindex T are here population values, whereas terms with the subindex T are
sample values. Notice in the fourth and fifth steps that N(i)

s cancels. Therefore, all the remaining information
about I(i)s comes from Ns,i

T , the number of tested (sampled) individuals with symptoms s and infectious status
i. Now, from the third equality, this value is seen to come from q

(
I(i)s

)
, the sampling probability of the group

I(i)s . Therefore, all knowledge of I(i)s comes from whatever knowledge we have about the sample mechanism
q
(

I(i)s

)
. ▪

Proof of Theorem 2.

q∗(I0) < q∗(I1)⇔
N0,∗

T
N0

<
N1,∗

T
N1

⇔
N1∕N
N0∕N <

N1,∗
T ∕NT

N0,∗
T ∕NT
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⇔
p1
p0

<
p̂1,∗

T

p̂0,∗
T

⇔
1 − p1

p1
>

1 − p̂1,∗
T

p̂1,∗
T

⇔
1
p1

> 1
p̂1,∗

T

⇔ p̂1,∗
T > p1,

where the fourth step used that p0 + p1 = 1 = p̂0,∗
T + p̂1,∗

T . ▪

Proof of Proposition 2. This proposition follows directly from the definition of testing errors. Consider for
instance the first equation of (29). It stipulates that whereas the proportion of sampled individuals with s = i =
0 is p̂0,0

T , the reported fraction p̃0,0
T of sampled individuals with s = i = 0 differs from p̂0,0

T by an amount $̌0p̂0,1
T −

#̌0p̂0,0
T , where the first term $̌0p̂0,1

T is the fraction of (0, 1)-individuals wrongly classified as (0, 0), whereas the
second term #̌0p̂0,0

T is the fraction of (0, 0)-individuals wrongly classified as (0, 1). The other three equations
of (29) are motivated analogously. ▪

Proof of Proposition 3. It follows from Equations (29) and (31) that ps,∗
T = p̃s,∗

T = p̂s,∗
T for s = 0, 1. This, and

another application of (29) and (31) gives

ps,0
T

ps,∗
T

=
p̃s,0

T ∕p̂s,∗
T − $̂s

1 − #̂s − $̂s
=

p̂s,0
T

p̂s,∗
T
⋅

1 − #̌s − $̌s

1 − #̂s − $̂s
+ $̌s − $̂s

1 − #̂s − $̂s
. (A2)

Since q(I(0)s ) = q(I(1)s ) by (14), it follows that p̂s,0
T ∕p̂s,∗

T is a consistent estimator of p(0)
s ∕ps, and by assumption,

#̂s and $̂s are consistent estimators of #s and $s respectively. Moreover, Lemma 2 below implies that #̌s
and $̌s are consistent estimators of #s and $s as well. From this and (A2) it follows that ps,0

T ∕ps,∗
T is a

consistent estimator of p(0)
s ∕ps. The fact that ps,1

T ∕ps,∗
T is a consistent estimator of p(1)

s ∕ps is proved in the
same way. ▪

APPENDIX B. ASYMPTOTICS

As a preparation, we prove the following lemma that will be used as assumption in the main result of this section:

Lemma 1. q
(

I(0)s

)
= q

(
I(1)s

)
= q(Is).

Proof. The first equality is obtained by assumption (14). In order to prove the second equality, we use that a
randomly chosen individual from Is belongs to I(i)s with probability p(i)

s ∕ps for i = 0, 1. Conditioning on which
subcohort of Is the individual belongs to, it follows that

q(Is) =
p(0)

s
ps

q(I(0)s ) +
p(1)

s
ps

q(I(1)s ).

Therefore, since q(Is) is a weighted average of q(I(0)s ) and q(I(1)s ), the second equality of Lemma 1 follows from
the first one. ▪

Hössjer et al (2023) proved a couple of theorems that we will use to prove the asymptotic results for the estimators
discussed in this article.27 We present them here for completeness, fitting their notation to ours.
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Theorem 5 (Theorem 1 of Hössjer et al (2023)). Let N →∞ in such a way that N1∕N is always fixed, that
Lemma 1 holds for fixed q(I0) and q(I1), and that there exists %s ∈ [0, 1] such that p̂s

p
−−→ %s, as N →∞, for

s = 0, 1. Then

N1∕2

(
p̂∗,1T −

p(1)
0 q(I0) + p(1)

1 q(I1)
q

)

−−→ (0,V1 + V2),

N1∕2

(
p̂(1) −

(
%0p(1)

0
p0

+
%1p(1)

1
p1

))

−−→ (0,V3 + V4), (B1)

N1∕2(p̂s − %s)

−−→ (0,C00)

as N →∞, where q is defined in (8),

V1 =
1∑

s=0

psq(Is)
[
1 − q(Is)

] p(1)
s

ps

(
1 − p(1)

s
ps

)

(p0q(I0) + p1q(I1))2 ,

V2 =
1∑

s=0

psq(Is)
[
1 − q(Is)

]( p(1)
s

ps
− p(1)

0 q(I0)+p(1)
1 q(I1)

p0q(I0)+p1q(I1)

)2

(p0q(I0) + p1q(I1))2

V3 =
1∑

s=0
%2

s p−1
s

1 − q(Is)
q(Is)

p(1)
s

ps

(
1 − p(1)

s
ps

)
,

V4 = C00

(
p(1)

0
p0

−
p(1)

1
p1

)2

,

and

C00 =
(1 + q)2B11 +

(
p1q(I1)

q

)2[
p0q(I0)(1 − q(I0)) + p1q(I1)(1 − q(I1))

]
+ 2(1 + q) p1q(I1)

q Σ(p1

4 ,

B11 =
p1q(I1)

{
q2[1 − q(I1)

]
− 2qp1q(I1)

[
1 − q(I1)

]
+ p1q(I1)p0q(I0)

[
1 − q(I0)

]
+ p2

1q2(I1)
[
1 − q(I1)

]}

q4 ,

Σ(p1 =
p1q(I1)

[
1 − q(I1)

]

q −
p1q(I1)

{
p0q(I0)

[
1 − q(I0)

]
+ p1q(I1)

[
1 − q(I1)

]}

q2 .

Proof of Theorem 1. Since p̂1 = p1 and p̂0 = p0 = 1 − p1 are known, convergence in probability p̂s
p
−−→ %s triv-

ially holds with %s = ps, whereas the asymptotic weak limit of N1∕2(p̂s − ps) in (B1) degenerates to a one point
distribution at 0 (C00 = 0). Since q(I1) = 1, V1, V2, and V3, in Theorem 5 are readily simplified to

V01 =
p0q(I0)

[
1 − q(I0)

] p(1)
0

p0

(
1 − p(1)

0
p0

)

(p0q(I0) + p1)2 , (B2)

V02 =
p0q(I0)

[
1 − q(I0)

]( p(1)
0

p0
− p(1)

0 q(I0)+p(1)
1

p0q(I0)+p1

)2

(p0q(I0) + p1)2 , (B3)

V03 = p0
1 − q(I0)

q(I0)
p(1)

0
p0

(
1 −

p(1)
0

p0

)
, (B4)

whereas V4 = 0 since C00 = 0. ▪
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Proof of Theorem 3. It is obtained directly from Theorem 5 by substituting V1, V2, V3, and V4 for V11, V12, V13,
and V14, respectively, where

V11 =
1∑

s=0

psq(Is)
[
1 − q(Is)

] p(1)
s

ps

(
1 − p(1)

s
ps

)

(p0q(I0) + p1q(I1))2 , (B5)

V12 =
1∑

s=0

psq(Is)
[
1 − q(Is)

]( p(1)
s

ps
− p(1)

0 q(I0)+p(1)
1 q(I1)

p0q(I0)+p1q(I1)

)2

(p0q(I0) + p1q(I1))2 , (B6)

V13 =
1∑

s=0
%2

s p−1
s

1 − q(Is)
q(Is)

p(1)
s

ps

(
1 − p(1)

s
ps

)
, (B7)

V14 = C00

(
p(1)

0
p0

−
p(1)

1
p1

)2

. (B8)

▪

B.1 Asymptotics with testing errors
Before proving the asymptotic results with testing errors, some previous assumptions and results are used. First, we
assume that the existing estimators of error rates are asymptotically normal. That is, there exists " = (#0, #1) and # =
($0, $1) such that, for "̂ = (#̂0, #̂1) and #̂ = ($̂0, $̂1),

N1∕2
(
"̂ − ", #̂ − #

) 
−−→

(
0,
(
Ω## Ω#$
ΩT
#$ Ω$$

))
(B9)

as N → ∞, where each of the terms in the variance-covariance matrix is a 2 × 2 matrix, and

Ω## = (Ω##rs)r,s=0,1

Ω$$ =
(
Ω$$rs

)
r,s=0,1

Ω#$ =
(
Ω#$rs

)
r,s=0,1. (B10)

We also assume that #̌0, #̌1, $̌0, and $̌1 are all independent. Moreover, the following lemma will be used:

Lemma 2 (Lemma 2 from Hössjer et al (2023)). The proportions of false positive and negatives in the sample
satisfy

N1∕2(#̌s − #s)

−−→ (0,Σ##s), (B11)

and

N1∕2($̌s − $s)

−−→ (0,Σ$$s), (B12)

respectively as N →∞, with

Σ##s = #s(1 − #s)q∕
[

psq(Is)
(

1 − p(1)
s ∕ps

)]
,

Σ$$s = $s(1 − $s)qps∕
[

psq(Is)p(1)
s

]
.
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After transforming the notation of Hössjer et al (2023) to our notation, the asymptotic results of Theorem 4 are a direct
consequence of the following result from Hössjer et al (2023):

Theorem 6 (Theorem 2 of Hössjer et al (2023)). Suppose the conditions of Theorem 3 hold, and addition-
ally that the estimators ps,0

T ∕ps,∗
T and ps,1

T ∕ps,∗
T of prevalences of unaffected and affected in symptom group s

converge to

%(0)s = $s − $s

1 − #s − $s
+ 1 − #s − $s

(1 − #s − $s)
⋅

p(0)
s

ps
, (B13)

%(1)s = #s − #s

1 − #s − $s
+ 1 − #s − $s

(1 − #s − $s)
⋅

p(1)
s

ps
, (B14)

respectively as N →∞. Suppose further that the proportion of individuals wrongly classified in the sample #̌s,
$̌s, s = 0, 1 are independent. Then

N1∕2

(
p∗,1T −

p0q(I0)%(1)0 + p1q(I1)%(1)1
q

)

−−→ (0,V5 + V6), (B15)

N1∕2
[

p̂(1) −
(
%0%(1)0 + %1%(1)1

)] 
−−→ (0,V7 + V8) (B16)

as N →∞, where p̂(1) is defined as in (35),

V5 =
∑
r,s

prq(Ir)psq(Is)
q2 Ārs,

V6 =
∑
r,s
%(1)r %

(1)
s Brs,

V7 =
∑
r,s
%r%sĀrs,

V8 =
∑
r,s
%(1)r %

(1)
s Crs,

whereas

B11 = B00 = −B01 = −B10,
C00 = C11 − C01 = −C10,

are defined in Theorem 5. Moreover,

Āss = K2
s1Ass + K2

s2Σ##s + K2
s3Σ$$s

+K2
s4Ω##ss + K2

s5Ω$$ss + 2Ks4Ks5Ω#$ss,
(B17)

and

Ārs = Kr4Ks4Ω##rs + Kr5Ks5Ω$$rs

+Kr4Ks5Ω#$rs + Kr5Ks4Ω#$sr,
(B18)
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when r ≠ s, with

Ks1 = (1 − #s − $s)∕Ks,

Ks2 =
(

1 − p(1)
s

ps

)
∕Ks,

Ks3 = −p(1)
s ∕(psKs),

Ks4 =
[
#s + $s − 1 + p(1)

s (1−#s−$s)
ps

]
∕K2

s ,

Ks5 =
[
#s − #s +

p(1)
s (1−#s−$s)

ps

]
∕K2

s ,

Ks = 1 − #s − $s,

(B19)

and finally

Ass =
(1 − q(Is)) p(1)

s
ps

(
1 − p(1)

s
ps

)

psq(Is)
. (B20)

Notice that, if #s = #s and $s = $s (that is, if the error rates are estimated consistently), then ps,i
T ∕ps,∗

T is a consistent
estimator of %(i)s = p(i)

s ∕ps for i = 0, 1. In particular, ps,1
T ∕ps,∗

T is a consistent estimator of the prevalence %(1)s = p(i)
s ∕ps among

the individuals of symptom group s.

APPENDIX C. ACTIVE INFORMATION: THE INDEX

Active information (actinfo) was introduced in search problems to quantify the amount of Shannon information intro-
duced by the programmer in a search problem.29-31 In machine learning, it has been used to show that no algorithm
performs well for a large class of problems, in agreement with the so-called No Free Lunch Theorems.32-34 It has also been
used for mode hunting,35,36 and to compare neutral to non-neutral models in population genetics.37

We now use active information to analyze the bias. Through the eyes of actinfo, the bias is formally seen as the addition
(if the parameter is overestimated) or subtraction (if the parameter is underestimated) of relevant information in the
estimation of the parameter. Formally, active information is defined as

Î+ = log
(

p̂(1)∕p(1)
)
, (C1)

where the logarithm is taken to be in base e, so that information is measured in nats. Thus defined, active information
measures the amount of Shannon information of the estimator p̂(1) to the true proportion p(1), and it is the quantity that
is averaged in the Kullback-Leibler divergence.38 That is, if the true proportion is overestimated, the active information
will be positive and large; if the true proportion is underestimated, the active information will be negative; and if the true
proportion is accurately estimated, the active information will be around zero.39,40 Because of Theorem 4, we interpret
(C1) as an approximation of I+ = log[(%0%(1)0 + %1%(1)1 )∕p(1)].

APPENDIX D. SIMULATION

This section uses simulation to analyze the asymptotic behavior of the corrected estimator. The population has the
following features:

• the proportion of positive cases with symptoms p(1)
1 is 15%,

• the proportion of negative cases with symptoms p(0)
1 is 5%,

• the proportion of positive cases without symptoms p(1)
0 is 5%,

• and proportion of negative cases without symptoms p(0)
0 is 75%.
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Thus, the prevalence is p(1)
0 + p(1)

1 = 20%, the proportion of symptomatic individuals in the population is p(1)
1 + p(0)

1 =
20%, so the proportion of asymptomatic in the population is p(1)

0 + p(0)
0 = 80%.

D.1 Correction without testing errors
We will run the simulation for multiple proportions of asymptomatic individuals getting sampled and will compare the
results using a boxplot. The true prevalence will be known in the simulation, allowing us to evaluate the accuracy of our
estimators.

F I G U R E D1 All the symptomatic group is sampled.

F I G U R E D2 Not all the symptomatic group is sampled.
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4736 ZHOU et al.

T A B L E D1 Estimated proportion of symptomatic in the population p̂1 (E(U)).

p̂0,∗
T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E(U) 0.3881 0.3031 0.2538 0.2221 0.1995 0.1829 0.1701 0.1596 0.1513

D.1.1 All the symptomatic group is sampled
Assuming a population size of 10 000, we initially sampled all symptomatic individuals. However, we increased the sample
size by including more asymptomatic individuals as we changed the proportion of those getting tested. This resulted in
both the corrected and naive estimators approaching the true value, and the variance of the estimators decreasing, as
shown in Figure D1.

D.2 Not all the symptomatic group is sampled
In this scenario, we assume that only 70% of symptomatic individuals underwent testing. From Figure D2, as the number
of asymptomatic individuals in the total testing sample size increases, we observe that the corrected estimator converges
to the true value faster than the naïve estimator. Thus we see once again that the testing error correction improves the
accuracy of prevalence estimation. By Table D1, it can be seen that our estimated symptomatic rate in population p̂1
decreases as the number of asymptomatic individuals in the sample increases.

APPENDIX E. CORRECTION OF TESTING ERRORS

In the previous section, we explored the simulation of the correction of sampling error for a population without consid-
ering testing errors. In this section, we extend our analysis including testing error for asymptomatic and symptomatic
individuals separately. Specifically, we will model the false positive and false negative rates for both groups in testing using
normal distributions. The false positive rate for asymptomatic individuals #̌0 is assumed to follow a normal distribution
with mean 0.01 and variance 0.0001, while the false negative rate for asymptomatic individuals $̌0 follows a normal distri-
bution with mean 0.2 and variance 0.0001. Similarly, the false positive rate for symptomatic individuals #̌1 is assumed to
follow a normal distribution with mean 0.03 and variance 0.0001, while the false negative rate for symptomatic individu-
als $̌1 follows a normal distribution with mean 0.02 and variance 0.0001. The real value of the parameters is assumed to be

F I G U R E E1 All the symptomatic group is sampled with testing error.
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ZHOU et al. 4737

F I G U R E E2 Not all the symptomatic group is sampled with testing error. (A) Unbiased correction parameters. (B) Biased correction
parameters.

the mean of these distributions. We will consider two scenarios: one in which all symptomatic individuals are sampled,
and another in which not all symptomatic individuals are sampled.

E.1 All symptomatic group is sampled
In this simulation, we assume that all symptomatic individuals are sampled for the testing group. We will adjust the
proportion of asymptomatic individuals getting sampled from 0.1 to 0.9 to observe the effect of testing error correction on
prevalence estimation. Based on the description in the previous section, we use the #̂0, #̂1, $̂0, and $̂1 obtained from other
study as parameters for testing error correction. Here, we assume that #̂0, #̂1, $̂0, $̂1 follow a uniform distribution with a
mean of the true values #0 = 0.01, #1 = 0.03, $0 = 0.2, and $1 = 0.02 in the simulation study.

From Figure E1, we expect to see that our corrected estimators are very close to the true value, while the naive estimator
is approaching the true value as the proportion of asymptomatic individuals increases. Due to the additional variability
introduced by testing error, we observe a larger variance of the corrected estimators compared to Algorithm 1.

E.2 Not all the symptomatic group is sampled
We also simulated an scenario where not all symptomatic individuals in the population were sampled for testing, account-
ing for testing error. Specifically, we assumed that 70% of symptomatic individuals in the population would go for a
test.

Here we consider two parameter settings for the correction parameters obtained from other studies: the first one is
unbiased, where #̂0, #̂1, $̂0, and $̂1 follow a uniform distribution with mean 0.01, 0.03, 0.2, and 0.02 (the true values),
respectively; the second one is biased, where #̂0, #̂1, $̂0, and $̂1 follow a uniform distribution with mean 0.05, 0.1, 0.3, and
0.1, respectively. From the results in Figure E2A,B, it can be observed that the estimates from both settings converge to
the true values as the proportion of asymptomatic increases in the sample, but the corrected estimate from the second
setting has a larger variance.
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