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Abstract—Satellite-based quantum networks leverage the ad-
vantageous properties of optical signals from satellites to ground
stations, to enable the distribution of high-fidelity quantum
entanglements over vast distances, thus circumventing the lim-
itations of traditional terrestrial-based systems. However, the
satellite-based entanglement distribution coupled with terrestrial
quantum swapping in the space-terrestrial integrated network
becomes very complex when considering the joint optimization
with satellite assignment, resource allocation, and path selec-
tions. To tackle this issue, we introduce a hybrid quantum-
classical Dantzig-Wolfe decomposition technique by leveraging
the strengths of both quantum and classical computing, to solve
the joint optimization problem. Through a series of experiments,
the paper demonstrates the efficiency and robustness of the
proposed methods in addressing large-scale network optimization
and balancing qubit usage. The insights generated by this work
offer valuable guidance for the design and implementation of
satellite-based entanglement distribution for quantum networks,
thereby laying the groundwork for the realization of a secure
quantum communication infrastructure on a global scale.

Index Terms—Entanglement distribution, quantum swap-
ping, quantum networks, hybrid quantum-classical optimization,
space-terrestrial integrated network

I. INTRODUCTION

Quantum entanglement distribution has been one of the
foundational components for all quantum communication
protocols and systems, However, ground-based distribution
methods have faced limitations and drawbacks that hinder
their effectiveness. These limitations include susceptibility
to environmental disturbances such as atmospheric interfer-
ence and fiber attenuation, which can degrade the fidelity
of entangled states and limit the achievable distances for
entanglement distribution. Moreover, ground-based systems
are also vulnerable to eavesdropping. An alternative approach
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Fig. 1. The overall satellite-based entanglement distribution and terrestrial
quantum swapping architecture.

that has gained attention in recent years is the use of satellite-
based quantum entanglement distribution, as shown in Fig. 1.
By leveraging space-based platforms, this approach offers
several advantages over ground-based methods. First, satellite-
based distribution can bypass many environmental factors that
degrade entanglement fidelity on the ground, enabling the cre-
ation of long-distance entangled links with higher fidelity and
greater security. Second, the capability to distribute entangled
states from space allows for a global reach, overcoming the
geographical constraints of ground-based systems. Generally,
the architecture of a satellite-based quantum network involves
the deployment of quantum-enabled satellites equipped with
entangled photon sources and communication modules (e.g.,
photo transmitters). These satellites serve as relay nodes for
the distribution of entangled states between ground stations
equipped with photon receivers, enabling the creation of a
global-scale quantum network. The satellite-based architecture
enables the establishment of quantum links between geograph-



ically distant locations, facilitating secure communication and
quantum key distribution on a global scale [1]-[3].

While the potential of satellite-based quantum entanglement
distribution is promising, existing works [4]-[6] have faced
limitations and challenges. For example, Khatri et al. [4]
thoroughly examined the double down-link architecture for a
satellite constellation in polar orbits, analyzing various satellite
configurations to reduce the number of deployed satellites and
increase entanglement distribution rates between ground sta-
tions. However, their proposed method is a heuristic greedy al-
gorithm and ignores some resource constraints (e.g., number of
transmitters/receivers) in their problem formulation. Following
that, Panigrahy et al. [5] further considered various resource
constraints at the satellites and ground stations. Still, they only
solved them efficiently for some specific settings by converting
the problem into either a maximum weight independent set
problem or a maximum weight bipartite matching problem.
Therefore, a more universal and flexible scenario needs to be
considered, such as leveraging terrestrial quantum swapping to
support the satellite-based quantum entanglement distribution.

Given the limited resources in satellite-based quantum
networks, including the number of transmitters per satellite,
photon sources, and receivers at ground stations, it is crucial to
efficiently allocate network resources and schedule transmis-
sions. In this paper, we investigate a joint satellite assignment,
resource allocation, and path selection scenario to build quan-
tum entanglements for ground stations by leveraging satellite-
based entanglement distribution and terrestrial quantum swap-
ping within the space-terrestrial integrated network (STIN).
By integrating terrestrial quantum swapping into satellite-
based entanglement distribution, it can serve more traffic
ground station pairs and generate better quantum entanglement
for further quantum applications. We then propose a new
joint optimization model and adopt a novel hybrid quantum-
classical Dantzig-Wolfe (HQCDW) decomposition technique
[7] by leveraging the strengths of both quantum and classical
computing, to balance the network resources and handle a
large-scale network setting. Our proposed approaches aim
to overcome the limitations of existing works and address
the challenges associated with satellite-based entanglement
distribution and quantum communication.

In summary, the highlights of this paper are as follows.

« We consider a satellite-based entanglement distribution
with terrestrial quantum swapping to cooperatively gen-
erate entanglement for traffic ground station pairs and
formulate a joint satellite assignment, resource allocation,
and path selection problem modeled as integer non-linear
programming (INLP), within STIN to maximize the total
utility of all traffic ground station pairs. (Section III)

e We adopt a novel hybrid quantum-classical Dantzig-
Wolfe decomposition algorithm (HQCDW) by leveraging
the advantage of both quantum and classical computing to
solve the complex INLP problem. The original optimiza-
tion problem is decomposed into a master problem that
is solved in a classical computer and several subproblems
that are processed in a quantum annealer. (Section IV)

« We conduct extensive simulations using the commer-
cial quantum annealer to evaluate our proposed algo-
rithms. Numerous experiments have demonstrated that
our proposed HQCDW can handle more complex network
settings compared to the non-decomposed manner, and
achieve the same result as the classical schemes but with
shorter solver accessing time, which demonstrates the
quantum advantage. (Section V)

The remainder of this paper is organized as follows. Sec-
tion II introduces our system model and the joint optimization
problem is formulated in Section III. Section IV presents our
proposed HQCDW. Evaluations of the proposed method are
provided in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

Network Model. We consider a space-terrestrial integrated
network (STIN) that consists of |M| satellites (SAT), |N|
ground stations (GS), and total |O| ground station pairs (GSP)
as shown in Fig. 1, where M = {1,--- ,|M|} indexed by
i, N = {1,---,|N|} indexed by k, O = {1,---,|0O|}
indexed by j. We also define O’ C O as the traffic GSP
set that needs to generate the entanglement link. In addition,
let O C O be the GSP set of GS k. We consider the
polar satellite constellation and assume that each satellite has
a quantum memory that can store at most sm; entangled
photon pairs. Each satellite is also equipped with tr; trans-
mitters that can transmit entangled photon pairs to multiple
GSPs. Let sm = {smy,sma,---,smp} be the quantum
memory set of all satellites and we can find the maximal one
S$Mimaz = max{sm;,Vi € M}. Each GS also has a quantum
memory gmy, for any quantum application such as quantum
key distribution (QKD). Additionally, each GS owns rrj, re-
ceivers to receive the photon from the satellite or generate the
entanglement link from other GSs by using quantum swapping.
We also define an elevation angle threshold 6. for any satellite
and GSP. The entangled photon can be successfully received
at the GS as long as the elevation angle between the satellite
and the horizon at the GS exceeds this threshold.

Channel Model. In a STIN, there are typically multiple
quantum communication paths as illustrated in [8], such as
downlink and uplink channels between a ground station and
a satellite and lateral paths between two ground stations or
two satellites. This work mainly focuses on the dual down-
link architecture for photonic entanglement distribution with
spontaneous parametric down-conversion (SPDC) [9]. Free-
space optical transmission is a crucial aspect to consider in
analyzing such links. Therefore, we take into account the
optical channel’s characteristics, including transmission loss
and noise. The transmission of photons from satellites to
ground stations can be effectively modeled using a bosonic
pure-loss channel with transmittance. Based on previous works
[4], [5], the space-to-ground transmittance nfi between SAT
1 and GS k consists of two parts: the free-space transmittance
nif . and the atmospheric transmittance 7{}™, and can be
defined as

g = nl - nm. (1)
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Fig. 2. An example of the space-to-ground transmittance between one SAT
and two GSs for the entanglement distribution to this GSP.

Here, 77;_ Z depends on the orbital parameters, such as altitude
and zenith angle, while nﬁ‘}c’” depends on the atmospheric
conditions, e.g., turbulence and weather conditions. As shown
in Fig. 2, let [;; be the distance length between SAT ¢
and GS k, and h;; be the distance height between GS
k and atmospheric boundary when connected to SAT 4. In
our analysis, we take into account the circular apertures of
diameter d! and dff for the transmitter and receiver telescopes
at SAT ¢ and GS k, respectively. These telescopes operate at
a specific wavelength \. Hence, the free-space transmittance
and the atmospheric transmittance can be calculated by

s = (m(d /2)*)(m(d/2)%)

atm
ik i

( 2\ li,k )2 ) T]z,k
where & is the atmospheric extinction coefficient.

Next, we examine the transmission of photons in the pres-
ence of background photons. Let n; be the number of back-
ground photons received by GS k and F{ be the initial fidelity
of the entangled photon pair. We consider an initially imperfect
Bell state with the assumption that 75 = 779, = ;% and
A, = Nk, = N;. Therefore, the fidelity of entangled photon
pair after transmission can be approximated by
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N
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i

0, otherwise.

Fi; =

3)

Terrestrial Quantum Swapping. An intermediate GS,
equipped with quantum memories entangled with memories on
two remote GSs, is used to perform entanglement swapping.
The successful execution of this process creates an extended
entanglement “link” between the remote GSs. The probability
of a successful entanglement swapping is represented by ps,
while the probability of failure is denoted by 1 — ps. If the
process fails, the two Bell pairs involved are discarded. We
consider a perfect quantum swapping and two depolarized Bell
states (Werner states) will be swapped to a new Werner state.

Then the fidelities of the new states after swapping are defined
below [10]-[12]

(1-1)(1 - F)

st:F1F2+ ) (4)

where F and F5 are the fidelities of two entanglement links,
respectively. Note that by considering terrestrial quantum
swapping, our entanglement distribution can serve more GSPs
(even serving some GSPs which cannot be served by any SAT
directly due to either visibility or fidelity issues).

IIT1. PROBLEM FORMULATION

The goal of this paper is to solve a joint satellite assignment,
resource allocation, and path selection problem for entangle-
ment distribution in STIN. In this problem, each satellite acts
as an entangled photon source (EPS) and distributes entangled
photon pairs to the GSP. The objective is to maximize the
overall utility of all traffic GSPs by optimally assigning the
satellites and allocating photon resources to the GSP when a
satellite is visible to both GSs within the same GSP.

In cases where no satellite is visible to the GSP, we explore
ground-based quantum swapping using the entanglement links
generated by satellite-based entanglement distribution. More-
over, we need to determine the optimal path selection for the
remaining GSPs. Specifically, we are interested in two-hop
quantum swapping and denote P as all two-hop paths from
the graph indexed by p. Let RJ° = {;1, jo} be the GSP set in
path p for GSP j, and R;‘fjt = {i1,12} be the related satellite
set in path p for GSP j. Moreover, let P, C P be the path
set of GS k, P; C P be the path set of GSP j, and P; C P
be the path set of SAT i. Denote w; ; as the weight or utility
associated with the assignment of SAT ¢ to GSP j and w,, ; as
the utility associated with the selection of path p for GSP j.
We also assume that each satellite can generate at most sm;
entangled photon pairs.

Decision Variables. Let x; ; be a binary variable to indicate
whether satellite ¢ (¢ € M) is assigned to GSP j (j € O) and
¥;,; be an integer variable range from 0 to $12,,, to indicate
the entangled photon pair allocation between satellite ¢ and
GSP j. Denote z, ; by a binary variable to indicate whether
path p (p € P) is selected for GSP j for quantum swapping.
We also define ¢, ; as an integer variable ranging from 0
t0 SMuney to indicate the entangled photon pair allocation
for GSP j using the path p. For any GSP j € O/, if it
can be served by the satellite, then we need to determine
which satellite is optimal and allocate appropriate resources
to this GSP j. The utility for this case can be defined as
U = > jcor 2uien Wi jTijYi,j- If no satellite can serve
the GSP j, then we consider the two-hop quantum swapping
by leveraging other available GSPs. Therefore, we need to
determine which path is optimal and also allocate appropriate
resources to the two GSPs in this path. Then, the utility for
this case can be defined as Uz = ) icor X2 e p; Wp,ji2p.iUp.j-



Thus, the joint satellite assignment, resource allocation, and
path selection problem is formulated as follows

max. Z Z Wi gTigYig + Y WpiZplpi ®)

jEO! \ieM pEP;
s.t. Z T+ Z i <1, VjeO, (5a)

ieM pEP;
Z Zwi’jgrm, Vk‘GN, (Sb)
i€EM jEO
D wig <tri, Vie M, (5¢)
jeo

Z Z TijYig T Z Z Z 2p,ilp; < gmyg, Yk,

i€M €O J€O' jeo, PEP;

(5d)
Z (zi,j%i,5 + Z 2p,jlp,g) < smi, Vi€ M,
Jjeo’ peP;

(5e)
g Yo D weg)=0-= i) -2,V
pEP; j'€RIP i'e Ry ieM

(50)
D owii(Fiy = F™) 4+ Y 2 5(Fy; — F™") 20,95,
ieM peP;

(5g)
Li 5y Zp,j € {Oa 1}3 Yig» yp,j € {Oa te 75mmam}-

(5h)

Here, constraint (5a) ensures that each GSP j € O’ only
connects to one satellite or only selects one swapping path if
the satellite assignment is not available. Constraint (5b) means
that a GS k can be part of multiple GSPs and thus is not
allowed to be allocated to more than rr; satellites. Constraint
(5¢) ensures that SAT ¢ does not get allocated to more than
tr; GSPs. Constraint (5d) makes sure that the total entangled
photon received from different satellites cannot exceed the
maximal quantum memory of GS k. Constraint (5e) guarantees
that the total entangled photon pair allocation fraction of SAT
i cannot exceed sm;. Constraint (5f) emphasizes that if a
swapping path is selected, then two entanglement links along
this path must be established based on the satellite assignment.
Constraint (5g) confirms that the fidelity of entanglement
links after transmitting or swapping is larger than the fidelity
threshold. It is difficult to obtain the optimal solution to the
optimization problem since this is a quadratic constrained
quadratic discrete optimization problem, which is NP-hard
and challenging to solve with classical computing when the
problem scale increases. Note that our problem is much harder
and more general than the one in [5].

IV. QUANTUM-ASSISTED ALGORITHMS

To tackle the complex optimization in our formulated
entanglement distribution problem, we now leverage recent
advanced QC [7], [13]-[19] to design two quantum-assisted
algorithms. We first show how to convert the problem into a

quadratic unconstrained binary optimization (QUBO) format
so that it can be solved by quantum annealer directly. Then,
we introduce the Dantzig-Wolfe decomposition technique to
break the original problem into smaller-scale problems, so that
a hybrid quantum-classical solution (HQCDW) can be used to
solve the optimization more efficiently.

A. Quadratic Unconstrained Binary Formulation

Inspired by the superiority of quantum annealing (QA)
in solving large-scale complex optimization problems, we
leverage QA to obtain the solution for our formulated joint
optimization problem. To effectively solve optimization prob-
lems using the quantum annealer, these problems need to be
formulated as an Ising model or a QUBO model. In a QUBO
problem, there is typically a set of binary variables represented
by vector X and an upper-diagonal matrix denoted as Q, which
is an N’ x N’ matrix with upper-triangular properties. The
objective of QUBO is to minimize the following function:

min  x' Qx. (6)
x€{0,1} N’

Note that problem (5) is a quadratic problem and all integer
variables y, y can be expressed as a vector of binary variables.
Hence, problem (5) can further represent the quadratic binary
optimization problem. Next, we need to deal with all con-
straints to convert the problem into the pure QUBO form. To
do so, we introduce a penalty for each constraint. The idea
behind this is to find an optimal penalty coefficient of the
constraints. Here, we leverage the binary search method to
iteratively determine the optimal penalty for each constraint.
For example, constraint (5a) is converted as follows

(ba)= V1:P Z:v”—kz,zpj—l—i—ZQZ 2,
€M pEP;
where ' = [log,[1 — mln Z x;; + Z Zp.i)]
ieM peP;

Here, P* is the predefined penalty coefficient when the cor-
responding constraint is violated. sj" is a binary slack variable
and [* is the upper bound of number of slack variables.
Similarly, we add a penalty 1J;, for each of the seven constraints
in problem (5).

Then, the original problem in (5) can be rewritten in the
QUBO form as follows

E E wi,jxi,jyi,j‘i‘i Wp,jZp,iYp,j

jeo’ \ieM pEP;
+ 91 + 92 + U3 + 94 + J5 + g + V7.

max
x,Y,2,Y

)

Now, we can send the reformulated problem in (7) to
the quantum annealer to calculate the optimal solution. It is
worth noting that the quantum annealer currently has restricted
qubits and can not perform the execution when the model
scale further increases. Therefore, we apply Dantzig-Wolfe
decomposition to decompose the original problem into the
master problem and several subproblems to reduce the model



scale. In this case, the quantum annealer can solve the smaller-
scale subproblems parallelly and separately.

B. Dantzig-Wolfe Decomposition

The DW decomposition algorithm is a method used to solve
linear programming problems that have a specific structure
(i.e., a block-angular or block-diagonal arrangement in the
constraint matrix). It employs a delayed column generation
(CG) technique to make solving large-scale linear programs
more manageable. When applied to integer linear program-
ming (ILP) problems, the DW algorithm often has most
columns (variables) outside of the basis. The basis refers to a
set of linearly independent columns from the constraint matrix
that makes up the current active solution. In this approach, a
master problem includes the currently active columns (basis),
and a subproblem or subproblems are utilized to generate
additional columns to enter the basis, thereby improving the
objective function. The difference between the CG technique
and DW decomposition is that in the CG process, a column is
added to the master problem while an extreme point or extreme
ray is added to the master problem in the DW process.

Recall that the problem in (5) is non-linear, but the DW
decomposition is available to solve ILP problems. Therefore,
we need to linearize the original problem first. Due to the
existence of non-linear terms x;;y;; and z, ¢, ; in the
objective function and constraints, we introduce additional
variables to linearize them. After full linearization, the original
problem in (5) is defined as follows

e 2o | 2wt t 3 uniens | ®
s.t.  (ba) — (5h),

bij <vyij, VieM,jel, (8a)
Gij < TijSMumaz, Vi€ M,je O, (8b)
Tij+ Yij — SMaz < G55, Vie M,jeO, (8¢c)
©pj <Upj» Vi€O',peP, 3d)
Opi < 2piSMimaz, Vj€O ,p€E P, (8e)
Zpi + Upj — SMimas < 0pj, Vje€O' pe P, (80)
Vpjirgr < Zpg, Vi€O,pePyi €RY, i €RIT,

(8g)
Upgirg < Ty V., (8h)
zpj + iy — 1< Yy, ViDL (81)
Tijs Zp,g» Upygarjr € 10,1}, (8j)
Yijs Up.js Pijs Ppj €10, Mumaa} (8k)

Here, ¢; ; and ¢, ; are auxiliary integer variables, v, ; i/ j/
is the auxiliary binary variable. Constraints (8a)-(8c) are the
linearization of non-linear term x; ;y; ;. Constraints (8d)-
(8f) are the linearization of non-linear term z, ;i ;, while
Constraints (8g)-(8i) are the linearization of non-linear term
ZpjTi jr. Since problem (8) and constraints are all linear, the
problem can be further expressed as a general form below

Ig(u%{x h'Y )

s.t. B1X < by, (92)
B.X = by, (9b)
CY < b, (%0)
AX + GY < by, (9d)
X=[z,z,¢]", XeX, (9e)
Y=1[y.006¢, YV, (99

where h is the coefficient for integer variables in the objective
function. A, B, B>, C, and G are coefficients in the constraints
while by, by, bs and b, are constant vectors. Let dimx =
|M| x |O| +|P| x |O] + |P] x |O| x |M| x |O] and dimy =
(IM] x [O] + |P| x [O]) x 2.

Next, we reformulate the original problem by increasing
variable constraints to reduce the number of inequality or
equality constraints. Define X and ) as

X ={Xe€{0,1}%™ . B;X < b; and BoX = by}, (10)
V=AY €{0, -, sMmaz }¥™ : CY < b3}. (11)

Then optimization problem (9) is reformulated as
max h'Y (12)

X,Y

s.t. AX+GY < by, (12a)
Xcox, (12b)
Ye. (12¢)

Let U be the feasible region of (12). A feasible region U is
the set of all possible points of (12) that satisfy the problem’s
constraints:

U={Xe X, Ye): AX+ GY < b,}. (13)

Note that every polyhedron U/ can be written as the sum
of finitely many extreme points and extreme rays. Thus, we
denote its subsets of extreme points with Py = {X(l),Vi €
7'} and Py = {YY Vj € J’}. Then we can express the
problem (12) as the linear combination of its extreme points:

h'YO)y, 14
a2 (Y %
l/j,VjEJ, jej

st Y (AXOD) + 3 (GYD)y; <by,  (140)
i€’ jeTJ’
Yui=1, (14b)
1€’
Z vj =1, (14¢)
JjET’
pi €[0,1], Viel, (14d)
v, €01, VjeJ. (14e)

where 1; € R and v; € R represent the weights of each
extreme point for binary and integer variables.



Furthermore, we introduce the Lagrangian relaxation, and
then the Lagrangian dual problem can be expressed as

min abg + &+ (15)

a,§,C
st. —aAXWD —¢>0, VieT, (15a)
(W' —aG)YY —¢>0, YjeJ,  (I5b)

where o« € R, is the row vector (dual variable) of constraint
(14a) and &, ¢ € R are Lagrangian multipliers for constraints
(14b) and (14c), respectively. The above optimization problem
is called dual restricted master problem. At every step t, we
generate extreme points X and YY), These extreme points
are incorporated into the master problem, necessitating the
addition of new p; and v; columns. Constraints (15a) and
(15b) are called reduced cost. Then the two pricing problems
(subproblems) are given as

max —aWAX (16)
Xex
max (h' —aPG)Y, (17)

YEY

where a® is the dual variables of constraint (14a). If the
solution of (16) is larger than £®), then we set Z' « X®),
Similarly, if the solution of (17) is larger than ¢ ), then we
set J' + YO,

C. Hybrid Quantum-Classical Solution: HQCDW

We now introduce the hybrid quantum-classical algorithm
for solving our original problem (5) using DW decomposi-
tion. Recall that the DW process involves solving a master
problem and several subproblems iteratively. As discussed in
Section IV-B, the restricted master problem is defined as

Master:  max Z (h"YD)y, (18)
i VieT’ ! ,
v vjeg €T

s.t. (14a) — (14¢).

This restricted master problem is easier to solve and can
provide initial solutions for the original master problem.
Hence, we can solve it by using a classical solver (e.g., Gurobi,
Scipy) running in the classical CPU computer. Subsequently,
two subproblems (pricing problems) are given by

Subproblem 1: max  — a®AX (19)

s.t. B1X < by, (19a)

B.X = b, (19b)

X € {0,1}%™_ (19¢)

Subproblem 2:  max (h" —aPG)Y (20)
st. CY < bs, (20a)

Y € {0, , $Mmaz }4™.  (20b)

Here, Subproblems 1 and 2 are pure linear binary or integer
problems, which can be conveniently mapped into the QUBO
form as discussed in Section IV-A, and we can solve them by

Master Problem - ILP

Solve w, v with I"and

J' via the classical
CPU computer
No
The original .
Lo Dantzig-Wolfe ‘\ Stop criteria i
. p criteria is
op;:r:;::'on ™1 pecomposition Dual variables a(® k’ ke
Subproblems 1 & 2 - IP
Solve X and Y via
quantum annealing Add extreme
(QA), respectively pointto ' orJ’
Problem solved
Fig. 3. Proposed HQCDW framework for joint satellite-based quantum

entanglement distribution and terrestrial quantum swapping.

Algorithm 1 Hybrid Quantum-Classical Dantzig-Wolfe De-
composition (HQCDW) Algorithm
Input: Related information M, N, O, sm;, tr;, SMumaz,
gmy, 17k, Oe, w; j,wp j, loss and noise parameters.
Output: z; ;. zp . Yi,j» Up,j
: Get A,B1,B>,C,G, by, by, bg and by
: X(O), Y© « Initialize the extreme points
I, T+ X0 y©
: o9 0 ¢O) « Tnitjalize the dual values
max_itr < 100,t < 0, s1,s52 < 0,0
. while stop_criteria_is_not_satisfied() do
s1,X® « solve (19) with a(")
if s1 > ¢() then
T+ X
end if
52, Y « solve (20) with o(®)
if 52 > ¢ then
T —Y®
end if
15:  p,v < solve (18) with X, Y(®
16: t+—t+1
17: a® £® ¢t  get dual solution from (18)
18: end while
19: Z; 5, Zp.j» Yi,j» Up,j < extract from 7', J’
20: return Ti 55 Zp,js Yi,j» yp,j

> quantum

R AN A Rl

> add the extreme point to set Z’

_..—
= @

> quantum

—_—
[SI o)

> add the extreme point to set J’

—
»

> classical

using QA parallelly. Since the model scale of problems (19)
and (20) are smaller than the original problem in (5), and they
are all linear functions compared with the quadratic term in
the original problem in (5), we can solve a larger-scale model
compared with using pure QUBO solution. Consequently, the
proposed HQCDW algorithm iteratively solves the restricted
master problem and the pricing problems until convergence is
reached. The detailed procedure and algorithm are shown in
Fig. 3 and Algorithm 1, respectively.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithms using
extensive simulations on a hybrid D-Wave quantum processing
unit (QPU) with around 5,000 qubits accessed through the



Leap quantum cloud service [20]. For classical computations,
we used an LP solver on a CPU with an Intel(R) Core(TM)
17-6700HQ running at 2.60 GHz and 16GB RAM.

A. Experiment Setup

Network architecture. We consider a polar satellite con-
stellation as discussed in [4], [S5] where there are 10 spaced
rings of satellites in polar orbits and 10 satellites are deployed
in each ring within an altitude of 2,000 km to 10,000 km. A
static scenario is considered where only a few satellites are
visible to a specific ground station at any given time. This
allows for the application of alternative satellite constellations.
Each satellite is equipped with a quantum memory and a
random number of transmitters between 6 and 10. Several
major cities are designated as GSs, with their locations based
on real GPS coordinates. The total number of GSs is capped
at 36, with a subset chosen as traffic GSs. For each GS, the
quantum memory and the number of receivers are randomly
selected from ranges of 10 to 20 and 2 to 6, respectively.
Experiment settings are denoted by the number of satellites
and GSs used; for instance, 14-5 represents a scenario with
14 satellites and 5 ground stations. For the loss and noise
parameters in the transmission of photons from satellites to
GS, we set them according to previous works [4], [5].

Comparison methods. To verify the effectiveness and
advantage of our algorithms, we compare our methods (QUBO
and HQCDW) with the following schemes:

o Steepest Descent (SD) [20]: SD is a solver for binary
quadratic models by D-Wave Systems with the best move
determined through a local minimization.

e Random Steepest Descent (RASD) [20]: RASD combines
random sampling and steepest descent, with the algorithm
using random sampling to generate initial states for SD.

o Classical Optimizer (COPT): COPT solves the original
problem (5) by using a classical optimizer (e.g., Gurobi,
Scipy) in a classical CPU computer.

e Classical DW Decomposition (CDWD). CDWD decou-
ples the original problem using DW decomposition and
solves all problems with a classical optimizer.

B. Experiment Results and Analysis

1) Performance of Number of Samples: In this study, we
investigate the impact of sample size on a quantum annealer’s
performance in solving a problem. The number of samples
corresponds to the output solutions generated by the quantum
annealer. Results from Fig. 4(a) show that the COPT algorithm
consistently outperforms various QUBO versions with sample
sizes of 1, 20, 50, 100, and 200 across different network
settings. As network complexity grows, QUBO with higher
sample sizes exhibits better QUBO objective values, with
QUBO-200 achieving the highest values, followed by QUBO-
100. QUBO-1 consistently yields the lowest values, indicating
that a single sample is insufficient for effective optimization.
This pattern holds across all network settings, with QUBO
approaching COPT’s performance with sufficient samples,
typically 200 or more.
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Fig. 4. (a) The QUBO objective value (i.e., problem (7)) under different
network settings for COPT and different numbers of QUBO sampling. (b)
The objective value (i.e., problem (5)) under different network settings with
two DW subproblems (linear).
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Fig. 5. (a) The solver accessing time under various network settings for
CDWD and different numbers of HQCDW sampling using partial lineariza-
tion. (b) The QPU sampling time under various network settings for different
numbers of HQCDW sampling using partial linearization.

2) Performance in Objective Value: We now compare the
methods based on the objective value. The objective value is
initially presented under various network settings using full
linearization. To ensure a fair comparison of quantum compu-
tation, we set the number of samples to 200 for QUBO and
HQCDW, as shown in Fig. 4(b). SD and RASD perform poorly
across all network settings compared to the other methods,
possibly due to SD getting stuck in local optima. COPT,
CDWD, QUBO-200, and HQCDW-200 generally achieve sim-
ilar results across most network settings, except for settings 13-
5 and 14-5. However, as the problem size increases beyond
setting 12-5, QUBO-200 struggles due to the limited qubits
in QA, while HQCDW-200 can handle problems up to setting
14-5. This highlights the effectiveness and robustness of using
DW decomposition to tackle larger network scales.

3) Performance in Solver Accessing Time: We study the
performance of our proposed methods regarding solver ac-
cessing time, which specifically refers to the time taken by
the QPU solver and local solver without considering other
overheads like variable setting and parameter transmission
time. we examine the solver accessing time across different
network settings for CDWD and various numbers of HQCDW
sampling, as shown in Fig. 5(a). CDWD experiences a sig-
nificant increase in solver accessing time as the network
settings progress, surpassing HQCDW-200 beyond a certain
point. Furthermore, utilizing the DW decomposition enables
problem-solving up to 14-5 compared to 12-5 of QUBO
without it. A similar pattern is observed for QPU sampling
time, as illustrated in Fig. 5(b). This analysis highlights



TABLE I
TOTAL QUBITS USAGE OF DIFFERENT QUANTUM-BASED APPROACHES
UNDER VARIOUS NETWORK SETTINGS.

Non-DW DW
. . . Linear
Setting Quadratic Linear SIb X S Y
LQ RQ LQ RQ LQ | RQ LQ RQ
5-4 336 399 670 670 100 | 100 570 570
9-5 1750 | 2083 | 2856 | 2856 | 324 | 324 | 2532 | 2532
10-5 1960 | 2278 | 3149 | 3149 | 359 | 359 | 2790 | 2790
11-5 2170 | 2490 | 3484 | 3484 | 394 | 394 | 3090 | 3090
12-5 3360 | 4549 | 5176 | 5176 | 568 | 568 | 4608 | 4608
13-5 - - - - 638 | 638 | 5058 | 5058
14-5 - - 708 | 708 | 5574 | 5574

LQ: Logic Qubit, RQ: Real Qubit, ”-”: Not available.

the advantage of using the DW decomposition to overcome
constraints imposed by the maximum number of qubits in the
quantum machine.

4) Qubit Usage Comparison: We compare the total qubit
usage for two DW subproblems across different network
settings in Table 1. The table presents a detailed comparison of
qubit usage for settings such as 5-4, 9-5, and 10-5, dividing
columns into Non-DW and DW categories. Non-DW refers
to the original problem without decomposition, while DW
signifies decomposition into two subproblems. Subcategories
include Quadratic and Linear for Non-DW, and Linear for
DW, delineating Logic Qubits (LQ) and Real Qubits (RQ)
used. Linearization impacts qubit usage, with larger network
settings requiring more qubits for representation. Linear uses
the most qubits while Quadratic uses the fewest due to
handling quadratic terms effectively. Linear has equal LQ and
RQ counts, unlike Quadratic. Non-DW is limited to 12-5 due
to qubit constraints. In DW subproblems, Sub Y’s qubit usage
is crucial, acting as a bottleneck. DW decomposition allows
solving up to scale 14-5 but faces challenges beyond due to
the significant number of variables in the master problem. We
leave further study methods to improve DW based method by
addressing this bottleneck at the master problem. In summary,
this result highlights the benefits of DW decomposition for
larger-scale problems.

VI. CONCLUSION

In this work, we delved into the intricacies of joint satel-
lite assignment, resource allocation, and path selection for
entanglement distribution within a space-terrestrial integrated
network. By harnessing the capabilities of satellite-based
entanglement distribution and terrestrial quantum swapping,
we formulated and addressed a complex joint optimization
problem. The novel hybrid quantum-classical Dantzig-Wolfe
decomposition technique showcased the potential of lever-
aging both quantum and classical computing to effectively
solve large-scale network optimization challenges and balance
qubit usage. The series of experiments provided compelling
evidence of the efficiency and robustness of the proposed
methods, with a stable solver accessing time and consistent
results compared to classical optimizers, thereby laying a
strong foundation for future advancements in this field.
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