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Abstract. In this paper, we adopt a general framework based on the Gibbs posterior to update belief distributions
for inverse problems governed by partial differential equations (PDEs). The Gibbs posterior formulation is a gen-
eralization of standard Bayesian inference that only relies on a loss function connecting the unknown parameters
to the data. It is particularly useful when the true data generating mechanism (or noise distribution) is unknown or
difficult to specify. The Gibbs posterior coincides with Bayesian updating when a true likelihood function is known
and the loss function corresponds to the negative log-likelihood, yet provides subjective inference in more general
settings. We employ a sequential Monte Carlo (SMC) approach to approximate the Gibbs posterior using particles.
To manage the computational cost of propagating increasing numbers of particles through the loss function, we
employ a recently developed local reduced basis method to build an efficient surrogate loss function that is used in
the Gibbs update formula in place of the true loss. We derive error bounds for our approximation and propose an
adaptive approach to construct the surrogate model in an efficient manner. We demonstrate the efficiency of our
approach through several numerical examples.
Keywords. Adaptive Sequential Monte Carlo; Bayesian framework; Error analysis; Gibbs posterior; Inverse
problems with PDEs.
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1. INTRODUCTION

In stochastic inverse problems, we need to infer unknown system parameters from uncer-
tain measurements of a system response. Such problems are ubiquitous in many application
areas including medical imaging [15, 22], heat conduction [33], geosciences [6], atmospheric
and oceanic sciences [2]. The Bayesian approach has been a foundation for performing such
inference from noisy or incomplete observations while allowing us to quantify the uncertainty
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of the inverse solution due to the inexactness of data [10, 31]. The solution of a Bayesian in-
verse problem is a probability distribution over the parameter space, which is referred to as the
posterior distribution. Except for very limited settings, e.g., a linear model with Gaussian prior
and Gaussian noise, the analytical form of the posterior distribution is rarely tractable. In most
cases, we can only approximate the posterior either through sampling or parametrization.

The main contribution of this work is a framework to approximate the solution of stochastic
inverse problems that involve solutions of PDEs or expensive numerical simulations without the
need to construct explicit likelihood functions. To this end, the main computational advance-
ment in our work is an adaptive reduced basis method that minimizes the number of expensive
PDE evaluations. In addition, a posteriori error estimates are used to efficiently explore the
posterior distribution, while certifying accuracy. Furthermore, we postulate the inverse problem
in a general variational statement that relies on the use of a loss function instead of likelihood
function. The use a loss function is a more natural approach to many inverse problems where
the noise generating mechanism is not known.

Markov chain Monte Carlo (MCMC) [17] is the most well-known and versatile method for
Bayesian inverse problems [31]. MCMC requires only pointwise evaluation of the likelihood
function to generate a stream of samples from the posterior distribution that can be subsequently
used to compute the statistics of the posterior. To accelerate MCMC, one popular approach
is to employ an inexpensive surrogate model to approximate the likelihood evaluation in the
sampling procedure. Plenty of research efforts have been devoted to construct efficient surrogate
models for such a purpose. For example, the stochastic spectral method is used in [28], Gaussian
process regression is used in [21] and projection-based model reduction is employed in [12, 25].
The surrogate models are typically constructed to be accurate over the support of the prior
distribution [16, 25, 26, 27, 28] and are thought to be “globally accurate”. However, thanks
to the information contained in the data, the posterior distribution typically concentrate on a
much smaller portion of the support of the prior. In this respect, requiring a “globally accurate”
surrogate model seems unnecessary and inefficient. Several recent studies have exploited such
information (or posterior) and build adaptive and data-driven surrogate models that are more
efficient and accurate on the support of the posterior [8, 9, 12, 24].

Recently, sequential Monte Carlo (SMC) methods, or particle filters [3, 13, 14], have been ap-
plied in the setting of Bayesian inverse problems by a few researchers [4, 20]. In SMC, weighted
samples, or particles, are generated and evolved to approximate a sequence of probability dis-
tributions which interpolate from the prior to the posterior. In [20] in particular, the authors
employed a novel SMC method with a dimension-independent MCMC sampler [11, 23] as the
mutation kernel to invert the initial conditions for Navier-Stokes equations. In [4], the authors
enhanced the SMC method in [20] and provided a proof of the dimension-independent conver-
gence property of the SMC methods for inverse problems. Both works have demonstrated the
computational efficiency of SMC methods for high-dimensional inverse problems. In addition,
the versatility and self-adaptivity of SMC methods provide a natural framework for the adap-
tive construction of surrogate models that can be used to further speedup the computations for
inverse problems.

Taking inspiration in the latter contributions, in this work we put forward an adaptive reduced
bases approach with guaranteed accuracy that efficiently explores the support of the posterior.
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Based on a SMC framework developed in [20], we present a method to progressive approxi-
mate the posterior by simultaneously evolving the particles and adapting the local RB surrogate
model in a sequential manner. The emphasis of the local RB surrogate is navigated to a small
fraction of the parameter space, i.e., the support of the posterior, automatically by the evolving
particles that progressively cluster over the support of the posterior. Computational savings are
achieved thanks to the local accuracy and the efficiency of the local RB method [35]. Indeed,
once the local RB surrogate becomes accurate enough over the local support of the posterior,
further evolution of the particles takes minimal cost. In addition, we derive error bounds for our
approximation and demonstrate the computational efficiency of our approach through several
numerical examples including advection-diffusion problems and elasticity imaging problems.

The majority of Bayesian methods for inverse problems rely on an exact noise model, typi-
cally assumed to be i.i.d. Gaussian, to perform inference. It is desirable to extend such inference
to more general settings where a noise model is unavailable or modeling the data generating
mechanism is challenging. The Gibbs posterior provides a way to update belief distributions
in such general setting without the need of an explicit likelihood function. Instead, the Gibbs
posterior are applicable where the unknown parameters are only connected to the data through a
loss function [1, 5, 32]. In many inverse problems or inference problems, it can be a simpler task
to specify a loss function than the true data generating mechanism, i.e., an explicit likelihood
function, which is the biggest advantage of using the Gibbs posterior over the usual Bayesian
approach.

The rest of the paper is organized as follows. We first present the problem statement and
develop a Gibbs posterior formulation. We then describe our adaptive reduced basis approach
for reducing computational cost. Next, we describe how the reduced bases method can be
combined with a SMC approach. In addition, we support all our numerical approximations
with error bounds. We end the paper with a set of numerical examples and conclusions.

2. PROBLEM STATEMENT

Consider the abstract variational problem: find u(x ) : X !U such that

hM(u(x );x ),viV ⇤,V = 0 8v 2V, 8x 2 X.

where U is the trial space, V is the test space, V
⇤ is the dual space of V , X ✓RM is the parameter

space, and M(·;x ) : U ! V
⇤ is a bounded linear operator for all x 2 X. We will use U ⌘ V in

the sequel. For the sake of simplicity, we will work with finite dimensional spaces arising from
the discretization of an underlying PDE model.

We assume that we have access to imperfect observations d 2 RD from the system. Further-
more, we describe these observations as

d = F (x ⇤)+ e, (2.1)

where F : X ! RD is a model representing the system that maps each parameter to an obser-
vation, and e 2 RD is a random element representing noise. For instance, F (x ⇤) := G (u(x ⇤)),
where G is a map (nonlinear in general) from PDE solutions to observables. We also define
d
⇤ = F (x ⇤) as the true data. Notice that in this setting, even if we have an additive noise de-

composition in the state, i.e. v= u(x ⇤)+h , d =G (v(x )), the nonlinear map makes an analytical
representation of e intractable, in general. Here, h represents noise in the state.
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A salient aspect of our setting is that we do not assume any knowledge of the probability
law of e 2 RD. However, we do assume that we have a prior belief about x ⇤, which can be
expressed as a prior distribution r0(·) : X ! R. Since we do know the probability law of e , and
hence the likelihood, one of the main challenges in our work is how to integrate the information
contained in the data into our belief about x ⇤. To this end, we turn to the variational framework
that circumvents this challenge.

In the variational setting presented in [5], we do not need a likelihood function. Instead, we
use a loss function l(·, ·) : X⇥RD ! R that measures the discrepancy between the prediction
and observations. For example, we could use

l(x ,d) = kF (x )�dk2
l2

as the loss function. Unlike a likelihood function that requires exact knowledge of the data
generating mechanism (or noise model), loss functions are typically easier to specify for inverse
problems.

Given a set of observations di, i = 1,2, . . . ,n, we update our belief according to the following
optimization problem

r(x ) = argmin
r̂2P

Z

X
W

n

Â
i=1

l(x ,di)r̂(x )dx +DKL(r̂kr0). (2.2)

where W is a weight for the loss that is yet to be specified. For now, we assume W is a fixed
positive constant and will describe possible methods to prescribe W later on. Furthermore,
DKL(rkr0) is the Kullback-Leibler (KL) divergence between the posterior and prior distribu-
tions and P is the space of candidate posterior distributions of x . If we allow P to contain all
distributions over X, we have an explicit update formula for r(x ) [5] as

r(x ) = exp(�W Ân

i=1 l(x ,di))r0(x )R
X exp(�W Ân

i=1 l(x ,di))r0(x )dx
. (2.3)

This is a coherent update formula in the sense that the use of sequential data in a sequential
manner yields the same distribution as if we used all the data simultaneously as in (2.3). In
addition, we can see from (2.2) that the Gibbs posterior minimizes the expected loss with an
added requirement that this posterior be close to the prior in the sense of the KL divergence.
Also, notice that W weights our relative belief between the information provided by the data
versus the information in the prior.

Also, we can see that the usual Bayes rule is a special case of (2.3) by using the negative
log-likelihood as the loss function with W = 1. Indeed, if we use l(x ,di) = � log(p(di|x ))
where p(di|x ) is the likelihood function, we get

r(x ) = ’n

i=1 p(di|x )r0(x )R
X ’n

i=1 p(di|x )r0(x )dx

which is the conventional Bayes rule.
Integrating more data points into the Gibbs update requires just a summation of the individual

losses to form a cumulative loss l(x ,{di}n

i=1) := Ân

i=1 l(x ,di). So, the dependence of the loss
function on data is straightforward. Hence, without loss of generality, we denote a generic loss
function l(x ) in the sequel for the sake of notation simplicity. In this case, the Gibbs update
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formula becomes
r(x ) = exp(�Wl(x ))r0(x )R

X exp(�Wl(x ))r0(x )dx
. (2.4)

3. SURROGATE APPROXIMATION

In the update formula (2.4), evaluating l(x ) at each parameter x requires an evaluation of a
potentially expensive PDE model. In this work, we use a computationally inexpensive surrogate
model l(x ) to approximate the loss function l(x ). Although our exposition is generally appli-
cable to any method used for building surrogate models, we will focus later on the integration
of an adaptive local reduced basis approach [35] with the current Gibbs posterior framework.

Using l(x ) for the Gibbs update in (2.4) results in an approximate Gibbs posterior that can
be sampled (approximated) at a low computational cost. However, it is important to understand
the error in such an approximation in order to build an effective surrogate model with controlled
accuracy. To this end, we first define the approximate Gibbs posterior r(x ) as

r(x ) = exp(�Wl(x ))r0(x )R
X exp(�Wl((x ))r0(x )dx

. (3.1)

To quantify the error introduced by using the surrogate l(x ) in (3.1), we derive a bound for
the discrepancy between the approximate posterior r(x ) and r(x ). For this purpose, we first
state the following boundedness assumption on the loss function l(x ) and its surrogate l(x ).

Assumption 1. The loss functions l(x ) and l(x ) are nonnegative and are uniformly bounded
from above: 9 Cl,Cl

> 0 independent of x 2 X such that for all x 2 X

0  l(x )Cl, 0  l(x )C
l
. (3.2)

To measure the distance between probability distributions, we use the metric

h(r1,r2) = sup
| f |•1

q
E|r1[ f ]�r2[ f ]|2,

where r1,r2 2 P are two possibly random elements in P, the supremum is over all f : X ! R
such that supx2X | f (x )| 1, and r[ f ] =

R
X f (x )r(x )dx . The expectation is with respect to the

randomness of r1,r2. In case where r1 is determined, and r2 is an approximation to r1 through
a randomized algorithm, e.g., Monte Carlo, the expectation is with respect to the randomness of
the algorithm. Note that h is indeed a metric on P, in particular, it satisfies the triangle inequality
[4, 29].

In addition, we define an e-feasible set as

Xe := {x 2 X : |l(x )� l(x )| e} (3.3)

where e > 0 is some constant indicating the accuracy of the surrogate model l(x ). We always
assume that e is small, e.g., We ⌧ 1. The set Xe contains all the parameters where the surrogate
is accurate in the sense that the absolute difference between l(x ) and the l(x ) is bounded by
e. The complement of Xe is denoted by X?

e
:= X \Xe. Now, we state the following theorem

regarding the accuracy of r(x ),

Theorem 3.1. Under Assumption 1, the following bound holds:

h(r,r) 2exp(WCl)CWe+2exp(WCl +W max{Cl,Cl
})r[ X?

e
],
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for some constants C > 0.

Proof. See Appendix A. ⇤
Note that r[ X?

e
] =

R
X?

e
r(x )dx is exactly the posterior measure of X?

e
. Theorem 3.1 states

that, given a prescribed e, if the posterior measure of the region where the surrogate model l(x )
is inaccurate, i.e., r[ X?

e
], is small, the approximate posterior r is close to the true posterior

r (depending on the prescribed accuracy e). This indicates that the local RB surrogate model
only needs to be accurate over the “important region” where the majority of the posterior mass
is contained.

Indeed, thanks to the information contained in the data, the posterior distribution typically
concentrate on a much smaller portion of the prior support. Hence, we usually do not need a
“globally accurate” surrogate model over the entire support of the prior. The local RB method,
discussed next, is naturally tailored to provide locally accurate approximations as shown in
[34, 35].

4. THE LOCAL RB SURROGATE

To construct the surrogate model l(x ), we employ the local RB method first introduced in
[35]. We briefly describe the local RB method in this section.

We assume the loss function l(x )= g(u(x )) for some functional g :U !R, and the functional
g is Hölder continuous. That is, there exists K > 0 and a > 0 such that

|g(w)�g(w0)| Kkw�w
0ka

U
8w, w

0 2U.

We use the local RB method to build a surrogate model u(x ) : X ! U and evaluate l(x ) as
l(x ) = g(u(x )). Note that based on the above assumption, we have that

|l(x )� l(x )| Kku(x )�u(x )ka
U

8x 2 X. (4.1)

In the local RB method, we partition the parameter space into Voronoi cells, i.e., X=[n

k=1Xk,
seeded at m selected atoms xk, k = 1, . . . ,m. Within each cell, we form a local basis for ap-
proximating the PDE solution u(x ) using, e.g., full-order PDE solutions at a fixed number of
proximal atoms as well as the gradient of the solution at the given seed. For example, Figure 1
shows a partition of a parameter domain X ✓ R2 with 2,000 Monte Carlo samples of x in the
background (e.g., drawn from a prior distribution). The surrogate solution at the large blue dot
is computed using a basis consisting of full PDE solutions at the large solid red dots as well as
the solution and gradient at the large black dot. The number of neighbors Nb for the local basis
is usually chosen to be a fixed constant. In general, the number of neighbors is an algorithmic
choice of the user, but can also be chosen adaptively depending on the desired accuracy of the
local approximation.

The local RB surrogate model u(x ) of u(x ) is given by

u(x ) =
n

Â
k=1

Xk
(x )uk(x ) (4.2)

where Xk
denotes the characteristic function of the set Xk, i.e., Xk

(x ) = 1 if x 2 Xk and
Xk
(x ) = 0 otherwise, and uk : Xk !Uk is the solution of the reduced problem

hM(uk(x );x ),viV ⇤,V = 0 8v 2Vk, 8x 2 Xk.
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FIGURE 1. The local reduced basis method with two random parameters. The
surrogate solution at the large blue dot is computed using a basis consisting of
the solution at the large solid red dots as well as the solution and gradient at the
large black dot. We plot 2,000 Monte Carlo samples of x in the background.

Here, Fk is a “local basis” within Xk, e.g.,

Fk =
h
u(xk),—x u(xk),u(xk1),u(xk2), . . . ,u(xkN

b

)
i
,

Uk = span(Fk), and Vk is a finite-dimensional subspace of V . Also, u(xk) and —x u(xk) are the
PDE solution and its gradient at the center of Cell k, while u(xki

), i = 1...Nb are PDE solutions
at the centers of neighboring cells. Since the cardinality of Fk is typically much smaller than
the full discretization of the PDE, we often realize significant computational savings by using
u(x ) as a surrogate model for u(x ). In addition, due to the local nature of the approximation,
the evaluation cost of u(x ) at any x 2 X does not increase as the number of atoms n increases.

To efficiently construct the local RB surrogate, we employ a greedy adaptive sampling pro-
cedure to select the atom set Q := {xk}n

k=1 (for details on this algorithm see [35]). The adaptive
selection of Q is guided by reliable a posteriori error indicators, denoted by eu(x ), i.e.,

ku(x )�u(x )kU . eu(x )

where x . y denotes “x is less than or equal to a constant times y.” That is, given k atoms, the
next atom xk+1 is selected from the region of X where the current surrogate error is the largest.
The error indicators eu(x ) used in [35] are residual-based error estimates. In fact, we have
shown in [35] that the error indicator eu(x ) can be further used to build more complex error
indicators that are specifically targeted for the approximating quantities of interest such as risk
measures.

For example, a possible error indicator for l(x ) can be derived using Equation (4.1) as

|l(x )� l(x )|. el(x ) := Keu(x )a 8x 2 X, (4.3)

which we can use to tailor the local RB method to specifically approximate l(x ).
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5. PARTICLE BASED APPROXIMATION WITH LOCAL RB SURROGATE

We now introduce a measure discretization that, along with an RB surrogate, will complete
our proposed framework. To this end, consider the pairs {xi,wi}m

i=1 and define the empirical
measure

rE(x ) =
m

Â
i=1

wid (x �xi) (5.1)

where d (·) is the Dirac delta function and the weights wi satisfy wi 2 [0,1] and Âm

i=1 wi = 1. This
form of approximation has been used extensively in sequential Monte Carlo (SMC) methods
[13, 14]. Here, we use such an approximation for the Gibbs posterior.

To approximate a given distribution r(x ), xi and wi need to be selected in some principled
manner, e.g., by minimizing some distance between rE(x ) and r(x ). For instance, a set of
Monte Carlo (MC) samples drawn from r(x ) with equal weights is a particle approximation to
r(x ). However, MC approximations typically display slow convergence and high variance. We
mention in passing that there are more efficient methods for constructing particle approxima-
tions such as the Stochastic Reduced Order Model approach introduced in [18, 19].

Now, suppose we have a particle based approximation for the prior r0(x ) based on the parti-
cle set {xi,w0

i
}m

i=1. Using the empirical measure rE

0 (x ) := Âm

i=1 w
0
i
d (x � xi) in (2.4), we have

an update formula for the particle weights as

wi =
exp(�Wl(xi))w0

i

Âm

k=1 w
0
k

exp(�Wl(xk))
. (5.2)

where wi is the posterior weight associated with xi. By (5.1), {xi,wi}m

i=1 defines a particle based
approximation rE(x ) to the Gibbs posterior distribution r(x ) in (2.4).

If we use a surrogate model l(x ) for the loss function, the posterior weights are then approx-
imated as

wi =
exp(�Wl(xi))w0

i

Âm

k=1 w
0
k

exp(�Wl(xk))
. (5.3)

The particles {xi,wi}m

i=1 define a surrogate empirical posterior measure

rE(x ) =
m

Â
i=1

wid (x �xi) (5.4)

that is an approximation to rE(x ).

5.1. Accuracy of surrogate particle approximations. We now undertake an error analysis of
the above approximations based on a fixed set of particles. The evolution of particles will be
addressed in the following section using the framework of SMC methods. The results shown
here are cornerstones for the convergence of the SMC method described in a subsequent section.
We first state a lemma regarding the particle based approximation.

Lemma 5.1. Given a distribution r0(x ), let {xi}m

i=1 be drawn independently from r0(x ), w
0
i

be the associated probability weight, and rE

0 (x ) be the empirical distribution in (5.1), then we

have that

h(rE

0 ,r0)

s
m

Â
i=1

(w0
i
)2. (5.5)
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In particular, if w
0
i
= 1

m
, as for the MC weights, we have that

h(rE

0 ,r0)
1p
m
. (5.6)

Proof. See Appendix A. ⇤
Lemma 5.2. Denote the transformation of the Gibbs posterior formula in (2.4) as GW : P ! P,

such that r(x ) = GW r0(x ). Under Assumption 1, we have

h(GW r1,GW r2) 2exp(WCl)h(r1,r2), (5.7)

for 8 r1,r2 2 P.

Proof. See Appendix A. ⇤
This result states that, for a fixed data set, GW is continuous with respect to the prior measure

in the metric h. Next we consider the surrogate approximation. We first state a counterpart of
Lemma 5.2 when the surrogate model (3.1) is used instead of (2.4):

Lemma 5.3. Denote the transformation of Gibbs posterior formula in (3.1) as GW : P ! P,

such that r(x ) = GW r0(x ). Under Assumption 1, we have

h(GW r1,GW r2) 2exp(WC
l
)h(r1,r2), (5.8)

for 8 r1,r2 2 P.

Proof. Same as Lemma 5.2. ⇤
We impose the following additional assumption on the local RB surrogate loss function l(x ).

Assumption 2. We assume that the surrogate loss function l(x ) is accurate over the particle set,
that is,

sup
i=1,...,m

|l(xi)� l(xi)| e (5.9)

for some e > 0 that indicates the error of the local RB approximation.

By the definition of the e-feasible set Xe, in view of Assumption 2, we have that xi belongs
to Xe. The bound (5.9) can be satisfied for any e by using the local RB Algorithm in [35] using
{xi}m

i=1 as training samples and el(x ) in Equation (4.3) as the error indicator. We have the
following two lemmas quantifying the difference between rE with weights computed by (5.2)
and rE in (5.4).

Lemma 5.4. Under Assumptions 1 and 2, the following bound holds:

DKL(rE ||rE) 2We.

Proof. See Appendix A. ⇤
In words, the error between the empirical posterior obtained from full PDE evaluations and

that obtained with a surrogate model is bounded up to a constant by the surrogate model error.

Lemma 5.5. Under Assumptions 1 and 2, the following bound holds:

h(rE ,rE) 2exp(WCl)CWe,

for some constant C > 0.
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Proof. See Appendix A. ⇤

We now show one of the main analytical results of our work. Namely, we provide an error
bound for a surrogate model, particle-based approximation to the Gibbs posterior.

Theorem 5.6. For an empirical distribution rE

0 based on {xi,w0
i
}m

i=1, which is an approxima-

tion to the prior r0, the approximate posterior rE
defined by (5.4) satisfies

h(rE ,r) 2exp(WCl)CWe+2exp(WCl)

s
m

Â
i=1

(w0
i
)2 (5.10)

for the same constants C > 0 as in Lemma 5.5. In particular, if w
0
i
= 1

m
, i.e., the particles are

MC samples of the prior, we have

h(rE ,r) 2exp(WCl)CWe+2exp(WCl)
1p
m
.

Proof. By triangle inequality and Lemma 5.1, 5.2 and 5.5, we have that

h(rE ,r) h(rE ,rE)+h(rE ,r)
 h(rE ,rE)+2exp(WCl)h(rE

0 ,r0)

 2exp(WCl)CWe+2exp(WCl)

s
m

Â
i=1

(w0
i
)2.

This completes the proof. ⇤

From these results, we can see that if we use an MC approximation to the prior, we can make
h(rE ,r) arbitrarily small by decreasing e and increasing m. In practice, however, it is nontrivial
to do both at the same time, as when the number of particles m increases, we require stronger
global accuracy on our surrogate model l(x ), which can only be achieved by globally refining
the surrogate with more PDE solves. To efficiently represent the posterior distribution with a
limited number of particles, we rely on a SMC method to progressively evolve the particles
through a sequence of interpolating distributions from r0 to r . The samples evolved through
the local RB surrogate are automatically navigated to the support of the posterior in the process.

6. AN ADAPTIVE SEQUENTIAL MONTE CARLO METHOD FOR PARTICLE EVOLUTION

The above discussion deals with the asymptotic convergence of the particle approximation
based on a fixed set of particles. In practice, using (5.3) as an approximation to the posterior
weights with a fixed set of particles drawn from r0 may lead to a poor approximation to r ,
especially when W is large. The reason for this is the potential loss of sample diversity, i.e., the
posterior mass may concentrate over just a few particles.

In SMC, instead of computing the posterior weights at once, particles are evolved to approx-
imate a sequence of intermediate distributions interpolating from the prior to posterior. The
particles are resampled and mutated after each iteration to prevent degeneracy. We adopt such
an SMC framework to approximate the Gibbs posterior distribution. In particular, our SMC
method for Gibbs posterior follows closely to the work in [20] where the authors proposed an
SMC method for high dimensional inverse problems.
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6.1. The Sequential Monte Carlo method. In the context of Gibbs posterior, the sequence of
the interpolating distributions are defined by

rt = GWt
r0, 0  t  N (6.1)

where 0 =W0 <W1 <W2 · · ·<Wt < · · ·<WN =W , and recall the definition of GW as the Gibbs
update formula defined in (2.4). we set rN = r , which is the posterior distribution we want to
approximate. Also, it is easy to show that we have the following property

rt = GWt�Ws
rs, 0  s  t  N (6.2)

by the Gibbs update formula (2.4). This property allows us to apply SMC methods and progres-
sively approximate r .

As mentioned, the key idea of SMC is to start from a particle based approximation of r0, i.e.,
rE

0 , which is easy to obtain, and gradually increase the weight Wt until it reaches W , adjusting
the particles along the way. To this end, we denote the particle approximation to rt as rE

t
,

rE

t
=

m

Â
i=1

w
t

i
d (x �x t

i
)

based on the particle set {x t

i
,wt

i
}m

i=1.
The iteration t + 1 of the SMC involves three steps: (i) update the weights of the current

particle set {x t

i
}m

i=1 by

w
t+1
i

=
exp(�(Wt+1 �Wt)l(x t

i
))wt

i

Âm

k=1 w
t

k
exp(�(Wt+1 �Wt)l(x t

k
))
. (6.3)

The distribution based on {x t

i
,wt+1

i
}m

i=1 is denoted by

rE

t+1,t =
m

Â
i=1

w
t+1
i

d (x �x t

i
),

that is rE

t+1,t = GWt+1�Wt
rE

t
. By Lemma 5.2, we have that

h(rE

t+1,t ,rt+1) 2exp((Wt+1 �Wt)Cl)h(rE

t
,rt). (6.4)

(ii) Resample the particles {x t

i
}m

i=1 with replacement according to the weights {w
t+1
i

}m

i=1,
i.e., resample according to rE

t+1,t . This step effectively eliminates the particles with negligible
weights and duplicate the particles with large weights. All resampled particles, including the
duplicates, are denoted by {x t+1,t

i
}m

i=1 and are assigned equal weights 1/m. The resampled
distribution is denoted by

rE,S
t+1,t =

m

Â
i=1

1
m

d (x �x t+1,t
i

).

By Lemma 5.1, we have that

h(rE,S
t+1,t ,r

E

t+1,t)
1p
m
. (6.5)

This resampling step alone does not prevent sample degeneracy, as only a few particles will
survive and copy themselves. To preserve population diversity, a third step is required.

(iii) Apply a rt+1-invariant mutation to the resampled set {x t+1,t
i

}m

i=1 in step (ii). This can
be achieved by evolving the particles {x t+1,t

i
}m

i=1 independently by one or more steps using a
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rt+1-invariant Markov kernel Kt+1 (i.e., rt+1 = rt+1Kt+1), e.g., an MCMC kernel with rt+1
as the stationary distribution. Note that the invariant property of Kt+1 implies that [4, 29],

h(pKt+1,qKt+1) h(p,q), 8 p,q 2 P, 8 0  t  N �1. (6.6)

The resulted particles from step (iii), denoted by {x t+1
i

}m

i=1, with weights 1/m, define the dis-
tribution

rE

t+1 =
m

Â
i=1

1
m

d (x �x t+1
i

)

that is used to approximate rt+1 and is used for the next iteration of the SMC. We adopt the same
MCMC mutation kernel proposed in [20] for this step, which has been shown to be efficient for
high dimensional inverse problems.

We have the following theorem regarding the SMC method for the Gibbs posterior.

Theorem 6.1. Assuming that the initial particles are a set of MC samples with equal weights

1/m, then following the above outlined SMC method with the exact loss function l(x ), we have

that for all iterations t : 0  t  N �1,

h(rE

t+1,rt+1)
1p
m

t+1

Â
s=0

6t+1�s exp((Wt+1 �Ws)Cl) (6.7)

in particular, we have a posterior error bound

h(rE ,r) 1p
m

N

Â
s=0

6N�s exp((W �Ws)Cl). (6.8)

where W =WN.

Proof. See Appendix A. ⇤

When a local RB surrogate loss function l(x ) is used, the sequence of distributions are defined
by rE

t . The update in step (i) is replaced by

w
t+1
i

=
exp(�(Wt+1 �Wt)l(x t

i
))wt

i

Âm

k=1 w
t

k
exp(�(Wt+1 �Wt)l(x t

k
))
. (6.9)

which defines rE

t+1,t = Âm

i=1 w
t+1
i

d (x � x t

i
). That is, rE

t+1,t = GWt+1�Wt
rE

t . By Lemma 5.3, we
have

h(rE

t+1,t ,rt+1) 2exp((Wt+1 �Wt)Cl
)h(rE

t ,rt), (6.10)

where

rt(x ) =
exp(�Wtl(x ))r0(x )R

X exp(�Wtl((x ))r0(x )dx
. (6.11)

In addition, the kernel mutation step requires evaluation of the loss function l(x ) at new
parameters which can be accelerated by l(x ) as well. To this end, we use a surrogate kernel
Kt+1 that is invariant with respect to rt+1. The mutation with respect to Kt+1 only requires
evaluation of l(x ). We have the following theorem regarding the SMC method using l(x ):
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Theorem 6.2. Assuming that the initial particles are a set of MC samples with equal weights

1/m, then following the above outlined SMC method using the local RB surrogate l(x ) for step

(i) and (iii), we have that for all iterations t : 0  t  N �1,

h(rE

t+1,rt+1)
1p
m

t+1

Â
s=0

6t+1�s exp((Wt+1 �Ws)Cl
)+2exp(Wt+1Cl)CeWt+1e

+2exp(Wt+1Cl +Wt+1 max{Cl,Cl
})rt+1[ X?

e
] (6.12)

In particular, we have the posterior error bound

h(rE ,r) 1p
m

N

Â
s=0

6N�s exp((W �Ws)Cl
)+2exp(WCl)CeWe

+2exp(WCl +W max{Cl,Cl
})r[ X?

e
], (6.13)

where W =WN.

Proof. The first term on the right-hand-side comes from a simple restatement of Theorem 6.1
for h(rE

t+1,rt+1). The remainders of the right-hand-side is due to the error bound in Theorem
3.1. ⇤

From Theorem 6.2, we see how we should construct the surrogate model l(x ). Given the
number of particles m and the prescribed surrogate accuracy e, we need to build the surrogate
l(x ) so that r[ X?

e
], i.e. the posterior measure of the “unfeasible set” X?

e
, is minimized. In

terms of local RB surrogate, this requires concentration of local RB atoms and the accurate
approximation of l(x ) over the support of the posterior. To this end, we progressively train the
local RB surrogate using the sequence of particles {x t

i
}m

i=1. As the particles gradually cluster
over the support for the posterior through the SMC iterations, the focus of the local RB surrogate
is automatically navigated to the support of the posterior as well, resulting in a decrease of
the measure of the inaccurate set r[ X?

e
]. In addition, notice that the support of the posterior

typically corresponds to a small and local region of the support of the prior. Hence, once the
local RB model becomes sufficiently accurate over that region, further evolution of the particles
does not require expensive updates of the surrogate model, leading to computational savings.

Notice that the surrogate loss function l(x ) is changing throughout the SMC iterations. We
can recover consistency in (6.11) for all t by re-running the SMC algorithm from the beginning
up to the current Wt using the latest l(x ) before the next SMC iteration. This procedure is
computationally inexpensive since the surrogate model samples do not need to evolve during
the re-run and hence no full PDE solves are required. Therefore, we always assume that the
update (6.11) is consistent for all iterations with the latest surrogate model l(x ).

We now present the MCMC algorithm for the mutation step using the local RB surrogate
l(x ). To this end, we first define the following mean and variance of rE

t+1,t , which is the particle
distribution after SMC step (i) and before resampling step (ii), for each parameter dimension
j 2 {1,2, . . . ,M} as

m
E

t+1,t, j =
m

Â
i=1

w
t+1
i

x t

i, j, SE

t+1,t, j =
m

Â
i=1

w
t+1
i

(x t

i, j �m
E

t+1,t, j)
2. (6.14)
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The above quantities provide estimates of the mean and variance of rt+1 along each individual
parameter dimension at SMC iteration t +1, and will be used to facilitate the design a proposal
distribution for the MCMC kernel Kt+1.

Based on the above definition, a proposal x̂ t+1,t
i

for a particle x t+1,t
i

2 {x t+1,t
i

}m

i=1 can be
obtained by the following mutation

x̂ t+1,t
i, j = m

E

t+1,t, j + g(x t+1,t
i, j �m

E

t+1,t, j)+
q

1� g2Lt+1,t, j, 1  j  M (6.15)

where g is an algorithmic constant and Lt+1,t, j is a random variable with distribution N (0,SE

t+1,t, j).
Note that the scaling of the proposal distribution is tailored for each individual parameter di-
mension by the variance estimates SE

t+1,t, j to improve mixing. In contrast to standard random
walk proposals, the above proposal scales to high dimensional problems as shown in [20]. The
transition probability associated with the proposal in (6.15) is given by

Q(x̂ t+1,t
i

|x t+1,t
i

) = exp

 
� 1

2(1� g2)

M

Â
j=1

(x̂ t+1,t
i, j �m

E

t+1,t, j � g(x t+1,t
i, j �m

E

t+1,t, j))
2

SE

t+1,t, j

!
. (6.16)

Algorithm 1 shows the rt+1-invariant mutation MCMC sampler.

Algorithm 1 The MCMC algorithm for rt+1-invariant mutation

For each x (0) 2 {x t+1,t
i

}m

i=1, evolve x (0) independently for I steps with the following
procedure

• For i = 1,2, . . . , I, do
– Draw a proposal dx (i) using the proposal distribution in (6.15) based on

x (i�1).

– Use l(x ) to evaluate a = 1^ exp(�Wt+1l(dx (i)))r0(dx (i))Q(x (i�1)|dx (i))
exp(�Wt+1l(x (i�1))r0(x (i�1))Q(dx (i)|x (i�1))

– With probability 1�a , reject dx (i) and set x (i) = x (i� 1), i = i+ 1. Go
back to the proposal step.

– If dx (i) not rejected, set x (i) = dx (i) and i = i+ 1. Go back to the proposal
step.

End
• Finally, return x (I) as a rt+1-invariant mutation of x (0).

6.2. Adaptive selection of the SMC step size. We now describe how the sequence of step size
0 =W0 <W1 <W2 · · ·<Wt < · · ·<WN =W can be selected adaptively. For each SMC iteration
t + 1, we would like to greedily apply all the residual weight DW = WN �Wt to the particle
distribution rE

t from the previous iteration, so that we can directly approximate the posterior
r . After applying the SMC step (i), i.e., updating the weights by Equation (6.9) using DW ,
we check a simple criteria called the effective sample size (ESS), which is used to measure the
sample degeneracy of the current weights

ESS =

 
m

Â
k=1

⇣
w

t+1
i

⌘2
!�1

.
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Note that ESS is small if the majority of the probability weights are pivoted on only a few
particles, which indicates the loss of sample diversity. In this case, we reduce the incremental
weights by a constant factor DW = qDW with q 2 (0,1) and repeatedly backtrack and reevaluate
Equation (6.9) and ESS until the latter variable is above some preset threshold. In this case, we
accept DW , set Wt+1 = Wt +DW , move on to the step (ii) and (iii) and finish the current SMC
iteration t +1. If the residual weight is not zero after iteration t +1, we set t = t +1 and move
to the next SMC iteration. Otherwise, we have applied the total weight to the prior and obtained
an approximation to the posterior.

Of course, the local RB surrogate model l(x ) evolves as well by the adaptive training on
the particles before applying the incremental weight in each SMC iteration. We require l(x ) to
satisfy Assumption 2 for each iteration t. As the particles gradually cluster over a small region
in the parameter space, i.e., the support for the posterior, l(x ) becomes accurate in that region as
well, reducing the measure of the inaccurate set r[ X?

e
] as a result. In addition, as the particles

become more compact in a local region, expensive refinements of the local RB model are less
often triggered due to the local accuracy of l(x ).

We first present the adaptive refinement of the local RB surrogate over a given particle set
{x t

i
}m

i=1 in Algorithm 2. We then show the complete adaptive SMC method in Algorithm 3.
In Algorithm 2, we note that the accuracy parameter ethre is prescribed beforehand and can be
made adaptive as well. For example, we can further improve computational efficiency by setting
a larger ethre in the beginning stage of the SMC algorithm and gradually reduce ethre throughout
the iterations. This strategy leads to computational savings in the beginning stage when the
particles are far from the support of the posterior and are less relevant for characterizing the
posterior distribution. However, it is essential to set ethre small enough such that each SMC
iteration still leads to the particles moving towards the posterior.

One possible approach is to choose ethre based on the range of variation of l(x ) over the
current particle set {x t

i
}m

i=1, e.g., we can set ethre to be a small fraction of the standard deviation
of {l(x t

i
)}m

i=1 and compute ethre automatically for each SMC iteration. With this approach,
ethre is large at initial stages of the SMC algorithm where particles are diverse and the range
of variation of l(x ) is large. In the latter stages where particles are more clustered, l(x ) has a
smaller range over the particles, which leads to a smaller ethre.

Algorithm 2 Adaptive refinement of local RB surrogate
Given the current particle set XP := {x t

i
}m

i=1, the current local RB surrogate model l(x )
for l(x ), and a desired accuracy threshold ethre,

• Compute the local RB error indicator el(x ) for each particle in XP and emax =
maxx2XP

el(x ).
• While emax > ethre, do

– Select the particle xmax = argmaxx2XP
el(x ).

– Update l(x ) by the PDE information at xmax via local RB method.
– Update the error indicators el(x ) for each particle in XP and emax.

End
• Return the updated surrogate l(x ).
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Algorithm 3 The adaptive SMC method

Given initial particle approximation rE

0 := Âm

i=1 w
0
i
d (x � x 0

i
) (and w

0
i

:= w
0
i
), the total

loss weight W to be applied, set Wcurrent = 0 and t = 0.
• While Wcurrent <W , do

– Run Algorithm 2 to possibly refine the local RB surrogate l(x ) over the
current particle set {x t

i
}m

i=1.
– Set DW =W �Wcurrent.
– While TRUE, do

– Compute the new weight w
t+1
i

by Equation (6.9) using DW as the
incremental weight.

– Compute ESS of
n

w
t+1
i

o
m

i=1
.

– If ESS > ESSthre, break.
– Backtrack: DW = qDW .

End
– Resample particles {x t

i
}m

i=1 according to
n

w
t+1
i

o
m

i=1
to obtain {x t+1,t

i
}m

i=1

with weights 1/m.
– Mutate each particle in {x t+1,t

i
}m

i=1 with Algorithm 1 to obtain a new set
of evolved particles {x t+1

i
}m

i=1, set w
t+1
i

= 1/m, obtain the current particle
approximation rE

t+1 = Âm

i=1
1
m

d (x �x t+1
i

).
– Set Wcurrent =Wcurrent +DW , t = t +1.

End
• Report rE

t+1 as an approximation to the Gibbs posterior r .

7. CHOOSING THE WEIGHT FOR THE LOSS FUNCTION

In this section we describe one approach to select W , the weights in the loss function. The
importance of the weights in the Gibbs posterior formulation is to calibrate the loss, the cali-
bration is automatic in classic Bayesian inference as the density of the data generation process
is the calibration. For example, in the case of Gaussian noise the 1

2s2 in the likelihood function
can be interpreted as the weight, so when the noise level is high the likelihood is discounted as
compared to the low noise setting. Methods to select W are generally subjective in the context
of the Gibbs posterior, and often problem dependent as well [5, 32]. The work in [5] intro-
duced several subjective ways to select W . In particular, one proposed method is to select W

by balancing two isolated loss terms from the objective function (2.2). In settings where large
data sets are available, one can also select W using methods like cross-validation to tune the
predictive performance of the posterior.

For inverse problems, however, one typically has access to a rather limited number of obser-
vations, so without some assumption on the noise in the data it is hard to quantify uncertainty
about the inverse solution. We will make some weak assumptions on the noise to provide a
method to set the weight. We assume the noise are i.i.d with mean and standard deviation

E[e] = eM, eD =
�
E[e2]�E[e]2

� 1
2 .
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We adopt an approach that is in the same spirit as the Morozov’s discrepancy principle [7,
30]. We select a weight for which the mean and standard deviation of residual of the posterior
predictions will match the statistics on the observed data

Wopt = argmin
W2WWW

k1
n

Ân

i=1 ēi(W )� eMk+k
q

1
n�1 Ân

i=1(ēi(W )� eM)2 � eDk
keDk (7.1)

with ēi(W ) =F (Er(x ))�di is the posterior predicted noise or residual for observation i, given
weight W . Selecting the set WWW to optimize over in the above equation is nontrivial. In addition,
when the sample size is small, Note that, even with only one observation, if multiple channels
are available, one can still estimate the statistics of noise and use (7.1) to select W , however one
would not have a great deal of trust in the estimate.

We know that the weight would be 1
2(eD)2 for the classic Bayesian setting with square loss and

Gaussian noise. Using this information we provide a discrete grid of candidate weight values

WWW :=


1
2(eD)2

T
,T 1

2(eD)2

�
, where T > 1 is a range parameter (e.g., T = 50). The discretization is

for computational efficiency. To address the case where we may have a very small sample size
we stabilize our weight estimate by modeling averaging with the standard Bayesian case

W =
S

S+n�1
1

2(eD)2 +
n�1

S+n�1
Wopt (7.2)

for some S � 1 (e.g., S = 10). When n is small, we favor the empirical weight 1
2(eD)2 , when n is

large and the noise statistics can be computed with good accuracy and we favor the optimized
weight Wopt, the above can be considered an empirical Bayes procedure.

We can take advantage of the sequential structure of the SMC procedure to efficiently evaluate
the objective in (7.1) using intermediate computations from the SMC procedure. This allows us
to efficiently compute Wopt upon finishing the SMC run and then compute the final weight by
(7.2),.

It is worth further investigation to see if one can choose the weight W purely based on the
data, instead of imposing additional assumptions of the noise. In addition, it is useful to under-
stand if the use of further information about r(x ) beyond the posterior mean Er(x ) would help
in determining W .

8. NUMERICAL EXAMPLES

Now, we present three numerical examples to show the behavior and computational efficiency
of our SMC method.

8.1. 1D advection diffusion equation. In the first example, we consider a 1D advection-
diffusion problem. We show that our method recovers the usual Bayesian approach when a
likelihood function is available and that we use the negative log-likelihood as the weighted loss
function.

Let D = (0,1) and consider the following boundary value problem

�n ∂ 2
u

∂x2 (x,x
⇤)+b(x,x ⇤)

∂u

∂x
(x,x ⇤) = f (x), x 2 D (8.1a)

u(0,x ⇤) = u(1,x ⇤) = 0 (8.1b)
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The diffusivity, n , and source, f , are known whereas the advection field, b, is a piecewise
constant random field parametrized by two unknown parameters x ⇤

1 and x ⇤
2 as

b(x,x ⇤) = [b1 +2x ⇤
1 ] [0,0.5)(x)+ [b2 +2x ⇤

2 ] [0.5,1](x) (8.2)

where S(x) is one if x is in the set S and is zero otherwise.
We are able to measure the solution at three different locations of x = [0.1,0.5,0.9]. Our

noisy data is hence given by
d = Du+ e

where D is an operator that maps the solution u(x,x ⇤) to the measurement and e is a noise
vector that contains i.i.d entries. We assume the noise is drawn from a Gaussian distribution
with standard deviation equal to 10% of the magnitude of the true data. In particular, we have
eD = 0.173. To match the Gaussian likelihood, we use W = 1

2(eD)2 = 16.70 and the loss

l(x ,d) = kDu(x,x )�dk2
l2
.

The values of the known parameters are n = 0.1, b1 = �0.5, b2 = �0.2, f (x) = 1, while
the true values of unknown parameters are x ⇤

1 = 0.2, x ⇤
2 = 0.7. For the prior distributions, we

assume x1 ⇠ U [0,1], x2 ⇠ U [0,1]. We use Algorithm 3 to compute the Gibbs posterior with
m = 100 evolving particles and local RB accuracy set to be 1e�3. In addition, as reference, we
perform the standard Random Walk Metropolis-Hastings algorithm with Gaussian likelihood to
obtain 5,000 samples from the posterior with 1,000 burn-in steps.

We show the comparison of our SMC result with the MCMC reference in Figure 2. Clearly,
the SMC method performs similarly to the reference in approximating the posterior distribu-
tion. In particular, the SMC method took just 3 iterations to reach a good approximation of the
posterior. The evolution of the particles, the atoms of the local RB surrogate and the interme-
diate distributions are shown in Figure 3 to 6 for the various iterations. As can be seen, as the
weight W is progressively increased, the particles cluster around the support of the posterior,
while simultaneously leading the local RB surrogate to concentrate on the relevant region of the
parameter space.

We report the accumulative number of PDE solves at each SMC iteration in Figure 7. Most of
the computational effort corresponding to the construction of the local RB surrogate is spent the
first iteration as the particles move the most towards the posterior support. Once the local RB
becomes accurate over the posterior region, further evolution of the particles rarely triggers the
refinement of the surrogate. The total number of PDE solves to obtain the shown posterior for
this example was around 200, representing a significant computational saving over the MCMC
method.

8.2. 2D advection diffusion equation. In the second example, we consider the simultaneous
identification of the diffusivity constant and unknown source for a 2D advection-diffusion prob-
lem. Let D = (0,1)2. We consider the following problem,

�— · (k(x ⇤)—u(x,x ⇤))+ v(x) ·—u(x,x ⇤) = f (x,x ⇤) x 2 D (8.3a)
u(x,x ⇤) = 0 x 2 Gd (8.3b)

k(x ⇤)—u(x,x ⇤) ·n = 0 x 2 Gn (8.3c)

where Gd := [0,1]⇥ {0} and Gn := ∂D \Gd . The unknown parameters x ⇤ are included in the
diffusivity constant k(x ⇤) and the source term f (x,x ⇤).
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FIGURE 2. 1D advection diffusion equation: Comparison of the posterior dis-
tribution of the parameters computed by Algorithm 3 and the standard MCMC
method with Gaussian likelihood function.
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FIGURE 3. 1D advection diffusion equation: SMC iteration 0, with a loss weight
W0 = 0. In A) the true parameters are black, the particles are red and the atoms
for local RB are blue.
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FIGURE 4. 1D advection diffusion equation: SMC iteration 1, with a loss weight
W1 = 0.0782. In A) the true parameters are black, the particles are red and the
atoms for local RB are blue.

In particular, the diffusivity is modeled as

k(x ⇤) = 0.02+0.98x ⇤
1 (8.4)
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FIGURE 5. 1D advection diffusion equation: SMC iteration 2, with a loss weight
W2 = 1.43. In A) the true parameters are black, the particles are red and the atoms
for local RB are blue.
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FIGURE 6. 1D advection diffusion equation: SMC iteration 3, with a loss weight
W3 = 16.7. In A), the true parameters are black, the particles are red and the
atoms for local RB are blue.
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FIGURE 7. 1D advection diffusion equation: The accumulative number of PDE
solves at each iteration of the SMC Algorithm 3 for the 1D advection diffusion
problem.

The advection field is divergence free and is defined by

v(x) = 13
✓

1
0

◆
+9
✓
�x1

x2

◆
. (8.5a)
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Finally, the forcing term f is modeled by two Gaussians function with unknown magnitudes,
i.e.,

f (x,x ⇤) = 10exp
✓
�(x1 �0.25)2 � (x2 �0.5)2

0.252

◆
x ⇤

2 +5exp
✓
�(x1 �0.75)2 � (x2 �0.75)2

0.332

◆
x ⇤

3

(8.6)

The goal is to identify x ⇤ from noisy measurements of the PDE solution u(x,x ⇤). Again, we
assume that the concentration field is measured over a uniform grid in the domain. Our noisy
data is hence given by

d = Du+ e
where D is an operator that maps the solution u(x,x ⇤) to the measurement locations and e is a
noise vector that contains i.i.d entries. Notice that we are assuming that the concentration field
has enough regularity as to allow for point-wise evaluations. We assume the noise is drawn
from a Gaussian distribution with standard deviation equal to 20% of the magnitude of the true
data. In particular, we have eD = 0.0197. For this problem, we use the following l1 loss:

l(x ,d) = kDu(x,x )�dkl1 .

The weight W was obtained using the approach outlined in Section 7. After estimating W , we
compare the SMC method in Algorithm 3 to a Random Walk Metropolis-Hastings method using
exp(�Wl(x )) as the likelihood. Notice that the Gibbs posterior is invariant with respect to the
MC transitions.

The true values of the unknown parameters are x ⇤
1 = 0.1, x ⇤

2 = 0.7, x ⇤
3 = 0.5. For the prior,

we assume x1 ⇠ b (1,2), x2 ⇠ b (3,1), x3 ⇠ b (3,1) and that they are independent. The final
weight selected was W = 25.8, representing approximately 1/50 of 1

2(eD)2 . We use Algorithm
3 to compute the Gibbs posterior with m = 100 evolving particles. In addition, when training
the local RB surrogate model at each SMC step t, we employ an adaptive accuracy ethre that is
equal to 2% of the standard deviation of {l(x t

i
)}m

i=1. We run the reference MCMC method to
obtain 5,000 samples from the posterior with 1,000 burn-in steps.

In Figure 8, we show the true diffusivity, advection and source fields. In Figure 9 we show
the noise-free PDE solution, the corrupted solution, and the measurement points. We show
the comparison of our SMC result with the MCMC reference in Figure 10. Again, the SMC
method performs similarly to the reference in approximating the posterior distribution. The
random variable x3 has the largest posterior uncertainty due to the fact that the solution, hence
the data, has the least sensitivity with respect to this parameter. Notice that the source associated
with x3 is located near the top right corner of the domain and, hence, has limited impact on the
concentration at most of the measurement points.

Only 3 iterations of our SMC algorithm were needed to reach the predefined tolerance in this
example. Figure 11 shows the evolution of particles as well as the local RB atoms throughout
the SMC iterations. Clearly, the particles and local RB atoms simultaneously evolve towards
the support of the posterior, leading to an improved approximation of the posterior distribution.
In addition, as the particles become more clustered, the variation of l(x ) over the particles
becomes lower, leading to smaller ethre (higher accuracy requirement on the surrogate).

Finally, we show the accumulative number of PDE solves at each iteration in Figure 12. Note
that we did not include the PDE solves in the preprocessing step to select W , and we reinitialized
the local RB surrogate model before computing the posterior under the final weight. We do this
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to demonstrate how the computational efforts corresponding to the construction of the local RB
surrogate are distributed in the SMC iterations. The number of PDE solves (local RB atoms)
depends critically on ethre in each iteration. In the first iteration, because ethre is relatively large,
only about 100 PDE solves are incurred. In the latter iterations, ethre becomes lower and the
accuracy requirement imposed on l(x ) becomes tighter as well. On the other hand, the particles
become more compact in the latter iterations. Though the decreased ethre demands more PDE
solves to refine the surrogate model, the increased clustering of the particles makes it easier for
the local RB surrogate to reach the accuracy requirement. These two competing factors jointly
determine the number of additional refinements on the surrogates. Overall, only less than 400
PDE solves were incurred in the SMC method to obtain the approximate posterior, representing
a significant computational saving over the MCMC reference.

(A) Constant
diffusivity field

(B) Ad-
vection
field

(C) Source

FIGURE 8. 2D advection diffusion equation: The diffusivity, advection and
source fields of the 2D advection-diffusion equation.

(A) (B)

FIGURE 9. 2D advection diffusion equation: The noise-free solution and the
noisy measurements.

8.3. 2D elasticity equation. In the last example, we consider two simple elastography prob-
lems where we need to infer the distribution of mechanical properties given noisy displacement
measurements under known loads. These problems are usually characterized by higher dimen-
sionality than those in the previous examples, and hence, are more computationally expensive
to solve.
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FIGURE 10. 2D advection diffusion equation: Comparison of the posterior dis-
tribution of the parameters computed by Algorithm 3 and the standard MCMC
method.
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FIGURE 11. 2D advection diffusion equation: The evolution of the particles and
the local RB atoms at each iteration of SMC algorithm. The true parameter is in
black, the particles are in red and the local RB atoms are in blue.
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FIGURE 12. 2D advection diffusion equation: The accumulative number of
PDE solves at each iteration of the SMC Algorithm 3 for the 2D advection dif-
fusion problem.

Letting D = (0,1)2, we consider the following linear elasticity problem.

�— ·s(x,x ⇤)+ f = 0, x 2 D (8.7a)

e(x,x ⇤) =
1
2
(—u(x,x ⇤)+—u(x,x ⇤)T ), x 2 D (8.7b)

s(x,x ⇤) =C(x ⇤) : e(x,x ⇤), x 2 D (8.7c)
u(x,x ⇤) = 0 x 2 Gd (8.7d)

s(x,x ⇤) ·n = t x 2 Gn (8.7e)

where Gd := [0,1]⇥ {0} and Gn := ∂D \Gd . The unknown parameters x ⇤ are included in the
modulus of the material, which is part of the elasticity tensor C(x ⇤). We consider isotropic plane
stress problems where we know the Poisson’s ratio n = 0.3 and try to identify the unknown
Young’s modulus E(x ⇤) from noisy measurements of u(x,x ⇤). The setup of the problem as
well as the two modulus models we used in this example are shown in Figure 13. The two
problems have parameter dimensions of 5 and 9, respectively.

The displacement fields and the noisy measurements of the two models are shown in Figure
14 and 15, respectively. Note that we only use the noisy displacement data in the vertical, i.e.,
x2, direction. We perturb the solution with 5%, 10% and 20% Gaussian noise and investigate
the posterior mean and deviation computed by the SCM method. For the prior distribution, we
assume the parameters are independent and follow a b (1,3) distribution scaled to the range of
[0.1,10]. We use a simple l2 loss function and weights W = 1

2(eD)2 , which corresponds to the
Gaussian noise model exactly. In addition, when training the local RB surrogate model at each
SMC step t, we employ an adaptive accuracy ethre that is equal to 5% of the standard deviation
of {l(x t

i
)}m

i=1.
We plot the inversion for the two models under different level of noise in Figure 16 and 17,

respectively. The posterior mean gives reasonable approximations to the true modulus, and as
the level of noise in the data increases, we have higher uncertainty about our inverse solution,
as expected. Finally, we present the number of local RB atoms used in each of the models
with each level of noise in Figure 18. When the noise level is low, i.e., the weight for the loss
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1 
(A)
Boundary
condi-
tions.

(B) Material
with layered
Young’s
modulus.

(C) Material
with hard in-
clusion.

FIGURE 13. 2D elasticity equation: The boundary condition, and true material
properties for the simple elastography problems.

is large, the posterior becomes increasingly concentrated in a small region within the support
of the prior, and more SMC steps are needed to approximate the Gibbs posterior, leading to a
larger number of refinements (atoms) for the local RB. Also noticed from the comparison is that
when the dimension of the parameter space becomes high, as for the inclusion problem, higher
computational cost is required to approximate the Gibbs posterior.

(A) Horizontal
displacement

(B) Vertical dis-
placement

(C) Measure-
ment of the
vertical dis-
placement with
10% Gaussian
noise

FIGURE 14. 2D elasticity equation: The displacement fields and the noisy mea-
surements for the layered material.

9. CONCLUSION

In this work, we have proposed a particle-based approach with local RB surrogate model
to approximate the Gibbs posterior for inverse problems. The Gibbs posterior has a particular
advantage over the usual Bayesian approach, in the sense that it does not require an explicit
model of the data generating mechanism (i.e., a likelihood function). The Gibbs posterior is
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(A) Horizontal
displacement

(B) Vertical displacement (C) Measure-
ment of the
vertical displace-
ment with 10%
Gaussian noise

FIGURE 15. 2D elasticity equation: The displacement fields and the noisy mea-
surements for the material with a hard inclusion.
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FIGURE 16. 2D elasticity equation: The mean and standard deviation of Gibbs
posterior computed using data with different levels of noise for the layered ma-
terial.
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FIGURE 17. 2D elasticity equation: The mean and standard deviation of Gibbs
posterior computed using data with different levels of noise for the material with
a hard inclusion.

applicable where the unknown parameters are connected to the data through a loss function. It
provides a more general framework for updating belief distributions where the true data gen-
erating mechanism is unknown or difficult to specify. We employed the local RB method to
approximate the loss function in the Gibbs update formula. Based on a Sequential Monte Carlo
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FIGURE 18. 2D elasticity equation: The total number of local RB atoms upon
solving the Gibbs posterior for both material models and with different levels of
noise (Case NO.).

(SMC) framework, we presented a method to progressive approximate the Gibbs posterior by
simultaneously evolving the particles and adapting the local RB surrogate model in a sequential
manner. The emphasis of the local RB surrogate is navigated to a small fraction of the parameter
space automatically by the evolving particles that progressively cluster over the support of the
posterior. Computational savings are achieved thanks to the local accuracy and the efficiency of
our local RB method. Indeed, once the local RB surrogate becomes accurate enough (specified
by a parameter representing the approximation accuracy) over the local support of the posterior,
further evolution of the particles takes minimal cost. Through several numerical examples that
include advection-diffusion problems and elasticity imaging problems, we demonstrated the
consistency of our method with the state-of-art Markov chain Monte Carlo (MCMC) method.
Furthermore, we showed that significant computational savings can be achieved to approximate
the Gibbs posterior using our proposed method.
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APPENDIX A. PROOFS TO THE MAIN RESULTS

Proof to Theorem 3.1. First, note that for 8 x 2 Xe, we have that �e  l(x )� l(x )  e. For e

sufficiently small, e.g., We ⌧ 1, we have

|exp(�Wl(x ))� exp(�Wl(x ))| exp(�Wl(x ))|1� exp(Wl(x )�Wl(x ))|CWe

for some C > 0. Let

Z1 =
Z

X
exp(�Wl(x ))r0(x )dx , Z2 =

Z

X
exp(�Wl(x ))r0(x )dx . (A.1)



28 Z. ZOU, S. MUKHERJEE, H. ANTIL, W. AQUINO

Using Assumption 1 and the fact that | f |•  1, we have

Z1 =
Z

X
exp(�Wl(x ))r1(x )dx � exp(�WCl),

Z2 �
Z

X
exp(�Wl(x ))r2(x )| f (x )|dx .

In addition, we have

|Z1 �Z2|
Z

Xe

|exp(�Wl(x ))� exp(�Wl(x ))|r0(x )dx

+
Z

X?
e

|1� exp(Wl(x )�Wl(x ))|exp(�Wl(x ))r0(x )dx

CWe+
Z

X?
e

|1� exp(Wl(x )�Wl(x ))|Z1r(x )dx

CWe+ exp(W max{Cl,Cl
})r[ X?

e
].

Hence

|r[ f ]�r[ f ]|=
����

R
X exp(�Wl(x ))r0(x ) f (x )dxR

X exp(�Wl(x ))r0(x )dx
�
R

X exp(�Wl(x ))r0(x ) f (x )dx
R

X exp(�Wl(x ))r0(x )dx

����


R

X |exp(�Wl(x ))� exp(�Wl(x ))|r0(x )| f (x )|dx
Z1

+
|Z2 �Z1|

R
X exp(�Wl(x ))r2(x )| f (x )|dx

Z1Z2


CWe+ exp(W max{Cl,Cl

})r[ X?
e
]

Z1
+

|Z2 �Z1|
Z1

 2exp(WCl)CWe+2exp(WCl +W max{Cl,Cl
})r[ X?

e
].

This completes the proof.
⇤

Proof to Lemma 5.1. For any f , we have

rE

0 [ f ] =
m

Â
i=1

w
0
i

f (xi).

Hence,

rE

0 [ f ]�r0[ f ] =
m

Â
i=1

w
0
i
( f (xi)�r0[ f ]).

Note that since the particles xi are i.i.d. with distribution r0(x ), we have E[ f (xi)] = r0[ f ] 8 i =
1, . . . ,m. Hence

E[( f (xi)�r0[ f ])( f (x j)�r0[ f ])] = di jE[|( f (xi)�r0[ f ])|2].
Additionally, since | f |•  1, we have

E[|( f (xi)�r0[ f ])|2] = E[| f (xi)|2]�r0[ f ]
2  1.

Therefore,

E[|rE

0 [ f ]�r0[ f ]|2] =
m

Â
i=1

(w0
i
)2E[|( f (xi)�r0[ f ])|2]

m

Â
i=1

(w0
i
)2,
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which completes the proof.
⇤

Proof to Lemma 5.2. We have

GW r1[ f ]�GW r2[ f ] =

R
X exp(�Wl(x ))r1(x ) f (x )dxR

X exp(�Wl(x ))r1(x )dx
�
R

X exp(�Wl(x ))r2(x ) f (x )dxR
X exp(�Wl(x ))r2(x )dx

=

R
X exp(�Wl(x ))(r1(x )�r2(x )) f (x )dx

Z3

+
(Z4 �Z3)

R
X exp(�Wl(x ))r2(x ) f (x )dx

Z3Z4

where

Z3 =
Z

X
exp(�Wl(x ))r1(x )dx , Z4 =

Z

X
exp(�Wl(x ))r2(x )dx . (A.2)

Hence

|GW r1[ f ]�GW r2[ f ]|
|
R

X exp(�Wl(x ))(r1(x )�r2(x )) f (x )dx |
Z3

+
|Z4 �Z3||

R
X exp(�Wl(x ))r2(x ) f (x )dx |

Z3Z4
.

Note that since | f |•  1,
����
Z

X
exp(�Wl(x ))r2(x ) f (x )dx

����
Z

X
exp(�Wl(x ))r2(x )dx = Z4

Using Assumption 1, we have

Z3 =
Z

X
exp(�Wl(x ))r1(x )dx � exp(�WCl)

hence we have

|GW r1[ f ]�GW r2[ f ]|
|
R

X exp(�Wl(x ))(r1(x )�r2(x )) f (x )dx |
exp(�WCl)

+
|Z4 �Z3|

exp(�WCl)
.

Note that |exp(�Wl(x ))|•  1 and |exp(�Wl(x )) f (x )|•  1 for 8 f such that | f |•  1, hence
����
Z

X
exp(�Wl(x ))(r1(x )�r2(x )) f (x )dx

���� sup
|g|•1

|r1[g]�r2[g]|

and

|Z4 �Z3|=
����
Z

X
(r1(x )�r2(x ))exp(�Wl(x ))dx

���� sup
|g|•1

|r1[g]�r2[g]|.

Therefore,
|GW r1[ f ]�GW r2[ f ]| 2exp(WCl) sup

|g|•1
|r1[g]�r2[g]|

for 8 f such that | f |•  1. The lemma follows easily from the above inequality. ⇤
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Proof to Lemma 5.4. Based on Assumption 2, we have

exp(�Wl(xi))

exp(�Wl(xi))
= exp(Wl(xi)�Wl(xi)) exp(We) 8 i = 1, . . . ,m

exp(�Wl(xi))

exp(�Wl(xi))
= exp(Wl(xi)�Wl(xi)) exp(We) 8 i = 1, . . . ,m.

We first define

Z5 =
m

Â
k=1

w
0
k

exp(�Wl(xk)), Z6 =
m

Â
k=1

w
0
k

exp(�Wl(xk)). (A.3)

It is clear that

log
✓

Z5

Z6

◆
 log

 
exp(We)Âm

k=1 w
0
k

exp(�Wl(xk))

Âm

k=1 w
0
k

exp(�Wl(xk))

!
=We.

Hence

DKL(rE |rE) =
m

Â
k=1

exp(�Wl(xk))w
0
k

Z6
log

 
exp(�Wl(xk))w

0
k
Z5

exp(�Wl(xk))w0
k
Z6

!


m

Â
k=1

exp(�Wl(xk))w
0
k

Z6


log
✓

Z5

Z6

◆
+We

�

= log
✓

Z5

Z6

◆
+We = 2We.

⇤
Proof to Lemma 5.5. Recall the definition of Z5 and Z6 in (A.3), we have

rE [ f ]�rE [ f ] =
Âm

j=1 exp(�Wl(x j))w0
j
f (x j)

Âm

k=1 exp(�Wl(xk))w0
k

�
Âm

j=1 exp(�Wl(x j))w0
j
f (x j)

Âm

k=1 exp(�Wl(xk))w0
k

=
Âm

j=1(exp(�Wl(x j))� exp(�Wl(x j)))w0
j
f (x j)

Z5

+
(Z6 �Z5)Âm

j=1 exp(�Wl(x j))w0
j
f (x j)

Z5Z6
.

Note that

Z5 =
m

Â
k=1

exp(�Wl(xk))w
0
k
� exp(�WCl),

and that �����

m

Â
j=1

exp(�Wl(x j))w
0
j
f (x j)

����� Z6,

since | f |•  1. Also, since �e  l(x j)� l(x j)  e, for e sufficiently small, e.g., We ⌧ 1, we
have

|exp(�Wl(x j))� exp(�Wl(x j))| exp(�Wl(x j))|1� exp(Wl(x j)�Wl(x j))|CWe

for some C > 0. Hence
|Z5 �Z6|CWe.
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Finally, we have

|rE [ f ]�rE [ f ]| 2exp(WCl)CWe,

which implies the Lemma.
⇤

Proof to Theorem 6.1. First, by Equation (6.5), (6.6) and the fact that rt+1 = rt+1Kt+1, we
have

h(rE

t+1,rE

t+1,t) = h(rE,S
t+1,tKt+1,rE

t+1,t) h(rE,S
t+1,tKt+1,rE

t+1,tKt+1)+h(rE

t+1,tKt+1,rE

t+1,t)

 h(rE,S
t+1,t ,r

E

t+1,t)+h(rE

t+1,tKt+1,rt+1Kt+1)+h(rt+1,rE

t+1,t)

 1p
m
+2h(rt+1,rE

t+1,t).

Hence

h(rE

t+1,rt+1) h(rE

t+1,rE

t+1,t)+h(rt+1,rE

t+1,t)
1p
m
+3h(rt+1,rE

t+1,t)

 1p
m
+6exp((Wt+1 �Wt)Cl)h(rE

t
,rt)

by Equation (6.4). Iterating gives

h(rE

t+1,rt+1)
1p
m

t+1

Â
s=0

6t+1�s exp((Wt+1 �Ws)Cl),

which completes the proof.
⇤
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