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Abstract—Numerous optimization scenarios such as industrial
production planning, network communication routing, and lo-
gistic scheduling can be modeled as large-scale integer linear
programming problems. However, due to the NP-Hardness of
these problems, it is very challenging to optimally solve these
problems in a short time on classical computers. Quantum
computers have emerged as a new computing platform to provide
new computing paradigms to tackle these problems. However, the
scalability and efficiency of current quantum computers pose
significant challenges in practical implementations of quantum
optimization algorithms. In this paper, we propose a novel hybrid
quantum-classical approach, termed Hybrid quantum-classical
Dantzig-Wolfe Decomposition (HyDWD), aimed at solving these
problems. In this framework, the subproblems can be solved in
parallel on quantum computers. Our results demonstrate the
benefits of integrating parallel quantum computing with the
proposed hybrid quantum-classical framework via Dantzig-Wolfe
decomposition, paving the way for advancements in optimization
and decision-making processes.

Index Terms—Quantum computing, Dantzig-Wolfe decompo-
sition, hybrid quantum-classical method, integer linear program-
ming, quantum network

I. INTRODUCTION

Quantum computing [1], [2] has emerged as a promis-
ing technology with the potential to revolutionize problem-
solving in various domains by harnessing the principles of
quantum mechanics. Quantum computing offers the capability
to process vast amounts of data and solve complex prob-
lems at significantly accelerated speeds compared to classical
computers [3]-[10]. However, its scalability and efficiency
remain crucial challenges in practically implementing quantum
algorithms on existing quantum computers. For example, most
current circuit-based quantum processors can only support up
to around 1,000 qubits, while annealing quantum processors
can reach around 5, 000 qubits.
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To overcome the limitation of current state of quantum
computers, hybrid quantum-classical (HQC) computing frame-
work [11]-[15] has been developed for different applications
[15]-[21]. For example, several HQC approaches [12], [15],
[18] leverage both quantum and classical computers to solve
large-scale mixed-integer linear programming (MILP), and
such methods have been used for solving many challenging
scheduling or resource allocation problems in production
scheduling [15], wireless networks [18], power systems [19],
and distributed learning systems [20], [21]. In these methods,
the original MILP problem is decomposed into the master
problem and subproblems via various Benders’ decomposition
techniques (BD), and then the master problem is solved by
quantum annealer (QA) or quantum approximate optimization
algorithm (QAOA) while the subproblems are solved by
classical computers. In addition, HQC approaches via QAOA
and quantum variational circuits (QVCs) have also been ap-
plied to tackle different optimization [22], [23] and machine
learning [24] problems. However, all these HQC computing
frameworks cannot be applied to large-scale constrained pure
integer linear programming problems, which are generally NP-
hard problems.

In this paper, by leveraging the parallel computing capability
of QC, we focus on designing a new hybrid quantum-classical
computing method to solve the large-scale constrained pure
integer linear problem (ILP). We explore the synergistic inte-
gration of quantum computing and distributed computing and
propose a new hybrid quantum-classical framework based on
Dantzig-Wolfe (DW) decomposition for solving complex ILP
problems. By leveraging quantum distributed computing with
DW decomposition, we aim to enhance the scalability and
efficiency of solving ILP problems, paving the way for new
advancements in optimization and decision-making processes.

When the linear programming model has a specific block
structure, the model can be decomposed through DW decom-
position proposed by [25] to facilitate the solution of large-
scale linear programs. This method is further extended to solve
integer linear programming models with such structures [26].
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Fig. 1. Proposed HyDWD framework for ILP problem.

Particularly, we develop a novel HQC approach, termed
Hybrid quantum-classical Dantzig-Wolfe Decomposition (Hy-
DWD) method. As shown in Fig. 1, in HyDWD, the master
problem constitutes a linear programming problem solvable
on a classical computer, while the sub-problem manifests as
a binary optimization problem amenable to resolution via
quantum annealing (QA). Furthermore, as the subproblem
can be further decomposed into multiple subproblems, each
smaller subproblem can be addressed on a quantum machine
leveraging QA. This framework integrates parallel quantum
computing techniques, thereby offering potential improve-
ments in computational efficiency and solution quality for
the overall HQC framework. To illustrate such advances, we
use an optimal entanglement distribution problem in satellite-
assisted quantum networks as a case study and conduct nu-
merical validation via various settings and a hybrid D-Wave
quantum annealer. Our simulation results demonstrate the clear
benefits of integrating parallel distributed quantum computing
with the proposed HQC framework via DW decomposition.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of the related works in HQC.
In Section III, we briefly review the classical integer linear
programming problem and its Dantzig-Wolfe decomposition.
Section IV introduces the proposed HyDWD algorithm. In
Section V, we use an optimal entanglement distribution prob-
lem as a case study to show the usage of the proposed HyDWD
with performance evaluation. Finally, we conclude the paper
with a discussion of possible applications and future works in
Section VI.

II. RELATED WORKS

Quantum computing has demonstrated superiority in solving
numerous computationally intensive problems [3], [8]-[10].
However, its application is constrained by the current state
of quantum computers, including factors such as availability,
scalability, robustness, and cost.

To tackle these challenges, researchers have developed
a hybrid quantum-classical computing framework aimed at

addressing complex optimization tasks by harnessing the
strengths of both quantum and classical computers. This
hybrid quantum-classical optimization approach has found
applications in various domains, such as machine learning, dis-
tributed computing, wireless communication, and task schedul-
ing [12]-[18], [20]. For example, Tran et al. [16] introduced
an HQC approach to solving complex scheduling problems
(such as graph-coloring-type scheduling, Mars Lander task
scheduling, and airport runway scheduling), decomposing
them into the master problem and subproblem, with a quantum
annealer solving the master problem while the subproblem
and the global search tree was solved and managed by a
classical computer. Ajagekar et al. [15] also proposed HQC-
based optimization techniques for solving scheduling problems
in manufacturing systems which can be modeled as MILP
and mixed-integer fractional programming. Similarly, Zhao et
al. [12], [18] devised an HQC algorithm using a different
Benders’ decomposition technique to solve the MILP problem,
with applications in distributed learning [20], [21]. In these
methods, the master problem is tackled by a quantum annealer,
while Zhao et al. [13] employed a quantum approximate
optimization algorithm (QAOA) to assist in solving the master
problem within the Benders’ decomposition framework. Pater-
akis [17] also provided an HQC method for unit commitment
problems, presenting a method to control the size of the master
problem using various cut selection criteria. Our proposed
HyDWD method also operates within an HQC framework but
adopts a distinct decomposition technique, DW decomposition,
tailored specifically for ILP problems.

One of the advantages of our proposed HyDWD framework
is allowing the subproblem to be decomposed into multiple
smaller subproblems, each can be addressed by a quantum
machine in parallel. This makes the potential usage of dis-
tributed quantum computing, offer better efficiency and scala-
bility. Distributed quantum computing [27], [28] represents a
paradigm shift in quantum computing, where the processing
power of multiple quantum computing nodes is harnessed
to solve complex computational problems collectively. By
leveraging a network of interconnected quantum computing
nodes, distributed quantum computing may overcome the
inherent limitations of a single centralized quantum computer
(such as the susceptibility to errors, resource constraints, and
scalability challenges), provide better usage of the distributed
quantum computing resources and improved fault tolerance,
and support large-scale collaborative computing tasks.

III. DANTZIG-WOLFE DECOMPOSITION FOR ILP

In this section, we briefly review the Dantzi-Wolf decom-
position algorithm for ILP problems.

A. Integer Linear Programming

Due to the flexibility of the integer linear programming
modeling techniques, they have been broadly applied to many
industrial applications such as vehicle routing, manufacture
planning, and network communication. To apply the Dantzi-



wolf decomposition, we consider an integer programming
model with a special structure as
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Here,Z = {1,2,--- ,m}. x; is a nongative vector with integer
variables and X; = {A; ;z; = b;}. ] is its corresponding
coefficient vector in the objective function. A(; and A, ; are
the coefficient matrix of variable x in constraints, while by
and b; are the constant vector in constraints.

In the model in (1), there are m subgroups of decision
variables. The linking constraint (1a) combined all the decision
variables together. The Dantzig-wolf decomposition algorithm
will utilize this characteristic to decouple this model into m
subproblems.

B. Dantzig-Wolfe (DW) Decomposition

The DW decomposition method first reformulates the model
of (1) into a model of (4) using the convex combination of the
extreme points and extreme rays of all the subsets (i.e., P;).

1) Master Problem: Let P, = {x; > 0 | A;;z; = b;}.
If P; is bounded, then x; can be expressed as a convex
combination of the vertices of P;. Let P, = {v§] ),Vj e J}
be the extreme point set of P;, then there exists \; ; > 0 and
Zjej Aij = 1, we have

r; = Z )\iﬁjvfj). (2)
JjeT
In general, if P; is bounded or unbounded, x; can also be
represented by a linear combination of vertices and polar rays
of P;. Let Qp = {wgk),Vk € K} be the extreme ray set of P,
and then there exists A; ; > 0 and Zjej Xij =1, gk > 0.
Consequently, we have
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Therefore, the original ILP problem of (1) can be written
equivalently to a master problem as
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Here, \;; and p;; are decision variables with positive
value. If P; is bounded, problem (4) can be reduced as follows
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However, it is very challenging to directly obtain all the
extreme points to formulate the model of (4), since there are
a large number of extreme points. Instead of getting all the
extreme points in one short, we start with a limited number
of the extreme points. Then, we gradually bring these extreme
points back to the model of (4) by solving subproblems (8).

2) Subproblem: Lety € R and z; € R be the dual variables
of constraints (4a) and (4b), respectively. Then the reduced
cost of A; ; and p; ;. can be expressed as

Q5 = CI 1(j) - yTAO Z’U(J) — Zi, (6)
T

Bik = ¢; ’w(k) - yTAo,in(k)7 @)
where o ; and j; ), are the reduced cost related to y and z;.
When «; j, B > 0, an optimal solution is found for the
original problem Therefore in the subproblem, we need to

calculate v( (or w( ), so that the values of «; ; and B;
are as small as p0351ble The ¢-th subproblem is defined as

i-th subproblem :  min f; := (¢] — Af ;y)Tx;  (8)
(8a)

(8b)

S.t. A“:m =b,,

Here, we consider three cases when solving the subproblem.

1) The optimal target value is —oo. In this case,
@ j, Bir < 0 and the solution of the subproblem is
the extreme ray 'w( ) , and then we add Ay Z'w( ) to the
master problem for next round calculation.

2) The optimal target value is bounded and f; < z;. In this
case, o; ; < 0 and the solution of the subproblem is
the extreme point vgj ), and then we add Ao’i'vfj ) 1o the
master problem for next round calculation.

3) The optimal target value is bounded and f; > z;. In this
case, 0 < oy ; < By, and z; > 0, and therefore we find
the optimal solution.

IV. HYBRID QUANTUM-CLASSICAL SOLUTION: HYDWD

In the last section, the original problem in (1) is decomposed
into a master problem of (4) and several subproblems (8)
by the DW decomposition method. The master problem is
a classical LP problem with continuous variables and can be
solved by a classical solver, such as Gurobi and Scipy, etc.
The subproblem is an IP problem and we will solve it via
the quantum annealing technique. We also consider solving
the subproblem in a distributed manner to save the quantum



resource and handle the large-scale scenario, as shown in
Fig. 1. In the following subsections, we will discuss the
quadratic unconstrained binary optimization (QUBO) formu-
lation for the subproblem and propose the hybrid quantum-
classical algorithm.

A. QUBO Formulation

In a QUBO problem, there’s typically a set of binary
variables represented by vector X and an upper-diagonal matrix
denoted as Q, which is an N’ x N’ matrix with upper-
triangular properties. The objective of QUBO is to minimize
the following function:

x| Qx. &)

min
x€{0,1} '
This problem can be solved by quantum computers such
as quantum annealer. The quantum annealer embeds this
problem into the energy spectrum of the quantum system.
After quantum evolution, the quantum machine can return the
ground energy and its eigenvector. The ground energy value
is the optimal objective value of the model of (9) and its
eigenvector is the optimization solution of the model of (9).
It is noted that the subproblem in (8) is an ILP problem with
constraint (8a). Therefore, we must rewrite the subproblem
and formulate it into QUBO format. To do so, we introduce
the penalty for all constraints by following the principle of
constraint-penalty pairs in [29]. The constraint (8a) can be

converted as follows

(83) = fz : Pl(Am:I:Z — b2)2

Here, P; is the predefined penalty coefficient when the
corresponding constraint is violated. Then the reformulated
unconstrained subproblem is defined below

i-th subproblem : min f; := (¢] — A ,y)Tx; +&. (10)
x; ’

Now, the subproblem in (10) is a pure unconstrained linear
integer problem that can be conveniently mapped into the
QUBO form as discussed before. In addition, when these
penalty coefficients are bounded, we can find the best penalty
coefficients for each constraint using binary search.

B. Proposed Algorithm - HyDWD

We now introduce the proposed Hybrid quantum-classical
Dantzig-Wolfe Decomposition (HyDWD) algorithm, which it-
eratively solves the master problem in (4) and the subproblem
in (10) until convergence is reached. Moreover, all subprob-
lems can be solved in a distributed manner through distributed
quantum computing rather than a centralized manner as illus-
trated in Fig. 1.

Algorithm 1 gives the detailed HyDWD algorithm. Given
input parameters including a coefficient vector ¢, a coefficient
matrix A, a constant vector b, and an upper bound m of i,
the HyDWD algorithm aims to determine the optimal solution
x. The algorithm initializes the extreme points and rays,
along with the dual values, and proceeds through a series
of iterations (Lines 1-4). During each iteration, distributed

Algorithm 1 Hybrid quantum-classical Dantzig-Wolfe De-
composition (HyDWD) algorithm
Input: coefficient vector ¢, coefficient matrix A, constant
vector b, the upper bound m of i.

Output: =
I: ’UEO), wgo) < Initialize the extreme points and rays
2. I, K <—v(0) 'w(o)
3y, zi(o) < Initialize the dual values
4: maz_itr < 100,t < 0
5: while ¢ < max_itr do
6: for : = 1 to m do in parallel
7: v§t), wgt) + solve (10) with y®, zft) using quan-

tum annealing

8: if Qg5 < 0 and Buk < 0 then

9: K+ wgt) > adding the extreme ray to X
10: end if

11 if a; ; <0 and 3; ; > 0 then

12: J vgt) > adding the extreme point to J
13: end if

14: end for

15: if all 0 < Qi < /877k then

16: Stop the loop.

17: end if _

18 i, i < solve (4) with v w*) using classical

CPU computer
19: t+—t+1
20: y®), zl(t) < get dual solution from (4)
21: end while
22: ¢ <+ calculate from v w®)
23: return x

quantum computing techniques are employed to update the
extreme points and rays based on the dual values. The algo-
rithm then evaluates specific conditions to adjust the extreme
points and rays as necessary (Lines 5-17). Specifically, if
reduced costs «; ; < 0 and 3;; < O, then the extreme ray
is added to the master problem (Lines 8-10). If the reduced
cost a; ; < 0 and B3; > 0, an extreme point is added to
the master problem (Lines 11-13). If all a;; and ;) are
greater or equal to 0, the optimal solution is found and we stop
the loop (Lines 15-17). Subsequently, a classical computing
step solves a master problem to derive updated dual values
(Lines 18). This iterative process continues until a predefined
stopping criterion is satisfied. Finally, the algorithm computes
the optimal solution « using the obtained extreme points and
rays (Lines 20).

V. CASE STUDY: SATELLITE-BASED ENTANGLEMENT
DISTRIBUTION FOR QUANTUM NETWORKS

We now present a specific case study, i.e., the optimal
satellite-based entanglement distribution problem in quantum
networks, to show the advantage of the proposed HyDWD
algorithm.
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Fig. 2. The overall satellite-based entanglement distribution architecture.

A. The Optimization Problem

In satellite-assisted quantum networks [30], [31], satellites
equipped with entanglement-generating photon sources can
create pairs of entangled photons and distribute them between
a pair of ground stations, as illustrated in Fig. 2. With these
pre-distributed pairs, ground stations can then quickly generate
new entangled pairs for their communication, thus significantly
reducing the communication latency even over long-distance
links [32], [33].

With a large constellation of satellites, we now can generate
and distribute sufficient entangled pairs for the larger quantum
network, however, deciding the optimal assignment of these
satellites to meet entanglement distribution demands at various
ground stations becomes a challenging optimization problem
[301, [34], [35].

We consider a space-terrestrial network with |S| satellites
(SAT) and |G| ground stations (GS). The sets S = {s;}
and G = {gi} represent the satellites and GSes. We define
P = {p;} as the set of demanded ground station pairs
(GSPs) requiring pre-distributed entangled pairs, where p; =
{gk1, g2} and gi1/gi2 are the two GSes in this pair. Let P,
represent the set of pairs which includes the station gi. Each
satellite s; has an entangled photon source and 7; transmitters
to send entangled photon pairs to multiple GSPs. Each GS gy,
has Ry receivers to receive photons and create entanglement
for quantum applications. Moreover, both SATs and GSes have
a quantum memory to store entangled photons, represented by
sm; and gmy,, respectively. Let $m,q, = max;{sm;}, which
is the maximum size of memory among all SATs.

We define an optimal entanglement distribution problem in
this satellite-assisted quantum network, which aims to assign
satellites to cover demanded GSPs and allocate appropriate
entangled photon resources to each assignment. Let x; ; be
the binary variables indicating whether SAT s; is assigned to
GSP pj;, y; ; be the integer variable range from 0 t0 $Mas
indicating the entangled photon pair allocation between SAT

s; and GSP p;, and w; ; be the associated utility represent-
ing entanglement generation rate or arrival rate of requests.
Then the optimization problem is to assign satellites to cover
demanded GSPs with allocated entangled photon resources,
in order to maximize the weighted utility. The optimization
problem is formulated as follows

max .75, 5Yi. 4 11

iy Z ZwaJyJ (11)
p;EP S; €S

st. > wi;<Lj, Vp€P, (11a)

s;€S
> > @i <R, Vgr€G, (11b)
SiESpJEng
Y @iy <Ty, Vsi€S8, (11c)
pjEP
> @iy <gmk, Yo €G,  (11d)
SiGSZD.iGng
Z TiYij < smy, Vs €8, (11e)
p;EP
Li,j € {Oa 1}; Yij € {07 T 73mmam}~ (11f)

Here, Constraint (11a) ensures that each GSP p; € P can
only connect to L; satellites simultaneously. Constraint (11b)
means that a GS gi can be part of multiple GSPs and thus
is not allowed to be allocated to more than R satellites due
to its limited number of receivers. Constraint (11c) ensures
that SAT s; does not get allocated to more than 7; GSPs
due to its limited number of transmitters on board. Constraint
(11d) makes sure that the total entangled photon received
from different satellites cannot exceed the maximal quantum
memory of GS gj. Constraint (11e) guarantees that the total
entangled photon pair allocation fraction of SAT s; cannot
exceed sm;.

It is difficult to obtain the optimal solution to this opti-
mization problem since it is a quadratic constrained quadratic
discrete optimization problem, which is NP-hard and challeng-
ing to solve with classical computing when the problem scale
increases. Therefore, DW decomposition is applied to solve
the optimization problem due to the specific structure of the
problem.

B. Solving the Problem with HyDWD Method

In this subsection, we describe how to use the proposed
HyDWD framework to solve the optimal entanglement distri-
bution problem. We first need to linearize the original problem,
and then apply the proposed HyDWD method.

1) Linearization: Note that problem (11) is an integer non-
linear problem due to the quadratic terms in the objective
function and constraints. Since DW decomposition is available
to solve the ILP problem, we have to linearize the original
problem first. We introduce an auxiliary integer variable ¢; ;
to linearize quadratic term x; ;y; ;. Therefore, the original
problem is reformulated as follows



max Z Zwi,j¢i,j (12)
oY p; EP s;€9
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> > @i <R, Vg €G, (12b)
SiESijP.qk,
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Here, Constraints (12f)-(12h) are the linearization of non-
linear term x; ;¥; ;. Given that problem (12) and its constraints
are linear in nature, it can be reformulated into a more general
form as follows

I}r{m})}( h'Y (13)
st. AX + GY < by, (13a)
BX < by, (13b)

CY < by, (13¢)

X =[z]", XeX, (13d)

Y =[y, 9", Y e, (13e)

where hT represents the coefficient for integer variables in
the objective function. A, B,C, and G denote coefficients
in the constraints while by, by, and by are constant vectors.
Additionally, X and ) denote the solution sets of X and Y,
respectively.

2) HyDWD solution: Given the general form of the op-
timization problem, we can apply the HyDWD algorithm to
solve it. Let dimx = |S| x |P| and dimy = |S| x |P| x 2.
We further reformulate problem (13) by increasing variable
constraints to reduce the number of inequality constraints.

By defining X and ) as

X ={X c{0,1}¥mx . BX < b}, (14)
Y=A{Y €{0,-+ ,5Mpaz }*"™ : CY < by},  (15)
the problem (13) can be reformulated as

max hTY (16)

XY
st. AX +GY < by, (16a)
X ex, (16d)
Y e (16e)

Let U be the feasible region of (16), i.e., U is the set of all
possible points of (16) that satisfy the problem’s constraints:

U={XeXYEY:AX+GY <by}. (17)

Note that each polyhedron U/ can be written as the sum
of finitely many extreme points. Therefore, we represent its
sets of extreme points with Py = {X ) Vi € T} and Py =
{Y' ) Vj € J}. Note that the index 7 and j here are different
from the index ¢ and j used in the problem (11). Since Z
and J contain an exponential number of extreme points, we
further consider a restricted version of extreme points set by
progressively putting each new extreme point to the subsets
7' C7Z and J' C J. Then we can express the problem (16)
as the linear combination of its restricted extreme points:

Restricted Master Problem

Ty @)Y,
s, ST,
pivieg 1€7
st Y (AXD)\ + > (GY )y < by, (18a)
€L’ JjeTJ’
Y on=1, (18b)
e’
domi=1, (18¢)
jeT’
X€0,1], VieT, (18d)
pi €10,1), VjeJ, (18e)

where \;, 11; € R represent the weights of each extreme point
for binary and integer variables, respectively.

Next, we introduce the Lagrangian relaxation and the prob-
lem can be represented as:

max  aby+ Y (—aAX® — N +¢
X, VieT’ ez
/Lj,VjGJ’
+ > (" —aG)YD —Qu;+¢, (19

JjeJ’
where o € R is the row vector (dual variable) of Constraint
(18a) and &, ¢ € R are Lagrangian multipliers for Constraints
(18b) and (18c), respectively. Then the Lagrangian dual prob-
lem is as follows

méré aby+ £+ ¢ (20)
st. —aAXWD —¢>0, VieT, (20a)
(hT —a@)YY) —¢ >0, VjieJ. (20b)

At each step t, we compute extreme points X® and
Y®. These extreme points are incorporated into the master
problem, necessitating the addition of new A; and p; columns.
Constraints (20a) and (20b) are called reduced cost. Then the
two subproblems are given as:

Subproblem-X: max —aWAX , 21)
Xex
Subproblem-Y: max (hT — oY Q)Y (22)

Yey



where a(?) is the dual variables of Constraint (18a). If the
solution of (21) is larger than £®), then we set Z' « X,
Similarly, if the solution of (22) is larger than ¢(*), then we
let J' « Y.

These two subproblems can be solved in a centralized man-
ner to obtain the optimal value. However, to fully leverage dis-
tributed quantum computing, Subproblem-X and Subproblem-
Y can be decomposed into |P| parts, enabling each GSP to
compute the subproblem independently. Therefore, these two
subproblems can be written as follows

g-th Subproblem-X: max fa((f)Aqu, (23)
g-th Subproblem-Y: max (k] —alVG,)Y,, (24

q
where ¢ € {1,---,|P|}. In doing so, quantum annealing can

solve a series of smaller subproblems in a distributed manner
to handle larger-scale problems.

C. Numerical Validation

In this subsection, we validate the proposed HyDWD algo-
rithm via extensive simulations. The algorithms were tested
using a hybrid D-Wave quantum annealer through the Leap
quantum cloud service [36]. To manage the high cost of
QPU usage and the time constraints of the developers, we
performed multiple test cases that could be completed within
100 iterations. For the classical computing aspect, we utilized
the LP solver on a classical CPU machine powered by an
Intel(R) Core(TM) i9-10900K CPU operating at 3.70 GHz
with 64GB of RAM.

1) Simulation Setup: To simulate the satellite-based quan-
tum network, we consider a polar satellite constellation as
outlined in [30], [34]. In this context, we have 10 rings of
satellites in polar orbits, with each ring containing 10 satellites
positioned at altitudes ranging from 2,000 km to 10,000 km.
In a static scenario, only a subset of satellites is visible to
a specific ground station within a fixed time frame, allowing
for the potential application of other satellite constellations.
Each satellite is equipped with quantum memory and a varying
number of transmitters selected randomly from the ranges of
[20, 100] and [6, 10], respectively.

Moreover, we designate 9 major cities as ground stations,
including New York, London, Rio de Janeiro, Mumbai, Cape
Town, Beijing, Sydney, Singapore, and Vancouver, with their
locations determined by real GPS coordinates. With a total
of 36 potential ground station pairs (GSPs), a subset of these
points is randomly selected as traffic GSPs. For each GS, the
quantum memory and the number of receivers are randomly
chosen from the ranges of [10, 20] and [2, 6], respectively. We
also assume that each GSP can connect to at most 1 satellite
concurrently. In terms of the loss and noise parameters in
the free-space optical transmission, we set them according to
previous studies [30], [34].

2) Compared Methods: We compare the performance of
our proposed HyDWD approach against various benchmarks:

e QUBO [36] solves the linearized problem (12) by trans-

forming the problem into QUBO form.
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e SD [36] (Steepest Descent) is a solver for binary quadratic
models provided by D-Wave Systems and the best move
is computed using a local minimization.

e RAND [36] is the uniform random sampling algorithm
provided by the D-Wave Systems.

e COPT (Classical Optimizer) solves the linearized prob-
lem (12) by using a classical optimizer (e.g., Gurobi,
Scipy) in a classical CPU computer.

e CDWD (Classical DW Decomposition) decouples the
original problem by using DW decomposition and solves
the master problem as well as all subproblems by lever-
aging a classical optimizer.

3) Simulation Results: We now report the results of the
comparison between the proposed method and the benchmarks
above regarding the objective value, solver accessing time, and
qubit usage.

Performance in Objective Value. We begin by examining
the impact of the number of samples utilized in the quantum
annealing. We explore various HyDWD variants with differ-
ent sample sizes (1, 5, 10, 20). As depicted in Fig. 3(a),
an improvement in the objective value is observed with an
increase in the number of samples. Notably, HyDWD-10 and
HyDWD-20 yield identical results, followed by HyDWD-5
and HyDWD-1. Given the comparable performance of 10
and 20 samples, we opt to use 10 samples in subsequent
simulations to reduce quantum annealing time.

Subsequently, we present a comprehensive analysis of
the overall performance of all methods, as demonstrated in
Fig. 3(b). Initially, we examine the objective value across
various network settings denoted by the number of SATs and
GSs. For example, 28-7 signifies a scenario with 28 SATs and



TABLE I
TOTAL QUBITS USAGE UNDER DIFFERENT NETWORK SETTINGS FOR DW SUBPROBLEMS.

Non-DW DwW

Settings Quadratic Linear SUB X SUB Y g-th SUB X g-th SUB Y
LQ [ RQ LQ [ RQ LQ [ RQ LQ [ RQ LQ [ RQ LQ [ RQ

10-5 700 700 1000 | 1000 | 100 | 100 | 900 900 20 20 180 180
11-5 770 770 1100 | 1100 | 110 | 110 | 990 990 22 22 198 198
17-6 1750 | 1751 | 2394 | 2394 | 252 | 252 | 2142 | 2142 | 42 42 357 357
18-6 1855 | 1856 | 2538 | 2538 | 270 | 270 | 2268 | 2268 | 45 45 378 378
24-7 3374 | 3375 | 4680 | 4680 | 504 | 504 | 4176 | 4176 | 63 63 522 522
28-7 3962 | 3963 | 5464 | 5464 | 592 | 592 | 4872 | 4872 | 74 74 609 609
30-8 5628 - 7506 - 846 | 846 | 6660 - 94 94 740 740
34-8 - - - - - - - - 106 106 839 839
38-8 - - - - - - - - 118 118 938 938
40-9 - - - - - - - - 144 144 1104 | 1104
44-9 - - - - - - - - 158 158 1214 | 1214
48-9 - - - - - - - - 172 172 1324 | 1324

LQ: Logic Qubit, RQ: Real Qubit, “-”: Not available.

7 GS:s. Firstly, SD and RASD exhibit the poorest performance
across all network settings compared to the other four methods,
possibly due to the SD method becoming trapped in local
optima. Secondly, COPT, CDWD, QUBO-10, and HyDWD-10
achieve identical results across all network settings, indicating
the mathematical consistency of our proposed algorithm with
the classical DW algorithm. Notably, our algorithm achieves
these results in less time, as elaborated in the subsequent
analysis.

Performance in Solver Accessing Time. We now investi-
gate the performance of our proposed methods regarding the
solver accessing time. The solver accessing time specifically
denotes the actual time taken by the QPU solver and local
solver, excluding other overheads such as variable setting time
and parameter transmission time. Initially, we compare the
QPU sampling time under various network settings for COPT
and different numbers of QUBO sampling, as depicted in
Fig. 4(a). We can find that the QPU sampling time of all
QUBO variants remains stable while the computation time of
COPT keeps steady before setting 18-6 and starts to increase
linearly. In Fig. 4(b), we present the QPU sampling times
of CDWD and all HyDWD variants. The result is similar
to that in Fig. 4(a), but with reduced QPU sampling time
consumption owing to the DW decomposition. In a word, all
QUBO and HyDWD variants exhibit quicker convergence to
similar optimization values compared to COPT and CDWD,
underscoring the advantage of using quantum annealing.

Qubit Usage Comparison. We proceed to analyze the total
qubit usage under different network settings for DW subprob-
lems. Table I provides a detailed comparison of qubit usage,
with each row corresponding to different settings such as 10-5,
11-5, 17-6, and so on. The table is structured into two main
columns: Non-DW and DW. In the Non-DW category, the
original problem remains intact, while in the DW category, the
problem is decomposed using the DW technique. Additionally,
the Non-DW section is further divided into Quadratic (original
problem) and Linear (linearized problem), whereas the DW
section compares qubit usage between centralized (SUB X

and SUB Y) and distributed (¢-th SUB X and ¢-th SUB Y)
manners. Furthermore, qubit usage is detailed within these
categories as LQ (Logic Qubit for problem representation)
and RQ (Real Qubit used in quantum annealer). We can
see that the Non-DW and centralized DW categories can
solve optimization problems up to a scale of 28-7, limited
by current qubit capabilities. In contrast, the distributed DW
category can tackle networks of scale 48-9 and even larger
scenarios. This is made possible by leveraging distributed
computing to split the problem into smaller subproblems,
maximizing qubit utilization. These results demonstrate the
benefits of integrating distributed quantum computing with the
DW decomposition technique.

VI. CONCLUSION

In this study, we have introduced a novel hybrid quantum-
classical method, HyDWD, employing Dantzig-Wolfe de-
composition to tackle integer linear programming problems.
Our approach strategically decomposes the ILP into a mas-
ter problem and multiple smaller subproblems, leveraging
classical computers and parallel quantum annealers to solve
them respectively. By integrating parallel quantum computing
techniques, our proposed framework exhibits the potential
for significant enhancements in computational efficiency and
solution quality. Through a case study focusing on the opti-
mal entanglement distribution problem within satellite-assisted
quantum networks, conducted via simulations on the D-Wave
quantum annealing machine, our results confirm the efficiency
and robustness of the proposed HQC framework, with a
stable solver accessing time and consistent results compared
to classical optimizers. These promising outcomes suggest
that our novel HQC optimization approach holds substantial
promise for a wide range of future applications.
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