

Reference Detail

[View in CAS SciFinder](#)

Nitrogen cleavage and catalytic reactivity of a unique dinitrogen-bridged d⁴-d⁴ diaryl amino-based PNP molybdenum complex

By: **Mandal, Souvik**; Malakar, Santanu; Lease, Nicholas; Emge, Thomas J.; Hasanayn, Faraj; Goldman, Alan Stuart

0 Substances • 0 Reactions • 0 Citations

One of the most important technol. inventions of the 20th century is Haber-Bosch process (HB) for synthesis of ammonia from atm. N₂. However, HB process is responsible for ca. 2% of global fossil fuel consum ption and the co-production of commensurate amounts of C O₂. In this context, we are investigating mol. **catalysts** with the goal of developing electrocatalysts for the reduction of N₂ to ammonia. Reduction of N₂ using mol. **catalysts** has gained significant attention since Schrock's seminal report in 2003 and then a report by Nishibayashi in 2011. We have centered our approach on metal **complexes** that can bind and cleave N₂ via a bimetallic pathway, and then accept protons and electrons to yield NH₃. The Nishibayashi **catalysts** have been proposed, at least in some cases, to operate via **dinitrogen-bridging** Mo^I (d⁵) fragments. Recent work by Schneider et al. demons trates **dinitrogen cleavage** by Mo^{II} (d⁴) fragments although the system failed to **catalytically** produce ammonia. Herein we describe the synthesis and characte rization of a **(PNP)Mo^{IV}Br₃** (1) **complex** (PNP = Ozerov's diaryl- **based** pincer ligand) which appears to undergo two-electron reduction to generate a four-coordinate **(PNP)Mo^{II}X** (2-X) species (X = Br or I in the presence of added I⁻). Under Ar atm., 2- Br dimerizes to afford a Mo-Mo quadruple-bonded **complex** [(PNP)MoBr₂] (3). The same reduction under N₂ atmosphere leads to formation of a **dinitrogen-bridged complex** [(PNP)Mo^{II}X]₂(μ-N₂) (4-X) which is characterized by ¹H, ³¹P and ¹⁵N NMR, single crystal XRD and ESI-MS. **(PNP)MoBr₃** (1) as well as the N₂- **bridged** species 4-I act as **catalysts** for the **reaction** of N₂ with reductants and acids to yield N H₃, suggesting that the **bridging dinitrogen** 4-I is cleaved to give the corresponding Mo^V nitride **complex** under the **catalytic** conditions. Using DFT, the barrier to **cleavage** of the N₂ **bridged** 4-I is calculated to be 24 kcal/mol. We are currently investigating the **catalytic** N₂ reduction and in particular, the **cleavage** of the **dinitrogen-bridged** species, using electrochem. methods.

Conference

Source

Abstracts of Papers, ACS Fall 2022, Chicago, IL,

United States

Pages: No pp. given

Conference; Article

2022

CODEN: 70APE2

[Full-Text Search](#)

[View all Sources in CAS SciFinder](#)

Database Information

AN: 2022:2981790

CAplus

Company/Organization

Department of Chemistry and Chemical Biology

Rutgers The State University of New Jersey

New Brunswick

United States

Publisher

American Chemical Society

Language

English