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Abstract—Benders’ decomposition (BD) algorithm constitutes
a powerful mathematical programming method of solving mixed-
integer linear programming (MILP) problems with a specific
block structure. Nevertheless, BD still needs to solve an NP-
hard quasi-integer programming master problem (MAP), which
motivates us to harness the popular variational quantum al-
gorithm (VQA) to assist BD. More specifically, we choose the
popular quantum approximate optimization algorithm (QAQOA)
of the VQA family. We transfer the BD’s MAP into a digital
quantum circuit associated with a physically tangible problem-
specific ansatz, and then solve it with the aid of a state-of-the-art
digital quantum computer. Next, we evaluate the computational
results and discuss the feasibility of the proposed algorithm.
The hybrid approach advocated, which utilizes both classical
and digital quantum computers, is capable of tackling many
practical MILP problems in communication and networking, as
demonstrated by a pair of case studies.

Index Terms—Benders’ Decomposition, Mixed-Integer Lin-
ear Programming, Optimization, Digital Quantum Computing,
Quantum Approximate Optimization Algorithm

I. INTRODUCTION

Mixed-integer linear programming (MILP) techniques have
been broadly applied in communications and networking for
UAV trajectory optimization in sensing services [1], space-air-
sea blue data computation [2], and beamforming for multi-user
communications [3]. However, large-scale MILP problems are
NP-hard in general and are not easy to solve. Specifically,
Benders’ decomposition (BD) [4] has been proposed to help
solve these kinds of problems. Briefly, BD divides a MILP
problem into a master problem (MAP) and one or more
subproblems (SUBs), which are solved alternatively to find
the optimal solution. Each subproblem is a linear programming
problem and easy to solve. However, the MAP still constitutes
a pure integer programming problem and it is generally NP-
hard.

To solve MILP problems, quantum computing provides a
new promising technique [5]. For example, quantum annealing
(QA), as a promising quantum algorithm, has been applied
for solving the vector perturbation transmit precoding prob-
lem in a multiple-input multiple-output (MIMO) system [6].
Moreover, QA was applied in [7] to solve an integer linear
programming (ILP) problem in network function virtualization
(NFV). Additionally, a quantum annealer computer and a

classical computer are combined for jointly solving a MILP
[8]. The authors of [9] applied such a method for solving a
distributed learning optimization and confirmed its advantages.
However, QA is a specialized algorithm that cannot work
on contemporary digital quantum computers. To address this
issue, researchers proposed the quantum approximate opti-
mization algorithm (QAOA) for digital quantum computers
[10]. QAOA, as a special case of the variational quantum
algorithm (VQA) [11], can reduce noise in the system and
make efficient use of the available quantum resources by
combining classical optimizers and parameterized quantum
circuits [12]. QAOA can solve combinatorial optimization
problems with potential computational advantages [13]. The
basic philosophy of QAOA is to compute a Hamiltonian whose
ground state represents the optimal solution of a combinato-
rial problem constituted by a quadratic unconstrained binary
optimization problem (QUBO) [14]. Moreover, the authors
of [15] have made the standard QAOA more suitable for
constrained optimization problems and applied it for solving
knapsack problems. According to [16], although the existing
digital quantum computers have a limited number of qubits,
QAOA performs way better than random sampling. Moreover,
QAOA allows for the presence of higher-order terms in the
Ising input, and it is scalable to a heavy-hexagonal lattice of
any size.

The success of QA-assisted BD in solving MILP problems
and the power of QAOA inspire us to design a new hybrid
digital-quantum BD algorithm by jointly using QAOA and
classical computing techniques. However, there are several
challenges in integrating QAOA and classical computing al-
gorithms. The first challenge is how to construct the quantum
circuit for the digital quantum computer. The second challenge
is how to convert the ILP problem and its potential inputs into
the ansatz as an input to a digital quantum computer.

To overcome the above challenges, this paper reformulates
the MAP to an ILP model and turns it into a QUBO, which can
be represented by a digital model to run on a digital quantum
computer. We conceive a general method to map the quadratic
terms to the corresponding gate pairs. Then, we implement
the proposed QAOA-assisted BD algorithm using the IBM
Qiskit quantum computer. Finally, we consider a pair of simple



case studies for characterizing the performance of the IBM
Qiskit quantum computer in solving the MILP problem with
ansatz. The main contributions of this paper are summarized
as follows.

e« We propose a QAOA-assisted BD algorithm for solv-
ing MILP problems. Our hybrid quantum BD algorithm
converges and returns the same result as the classical
algorithm.

o We reformulate the constraints and objective function
(OF) of the ILP model to the corresponding QAOA digital
quantum circuits.

e« We harness a quantum computer provided by IBM to
solve MILP problems with the aid of their Qiskit IBM
quantum platform. Our experiments demonstrate the fea-
sibility of using digital quantum circuits to efficiently
solve MILP problems.

The rest of this paper is organized as follows. Section II
introduces the basics of MILP problems and the BD algo-
rithm. Section III illustrates our QAOA-assisted BD algorithm,
while Section IV validates our algorithm via simulations on
IBM quantum computers and quantum simulators. Finally,
Section V concludes the paper.

II. BACKGROUND OF HYBRID QUANTUM CLASSICAL
BENDERS’ DECOMPOSITION ALGORITHM AND QAOA

A. Hybrid Quantum-classical Benders’ Decomposition

We commence by a succinct overview of the hybrid
quantum-classical Benders’ decomposition (HQCBD) algo-
rithm introduced by [8]. The MILP problem of

max c'x+hTy
x,y

st. Ax+ Gy <b, 1)
x€e€B", yeRE,

can be decomposed into a MAP and a SUB. First, the MAP
is modified by discretizing the SUB’s bound A € R and
turning it into a set of binary bits z of length m. Now, we
have A ~ A = >\( ), and the co-domain of A is Q*, but for
further detail, please refer to [8]. Then, the modified MAP may
be reformulated into an ILP suitable for the QA computer to
solve, yielding,
(MAP) max ¢™x + A
X,A
st. (b—Ax)TuF >\,
(b— Ax)T+/ >0, )
x € B", \ € Q*,
Vke K\VjeJ.

In (2), K and J represent the known extreme points and
rays. Then, as seen in Figure 1, the algorithm applies the
QA-QUBO penalty conversion method to the MAP’s objective
function and constraints, followed by creating a QUBO for QA
computers to solve. Moreover, the authors of [17] and [9]
developed the concept of multi-cuts in HQCBD to accelerate
the process.
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Fig. 1: The proposed hybrid quantum-classical Benders’ de-
composition algorithm [8]

B. Quantum Approximate Optimization Algorithm

The QAOA was proposed for solving combinatorial opti-
mization problems in [10]. It aims to find approximate solu-
tions to problems of the form miny C'(x), where x represents
a set of binary variables, and C'(x) is a cost function. This
type of problems are prevalent in various fields, including
operations research, machine learning, and finance.

The QAOA has two main components. The first component
is a parameterized quantum circuit that manages the schedule
of operations. The choice of the circuit structure and the
values of its parameters play a crucial role in the algorithm’s
performance. The second component is classical optimization
harnessed for adjusting the parameters of the quantum circuit.
The goal is to find the specific parameter values that minimize
the expected cost function.

C. Quantum Circuit Implementation and Hamiltonians

The digital quantum computer represents the Hamiltonian
simulation using quantum circuits with appropriately designed
quantum gates. More explicitly, the quantum gates are used to
represent the pulse schedules to implement the Hamiltonian
evolution in these quantum circuits. These transformations
are described by the unitary time evolution operator, defined
as U(H,t) = e~*/" The time-evolution operator U(H, 1)
can be fully descirbed by a time-domain scalar A and a
Hamiltonian H. In fact, any unitary operator U can be
expressed as e”7", where H is a Hermitian operator that can
be viewed as a Hamiltonian and -y is a scalar. Accordingly, the
quantum circuits can simulate the Hamiltonian evolution based
on quantum gates. Using the Trotter-Suzuki decomposition
formula [18] of e4T5 ~ (eA/”eB/”)n, quantum circuits can
be designed to express the Hamiltonian with the aid of many
non-commuting terms. For instance, we may implement an
approximate unitary time-evolution operator as a Hamiltonian
of the form H = Zszl Hj, as follows:

n K
U(H,t,n) H H ettt/ 3)
k=1

where K is the number of sub-Hamiltonians. Then U (H,t,n)
approaches e*1*/" as n becomes larger and will finally con-
verge when n — oo. Figure 2 shows the implementation and
equivalence.
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Fig. 2: Quantum circuit implementation and equivalence
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Fig. 3: QAOA quantum circuit

D. QAOA Circuit Diagrams

The QAOA first defines a cost Hamiltonian H, so that
its ground state represents the solution to the optimization
problem. It often relies on the standard mixier Hamiltonian
Hy = Z?:l X, as the candidate. Then, the circuits Uy, =
e~He = UY and Ug,, = e~y = UM are constructed
as the cost and mixer layers, respectively. Then, the QAOA re-
peatedly activates the cost and mixer Hamiltonians in its circuit
in order to iteratively search for an optimal or near-optimal
solution by evolving the quantum state through a sequence
of quantum operations. Moreover, it chooses a parameter set
(at,~y) having a length of n > 1 and constructs the circuit
U(a,~) as follows:

Ula,v) =e

again, repeatedly activating the cost and mixer Hamiltonians
layers. The circuit commences from an initial state, applies
U(a,~) of (4), and then uses a classical computer for opti-
mizing the parameters (c,~). In the end, the measurements
of the output state eventually reveal approximate answers to
the optimization problem, once the circuit has been optimized.
The general QAOA circuit is illustrated in Figure 3.
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III. QAOA-ASSISTED BENDERS’ DECOMPOSITION

In the QAOA-assisted BD algorithm, we have to use QAOA
to solve the master problem, which is nontrivial. In this
section, we describe how to map QUBO to QAOA. First, we
convert the associated binary variables to the corresponding
Pauli matrix in Hamiltonian. Then, we convert different types
of linear and quadratic terms from QUBO to digital quantum
gates by applying the Pauli-Z measurement operator. Thirdly,
we introduce the QAOA ansatz, and finally, we use those gates
to construct the final circuit and get the MAP QAOA ansatz.
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Fig. 4: QAOA Pauli-Z operator circuit
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Fig. 5: QAOA Z ® Z operator circuit. Ly, Lo, and L3 are 3
probes that detect the state of each layer
A. Mapping QUBO to QAOA

Consider the QUBO problem fqupo representing the MAP

in every iteration [8]:
n

)= Z icijxixj = xTCx. (5)

i=1 j=1

fi QUBO (X

To solve the problem using QAOA, we can associate the
variable z; with the ith input qubit. If the variable assumes
the value of 0, this corresponds to the qubit being in state
|0); likewise, value 1 corresponds to the qubit being in state
[1). On a digital quantum computer, we measure the state of a
qubit in the {|0),|1)} basis by applying the Pauli-rotation-Z
operator. However, the eigenvalues of this operator are +1 for
the state |0), and —1 for the state |1). In order to map this to
the {0,1} values of binary variables, we have to modify the
measurement operator to be

1—-27;

7 (6)
where [ is the identity operator. With these considerations
in mind, the cost Hamiltonian H~ encoding the objective f
becomes:
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In (7), Z is the Pauli-Z gate, Rz is the Pauli-rotation-Z gate,
and 6 is a rotation angle about the x-axis of the Bloch sphere.
For the problem-driver, we use the mixer Hamiltonian:

1 0
]LI _ZX’M X = RX( ) |:0 _1:|
=1 (8)

Ry (0) = { cos(3) —isin(g)]7

—isin(4)  cos(%)
where X is the Pauli-X gate, Rx () is the Pauli-rotation-X
gate, and 6 is a rotation angle about the x-axis of the Bloch
sphere.



B. Quantum Gate Formulation

According to Subsection II-D, the QAOA circuit U(cx,~)
exponentiates the cost Hamiltonians and mixer Hamiltonians,
which results in:

. BD _ BD . BD _ BD
UBD(G,’Y) —e 1a"HM€ iyn Her e zalHMe iv1 He . (9)

Thus, there are 3 types of exponents that we have to convert.
The single Pauli-Z operator is the easiest one, since we have
e~ %t = Rz (2ct). Therefore, the transformation is as seen in
Figure 4.

1) Cascade Z Operator: The quadratic exponential term
eTicZ2t = ¢=icZ®Zt in the exponential transformation has
to be converted to quantum gate combinations. Observe that
the Pauli-Z operator possesses the eigenvectors |0), |1), with
eigenvalues of 1, —1. The induction proceeds as in

—iCZ(X)Zt‘ab (10)

We have e?|v) = e*|v) if Ajv) = A|v), as proven in [18]. The
details are shown in Figure 5, where we have Ly = |a)|a &),
Ly = |a)|e=¢=1"*"tq @ b), and Ly = |a)|e " ta @b @
a). Note that the third layer may also be written as Lz =
la)|e= 1" a @ b@® a) = e1"""t|q)|b). We can draw an
equivalence between the circuit in Figure 5 and Z ® Z.

Similarly, if the Hamiltonian commutes, we can concatenate
the corresponding circuits as seen in Figure 6 and formu-
lated as

e _Ci_1a$bt|ab>.

) =¢e

efiaZithfinj Zit — efiaZithefinj Zkt.

(1)
Now we can simulate the operator corresponding to the cost
Hamiltonian in (7) as follows:

UEP () = e~ "mHe’

= exp § —m Z Zcij (ZiZ; — Zi — Zj)

i=1 j=1

2) Mixer Operator: Besides the cost operator, U (c, ) also
. . . : BD
exponentiates the mixer Hamilton Hj; as e~ "Hun  The final
representation is calculated as

one term

. 77BD . n ) .
U]]E}) <a> —¢ iaH), e iy X e zozX_

13)

Since we use the Pauli-rotation-Z operator as our measure, we
have X = HZH, and HH = I, H is the Hadamard operator
and [ is the identity. For the mixer operator, we have

, = (—iaXt)y X (—iaHZHtY
UZIE}) (a) — e—v,aXt — Z ( ZO‘.' ) _ Z ( (28 - )
j=0 J: =0 J:

_ i H(—zo:Zt)j H _ I Z ( zc%'Zt)j I

; 4! ; j!

j=0 7=0
o —iaZt def 1 1 1
= He H H 7 [1 _1]

(14)
Therefore, the circuit of the mixer operator, also known as the
Pauli- X operator, becomes

BD —iam X —iamZ
UJ\l (()[7n):€ = He H.

The equivalent circuit is shown in Figure 7.
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Fig. 6: QAOA commuted Hamiltonian circuit
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Fig. 7: QAOA mixer (Pauli-X) operator circuit

3) Ansatz of QAOA: The QAOA ansatz, or the trial state, is
constructed through the application of a sequence of unitary
operations commencing from a chosen initial state, which is
typically the uniform superposition of all computational basis
states:

on

1
9) = \/2—,1; ).

(16)

At its heart, QAOA uses a variational approach wherein an
ansatz state is prepared using a sequence of parameterized

quantum gates. The ansatz for QAOA is given by:

P
(e, 7)) = [[ e wHeeroriung),

p=1

A7)

where |¢) is an initial state, that is typically the equi-probable
superposition of all possible bit-strings. Here, Hj; is the mix-
ing Hamiltonian, which promotes exploration of the solution
space, and the parameters o and - are continuously varied
for minimizing the expectation value of the cost Hamiltonian
Hc with respect to the ansatz. The depth of the QAOA
circuit is represented by p, and a higher p typically provides
a more accurate approximation to the problem solution, but
also requires a deeper quantum circuit. Therefore, an optional
array of parameter values, as the initial point, may be provided
as the starting « and -~y parameters for the QAOA p-ansatz.
After preparing the p-amsatz state on a quantum computer,
the expectation value is evaluated, and classical computers
are utilized for optimizing the parameters for subsequent
iterations, aiming for finding the optimum.

4) Complete Circuit: For the final circuit, we combine H ¢
and Hp; as shown in (17) for p-ansatz, and Hj; is as shown in
Figure 7. For H, all non-zero linear terms of the coefficients
of the QUBO matrix in (5) are turned into quantum gates
as shown in Figure 4. For all non-zero quadratic exponential
terms, we will use the quantum gates of Figures 5 and 6 for
implementing them. The complete circuit is shown in Figure 8.

C. Proposed Algorithm

In our proposed method, we use the IBM Qiskit digital
quantum computer to solve the ILP. For a good QAOA model,
we also have to carefully adjust the parameters and penalties.
With a relatively high likelihood, the digital quantum solution
will provide the correct answer, if the parameters and penalties
are adjusted appropriately. Therefore, Algorithm 1 shows the
detail of our proposed QAOA-assisted BD approach. Figure 9
displays the flow chart of Algorithm 1.
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Fig. 8: QAOA complete quantum circuit

Algorithm 1 QAOA-assisted BD Algorithm

Initial K R J of extreme points and rays, and [\, Al [8].
while | A\ — )\ |> e do

[P, Q] < Appropriate penalties numbers or arrays and
the QUBO formulation by using corresponding rules in [8]

Build the corresponding QAOA circuit (Figure 8) ac-
cording to III-A and III-B.

[x', A, \] < Solve MAP by digital quantum computers.
The multi-cut strategy introduced by [9], [17] can be applied
here to accelerate the iteration.

[A, y, j or k] < Calculate SUB(s) by classical com-
puter(s), and update the extreme ray set J and extreme point
set K according to [8].
end while
return [\, )\, x*, y*]

D. Applications to Communications and Networking

As we introduced in Section I, MILP has wide applications
in communication and networking. For example, [19] con-
structs a MILP system model for multi-user mobile edge com-
puting (MEC) in the face of interference-infested channels,
where the optimization problems are MILPs. There are also
other MILP applications in UAV communication scenarios
[1], space-air-sea data computation [2], and beam-forming
in multi-user communications [3]. Our proposed method can
be used for all these applications. In [20], the authors have
shown the potential of QAOA in maximum likelihood detec-
tion problems. Based on recent QAOA research (reviewed in
Section I) QAOA has shown promise in solving optimization
problems. As the authors of [21] state, a MILP problem can
be solved using BD. Inspired by this, with the cooperation
of both classical and digital quantum computers, the QAOA-
assisted BD framework proposed can be used for solving
optimization problems in the applications mentioned above.
Therefore, we believe that the QAOA-assisted BD algorithm
has great potential in solving MILPs in communication and
networking.

IV. NUMERICAL VALIDATION

We validate the proposed algorithm by running it on IBM’s
digital quantum processing units (QPUs) [22]. It is worth
noting that the field of quantum computing is rapidly evolving,
and the maximum number of qubits is increasing.

A. Simulation Setup

In our real-world QPU experiments, we consider a MILP
based on (1) to test our proposed quantum algorithm, where we
have x € B2,y € [0,1]". Since the number of qubits is limited
and the slack variable will also take up some qubit space, two

Initialization of K, .J. L\, and A
T
Solve the MAP by the digital quantum

computer with circuit in Figure 8
T
Obtain X’ by multi-cuts

strategy and update X
T
Obtain new cut(s) by solving
SUB(s) generated by X’
T
Get \. Update K s
and J for the MAP

No

4 Yes
/ Retrieve X, x*, y* /

Fig. 9: QAOA-assisted Benders’ decomposition flow chart
qubits are assigned to x, three qubits are assigned to the integer

part of \ and one qubit is assigned to the decimal part of . The
rest of the qubits are reserved for slack variables. We also test
a more sizeable scenario associated with h, and ¢, on the IBM
Qiskit quantum simulator, which is a classical computer.

[0 07 10 1 0 r1
0 0 100 1 1
0 0 01 1 0 1
0 0 01 01 1
A=|-1 -1/,G=1{0 0 0 0|,b=|-1],
-1 0 100 0 0
-1 0 01 0 0 0
0 -1 00 1 0 0
Lo —1] 0 0 0 1] L o]
=01 2 1 2], cJ=[-1 -2],
W =[15 15 1 1], cl=[-15 -1].

Based on (1), h and c represent the coefficients of the
continuous and integer decision variables, respectively, in the
objective function. Similarly, G and A denote the coefficients
of continuous and integer decision variables on the left-hand
side of the constraints. The right-hand side of the constraints
is associated with b.

B. Simulation Results
Both the experiments and simulation results indicate that

our proposed QAOA-assisted BD algorithm performs well and
obtains the right cuts each time. Hence, the MAP’s constraints
are increased by the optimality and feasibility cuts in each
iteration. Figure 10 shows the test case run on the IBM digital
quantum machine and Figure 11 shows the test case run on
the IBM quantum simulator, which is a classical computer. In



35 30
34 28
]

$33 226
S —e— Upper bound g
~<32] —%- Lower bound %24

31 —— OF value

. 22| __. Optimum reference
3.0 Frmmmmmmmmm . 20 m====mmmmmmmmmmmmmm
0 i 2 [) i 2

Round

(a) Convergence of X and A (b) Steps to optimal objective value

Fig. 10: The test case on the IBM digital quantum machine.

5.0 5.0
4.5 45
4.0
g 4.0 g -
§ 3.5| —e— Upper bound 4 3'0
<3, —*- Lower bound 5 2'5 o val
’ .5| — OF value
2.5 2.0| === Optimum reference
2.0 15| mmmmmmmmmm e mmmmmen D

0 1 0 1 2 3 4

Round
(b) Steps to optimal objective value

Round

(a) Convergence of X and A
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Figure 10a, the test case requires 3 rounds for A to converge.
By contrast, as shown in Figure 1la, the simulator needs 5
rounds to converge. The feasible region of both test cases
is tightened by adding cut(s) iteratively in the space. Each
round’s ideal solution can be found by the algorithm. As a
result, our QAOA-assisted BD algorithm is dependable and
effective. The parts of the dashed lines in Figures 10a and 11a
are invisible, because the lower bound in the respective round
is negative infinity. These graphs illustrate how the upper and
lower bounds converge. The non-negative lower bound can be
found by our algorithm in just one round. Meanwhile, Figures
10b and 11b indicate how the objective function settles on
its optimal value for both cases. These outcomes demonstrate
the mathematical consistency between our suggested algorithm
and the classical BD algorithm. Put differently, our algorithm
can accomplish the same goal as the classical BD algorithm.

V. CONCLUSION

In this paper, we developed a method that converts the
MAP of BD to a problem-specific QAOA ansatz, which is
a kind of digital quantum circuit. We constructed the circuit
of QAOA-assisted BD for digital quantum computers. As the
circuit, we harness cascaded Z operators and a mixer operator
relying on the measurement of the Pauli-rotation-Z operator.
We successfully demonstrated that our algorithm succeeds in
converging to the correct final result, as the classical algorithm
does. In our performance evaluation, we used both IBM
Qiskit’s digital quantum computers and quantum simulators
to solve MILP problems. In general, our algorithm is suitable
for solving MILP problems in communication and networking.
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