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Abstract—Accurate and timely building damage assessments
are crucial for effective disaster response. However, traditional
damage assessment methods heavily rely on manual evaluations
by experts, which are labor-intensive and time-consuming. Recent
research leverages machine learning (ML) and satellite remote
sensing techniques to streamline the process. A major challenge of
this method lies in the unlabeled nature of satellite imagery, which
makes traditional ML frameworks impractical. Additionally,
downloading the high-resolution satellite imagery for centralized
ML is hindered by limited bandwidth and sporadic connectivity
between the low Earth orbit (LEO) satellites and ground server.
To address these challenges, we propose a novel semi-supervised
federated learning framework named Semi-FedDA. It utilizes a
small amount of labeled data on the ground server and a large
amount of unlabeled data on the satellites to efficiently train a
building assessment model without manual labeling. Moreover,
this framework leverages intra-plane inter-satellite links (ISLs)
to implement intra-orbit aggregations, which can significantly
reduce the communication cost. We conduct extensive experi-
ments on the real-world dataset. Numerical results show that
our proposed framework can reduce training time by up to 94%
compared with baselines, without sacrificing model accuracy.

Index Terms—semi-supervised federated learning, damage as-
sessment, satellite imagery, disaster management

I. INTRODUCTION

Recent years have witnessed the rapid development of
satellite technology, resulting in more low Earth orbit (LEO)
satellites being deployed in space. These satellites continu-
ously collect high-resolution Earth observation images and
sensor data, which can support various novel applications,
such as climate change monitoring [1] and disaster prediction
[2]. Among them, post-disaster building damage assessment is
considered one of the most important applications. Traditional
building damage assessment from satellite imagery heavily
relies on domain experts performing empirical analyses, which
is labor-intensive and time-consuming. Therefore, there is im-
mense potential in leveraging artificial intelligence to automate
building damage assessment after natural disasters.

Recently, deep neural networks (DNNs) have been flourish-
ing as never before in the field of object recognition and image
segmentation [3]. There is substantial literature to explore how
to utilize DNNs to accelerate the building damage assessment
after natural disasters [4]–[8]. For example, Cooner et al. [4]
evaluated the effectiveness of multilayer feedforward neural
networks, radial basis neural networks, and random forests in
detecting earthquake damage. However, most existing works

focus on supervised learning tasks, assuming that the labels
are available [4]–[7]. This assumption may not always be valid
since there are a large number of satellite images generated
every day (e.g., Planet Labs constellations generate more
than 15 terabytes of data per day [9]), which makes manual
labeling impractical. To overcome this challenge, Lee et al.
[8] proposed an application of centralized semi-supervised
learning (SSL) to train damage assessment models on a
ground server with a small amount of labeled data and a
large amount of unlabeled data. Even though utilizing SSL
significantly reduces manual labeling costs, it is still challeng-
ing to download all high-resolution satellite imagery to the
ground for implementing traditional centralized learning. This
is primarily due to: (i) substantial propagation delay between
the satellite and ground server owing to the limited bandwidth
of download link; (ii) short communication time between
the satellite and ground station because of the sporadic and
irregular connectivity of download link; and (iii) real-time
requirement of the post-disaster building damage assessment.

To overcome these challenges, federated learning (FL) is a
promising approach [10]–[12]. In FL, the clients1 collabora-
tively learn a shared prediction model under the orchestration
of the server without sharing the raw data. Most prior works
[13]–[15] on FL over LEO networks assume the clients have
enough labeled data to train a global model. As aforemen-
tioned, they are not practicable since manual labeling of each
satellite image is impossible. Recently, several studies [16]–
[18] have explored a new framework called semi-supervised
federated learning (SSFL). This framework leverages SSL to
automate the imagery labeling and employs FL to reduce
the communication cost. They conduct experiments on the
image classification task using traditional convolutional neural
networks (CNNs). However, traditional CNNs can not capture
the complexity of the actual problem in assessing the post-
disaster building damage. In the post-disaster building damage
assessments, the dataset usually consists of two parts: pre-
and post-disaster images. A primary challenge would be how
to effectively model the correlation between these images for
building damage assessment.

In this paper, we propose the first semi-supervised feder-
ated learning framework for assessing building damage from
satellite imagery (Semi-FedDA). Particularly, the proposed

1Note that we use clients and satellites interchangeably in this paper.



framework takes into account the unique features of both LEO
satellites (e.g., sporadic connectivity and unlabeled) and build-
ing damage assessment (e.g., pre- and post-disaster images as
inputs). It significantly accelerates FL convergence by drasti-
cally reducing communication rounds without compromising
model accuracy. Our main contributions are summarized as
follows.

• We delineate the SSFL scenario of LEO satellite networks
tailored for post-disaster damage assessment and high-
light the unique challenges.

• We propose a novel framework dubbed Semi-FedDA for
efficient training of post-disaster building damage as-
sessment models using satellite imagery. This framework
leverages a multitask model to perform joint building
segmentation and damage classification. Furthermore, the
communication cost is significantly reduced through the
designed an intra-orbit aggregation strategy.

• We conduct extensive experiments based on the real-
world dataset to evaluate our framework. Numerical
results demonstrate that Semi-FedDA can save up to
94% training time compared with the traditional SSFL.
Meanwhile, it maintains similar accuracy to supervised
learning.

The rest of this paper is organized as follows. In Section II,
we introduce the system model. In Section III, we present our
Semi-FedDA framework for building damage assessment. Sec-
tion IV shows the simulation results. Finally, the conclusion
is given in Section V.

II. SYSTEM MODELING

We consider a general LEO constellation, which consists
of a set of orbits N = {1, . . . , N}. Each orbit n 2 N
comprises a set of evenly distributed LEO satellites In =
{1, . . . , In}. Then, the total satellite set can be denoted as
I =

SN
n=1 In = {1, . . . , I}, where I =

PN
n=1 In is the total

number of satellites. Let hn denote the altitude of orbit n.
Then, the speed and orbital period of the satellites in orbit
n are expressed as vn =

q
µ

hn+rE
and Tn = 2⇡(rE+hn)

vn
,

respectively. Here, rE = 6371 km is the Earth radius and
µ = 3.98⇥1014 m3/s2 is the geocentric gravitational constant.
The satellites orbit the Earth and continuously capture high-
resolution Earth observation images for training ML models
to assess building damage after disasters. In order to cut down
labeling and communication costs, we integrate the SSFL
framework into this system. To that end, we assume a ground
base station (BS) s orchestrates the training process.

A. SSFL at Satellites and Base Station

BS s has a small labeled data set Ds = {(xj
s, y

j
s)}

Ds
j=1,

where xj
s is a feature vector, yjs is the one-hot class label in

a classification problem, and Ds is the size of Ds. Moreover,
each satellite i 2 I only has an unlabeled data set Di =
{xj

i}
Di
j=1, where xi is a feature vector and Di is size of Di.

As shown in Fig. 1, the SSFL implemented in satellites and
BS consists of the following steps [16]:

Server
Fine-tune global model with pre/post disaster satellite 

images and labels

Satellite 1

Generate pseudo-labels 
with global model

(1)

(2)
(3)

(4)

Satellite I

Generate pseudo-labels 
with global model

Fig. 1: An illustration of SSFL framework at satellite networks
and base station

1) At round t, BS s distributes the global model W t�1
s to each

satellite when the satellite is in the visibility period.
2) Once satellite i 2 I receives the global model W t�1

s , it
initializes the local model W t

i  W t�1
s . Then, the satellite

generates pseudo-labels with weakly augmented unlabeled
data, i.e., yj,ti = f(↵(xj

i ),W
t
i ), 8j. Here, ↵(·) denotes

a weak data augmentation, e.g., random horizontal and
vertical flipping, that maps one image to another. f(x,w)
presents how to map an input x and model parameter w to
an one-hot prediction. Then, the satellite generates a high-
confidence dataset Dfix,t

i = {(xj
i , y

j,t
i ) with max(yj,ti ) �

�}Di
j=1, where 0  �  1 is a global confidence threshold. If

Dfix,t
i = ;, the satellite stops training. Otherwise, the satel-

lite constructs another Dmix,t
i by sampling |Dfix,t

i | with re-
placement of {(xj

i , y
j,t
i )}Di

j=1. Here, |Dfix,t
i | denotes the num-

ber of elements in Dfix,t
i . After obtaining these two datasets,

the satellite starts to train the local model for E epochs. In
each epoch, the satellite randomly splits Dfix,t

i and Dmix,t
i

into batch sets Bfix,t
i and Bmix,t

i , respectively, each with same
batch size Bi. Consequently, the satellite constructs Mixup
data from one particular data batch (xfix

b , yfix
b ), (xmix

b , ymix
b ) 2

Bfix,t
i ,Bmix,t

i by xmix  �xfix
b + (1 � �)xmix

b , where
� ⇠ Beta(�, �), and � is the hyperparameter. Based on
the above data, the satellite calculates the following two
losses [16]: Lfix = `(f(A(xfix

b ,W t
i ), y

fix
b ) and Lmix =

� · `(f(↵(xmix,W t
i ), y

fix
b )+(1��) · `(f(↵(xmix,W t

i ), y
mix
b ),

where A denotes a strong data augmentation mapping, e.g.,
the RandAugment [19], and ` denotes the cross entropy.
Finally, the satellite updates the its local model as

W t
i  W t

i � ⌘rW (Lfix + � · Lmix), (1)

where ⌘ is the learning rate, and � > 0 is a hyperparameter
to balance Lfix and Lmix. After training for E epochs,
satellite i obtains an updated local model W t

i .
3) Each satellite transmits the updated local model W t

i during
the visibility period. Note that we are interested in the case
with full satellites participation.

4) After BS s collects all updated local models from the



satellites, it aggregates the models as

W t
s =

X

i2I

Di

D
W t

i , (2)

where D =
P

i2I Di is the total number of training
samples. After obtaining the global model W t

s , the BS will
locally update the model for E epochs. In each epoch, the
BS randomly splits its labeled data Ds into batch set Bt

s.
For each batch (xs, ys) 2 Bt

s, the BS updates the global
model as

W t
s  W t

s � ⌘rW f(↵(xs,W
t
s), ys), (3)

The above steps repeat until the global model is converged
(e.g., a target loss or accuracy is achieved).

B. Computation Model

As mentioned above, each satellite i 2 I first utilizes the
initialized local model W t

i to generate pseudo-labels at each
round. The time of this process is described as

⌧ label
i =

C label
i S(Di)

⌫i
, (4)

where C label
i is the number of CPU cycles required to label

a single data bit, S(Di) is the size of data set Di in bits,
and ⌫i is the CPU frequency of satellite. Next, the satellite
will construct three datasets, i.e., Dfix,t

i , Dmix,t
i , and a Mixup

dataset. Compared with the entire computation latency, the
time to generate the datasets is very short, and therefore can
be neglected. After obtaining the datasets, the satellite trains
the local model for E epochs at each round. According to the
linear computation time model [20], the time required by the
satellite to update the local model is expressed as

⌧ train
i =

EC train
i S(Di)

⌫i
(5)

where C train
i is the number of CPU cycles required to process

a single data bit.
Moreover, we assume the BS has sufficient computation

resources. Thus, we ignore the computation time spent by the
BS.

C. Communication Model

In an LEO satellite constellation, a satellite i 2 I is in
the visibility period of BS s at time slot ⌧ , when (⇡2 ) �
\(~rs(⌧),~ri(⌧) � ~rs(⌧)) � ↵e. Here, ~ri(⌧) and ~rs(⌧) denote
the position of the satellite and the BS, respectively, and ↵e

denotes the minimum elevation angle. For ease of expression,
let !i,s = \(~rs(⌧),~ri(⌧)�~rs(⌧)), and we omit the time index.
According to [21], the signal-to-noise ratio (SNR) between
satellite i and BS s is expressed as

SNRi,s =

(
GiGsP

kBBTLi,s
if ⇡

2 � !i,s � ↵e,

0 otherwise,
(6)

where Gi and Gs are the antenna gains of satellite i and
BS s, respectively, P is the transmission power, kB is the
Boltzmann constant, B is the channel bandwidth, T is the

receiver noise temperature, and Li,s is the free space path
loss between satellite i and BS s. Moreover, the free space
path loss Li,s is described as

Li,s =

✓
4⇡fcd(i, s)

c

◆2

, (7)

where d(i, s) is the distance between satellite i and the BS,
fc is the carrier frequency, and c is the speed of light.

Based on Shannon’s theorem, the achievable data transmis-
sion rate from BS s to satellite i is expressed as

Ri,s = Bi log2(1 + SNRi,s), (8)

where Bi is the per-satellite bandwidth pre-assigned to satellite
i. Then, the time for exchanging the model W between
satellite i and BS s is expressed as

⌧ trans
i,s =

S(W )

Ri,s
+

d(i, s)

c
, (9)

where S(W ) is the data size of model W in bits. The first
term represents the required time for transmission, while the
second term represents the propagation delay.

In a conventional star topology-based SSFL framework,
each satellite needs to complete the SSFL tasks at every round.
These tasks involve each satellite receiving the global model
W t�1

s from the BS, retraining the global model to obtain the
local model W t

i , and transmitting W t
i to the BS. Based on the

computation and communication models, we can calculate the
total time required for each satellite i to complete these tasks
as

⌧ST
i = ⌧wait

i + 2⌧ trans
i,s + ⌧ label

i + ⌧ train
i , (10)

where ⌧wait
i is the waiting period for satellite i to enter the

visible zone. In a global communication round, the BS needs
to collect all trained local models from the satellites. Thus, the
total time for a global round is expressed as

⌧ total = max
i2I

⌧ST
i . (11)

From the above equations, we can observe that the global
training time depends on the slowest satellites in this LEO
constellation. Additionally, the extensive time required for
each satellite to communicate with the BS results in inef-
ficiency. To address these issues, we propose an innovative
SSFL framework, which is detailed in the following section.

III. PROPOSED FRAMEWORK
As introduced in Section I, the primary challenges to

assessing building damage after disasters are twofold: the
complexity of evaluating the building damages and intermittent
connectivity between the satellites and BS. In this paper, we
introduce a cutting-edge framework Semi-FedDA, designed to
address these challenges. It comprises two main components:
the Siamese U-Net model, which tackles the complexity of the
building damage assessment task, and SSFL with intra-orbit
aggregation, which addresses the intermittent connectivity
between the satellites and BS. In the next subsections, we
will introduce these two components.
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Fig. 2: An end-to-end workflow for the prediction of Siamese
U-Net model

A. Siamese U-Net model

In past decades, a wide variety of deep learning architectures
for semantic segmentation have been proposed [22], [23]. The
majority of these models adopt the encoder-decoder frame-
work, wherein the encoder generates representative feature
maps at various spatial dimensions, and the decoder subse-
quently reconstructs a full-resolution semantic mask. In these
traditional image segmentation tasks, the model usually inputs
one task data and outputs one predicted label. However, in
building damage assessment tasks, the input is a pre- and post-
disaster image pair. Moreover, the model needs to output two
labels: one for building segmentation and the other for damage
classification. By concurrently training a single backbone on
pairs of images, Siamese networks have achieved notable
success in identifying similarities and differences between
images [24], [25]. These networks utilize a common backbone
to derive embeddings from both images, enabling the effective
learning of distinctive features within a fully connected layer.

For building damage assessment in disasters, we utilize
a similar Siamese U-Net model proposed in [7]. As shown
in Fig. 2, the end-to-end prediction majorly consists of four
steps: 1) We crop the satellite images with a resolution of
1024⇥ 1024 pixels into smaller images of 256⇥ 256 pixels.
2) Then, we feed pre- and post-disaster images through a
U-Net segmentation module with shared weights (blocks with
the same color in the figure share the weights). 3) The outputs
of the two segmentation encoders are forwarded to the two
building decoders with shared weights, respectively. These two
building decoders can produce detailed per-pixel building-level
predictions based on pre- and post-disaster images. 4) Besides,
the outputs of the segmentation encoders are subtracted, and
the result is forwarded to a damage classification decoder. This
decoder produces detailed per-pixel damage level predictions.

B. SSFL with intra-orbit aggregation

Owing to the sporadic connections between the satellites
and BS, there is a significant amount of idle time as satellites
await entry into the visible zone. Furthermore, as illustrated
by Eq. (11), the overall training speed is determined by
the slowest satellite in the constellation. It is important to
highlight that the intra-plane inter-satellite links (ISLs) operate
at a significantly higher transmission rate compared to the
connections between the satellites and BS. Similar to [13], we
develop an intra-orbit aggregation strategy based on ISLs to

Source Satellite

Sink Satellite

Satellite 1

Satellite 2 Satellite 4

Satellite 3

STEP 1

Source Satellite

Sink Satellite

Satellite 1

Satellite 2 Satellite 4

Satellite 3

STEP 2

Source Satellite

Sink Satellite

Satellite 1

Satellite 2 Satellite 4

Satellite 3

STEP 3

Source Satellite Sink Satellite

Satellite 4

Satellite 1 Satellite 3

Satellite 2

STEP 4

Fig. 3: An illustration of SSFL with intra-orbit aggregation

effectively tackle these challenges. As illustrated in Fig. 3, the
intra-orbit aggregation strategy comprises the following steps:
1) For each orbit n 2 N , we refer to the satellite, which is

the first to receive the global model W t�1
s from the BS,

as the source node. Upon receiving W t�1
s , the source node

then forwards it to its neighboring satellites. Subsequently,
these neighbors further forward W t�1

s to their next-hop
neighbors, continuing this process until W t�1

s reaches the
final satellite, known as the sink node. In this process,
we assume the satellites start the training process after
completion of the forwarding task. The only exception is the
source node, which initiates its training immediately after
receiving W t�1

s .
2) After completing the training process, each satellite i 2 In

generates a local model W t
i . For simplicity, we assume

each satellite has the same computation capacity and data
size. However, it can be easily extended to the case when
they are different. Consequently, under this assumption, the
source node is the first to complete the training process.
Then, the source node will forward the modified local
model W t�1

s
2 to its neighboring satellites (i.e., satellites 2

and 4). The neighboring satellites aggregate the W t�1
s
2 with

their own models and forward the aggregated models (i.e.,
W t�1

s
2 +W t

2 and W t�1
s
2 +W t

4) to their next-hop neighbors.
This process continues until the sink node receives the
aggregation models. Finally, the sink node executes the last
aggregation and obtains an updated orbit model, which is
expressed as

W t
n =

1

In

InX

i=1

W t
i . (12)

3) After obtaining the updated orbit model W t
n, we execute



TABLE I: Simulation Parameters

Parameters Values
Bandwidth B 20MHz

Transmission power of BS Ps 42dBm

Transmission power of each satellite Pi 43dBm

Antenna gain of each satellite Gi 6.98dBi

Carrier frequency fc 2.4GHz

Noise temperature T 354.81K
CPU frequency of each satellite ⌫i 1GHz

a reverse relaying of Step 1. Specifically, the sink node
forwards W t

n to its neighboring satellites. Then, these
neighbors further forward W t

n to their next-hop neighbors,
continuing this process until W t

n reaches the source node.
4) Since each satellite has the same orbit model W t

n after
finishing the reverse relaying in Step 3, the first satellite
entering the visible zone is then able to transmit W t

n to the
BS.

We execute the intra-orbit aggregation strategy for each orbit.
When the BS collects all orbit models, it can update the global
model as

W t
s =

1

N

NX

n=1

W t
n. (13)

ISL plays a crucial role in this intra-orbit aggregation
strategy. Since the satellites are evenly distributed in each orbit
n, the time for transmitting the model W between neighboring
satellites in orbit n using ISL can be presented as

⌧ ISL
n =

S(W )

Rn
+

dn
c
, (14)

Here, Rn is the transmission rate between neighboring satel-
lites, which can be calculated in a similar fashion as Eq. (8). dn
is the distance between them. The first term is the transmission
delay, while the second term is the propagation delay. Then,
the overall time for model relays and training in orbit n can
be expressed as

⌧ ISL
n = ⌧wait

n + 2⌧ trans
n,s + ⌧ label

i + ⌧ train
i + 2

�
In
2

⌫
⌧ ISL
n , (15)

where ⌧wait
n is the waiting period for a satellite in orbit n to

enter the visible zone. Here, we ignore the aggregation time
for each satellite since it is very short compared with the total
processing time. Hence, the total time for a global round using
the intra-orbit aggregation strategy is expressed as

⌧ total = max
n2N

⌧ ISL
n . (16)

Since the ⌧wait
n is much smaller than ⌧wait

i , the proposed method
can significantly reduce the communication costs. We will
further demonstrate this in the next section.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct extensive numerical experiments
to evaluate the performance of our proposed Semi-FedDA
framework. All simulations are implemented using PyTorch
on an Ubuntu server with 4 NVIDIA RTX 8000 GPUs.

(a) Training stage 1 (b) Training stage 2

Fig. 4: Convergence comparison between Semi-FedDA and
baselines

TABLE II: F1 score comparison between Semi-FedDA and
baselines

Schemes F bld
1 F dmg

1 F total
1

FedAvg 0.62 0.80 0.746
Centralized ML 0.68 0.82 0.778

Semi-FedDA 0.66 0.78 0.744

A. Simulation Setup

We consider 20 satellites evenly distributed across 2 orbits at
altitude of 2000 km with inclination of 80�. The BS is located
at coordinates 53.0793�N latitude and 8.8017�E longitude.
The minimum elevation angle of BS is 10�. Unless otherwise
specified, the rest of our simulation parameters are given in
Table I.

We utilize the 2018 Lower Puna eruption satellite imagery
dataset [6]. After preprocessing, the dataset comprises 4660
training and 600 testing images, each with a resolution of
256⇥256 pixels. In this collection of images, there are a total
of 3410 buildings, out of which 2831 buildings have suffered
damage, while 579 buildings remain undamaged. For the
Semi-FedDA setting, we assume the BS has only 400 labeled
images, while each satellite has 213 unlabeled images. We use
the F1 score as the evaluation matrix. Moreover, since our
model can simultaneously implement building segmentation
and damage classification, we utilize a weighted F1 score to
evaluate the overall performance as

F total
1 = 0.3 · F bld

1 + 0.7 · F dmg
1 , (17)

where F bld
1 and F dmg

1 represent the F1 score of building
segmentation and damage classification, respectively.

To evaluate the performance of the proposed framework,
we consider the following benchmarks: 1) FedAvg [10]: In
this scheme, the BS has 400 labeled images, and each satel-
lite has 213 labeled images. The full-supervised FedAvg is
implemented. 2) Centralized ML [7]: We assume the BS has
all labeled 4660 data. A centralized full-supervised learning is
implemented in the BS. 3) SSFL: This scheme shares the same
settings as Semi-FedDA but lacks the intra-orbit aggregation
strategy.



TABLE III: Training time comparison between Semi-FedDA
and baselines

Schemes Training time of stage 1 Training time of stage 2
FedAvg 14399986s 3455819s
SSFL 14399923s 3455794s

Semi-FedDA 857464s 194207s

B. Evaluation Results

The training of our model consists of two stages. In the
first stage, we freeze the damage classification encoder and
train the segmentation encoders and building decoders. In
the second stage, we freeze the segmentation encoders and
building decoders and train the damage classification encoder.
Fig. 4(a) and Fig. 4(b) demonstrate the convergence of training
stages 1 and 2, respectively. These figures indicate that Semi-
FedDA exhibits comparable performance with FedAvg and
Centralized ML regarding the number of rounds needed to
converge. Table II and Table III further demonstrate the de-
tails. Table II shows that Semi-FedDA experiences a minimal
degradation in the F1 score, by 3.8% and 2.9% compared
to Centralized ML and FedAvg, respectively. In other words,
Semi-FedDA can achieve almost the same performance with
only a small portion of the labeled data. Furthermore, thanks
to the intra-orbit aggregation strategy, Semi-FedDA can save
up to 94% training time compared with traditional SSFL, as
shown in Table III.

V. CONCLUSION
In this study, we propose an innovative framework called

Semi-FedDA to automate building damage assessment in
disaster scenarios using satellite imagery. Compared with the
traditional expert-driven labeling and assessment process, our
framework can significantly reduce labor and time costs. For
future works, we plan to design a more efficient satellite
communication protocol for the Semi-FedDA framework.
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