
Near-Optimal Constrained Padding for Object Retrievals with Dependencies

Pranay Jain

Duke University

Andrew C. Reed

United States Military Academy

Michael K. Reiter

Duke University

Abstract
The sizes of objects retrieved over the network are power-

ful indicators of the objects retrieved and are ingredients in

numerous types of traffic analysis, such as webpage finger-

printing. We present an algorithm by which a benevolent

object store computes a memoryless padding scheme to pad

objects before sending them, in a way that bounds the in-

formation gain that the padded sizes provide to the network

observer about the objects being retrieved. Moreover, our al-

gorithm innovates over previous works in two critical ways.

First, the computed padding scheme satisfies constraints on

the padding overhead: no object is padded to more than c× its

original size, for a tunable factor c > 1. Second, the privacy

guarantees of the padding scheme allow for object retrievals

that are not independent, as could be caused by hyperlinking.

We show in empirical tests that our padding schemes improve

dramatically over previous schemes for padding dependent ob-

ject retrievals, providing better privacy at substantially lower

padding overhead, and over known techniques for padding

independent object retrievals subject to padding overhead

constraints.

1 Introduction

Extracting information about the contents of encrypted traffic

from other features of the traffic, or so-called traffic analy-

sis, is a topic with a long history and that remains relevant

today in the context of, e.g., webpage fingerprinting (see

Sec. 2). Among the most difficult network-visible features

to obscure is the size of objects transmitted over the network,

since thoroughly doing so incurs substantial cost. For this

reason, even many systems designed to support private or

anonymous communication do not attempt to address this

side channel [16, 32, 45, 52] or assume it away by stipulating

that messages be small and fixed-size (e.g., [1, 14]).

The premise of this paper is that the research community

can facilitate the adoption of pretty good defenses against

traffic analysis by benevolentÐbut perhaps not generousÐ

service providers, by first constraining the costs that will be

incurred by the service provider for providing privacy and then

enabling the service provider to implement the best privacy

protections possible subject to those cost constraints. To that

end, in this paper we consider a specific but broadly relevant

instance of this problem: an object store that serves objects in

response to client requests. We seek to equip the object store

with a scheme for padding objects before returning them to

clients (encrypted) so as to best hide from a network observer

which objects are returned to clients, while adhering to the

constraint that the padding can increase each object to at most

c× its original size for a specified constant c > 1. Since we

allow the network observer to be a client of the object store,

as well, we presume the observer knows all of the original

object sizes, before padding.

Reed and Reiter [43] recently addressed exactly this prob-

lem in the case of independent object retrievals, as will be

detailed in Sec. 2. However, there are few, if any, practical

circumstances in which object retrievals are truly independent.

Perhaps the most prominent reason is hyperlinking between

objects, as between web objects, which can result in one ob-

ject being retrieved after another (either automatically or by

user action) in a causal fashion. Even when not causally re-

lated, retrievals in most applications will exhibit correlations,

e.g., based on the topic to which the objects pertain. Unfor-

tunately, achieving an optimal padding scheme (to achieve

some well-defined notion of privacy) for dependent object

retrievals is a challenging problem, as demonstrated by a lim-

ited literature rife with heuristic solutions only (again, see

Sec. 2).

In this paper we take a significant step forward for the case

of dependent object retrievals, by providing and evaluating

an efficient algorithm to generate a padding scheme for an

object store. This padding scheme prescribes how to pad ob-

jects before serving them, to hide the object identities from

a network observer able to see their padded sizes. The mea-

sure of leakage that we use in this work is the Sibson mutual

information of order infinity, denoted I∞(S;Y) and defined

in Sec. 4, where S is a random variable representing the se-

cret (i.e., the object(s) retrieved) and Y is a random variable

representing what the adversary observes (i.e., the padded

object size(s)). Issa, et al. [26] advocate for this measure of

leakage because it bounds the information gain I(S;Y) that Y

provides to the adversary (i.e., I(S;Y)≤ I∞(S;Y)) regardless

of the distribution of S and because it has a natural operational

interpretation [26]. We reiterate that our efforts to minimize

I∞(S;Y) are provided subject to a constraint that no object

be padded to more than c× its original size, for a tunable

constant c > 1. As such, the object store’s bandwidth useÐ

per retrieval, per client, and overallÐwill grow by at most a

factor of c. Moreover, the padding scheme produced by our

algorithm is memoryless, and so the object store need not

track a client’s retrievals to know how to pad objects for it.

We demonstrate the practicality of our algorithm by apply-

ing it to three real-world datasets and comparing the padding

scheme it produces to other padding schemes in the literature

for protecting the identities of objects retrieved from being

leaked by their padded sizes [5, 34, 35]. While these other

schemes were designed to achieve different privacy measures,

we nevertheless show that the scheme produced by our al-

gorithm, measured using their measures of privacy, provides

competitive results with far less padding overhead. We also

show that for our measure of privacy, the schemes in previous

works fare poorly compared to ours, even while incurring or-

ders of magnitude greater padding overhead. The datasets on

which we demonstrate these improvements were chosen to be

representative of ones in which dependent object retrievals are

commonplace, namely a dataset of autocomplete lists sent in

response to increasingly long sequence of characters (which

is typical in search engines), and two datasets of hyperlinked

web objects.

To reiterate, our contributions are as follows:

• We devise an efficient algorithm to generate a padding

scheme that prescribes how to pad objects before serv-

ing them in response to requests. The resulting padding

scheme approximately minimizes (specifically, mini-

mizes an upper bound on) I∞(S;Y), for object retrievals

S padded to sizes Y, subject to constraints that it be mem-

oryless and that no object be padded to more than c× its

original size for a specified constant c≥ 1.

• We introduce three object datasets with dependencies

among object retrievals: a Google Autocomplete dataset

that models suggestions for search queries; a Wikipedia

dataset that models a dense graph of interconnected

pages; and a Linode documentation dataset that models

a tree-like browsing pattern, where a user navigates to a

particular page on a website by starting at the index. On

these datasets, we show empirically that our algorithm

produces padding schemes that substantially outperform

previous work. Even in comparisons to previous algo-

rithms on different privacy measures they were designed

to optimize, our algorithm achieves comparable privacy

with dramatically lower (and bounded) padding over-

head. In comparisons that test an adversary’s precision

and recall in identifying sequences of object retrievals,

our algorithm provides better security in most cases, with

the same or lower padding overhead.

2 Related Work

The study of padding schemes that minimize information

leakage about the objects being retrieved is a topic that has

received considerable attention in the literature. There are two

camps of closely related work, one focused on privacy for

dependent object retrievals (as we consider here) but without

constraints on padding overhead, and another that allows for

constraints on padding overhead (as we do here) but assum-

ing independent object retrievals. We introduce these areas

of related work below, and then elaborate on several more

distantly related areas of research.

2.1 Dependent object retrievals

Padding schemes that attempt to reduce leakage about the

objects retrieved when retrievals are dependent have been

studied for about the past decade, to our knowledge. Backes,

et al. [5] proposed one design that assumes that object re-

trievals satisfy a Markov assumption, i.e., that the client’s

next object retrieval is only dependent on the object it most

recently retrieved. The measure of leakage that they seek to

minimize is I(S;Y), though they do so only heuristically. Liu,

et al. proposed methods to render sequences of retrieved ob-

ject sizes either k-anonymous [44, 48], meaning that at least

k objects are padded to every possible padded size [35], or

ℓ-diverse [37], meaning that no object accounts for more than
1
ℓ

of any padded size’s probability [34]. None of these algo-

rithms, however, accommodate the specification of padding

overhead constraints. Indeed, the Liu, et al. algorithms [34,35]

are generally not consistent with a padding constraint c if, e.g.,

there is an object for which the allowed padding range does

not intersect the allowed padding ranges of k−1 other objects.

We show in our experiments that the overhead they therefore

impose is dramatic on the datasets we consider.

2.2 Padding overhead constraints

To our knowledge, object padding schemes subject to padding

overhead constraints as we consider here have received atten-

tion primarily within the last several years (e.g., [12, 40, 43]).

The latest work in this area [43] proposes algorithms to gen-

erate padding schemes that optimally hide objects from a

network observer in several cases of interest: for an object

store that pads its objects once but serves them repeatedly, a

padding scheme that is deterministic and that minimizes infor-

mation gain I(S;Y) among all deterministic schemes; for an

object store that can re-pad objects each time it serves them,

a padding scheme that is probabilistic and that minimizes

I(S;Y); and for an object store that cannot trust (or does not

wish to track) the distribution of object retrievals, a padding

scheme that minimizes I∞(S;Y). This last algorithm, called

PwoD, provides a close comparison point for our work, since

it targets the same leakage measure (i.e., I∞(S;Y)) and adopts

the same form of padding overhead constraint. However, the

guarantees of these algorithms hinge on object retrievals be-

ing independent, which is exactly the assumption we intend

to relax in this paper.

2.3 Webpage fingerprinting

More distantly related work includes research in webpage

fingerprinting, by which a network adversary attempts to dis-

cern the webpage or website that a client is visiting, based on

traffic features the attacker can observe. Some works have ex-

plored padding of web objects as a defense against such traffic

analysis (e.g., [12, 47]) but, to our knowledge, no such work

has shown how to maximize privacy (by a precise measure)

subject to a bandwidth overhead constraint, as we do here.

The vast majority of the research in webpage fingerprinting is

specific to the networking context via which the web objects

are transferred to the client, leveraging featuresÐfor attack

or defenseÐof TCP and/or HTTP (e.g., [36, 47]), HTTPS

(e.g., [2, 11, 15, 19, 39]); web proxies (e.g., [24, 47]); SSH

proxies (e.g., [6,33]); or Tor (e.g., [7,12,22,23,27,41,49,50]).

We stress that our research focuses specifically on object sizes,

allowing this feature to be discernible to the network attacker,

whatever the network context. Our study therefore addresses

a central challenge in defending against webpage fingerprint-

ing [17], though by no means the only one [51].

2.4 Untrusted object store

In our threat model (see Sec. 3), the object store is trusted. A

substantial body of literature, in contrast, addresses a threat

model wherein the object store is itself the adversary from

which the secret should be hidden (e.g., [8, 21, 25, 30, 31]).

For example, in private information retrieval [13], this secret

is the object retrieved, whereas in searchable encryption [46],

the secret is the search term resulting in the retrieval of a set

of objects. This threat model is more permissive than ours

and so typically requires tools to address it that are different

in nature, and that are more expensive, than we consider here,

including introducing fake queries (e.g., [20,38,42]); breaking

retrievals into multiple fixed-size queries of total size larger

than the original object and so that themselves are padded

(e.g., [28, 29]); or using oblivious RAMs (e.g., [4, 9, 10, 18]).

In contrast, our approach does not alter the communication

pattern between the client and object store, aside from padding

each object to within a factor of c of its original size.

3 Problem Statement

We consider a trusted object store that stores n fixed-size ob-

jects {objs}s∈S where #S = n (and #S denotes the cardinality

of S), and serves them to clients over encrypted channels.

Each client request contains the identifier s of the object to

return, which we presume to be of constant size. Objects

themselves, however, can be of different sizes; in symbols,

if |objs| denotes the size of object objs, then for s ̸= s′, it

can be the case that |objs| ≠ |objs′ |. Even though objects are

returned on encrypted channels, the size of each object (as

transmitted, after padding) will be revealed to our adversary,

a network observer. This network observer seeks to identify

which objects were retrieved by a client, given their sequence

of padded sizes. Since we allow the network observer to also

be a client of the object store and so to retrieve objects itself,

the adversary knows the unpadded size |objs| of each objs.

3.1 Padding scheme

Our goal is to provide an algorithm to compute a padding

scheme ⌈·⌉ for {objs}s∈S. Formally, ⌈·⌉ takes as input an ob-

ject identifier s and an object size |objs| and produces a padded

object size (a positive integer) with properties defined below.

To emphasize that padding will be applied to this object be-

fore transmission, we denote this invocation of ⌈·⌉ by simply

⌈objs⌉, and when convenient, we will also use ⌈objs⌉ to de-

note the padded object or its size. The padding scheme ⌈·⌉ is

itself randomized, and so repeated invocations of it with the

same object (i.e., same object identifier and size) can return

different results. Moreover, since s is an input to ⌈·⌉, ⌈objs⌉
can behave differently from ⌈objs′⌉ even if objs and objs′ are

of the same size.

The padding scheme ⌈·⌉ that our algorithm will solve for

should be memoryless in the sense that the object store does

not need to track each user’s retrieval history in order to im-

plement the padding scheme. We believe that this ensures that

our technique is as broadly implementable as possible. First,

there is the obvious cost saving for not having to store every

user’s retrieval history. Second, our technique is ªprivacy-

friendly,º i.e., it will work if an object store cannot store the

retrieval history of its users, whether that is due to (i) gov-

ernment regulation, (ii) privacy-aware tools employed by the

user, or (iii) as a feature of the object store itself.

Let S be a random variable denoting the identifier of the

object a client retrieved from the object store, and let Y be

a random variable denoting the size to which it was padded

when retrieved; i.e., Y takes the value ⌈objs⌉ when S= s. Our

first requirement, discussed in Sec. 1, is that padding never

grow an object by a factor of more than c, for a padding factor

c≥ 1.

P
(

Y > c×|objs|
∣

∣ S= s
)

= 0 (1)

In addition, we assume that objects cannot be compressed

before their transmission over the network, and so

P
(

Y < |objs|
∣

∣ S= s
)

= 0 (2)

While numerous networking technologies do compress data

before transmitting it, we presume that the same network-

stack layer that pads the object then encrypts it, rendering the

object incompressible by network layers underneath it.

Before we present the privacy goals for the padding scheme

⌈·⌉ in Sec. 3.2, note that due to (1)±(2), it might not be possi-

ble for the padding scheme to protect the privacy of all object

retrievals. That is, if one object objs is of a size such that

[|objs|,c×|objs|]∩ [|objs′ |,c×|objs′ |] = /0 for each other ob-

ject objs′ , then (1)±(2) leave no option but for objs to be the

only possible object being retrieved when a retrieval of size

⌈objs⌉ is observed on the network. This observation informs

the privacy goal we adopt in Sec. 3.2.

In the remainder of this paper, we treat mathematical ex-

pressions in which c or c− 1 is a factor to be integers. In

particular, for notational simplicity, we omit the floor function

when writing c×|objs|, (c−1)×|objs|, etc., and simply treat

them as integers.

3.2 Privacy measure

We would like to produce a padding scheme so that sequential

invocations of ⌈·⌉ leak as little about the identities of the

requested objects as possible, subject to the constraints on the

padding scheme discussed in Sec. 3.1. Issa, et al. [26] argue

that the leakage about the value of a discrete random variable

S with support S by observing the value of another random

variable Y is best captured by

I∞(S;Y) = log2 ∑
y

max
s∈S

P
(

Y = y
∣

∣ S= s
)

(3)

Both Issa, et al. [26] and Alvim, et al. [3] advocate for the

use of I∞(S;Y) as a measure of leakage as it upper-bounds

an adversary’s multiplicative gain in correctly guessing any

function of S after observing Y, over all distributions of S.

To highlight that we are concerned here with sequences

of possibly dependent object retrievals, we extend (3) to se-

quences. Specifically, let S⃗⊆ S∗ be a set of sequences of ob-

ject retrievals, let s⃗ ∈ S⃗ denote a sequence of object retrievals,

and let S⃗ be a random variable with support S⃗. (We assume

P

(

S⃗= s⃗
)

> 0 for all s⃗ ∈ S⃗.) We denote the i-th element of a

sequence s⃗ by s⃗i, and the length of s⃗ by len(⃗s).

For each s ∈ S, let

Ys ⊆ [|objs|,c×|objs|] (4)

be the padded object sizes that we allow for ⌈objs⌉. While Ys

might be all of [|objs|,c×|objs|], it need not be, and indeed

we will leverage this flexibility in Sec. 4. We define

Y⃗⃗s = Y⃗s1
×·· ·× Y⃗slen(⃗s)

(5)

Y⃗ =
⋃

s⃗∈S⃗

Y⃗⃗s (6)

In words, Y⃗⃗s is the set of all possible sequences to which

s⃗ could be padded, and Y⃗ is the set of all possible padded

sequences. Finally, let Y⃗ be a random variable taking on a

sequence of padded sizes. Given this notation, we interpret

(3) in our context as

I∞

(

S⃗; Y⃗
)

= log2 ∑
y⃗∈⃗Y

max
s⃗∈S⃗

P
(

Y⃗ = y⃗
∣

∣ S⃗= s⃗
)

(7)

Our goal, then, is to produce a padding scheme ⌈·⌉ that mini-

mizes (7).

4 Design

In this section we present a linear program that minimizes

an upper-bound on I∞

(

S⃗; Y⃗
)

. We then describe a technique

that allows us to reduce the number of variables in the linear

program, thereby enabling it to run more efficiently on large

datasets.

4.1 Linear program

Below, we denote the i-th element of a sequence y⃗ by y⃗i, and

the i-th element of a sequence taken on by random variables S⃗

and Y⃗ by S⃗i and Y⃗i, respectively. For any y⃗ and s⃗ of the same

length, and any i′ ∈ [len(⃗y)] = {1, . . . , len(⃗y)},

len(⃗y)

∏
i=1

P
(

Y⃗i = y⃗i

∣

∣ S⃗i = s⃗i

)

≤ P
(

Y⃗i′ = y⃗i′

∣

∣ S⃗i′ = s⃗i′
)

(8)

since each probability is ≤ 1. By summing (8) over i′ ∈
[len(⃗y)], we can conclude

len(⃗y)
len(⃗y)

∏
i=1

P
(

Y⃗i = y⃗i

∣

∣ S⃗i = s⃗i

)

≤
len(⃗y)

∑
i′=1

P
(

Y⃗i′ = y⃗i′

∣

∣ S⃗i′ = s⃗i′
)

(9)

As a result, we can upper-bound (7) as

I∞

(

S⃗; Y⃗
)

= log2 ∑
y⃗∈⃗Y

max
s⃗∈S⃗

len(⃗y)

∏
i=1

P
(

Y⃗i = y⃗i

∣

∣ S⃗i = s⃗i

)

(10)

≤ log2 ∑
y⃗∈⃗Y

max
s⃗∈S⃗

1

len(⃗y)

len(⃗y)

∑
i′=1

P
(

Y⃗i′ = y⃗i′

∣

∣ S⃗i′ = s⃗i′
)

(11)

where (10) follows from (7) because our padding scheme is

memoryless and (11) follows from (10) by substituting (9).

minimize ∑
y⃗∈⃗Y

Πy⃗ subject to (12)

∑
y∈Ys

πy
s = 1 ∀s ∈ S (13)

πy
s ≥ 0 ∀s ∈ S,y ∈ Ys (14)

πy
s ≤ 1 ∀s ∈ S,y ∈ Ys (15)

Πy⃗ ≥
1

len(⃗y)

len(⃗y)

∑
i=1

π
y⃗i

s⃗i
∀⃗s ∈ S⃗, y⃗ ∈ Y⃗⃗s (16)

Figure 1: LP to minimize (11).

We formulate a linear program (LP) to min-

imize (11). It uses a variable π
y
s to represent

P
(

Y = y
∣

∣ S= s
)

, and a variable Πy⃗ to represent

max⃗
s∈S⃗

1
len(⃗y) ∑

len(⃗y)
i′=1

P
(

Y⃗i′ = y⃗i′

∣

∣ S⃗i′ = s⃗i′
)

. This LP is

shown in Fig. 1. Constraints (13)±(15) ensure that π
y
s forms

a probability distribution for each s ∈ S. Constraint (16),

together with the minimization objective (12), ensure that a

solution to the LP sets Πy⃗ to its intended value. Once solved,

the object store can instantiate a padding scheme ⌈·⌉ by

padding objs to size y (i.e., ⌈objs⌉ = y) with probability π
y
s ;

i.e., P
(

Y = y
∣

∣ S= s
)

← π
y
s .

Note that any two distinct sequences s⃗, s⃗ ′ ∈ S⃗, even if of the

same length (len(⃗s) = len(⃗s ′)) and consisting of the same ob-

jects ({⃗si}i∈[len(⃗s)] = {⃗s
′
i}i∈[len(⃗s ′)]), will result in a constraint

of the form (16) for every y⃗ ∈ Y⃗⃗s ∩ Y⃗⃗s ′ . That is, our LP opti-

mizes the probabilities of padded sequences based on both

length and the order of object sequences that can pad to them.

4.2 Efficiency

The LP presented in Sec. 4.1 has #Ys variables π
y
s for each

s ∈ S. The LP also includes one variable Πy⃗ for each y⃗ ∈ Y⃗ ;

recall that #⃗Y also depends on #Ys for s ∈ S (see (5)±(6)). As

such, reducing #Ys for each s is central to scaling this LP. At

the same time, the values in Ys must be chosen to maximize

the intersection with other Ys′ sets, subject to each of these

sets being small (and subject to (1)±(2)), so that the LP has

the opportunity to pad objects to the same size.

To accomplish these contradictory goals, we consider the

anchor sizes of the object set, defined as follows. Let X rep-

resent the set of all unpadded sizes; i.e., x ∈ X implies that

there exists an object for which |objs| = x. For any X ′ ⊆ X ,

define the anchor sizes A(X ′) inductively as follows:

A
(

X ′
)

= {a
(

X ′
)

}∪A
(

X ′ \B
(

X ′
))

where (17)

a
(

X ′
)

= minX ′ and (18)

B
(

X ′
)

= {x′ ∈ X ′ : x′ ≤ c×a
(

X ′
)

} (19)

In words, the anchor sizes of X ′ include the smallest unpadded

object size of X ′ (see (18)) and the anchor sizes of the set

remaining after removing all sizes at most c times this anchor

size (see (17), (19)). Note that for any two a,a′ ∈ A(X), it will

be the case that [a,c×a]∩ [a′,c×a′] = /0.

For a fixed parameter k ≥ 1, we select up to k candidate

padding sizes Ŷa from [a,c×a] of approximately equal dis-

tance apart. Specifically, we select

Ŷa = {a+ zq+min{z,r}}z∈[k] (20)

where (c−1)a = qk+ r and 0≤ r < k. Then, we set

Ys = [|objs|,c×|objs|]∩
⋃

a∈A

Ŷa (21)

No Ys is empty, since at least c× a ∈ Ys for the largest an-

chor size a ∈ A(X) such that a ≤ |objs|. Moreover, for any

s ∈ S, there are at most two anchor sizes a,a′ ∈ A(X) such

that [|objs|,c×|objs|] ⊆ [a,c×a]∪ [a′,c×a′]. So, #Ys ≤ 2k,

ensuring that #Ys is small. Finally, by limiting each Ys to ele-

ments of
⋃

a∈A Ŷa, we encourage common padding sizes for

objects.

For the remainder of this paper we refer to our LP as

Padding for Sequences (PFS).

5 Evaluation

In this section we begin by describing the datasets that we

created for our assessments and then present three algorithms

for padding objects to which we compare. We compare PFS

to each of them according to their intended privacy metric

and others. We conclude the section with an assessment of the

padding overhead that results from each algorithm’s padding

scheme for each dataset.

5.1 Datasets

For our experiments, we constructed three datasets. We con-

structed these datasets to be representative of datasets used to

evaluate previous padding schemes and to provide significant

variations in object sizes and numbers of sequences.

Each dataset consists of (i) a selection of objects

from a given object store, which we denote {objs}s∈S;

(ii) the set of possible sequences of object retrievals

S⃗; and (iii) distributions P(S= s), P
(

S⃗1...i = s⃗1...i

)

, and

P

(

S⃗i+1 = s′ | S⃗i = s
)

, since some algorithms to which we

compare require these distributions. Below, we let E de-

note the set of directed edges in the sequences S⃗, i.e., E =
{

(s,s′)
∣

∣

∣
∃⃗s ∈ S⃗, i ∈ [len(⃗s)−1] : s⃗i = s∧ s⃗i+1 = s′

}

.

For each dataset, in order to create S⃗, we first created a set

of maximal length sequences which we denote as S⃗Ω. We then

created S⃗ as

S⃗ =
⋃

s⃗∈S⃗Ω

⋃

i∈[len(⃗s)]

{⃗s1...i} (22)

where s⃗1...i represents the subsequence of s⃗ up to, and in-

cluding, the i-th object. In words, S⃗ is the prefix closure

of S⃗Ω. Finally, for each i ∈ [max⃗
s∈S⃗Ω len(⃗s)] we calculate

P

(

S⃗1...i = s⃗1...i

)

as

P

(

S⃗1...i = s⃗1...i

)

=
∑s⃗ ′∈S⃗Ω :⃗s ′1...i=⃗s1...i

count(⃗s ′)

∑s⃗ ′′∈S⃗Ω:len(⃗s ′′)≥i
count(⃗s ′′)

(23)

In (23), for each s⃗∈ S⃗Ω we use count(⃗s) to represent a dataset-

specific statistic from which we can calculate a distribution.

Google Autocomplete dataset This dataset was created

in January 2023 and models the distribution of responses

from Google search autocomplete suggestions. For a given

search string, Google responds with a list of autocomplete

suggestions for each prefix of the string. To obtain these au-

tocomplete responses, we wrote a script that takes a list of

words as input and queries the Google autocomplete API for

each successive prefix of each word. The dictionary of words

was obtained from xkcd Simple Writer1, a dataset containing

the 1,000 most common English words. In this dataset, each

s ∈ S is a prefix of a word, and objs is Google’s autocomplete

response for that prefix. Each (s,s′) ∈ E, then, represents two

consecutive queries of word prefixes in which s′ extends s by

one character and in which s′ is a prefix of some word in the

dataset. We define S⃗Ω to contain each sequence s⃗ of prefixes

of increasing length (i.e., s⃗i is a word prefix of i characters)

such that s⃗len(⃗s) is a word in the dataset. In total, after omit-

ting plurals of words that are formed by simply adding the

letter ‘s’, for this dataset #S⃗Ω = 899 words, #S = 3,870 word

prefixes, and #E = 3,846 word prefix extensions. Moreover,

#S⃗ = #S since each s ∈ S is a prefix of a word and since S⃗ is

the prefix closure of S⃗Ω.

In addition to S and E, the method of Backes, et al. [5]

also requires the transition probabilities between word pre-

fixes, i.e., an actual value for P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

for each

(s,s′) ∈ E. We model this using the technique they proposed,

which uses the number of search results returned by Google

for a given word s⃗len(⃗s) as the value for count(⃗s), and then

P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

is estimated as

P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

=
∑s⃗ ′∈S⃗Ω :⃗s ′i+1=s′∧⃗s ′i=s

count(⃗s ′)

∑s⃗∈S⃗Ω :⃗si=s
count(⃗s)

(24)

Wikipedia dataset This dataset was created in June 2023

and models pages retrieved during web surfing. It was created

by selecting s = https://en.wikipedia.org/wiki/Cat

to obtain the HTML of the web page as objs. We then selected

the first 50 hyperlinks (to articles) on this page and included

those in S, retrieving the HTML of the web page for each.

We repeated this step once more for these added pages, but

1https://xkcd.com/simplewriter/words.js

increased the number of hyperlinks that we added from those

pages to the first 100. We increased from 50 to 100 hyperlinks

to help increase the reach of this dataset, as we observed that

the articles had many common hyperlinks.

This initial step yielded a set of #S = 2,804 articles. To then

create the set of sequences S⃗Ω, for each s ∈ S, we generated

two random walks of length six that both begin at s as the

start vertex. This resulted in #S⃗Ω = 5,606 unique sequences

of webpages that a user might explore while browsing among

the articles included in S with an associated #E = 10,182

hyperlinks. Taking the prefix closure of these sequences then

yielded #S⃗ = 32,683.

For this dataset, we used the Wikipedia Page Views API to

instantiate count(⃗s) for each s⃗ ∈ S⃗Ω. To do so, we retrieved

the total number of page views for each s ∈ S for January

2016, which we denote as pv(s). For each s⃗ ∈ S⃗Ω we then set

count(⃗s) equal to its average page views, i.e.,

count(⃗s) =
∑

len(⃗s)
i=1 pv(⃗si)

len(⃗s)
(25)

Finally, we instantiated P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

for each (s,s′)∈
E as

P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

=
1

#{ŝ : (s, ŝ) ∈ E}
(26)

We reiterate that this dataset only captures the size of each

article’s HTML file. We address this limitation with our next

dataset, though we stress that our goal for all of our datasets

is to enable a meaningful comparison of candidate padding al-

gorithms (described below) based on the privacy they achieve

and padding overhead they induce. Our goal is not to make

specific claims about privacy in the context of Wikipedia

retrievals, for example.

Linode dataset As with the Wikipedia dataset, this dataset

models pages retrieved during web surfing where S represents

webpages and E represents hyperlinks between webpages.

It was created by crawling the Linode documentation web-

site2 in April 2020. A difference from the Wikipedia dataset,

though, is that in the Linode dataset |objs| represents the total

sum of data for the given page’s HTML file and all the hyper-

linked objects that would be retrieved automatically (images,

scripts, etc.).

Another difference between our Wikipedia and Linode

datasets is the way in which we generated maximal length

sequences. Let shome = https://www.linode.com/docs.

Then, for each s ∈ S \ {shome} we include in S⃗Ω all shortest

paths from shome to s. In other words, s⃗∈ S⃗Ω iff: (i) s⃗1 = shome,

(ii) s⃗len(⃗s) ̸= shome, and (iii) s⃗ is a shortest path. This dataset

therefore models a user that begins at the Linode documen-

tation homepage and then navigates to a destination page

2The crawl included every webpage and linked-to file where the URL

began with https://www.linode.com/docs.

Table 1: Dataset statistics.

Statistic Autocomplete Wikipedia Linode

mins∈S |objs| 11B 36,425B 438B

medians∈S |objs| 330B 203,310B 101,325B

maxs∈S |objs| 480B 1,745,780B 15,406,625B

#S 3,870 2,804 1,569

#S⃗Ω 899 5,606 2,095

#S⃗ 3,870 32,683 2,096

#E 3,846 10,182 2,029

by clicking as few links as possible. The dataset contains

#S = 1,569 webpages, #S⃗Ω = 2,095 unique sequences of web-

pages, and #E = 2,029 links between webpages. Since the

sequences in this dataset are all shortest paths, taking the pre-

fix closure of S⃗Ω only yields one additional sequence: the

sequence of length one that consists of shome.

As this dataset does not have an accompanying Page Views

API, for each s⃗ ∈ S⃗Ω we set count(⃗s) = 1 and we instantiated

P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

for each (s,s′) ∈ E as

P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

=
1

#{ŝ : (s, ŝ) ∈ E}
(27)

Dataset statistics In Table 1 we list various statistics for

each of our datasets. The Linode dataset presents the widest

variation of object sizes, ranging across five orders of mag-

nitude, despite it having the fewest number of objects (#S)

of any of the datasets. The Wikipedia dataset stands out as

having both the largest #S⃗Ω and #S⃗ since our strategy for cre-

ating this dataset ensured that it consisted of a large number

of maximal length sequences which do not share prefixes.

5.2 Comparison algorithms

Here we detail the three algorithms to which we compare.

We selected these algorithms as they each target a different

privacy metric, and so comparing to all three provides a robust

assessment of PFS.

BDK Backes, et al. [5] propose an algorithm to create a de-

terministic (i.e., per-object) padding scheme ⌈·⌉ such that,

for any padded sizes y,y′ ∈ Y and any s,s′ ∈ S such that

⌈objs⌉= ⌈objs′⌉= y,

∑
ŝ∈S:

⌈objŝ⌉=y′

P
(

S⃗i+1 = ŝ
∣

∣ S⃗i = s
)

= ∑
ŝ∈S:

⌈objŝ⌉=y′

P
(

S⃗i+1 = ŝ
∣

∣ S⃗i = s′
)

(28)

In other words, for any two objects objs and objs′ that pad to

size y, it must be equally likely for each that its retrieval will be

followed by a retrieval padded to size y′. In the remainder of

this paper, we refer to the Backes, et al. algorithm as ªBDKº.

BDK assumes that the generation of object retrieval se-

quences can be modeled as a Markov chain (i.e., that the

distribution over the next object retrieved depends only on

the previous). Subject to this assumption, it efficiently cal-

culates entropy H

(

Y⃗
)

for any arbitrary sequence length. It

therefore works by randomly producing many candidate per-

object padding schemes ⌈·⌉ and then selecting the scheme ⌈·⌉

that produces the lowest H
(

Y⃗
)

for a target average padding

overhead. H
(

Y⃗
)

, then, serves as an upper-bound for I
(

S⃗; Y⃗
)

,

i.e., the mutual information between S⃗ and Y⃗.

MVMD and MVMD-D Whereas BDK seeks to control

H

(

Y⃗
)

Ðand thereby I

(

S⃗; Y⃗
)

ÐLiu, et al. [34, 35] propose

techniques that strive to ensure different metrics, namely k-

anonymity and ℓ-diversity. In the summary of these algo-

rithms below, recall that we use the subscript 1 . . . i to indicate

the subsequence of a sequence from the first through the i-th

element, inclusive; e.g., s⃗1...i represents the subsequence of

s⃗ up to, and including, the i-th object. Similarly, S⃗1...i repre-

sents the set of all such subsequences, and S⃗1...i represents the

random variable over this set. Note that this notation will also

be applied to y⃗, Y⃗ , and Y⃗ with the same interpretation.

Now, for the k-anonymity setting, a per-object padding

scheme ⌈·⌉ is said to provide k-anonymity for sequences if,

∀⃗y ∈ Y⃗ such that P
(

Y⃗ = y⃗
)

> 0, and ∀i ∈ [len(⃗y)], it holds

that #{s ∈ S : P
(

S⃗i = s
∣

∣ Y⃗1...i = y⃗1...i

)

> 0} ≥ k. That is, if an

adversary were to observe the first i padded object sizes,

there must be ≥ k possible objects that could be s⃗i. For the

ℓ-diversity setting, a padding scheme ⌈·⌉ is said to provide

ℓ-diversity for sequences if, ∀⃗y ∈ Y⃗ such that P
(

Y⃗ = y⃗
)

> 0,

∀i ∈ [len(⃗y)], and ∀s ∈ S such that P
(

S⃗i = s
∣

∣ Y⃗1...i = y⃗1...i

)

>

0, it holds that P
(

S⃗i = s
∣

∣ Y⃗1...i = y⃗1...i

)

≤ 1
ℓ
. That is, if an ad-

versary were to observe the first i padded objects sizes, the

conditional probability of each object that could be s⃗i must

be ≤ 1
ℓ
.

For both settings, Liu, et al. present greedy algorithms that

attempt to create per-object padding schemes ⌈·⌉ that ensure

either k-anonymity or ℓ-diversity, and that also attempt to

minimize the sum of padding overhead applied to objects. We

refer to these algorithms as MVMD and MVMD-D, respec-

tively, and when parameterizing MVMD-D with a target ℓ,

we refer to the algorithm as MVMD-ℓ. So, for example, when

parameterized with a target ℓ= 3, we refer to the algorithm as

MVMD-3. Roughly, the MVMD and MVMD-D algorithms

iterate through each i ∈ [max⃗
s∈S⃗

len(⃗s)] andÐfor each S⃗′ ⊆ S⃗

where for every s⃗ ∈ S⃗′ it is the case that s⃗1...i−1 is padded

to the same y⃗1...i−1Ðconstruct ⌈·⌉ so that S⃗′i =
⋃

s⃗∈S⃗′
{⃗si} is

split into two subsets that remain either k-anonymous or ℓ-

diverse, and that do so with minimal total overhead. Since

the algorithms are greedy, they are not guaranteed to create

Table 2: Inputs required per algorithm.

Algorithm
Sets Distributions

S S⃗ E P(S= s) P

(

S⃗1...i = s⃗1...i

)

P

(

S⃗i+1 = s′|

S⃗i = s

)

BDK [5] ✓ ✓ ✓ ✓3

MVMD-D [34] ✓ ✓ ✓

PwoD [43] ✓

PFS ✓ ✓

the padding scheme ⌈·⌉ that minimizes the padding overhead

for a given k or ℓ. Furthermore, there are instances where

k-anonymity or ℓ-diversity cannot be achieved, either due to

their algorithms making a greedy choice at i that prevents up-

holding k or ℓ at i′ > i, or simply because the distribution S⃗1...i

is not distributed in a way that supports the chosen metric.

In such cases, these algorithms will construct ⌈·⌉ so that all

s ∈ S⃗′i (which cannot be split further) will be padded to the

same y.

Note that ℓ-diversity subsumes k-anonymity, in that an ℓ-

diverse padding scheme is also ℓ-anonymous. In our security

evaluations we compare only to the MVMD-D algorithm, as

the more challenging (i.e., more secure) competitor.

Finally, for both MVMD and MVMD-D, ⌈·⌉ is a func-

tion of both obj⃗si
and {objs′}s′∈⃗s1...i−1

; i.e., the resulting

padding schemes are not memoryless, as are the other al-

gorithms we consider (including our LP). Thus, an object

store that uses either of these algorithms must be capable

of (i) tracking a client’s previous object retrievals and (ii)

storing a value for ⌈objs⌉ for each s⃗1...i−1 ∈ S⃗1...i−1 such that

P
(

S⃗i = s
∣

∣ S⃗1...i−1 = s⃗1...i−1

)

> 0.

PwoD Reed and Reiter [43] present an algorithm, called

Padding without a Distribution (PwoD), that produces a

per-object padding scheme ⌈·⌉ minimizing I∞(S;Y) for the

case of independent object retrievals. Also, unlike BDK and

MVMD-D, PwoD enforces constraint (1). We therefore in-

clude PwoD as an algorithm to which we compare.

Summary of algorithm inputs To summarize, Table 2

shows the inputs taken by each of the algorithms to which

we compare, and the inputs taken by our own. BDK and

MVMD-D require more detailed information than PFS, in

that they require probability distributions. Still, below we will

show that PFS outperforms them, in terms of both privacy and

padding overhead. PwoD requires less information be input

than PFS, but as we will show, PFS puts its knowledge of the

sequences S⃗ to good use.

3Backes, et al. assume P
(

S⃗i+1 = s′
∣

∣ S⃗i = s
)

is the same for all i.

5.3 BDK and MVMD-D comparisons

Since both BDK and MVMD-D were designed to address a

different metric, in this section we compare PFS against these

two algorithms in ªhead-to-headº tests using the competitor’s

metric.4 For each test, we calculated the competitor’s metric

over increasing sequence lengths for each of our three datasets.

Specifically, for each i ∈ [max⃗
s∈S⃗Ω len(⃗s)], the metric was cal-

culated over all s⃗ ∈ S⃗Ω such that len(⃗s)≥ i. Additionally, at

each i, those sequences that are longer than i were truncated

to i and then the metrics were calculated over these truncated

sequences. This method is consistent with our calculation of

P

(

S⃗1...i = s⃗1...i

)

in (23).

We calculated the various metrics in this way in order to

model the adversary’s knowledge as the adversary observed

sequential object retrievals. For example, if the adversary

observed i retrievals, then the adversary knew that s⃗ could

not be any sequence where len(⃗s)< i, and so those sequences

were no longer included when calculating the given metric.

However, it could be the case that s⃗ was longer than i, and so

those sequences were included when calculating the metric.

As mentioned in Sec. 1, the premise of our work is to en-

able an object store to provide privacy for its clients while

simultaneously constraining the amount of padding overhead

applied to each object that it serves. Therefore, in addition to

comparing PFS against each algorithm using the algorithm’s

intended privacy metric, we also calculated the maximum

pad factor c resulting from the competitor’s padding scheme

⌈·⌉. We will leverage cmax when referring to this resultant c

produced by a padding scheme ⌈·⌉ and ctgt when referring to

the target c that is provided as an input parameter to PFS. We

do this to enable a comparison between the cost (in terms of

overhead) of PFS to that of each competitor when ªcompetingº

on each of their privacy metrics.

Finally, note that for all tests in Sec. 5, we set our efficiency

parameter k = 2. We describe the effect of varying k in Sec. 6.

BDK For our comparison to BDK [5], we measured against

I

(

S⃗; Y⃗
)

, as this is the metric it is designed to reduce. As

mentioned in Sec. 5.2, BDK is designed to be run multiple

times to produce candidate solutions for ⌈·⌉, from which an

object store would then select the most suitable ⌈·⌉ in terms of

privacy and padding overhead. To model this intended usage,

for each dataset we ran BDK 1,000 times and, for each i ∈
[max⃗

s∈S⃗Ω len(⃗s)], we plot the minimum and maximum values

(the bar and whisker extending above the bar, respectively)

for I
(

S⃗; Y⃗
)

across all 1,000 candidate padding schemes ⌈·⌉.

For each padding scheme we also computed its cmax and plot

these values as a box plot, to the right of the I

(

S⃗; Y⃗
)

plot.

4We save the comparison to PwoD for Sec. 5.4. We do this because our

chosen metric I∞

(

S⃗; Y⃗
)

is the extension of I∞(S;Y)Ðthe privacy metric

that PwoD minimizesÐto our setting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sequence Length

0

1

2

3

4

5

6

7

8

9

I

(

S⃗
;Y⃗

)

(b
it

s)

PFS (ctgt = 1.05)

BDK

BDK PFS

Method

0

10

20

30

40

c m
ax

(a) Autocomplete

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

9

I

(

S⃗
;Y⃗

)

(b
it

s)

PFS (ctgt = 1.05)

BDK

BDK PFS

Method

100

101

102

103

104

c m
ax

(b) Linode

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

11

12

I

(

S⃗
;Y⃗

)

(b
it

s)

PFS (ctgt = 1.15)

BDK

BDK PFS

Method

0

10

20

30

40

c m
ax

(c) Wikipedia

Figure 2: Comparing PFS to BDK using I

(

S⃗; Y⃗
)

as the privacy metric.

As shown in Fig. 2, BDK was outperformed by PFS with

ctgt = 1.05 for both the Autocomplete and Linode dataset, and

for ctgt = 1.15 for Wikipedia. This is despite BDK yielding

ranges for cmax much higher than PFS. We attribute BDK’s

under-performance to the fact that the algorithm will not allow

two objects to be padded to the same size if doing so would

violate the strict equality in (28).

We draw attention to two trends in these plots. The first

is that for both the Autocomplete and Linode datasets, the

values for I
(

S⃗; Y⃗
)

rise and then fall as the sequence length

increases. This is attributable to the fact that the number of

sequences of a given length begins to decrease at length 7 for

Autocomplete and at length 4 for Linode. The second trend is

that the results for I
(

S⃗; Y⃗
)

for Wikipedia are non-decreasing.

This is attributable to the fact that, since all sequences are of

length 7, the information leaked about S⃗ cannot decrease as

the sequence is extended.

MVMD-D For our comparison to MVMD-D [34], we as-

sessed each algorithm’s ability to ensure that ℓ-diversity is

achieved. In this section, we use ℓtgt when referring to the

target ℓ that was provided as an input parameter to MVMD-D.

For these tests, we compared MVMD-D with ℓtgt = 3 (i.e.,

MVMD-3) against PFS with ctgt = 2.0. Additionally, in Fig. 3

we depict the results of our tests using (i) ℓmin, which we de-

fine for a given i as

min
y⃗1...i∈⃗Y1...i

1

maxs∈SP
(

S⃗i = s
∣

∣ Y⃗1...i = y⃗1...i

)
(29)

and which is equivalent to Liu, et al.’s [34] definition of ℓ (see

Sec. 5.2), and (ii) ℓavg, which we define for a given i as

∑y⃗1...i∈⃗Y1...i

1

maxs∈S P

(

S⃗i=s

∣

∣ Y⃗1...i=⃗y1...i

)

#⃗Y1...i

(30)

We define ℓavg in this way as it enables us to describe how

privacy-preserving an algorithm’s resultant padding scheme

⌈·⌉ was across all y⃗1...i ∈ Y⃗1...i, even if the algorithm failed to

achieve ℓ-diversity in the strict sense. This is helpful even

when assessing MVMD-D, as it is not guaranteed to yield a

padding scheme that respects its ℓtgt.

In Fig. 3, we see that, for ctgt = 2, PFS was generally unable

to achieve ℓmin > 1. When we broaden our analysis to gauge

how well PFS achieved ℓavg, we see that PFS provided roughly

the same, and in some cases much better, ℓavg than MVMD-3

for the objects in our datasets. Moreover, PFS offered this pro-

tection for cmax that was far less than MVMD-3’s. Indeed, the

cmax for each of MVMD-3’s padding schemes ⌈·⌉ was simi-

lar to that of BDK across each of the three datasets. Finally,

we see that even MVMD-3 yielded ℓmin = 1 for each of the

three datasets, starting at lengths 8, 5, and 3 for Autocomplete,

Linode, and Wikipedia, respectively.

5.4 I∞

(

S⃗; Y⃗
)

comparisons

In this section we compare each algorithm against our cho-

sen metric I∞

(

S⃗; Y⃗
)

. Since both PwoD and PFS take c

as input, for this test we ran both algorithms with ctgt ∈
{1.05,1.25,1.5,2.0} for each of our three datasets. For

BDK we compare to a single run of the algorithm, and for

MVMD-D we compare to MVMD-3. The results are shown

in Fig. 4.

In both Fig. 4a and Fig. 4b we observe that, as ctgt in-

creased, there was a trend that PFS performed increasingly

better than PwoD until ctgt = 2.0, at which point PFS and

PwoD performed similarly. Indeed, for ctgt = 1.5, in Fig. 4b,

PFS yielded I∞

(

S⃗; Y⃗
)

that is 7.4% lower than PwoD for

length 4, and in Fig. 4a, PFS yielded I∞

(

S⃗; Y⃗
)

that is 24.2%

lower than PwoD for length 8. Also, we see that BDK was not

competitive in either Fig. 4a or Fig. 4b, and that MVMD-3

was not competitive in Fig. 4a but was competitive in Fig. 4b

for only the longest sequences. This is despite both BDK and

MVMD-3 yielding values for cmax that were much larger than

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D
iv

er
si

ty

ℓmin

ℓavg

M
V

M
D

-3

P
F

S
(c

tg
t

=
2
.0

)
(a) Autocomplete (MVMD-3 cmax = 31.73)

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

D
iv

er
si

ty

(b) Linode (MVMD-3 cmax = 5707.33)

1 2 3 4 5 6 7

Sequence Length

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

D
iv

er
si

ty

(c) Wikipedia (MVMD-3 cmax = 43.07)

Figure 3: Comparing PFS to MVMD-3 using ℓ-diversity as the privacy metric.

PFS (see Fig. 2 and Fig. 3).

In Fig. 4c we observe that PwoD performed slightly better

than PFS for short sequences. However, by length 5, the dif-

ference is only noticeable for ctgt = 2.0, and by length 7, PFS

yielded lower values for I∞

(

S⃗; Y⃗
)

for ctgt = {1.05,1.25,2.0}

(though in all cases PFS and PwoD differed by ≤ 0.01bits).

We also see that both BDK and MVMD-3 were competitive

for longer sequence lengths, though we reiterate that their

solutions for ⌈·⌉ yielded large values for cmax.

Although PwoD performed well on our three datasetsÐ

and indeed comparable to PFS on the Wikipedia datasetÐ

it is possible for PwoD to perform arbitrarily worse than

PFS as the length of sequences increase. To demonstrate

this point, we created a synthetic dataset as follows. We first

created 256 sequences, each of len(⃗s) = 8, i.e., each sequence

represents eight successive object retrievals. For these first

256 sequences, the sizes of the objects were assigned one

of {1B,2B} so that the resultant sequences yield all of the

binary combinations from [0,255]. In addition to these 256

sequences, we added a single sequence where each object in

the sequence is 3B. We then created another 256 sequences as

before, but whose objects were assigned one of {20B,21B}.
Finally, we added a single sequence where each object in the

sequence is 10B. Thus, for our synthetic dataset #S⃗Ω = 514.

Given this synthetic dataset, we set ctgt = 2.0. In this case,

I∞

(

S⃗; Y⃗
)

is minimized when ⌈·⌉ pads all objects of size

{1B,2B} to 2B and all objects of size {20B,21B} to 21B.

This causes the smallest 256 sequences to be indistinguishable

from each other, as well as the largest 256 sequences, leav-

ing only the 3B-sequence and 10B-sequence isolated. Indeed,

PFS yielded this solution for ⌈·⌉. The ⌈·⌉ given by PwoD,

however, padded all objects of size {2B,3B} to 3B, thereby

leaving the smallest 256 sequences identifiable. As shown in

Fig. 5, this caused I∞

(

S⃗; Y⃗
)

for PwoD to increase linearly as

the sequence length increased, whereas the I∞

(

S⃗; Y⃗
)

for PFS

remained constant at 2 bits.

PwoD struggled against this dataset since, by default, it

iterates through object sizes from largest-to-smallest, thereby

assigning objects that are 20B to be padded to 21B, and ob-

jects that are 2B to be padded to 3B. However, simply run-

ning PwoD from smallest-to-largest would yield a similarly

suboptimal ⌈·⌉, as then PwoD would pad all objects of size

{10B,20B} to 20B, thus leaving the largest 256 sequences

identifiable.

5.5 Attacker’s recall and precision

One challenge of minimizing I∞

(

S⃗; Y⃗
)

in our algorithm is

that this measure might be less familiar and understandable

than others. To put the benefits of our algorithm into a form

that might be more understandable, in this section we report

the results of a study that demonstrates the privacy that our

algorithm and others’ achieve, in terms of the precision and

recall with which a network adversary can identify sequences

of interest when retrieved.

For this study, we assumed that the adversary had a set

of target sequences S⃗⊙ ⊂ S⃗Ω that it aimed to identify by ob-

serving the padded (and encrypted) traffic. The adversary

observed a sequence of padded objects up to a given length

mÐto include the m-length prefixes of those sequences in S⃗

that are longer than mÐand afterwards determined whether

this sequence corresponded to a sequence from its target set

S⃗⊙. More specifically, upon observing a sequence s⃗ of ob-

ject retrievals padded to sizes y⃗, the attacker can calculate

P
(

S⃗ ∈ S⃗⊙
∣

∣ Y⃗ = y⃗
)

for any S⃗⊙ of interest. For any threshold

τ, the adversary returned true iff P
(

S⃗ ∈ S⃗⊙
∣

∣ Y⃗ = y⃗
)

≥ τ. For

a given τ, the adversary’s recall is the fraction of sequences

from S⃗⊙ for which the adversary returned true, and the adver-

sary’s precision is the fraction of its true detections for which

the sequence was in S⃗⊙.

We conducted the precision-recall tests as follows. For

a given dataset and sequence length m, an individual trial

consisted of randomly selecting 5% of the elements of S⃗Ω

of length m to constitute S⃗⊙. We ran 100 such trials and

we present the precision-recall curves as the average over

these 100 trials. In the context of this study, lower values of

the adversary’s precision and recall indicate a more secure

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

(a) Autocomplete

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

ctgt

1.05
1.25
1.5
2.0
∞

B
D

K

M
V

M
D

-3

P
w

o
D

P
F

S

(b) Linode

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

11

12

13

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

(c) Wikipedia

Figure 4: Comparing all algorithms using I∞

(

S⃗; Y⃗
)

as the privacy metric.

1 2 3 4 5 6 7 8

Sequence Length

0

1

2

3

4

5

6

7

8

9

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

PwoD (ctgt = 2.0)

PFS (ctgt = 2.0)

Figure 5: Comparing PFS to PwoD on the synthetic dataset.

padding algorithm.

Results for Autocomplete are depicted in Fig. 6. For this

dataset, we tested at sequence lengths of 7, 8, and 9. For

each of these lengths, the dataset consisted of a sufficiently

large number of words to model an adversary’s target set. As

shown in Fig. 6, at all three lengths, PFS yielded the low-

est precision and recall values. The only exception is with

sequences of length 7, where MVMD-3 achieved better pre-

cision and recall values for two values of τ. Furthermore, it

is evident from the plots that as the sequences grow longer,

the performance of PFS increased relative to that of the other

algorithms. Indeed, for sequences of length 8 and 9, PFS per-

formed significantly better than the competitors. Moreover, an

apparent trend in this dataset is that, whereas the adversary’s

performance against PFS was fairly consistent, the adversary

improved against the other algorithms as the sequence length

increased.

Fig. 7 shows the results of the precision-recall study on the

Linode dataset. For this experiment, we chose sequences of

length 3, as a majority of the sequences in the dataset were

of length 3. In this experiment, we see that PFS achieved

the lowest values of adversarial precision and recall, again

beating out the competitors, though PwoD produced results

that were competitive with PFS.

Fig. 8 shows the results of the precision-recall study on the

Wikipedia dataset. This dataset was constructed such that all

sequences have length 7. For this experiment, we found that

higher values for ctgt were needed to significantly reduce the

adversary’s performance, and so we set ctgt = 2.0 for both

PFS and PwoD. Still, despite this large value for ctgt, we

show in Sec. 5.6 that even this choice of ctgt resulted in much

lower padding overhead than BDK and MVMD-3. Overall, as

shown in Fig. 8, PFS and PwoD yielded similar results, both

offering better security than MVMD-3 and BDK.

5.6 Padding overhead

Fig. 9 depicts the padding factors produced by each algorithm,

where the x-axis shows cmax, the maximum padding factor

across all objects in the dataset, and the y-axis shows cavg,

the mean value of the padding factors across the dataset. We

calculated cavg as

∑s∈S ∑y∈Y P
(

⌈objs⌉= y
∣

∣ S= s
)

× y
|objs|

#S
(31)

Unsurprisingly, both BDK and MVMD-D produced sig-

nificantly higher values for cmax across all three datasets, as

neither place any constraints on the padding size. On the other

hand, cmax for both PFS and PwoD are constrained by ctgt, and

thus were close to the chosen value of this parameter. Regard-

ing cavg, on the Autocomplete dataset, BDK and MVMD-D

yielded comparable results to PFS and PwoD since the dis-

tribution of object sizes in this dataset varies less than the

others; most of the objects are in the range of 200B to 480B.

For the Linode and Wikipedia datasets, though, using either

BDK or MVMD-D would cause the object store’s objects to

grow substantially in size, and would likely be impractical to

implement.

6 Execution Cost

In this section, we evaluate the execution cost of PFS on the

datasets described in Sec. 5. We begin with a description of

our experiments and their results in Sec. 6.1 and then describe

a much faster, and nearly as good, alternative in Sec. 6.2.

MVMD-3 PwoD (ctgt =1.25) PFS (ctgt =1.25) BDK

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

(a) Sequence length = 7

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

(b) Sequence length = 8

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

(c) Sequence length = 9

Figure 6: Adversary’s recall and precision for detecting words from the Autocomplete dataset.

PwoD (ctgt =1.25) PFS (ctgt =1.25) MVMD-3 BDK

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Figure 7: Adversary’s recall and precision for detecting se-

quences of length 3 from the Linode dataset.

6.1 Runtime of PFS

We implemented PFS with the Gurobi Optimizer5 and ran

tests on a server with a 24-core CPU and 128GB of memory.

For each dataset, for ctgt ∈ {1.01,1.05,1.1,1.25,1.5,2.0},
and for k ∈ {2,3}, we ran PFS and measured the time it took

for PFS to (i) create the model, (ii) run the optimization, and

(iii) return ⌈·⌉. For k = 2 we ran each test 10 times and report

the average runtimes; for k = 3 we ran each test a single time.

Our results are shown in Fig. 10.

Our runtime results demonstrate that on some datasets PFS

(with k = 2) was able to quickly produce ⌈·⌉, e.g., under 2

seconds for Linode (Fig. 10b), and so could be run as objects

are added to the object store or their sizes are modified. On

those datasets where PFS takes longer to produce ⌈·⌉, PFS

could be run on a scheduled basis and applied as batch updates

to the object store.

Our results also depict the challenge of increasing k. For

instance, in Fig. 10a and Fig. 10c, k = 3 resulted in runtimes

5https://www.gurobi.com

PwoD (ctgt =2.0) PFS (ctgt =2.0) MVMD-3 BDK

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Figure 8: Adversary’s recall and precision for detecting se-

quences of length 7 from the Wikipedia dataset.

that were orders of magnitude longer than k = 2. Additionally,

for Autocomplete (Fig. 10a), the results for PFS with ctgt =
2.0 are not plotted as the memory requirements exceeded the

capacity of our test setup.

6.2 Alternative Approach: PFG

As just described, PFS is costly for large datasets. Moreover,

not all object stores may be able to produce S⃗, e.g., if it is not

possible to enumerate all s⃗ ∈ S⃗ or if #S⃗ is too large to work

with. For those object stores, so long as they can produce both

S and E,6 an alternative approach is to create the set S∪E, i.e.,

treat each s ∈ S as a sequence of length 1 and each (s,s′) ∈ E

as a sequence of length 2, and then give this set in place of S⃗

to the LP from Fig. 1 without any further modifications. The

rationale for this approach is that S and E together form a

directed graph, from which S⃗ can be seen as a subset of the

walks possible in this graph. Thus, this approach targets the

6An example of such an object store might be a web server that can easily

enumerate S, the pages that it serves, and E, the hyperlinks between pages.

0 10 20 30 40
cmax

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

c a
v

g

PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2) BDK

MVMD-3
MVMD-4

MVMD-5

(a) Autocomplete

0 2000 4000 6000 8000 10000
cmax

0

10

20

30

40

50

c a
v

g

BDK

MVMD-3

MVMD-4

MVMD-5

1.0 1.5 2.0
1.0

1.2

1.4

1.6

PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)
PwoD (ctgt =2)

PwoD (ctgt =1.5)

PwoD (ctgt =1.25)
PFS (ctgt =1.5)

PFS (ctgt =1.25)

PFS (ctgt =2)

(b) Linode

0 10 20 30 40 50
cmax

1

2

3

4

5

6

7

8

9

c a
v

g

MVMD-3

MVMD-4
MVMD-5

BDK

1.0 1.5 2.0
1.0

1.1

1.2

1.3

1.4

1.5

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

PwoD (ctgt =1.25)

PwoD (ctgt =1.5)

PwoD (ctgt =2)

PFS (ctgt =1.25)

PFS (ctgt =1.5)

PFS (ctgt =2)

(c) Wikipedia

Figure 9: Padding overhead factors for each padding algorithm.

PFG (k = 3)

PFG (k = 2)

PFS (k = 3)

PFS (k = 2)

1.0 1.2 1.4 1.6 1.8 2.0
ctgt

100

101

102

103

104

R
u
n
ti

m
e

(s
ec

o
n
d
s)

(a) Autocomplete

1.0 1.2 1.4 1.6 1.8 2.0
ctgt

0

2

4

6

8

10

12

R
u
n
ti

m
e

(s
ec

o
n
d
s)

(b) Linode

1.0 1.2 1.4 1.6 1.8 2.0
ctgt

101

102

103

R
u
n
ti

m
e

(s
ec

o
n
d
s)

(c) Wikipedia

Figure 10: Model runtime for PFS and PFG as a function of ctgt.

graph of objects and their dependencies in an effort to reduce

I∞

(

S⃗; Y⃗
)

. We refer to this alternative method as Padding for

Graphs (PFG).

We additionally executed PFG and show its performance

results in Fig. 10, alongside those for PFS. Our results show

that PFG is quite efficient overall. For all three datasets, PFG

(with k = 2) yielded fast runtimes, with most tests finishing

in under 10 seconds. Furthermore, our results show that, for

the same k, PFG tended to beat PFS by a wide margin in our

runtime evaluations, with the only exception being for Linode

(Fig. 10b) with k = 3.

We also evaluated PFG to compare its privacy results to

those of PFS, i.e., using the same tests as in Fig. 4. We present

the results of this test in Fig. 11. (We do not present the results

for the Linode dataset, as PFG yielded values for I∞

(

S⃗; Y⃗
)

that were almost indistinguishable from PFS.)

In Fig. 11, we see that for both Autocomplete and

Wikipedia, for ctgt ∈ {1.25,1.5}, PFG outperformed PFS for

shorter sequences (up to length 5 for Autocomplete and length

4 for Wikipedia). This is particularly noteworthy for the Au-

tocomplete dataset, given that PFS outperformed PwoD by

quite a large margin for these same values of ctgt. We attribute

these results to the fact that PFG optimizes for short sequences

(specifically, single-object and two-object sequences).

As sequence lengths increased, though, Fig. 11 shows that

PFS began to outperform PFG. This is most apparent on

the Autocomplete dataset for lengths ≥ 9. Still, these results

demonstrate that if an object store is unable to use PFS (due

to an inability to produce S⃗ or due to runtime concerns), it

can still use PFG and leverage its knowledge of S and E to

effectively reduce I∞

(

S⃗; Y⃗
)

.

7 Conclusion

In this paper, we provided an algorithm, PFS, that is able to ef-

ficiently produce a padding scheme ⌈·⌉ that an object store can

use to conceal from a network observer the objects it serves

to clients, despite the network observer leveraging object de-

pendencies in its inferences. We compared PFS’s security

against prior algorithms, including on the security metrics

that those algorithms themselves aim to optimize. We showed

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

ctgt

1.05
1.25
1.5
2.0

P
F

G
P

F
S

(a) Autocomplete

1 2 3 4 5 6 7

Sequence Length

0

1

2

3

4

5

6

7

8

9

10

11

12

13

I
∞

(

S⃗
;Y⃗

)

(b
it

s)

(b) Wikipedia

Figure 11: Comparing PFG to PFS with k = 2.

that PFS outperformed prior work while maintaining reason-

able constraints on the padding overhead. Compared to BDK,

PFS achieved lower values for I
(

S⃗; Y⃗
)

with little padding

overhead; against PwoD, PFS achieved either comparable or

lower values of I∞

(

S⃗; Y⃗
)

; and compared to MVMD-D, PFS

achieved better diversity across all objects in each dataset, for

less padding overhead. We also compared each algorithm by

assessing an adversary’s precision and recall as it predicted

sequences of objects by observing their padded sizes. Our

results showed that PFS was highly effective in such a setting,

as it was consistently either among the top performers or beat

the other algorithms by a wide margin. Most importantly, in

all cases, PFS was constrained by the tunable padding factor

c. By providing a configurable limit on the padding overhead,

PFS is able to provide an object store with a means to pad

sequences of objects that is both effective against a network

observer and that is practical to implement. Finally, we pro-

vided a competitive alternative to PFS named PFG that is

based on the same underlying LP, and which is suitable in

settings where an object store is unable to generate S⃗ or doing

so is too costly.

Availability

Our datasets and implementations are available at

https://github.com/pranay-jain/constrained-

padding-sequences.

Acknowledgments

This work was supported in part by NSF grant 2207214. The

views expressed in this paper are those of the authors and do

not reflect the official policy or position of the U.S. Military

Academy, the Department of the Army, the Department of

Defense, the National Science Foundation, or the U.S. Gov-

ernment.

References

[1] I. Abraham, B. Pinkas, and A. Yanai. Blinder ± scalable,

robust anonymous committed broadcast. In 27th ACM

Conference on Computer and Communications Security,

pages 1233±1252, October 2020.

[2] H. F. Alan and J. Kaur. Client diversity factor in HTTPS

webpage fingerprinting. In 9th ACM Conference on Data

and Application Security and Privacy, March 2019.

[3] M. Alvim, K. Chatzikokolakis, C. Palamidessi, and

G. Smith. Measuring information leakage using gener-

alized gain functions. In 25th IEEE Computer Security

Foundations Symposium, June 2012.

[4] G. Asharov, T.-H. Hubert Chan, K. Nayak, R. Pass,

L. Ren, and E. Shi. Locality-preserving oblivious RAM.

In Advances in Cryptology ± EUROCRYPT 2019, vol-

ume 11477 of Lecture Notes in Computer Science, pages

214±243, May 2019.

[5] M. Backes, G. Doychev, and B. Kopf. Preventing side-

channel leaks in web traffic: A formal approach. In

20th ISOC Network and Distributed System Security

Symposium, February 2013.

[6] G. D. Bissias, M. Liberatore, D. Jensen, and B. N.

Levine. Privacy vulnerabilities in encrypted HTTP

streams. In 5th Privacy Enhancing Technologies Sym-

posium, volume 3856 of Lecture Notes in Computer

Science, pages 1±11, May 2005.

[7] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching

from a distance: Website fingerprinting attacks and de-

fenses. In 19th ACM Conference on Computer and Com-

munications Security, pages 605±616, October 2012.

[8] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-

abuse attacks against searchable encryption. In 22nd

ACM Conference on Computer and Communications

Security, pages 668±679, October 2015.

[9] A. Chakraborti, A. Aviv, S. G. Choi, T. Mayberry,

D. Roche, and R. Sion. rORAM: Efficient range ORAM

with o(log2 n) locality. In 26th ISOC Network and Dis-

tributed System Security Symposium, February 2019.

[10] Z. Chang, D. Xie, and F. Li. Oblivious RAM: A dissec-

tion and experimental evaluation. Proceedings of the

VLDB Endowment, 9(12), August 2016.

[11] H. Cheng and R. Avnur. Traffic analysis of SSL en-

crypted web browsing. http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.3.1201, 1998.

[12] G. Cherubin, J. Hayes, and M. Juarez. Website finger-

printing defenses at the application layer. Proceedings

on Privacy Enhancing Technologies, 2017(2):186±203,

2017.

[13] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.

Private information retrieval. Journal of the ACM, 45(6),

1998.

[14] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:

An anonymous messaging system handling millions of

users. In 36th IEEE Symposium on Security and Privacy,

May 2015.

[15] G. Danezis. Traffic analysis of the HTTP protocol over

TLS. http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.92.3893, 2003.

[16] G. Danezis. The traffic analysis of continuous-time

mixes. In 4th Privacy Enhancing Technologies Sym-

posium, volume 3424 of Lecture Notes in Computer

Science, May 2004.

[17] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.

Peek-a-boo, I still see you: Why efficient traffic analy-

sis countermeasures fail. In 33rd IEEE Symposium on

Security and Privacy, pages 332±346, 2012.

[18] O. Goldreich and R. Ostrovsky. Software protection and

simulation on oblivious RAMs. Journal of the ACM,

43(3), May 1996.

[19] R. Gonzalez, C. Soriente, and N. Laoutaris. User profil-

ing in the time of HTTPS. In 16th Internet Measurement

Conference, pages 373±379, November 2016.

[20] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown,

L. Li, R. Agarawal, and T. Ristenpart. PANCAKE: Fre-

quency smoothing for encrypted data stores. In 29th

USENIX Security Symposium, August 2020.

[21] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Pater-

son. Learning to reconstruct: Statistical learning theory

and encrypted database attacks. In 40th IEEE Sympo-

sium on Security and Privacy, May 2019.

[22] J. Hayes and G. Danezis. k-fingerprinting: A robust scal-

able website fingerprinting technique. In 25th USENIX

Security Symposium, pages 1187±1203, August 2016.

[23] D. Herrmann, R. Wendolsky, and H. Federrath. Web-

site fingerprinting: Attacking popular privacy enhancing

technologies with the multinomial naïve-Bayes classi-

fier. In 1st ACM Workshop on Cloud Computing Security,

pages 31±42, November 2009.

[24] A. Hintz. Fingerprinting websites using traffic analysis.

In 2nd Privacy Enhancing Technologies Symposium, vol-

ume 2482 of Lecture Notes in Computer Science, pages

171±178, April 2002.

[25] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access

pattern disclosure on searchable encryption: Ramifica-

tion, attack and mitigation. In 19th ISOC Network and

Distributed System Security Symposium, February 2012.

[26] I. Issa, A. B. Wagner, and S. Kamath. An operational

approach to information leakage. IEEE Transactions on

Information Theory, 66(3), March 2020.

[27] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt.

A critical evaluation of website fingerprinting attacks.

In 21st ACM Conference on Computer and Communica-

tions Security, pages 263±274, November 2014.

[28] S. Kamara and T. Moataz. Computationally volume-

hiding structured encryption. In Advances in Cryptology

± EUROCRYPT 2019, volume 11477 of Lecture Notes

in Computer Science, pages 183±213, May 2019.

[29] S. Kamara, T. Moataz, and O. Ohrimenko. Structured en-

cryption and leakage suppression. In Advances in Cryp-

tology ± CRYPTO 2018, volume 10991 of Lecture Notes

in Computer Science, pages 339±370, August 2018.

[30] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.

Generic attacks on secure outsourced databases. In 23rd

ACM Conference on Computer and Communications

Security, October 2016.

[31] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.

Data recovery on encrypted databases with k-nearest

neighbor query leakage. In 40th IEEE Symposium on

Security and Privacy, May 2019.

[32] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright.

Timing attacks in low-latency mix systems. In 8th In-

ternational Conference on Financial Cryptography and

Data Security, volume 3110 of Lecture Notes in Com-

puter Science, pages 251±265, September 2004.

[33] M. Liberatore and B. N. Levine. Inferring the source of

encrypted HTTP connections. In 13th ACM Conference

on Computer and Communications Security, pages 255±

263, October 2006.

[34] W. M. Liu, L. Wang, P. Cheng, K. Ren, S. Zhu, and

M. Debbabi. PPTP: Privacy-preserving traffic padding

in web-based applications. IEEE Transactions on

Dependable and Secure Computing, 11(6):538±552,

November-December 2014.

[35] W. M. Liu, L. Wang, K. Ren, P. Cheng, and M. Debbabi.

k-indistinguishable traffic padding in web applications.

In 12th Privacy Enhancing Technologies Symposium,

volume 7384 of Lecture Notes in Computer Science,

pages 79±99, July 2012.

[36] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang,

and R. Perdisci. HTTPOS: Sealing information leaks

with browser-side obfuscation of encrypted flows. In

18th ISOC Network and Distributed System Security

Symposium, February 2011.

[37] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkita-

subramaniam. ℓ-diversity: Privacy beyond k-anonymity.

ACM Transactions on Knowledge Discovery from Data,

1(1), March 2007.

[38] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios,

and R. Canetti. Modular order-preserving encryption,

revisited. In ACM SIGMOD International Conference

on Management of Data, pages 763±777, May 2015.

[39] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar. I

know why you went to the clinic: Risks and realization

of HTTPS traffic analysis. In 14th Privacy Enhancing

Technologies Symposium, volume 8555 of Lecture Notes

in Computer Science, pages 143±163, July 2014.

[40] K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-

P. Hubaux, and B. Ford. Reducing metadata leak-

age from encrypted files and communication with

PURBs. Proceedings on Privacy Enhancing Technolo-

gies, 2019(4):6±33, 2019.

[41] A. Panchenko, L. Niessen, A. Zinnen, and T. En-

gel. Website fingerprinting in onion routing based

anonymization networks. In 10th Workshop on Privacy

in the Electronic Society, pages 103±114, October 2011.

[42] H. H. Pang, X. Xiao, and J. Shen. Obfuscating the

topical intention in enterprise text search. In 28th IEEE

International Conference on Data Engineering, April

2012.

[43] A. C. Reed and M. K. Reiter. Optimally hiding object

sizes with constrained padding. In IEEE Computer

Security Foundations Symposium, July 2023.

[44] P. Samarati. Protecting respondents’ identities in

microdata release. IEEE Transactions on Knowl-

edge and Data Engineering, 13(6):1010±1027, Novem-

ber/December 2001.

[45] A. Serjantov and P. Sewell. Passive attack analysis for

connection-based anonymity systems. In 8th European

Symposium on Research in Computer Security, volume

2808 of Lecture Notes in Computer Science, pages 116±

131, October 2003.

[46] D. X. Song, D. Wagner, and A. Perrig. Practical tech-

niques for searches on encrypted data. In 21st IEEE

Symposium on Security and Privacy, pages 44±55, May

2000.

[47] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N.

Padmanabhan, and L. Qiu. Statistical identification of

encrypted web browsing traffic. In 23rd IEEE Sympo-

sium on Security and Privacy, pages 19±30, May 2002.

[48] L. Sweeney. k-anonymity: A model for protecting pri-

vacy. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 10(5):557±570, 2002.

[49] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-

berg. Effective attacks and provable defenses for website

fingerprinting. In 23rd USENIX Security Symposium,

pages 143±157, August 2014.

[50] T. Wang and I. Goldberg. Improved website finger-

printing on Tor. In 12th Workshop on Privacy in the

Electronic Society, pages 201±212, November 2013.

[51] J. Yan and J. Kaur. Feature selection for website finger-

printing. Proceedings on Privacy Enhancing Technolo-

gies, 2018(4), October 2018.

[52] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On

flow correlation attacks and countermeasures in mix

networks. In 4th Privacy Enhancing Technologies Sym-

posium, volume 3424 of Lecture Notes in Computer

Science, pages 207±225, May 2004.

	Introduction
	Related Work
	Dependent object retrievals
	Padding overhead constraints
	Webpage fingerprinting
	Untrusted object store

	Problem Statement
	Padding scheme
	Privacy measure

	Design
	Linear program
	Efficiency

	Evaluation
	Datasets
	Comparison algorithms
	BDK and comparisons
	 comparisons
	Attacker's recall and precision
	Padding overhead

	Execution Cost
	Runtime of PFS
	Alternative Approach: PFG

	Conclusion

