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Abstract

Structural causal models (SCMs) are widely used in various disciplines to repre-
sent causal relationships among variables in complex systems. Unfortunately, the
underlying causal structure is often unknown, and estimating it from data remains
a challenging task. In many situations, however, the end goal is to localize the
changes (shifts) in the causal mechanisms between related datasets instead of learn-
ing the full causal structure of the individual datasets. Some applications include
root cause analysis, analyzing gene regulatory network structure changes between
healthy and cancerous individuals, or explaining distribution shifts. This paper
focuses on identifying the causal mechanism shifts in two or more related datasets
over the same set of variables—without estimating the entire DAG structure of each
SCM. Prior work under this setting assumed linear models with Gaussian noises;
instead, in this work we assume that each SCM belongs to the more general class of
nonlinear additive noise models (ANMs). A key technical contribution of this work
is to show that the Jacobian of the score function for the mixture distribution allows
for the identification of shifts under general non-parametric functional mechanisms.
Once the shifted variables are identified, we leverage recent work to estimate the
structural differences, if any, for the shifted variables. Experiments on synthetic
and real-world data are provided to showcase the applicability of this approach.
Code implementing the proposed method is open-source and publicly available at
https://github.com/kevinsbello/iSCAN.

1 Introduction

Structural causal models (SCMs) are powerful models for representing causal relationships among
variables in a complex system [54, 58]. Every SCM has an underlying graphical structure that is
generally assumed to be a directed acyclic graph (DAG). Identifying the DAG structure of an SCM is
crucial since it enables reasoning about interventions [54]. Nonetheless, in most situations, scientists
can only access observational or interventional data, or both, while the true underlying DAG structure
remains unknown. As a result, in numerous disciplines such as computational biology [66, 30, 20],
epidemiology [64], medicine [61, 62], and econometrics [34, 28, 18], it is critically important to
develop methods that can estimate the entire underlying DAG structure based on available data.
This task is commonly referred to as causal discovery or structure learning, for which a variety of
algorithms have been proposed over the last decades.

Throughout this work, we make the assumption of causal sufficiency (i.e., non-existence of unobserved
confounders). Under this condition alone, identifying the underlying DAG structure is not possible in
general, and remains worst-case NP-complete [14, 16]. Indeed, prominent methods such as PC [71]
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and GES [15] additionally require the arguably strong faithfulness assumption [77] to consistently
estimate, in large samples, the Markov equivalent class of the underlying DAG. However, these
methods are not consistent in high-dimensions unless one additionally assumes sparsity or small
maximum-degree of the true DAG [36, 50, 78]. Consequently, the existence of hub nodes, which
is a well-known feature in several networks [5, 6, 7], significantly complicates the DAG learning
problem.

In many situations, however, the end goal is to detect shifts (changes) in the causal mechanisms
between two (or more) related SCMs rather than recovering the entire underlying DAG structure of
each SCM. For example, examining the mechanism changes in the gene regulatory network structure
between healthy individuals and those with cancer may provide insights into the genetic factors
contributing to the specific cancer; within biological pathways, genes could regulate various target
gene groups depending on the cellular environment or the presence of particular disease conditions
[32, 60]. In these examples, while the individual networks could be dense, the number of mechanism
shifts could be sparse [69, 74, 55]. Finally, in root cause analysis, the goal is to identify the sources
that originated observed changes in a joint distribution; this is precisely the setting we study in this
work, where we model the joint distributions via SCMs, as also done in [52, 33].

In more detail, we focus on the problem of identifying mechanism shifts given datasets from two
or more environments (SCMs) over the same observables. We assume that each SCM belongs
to the class of additive noise models (ANMs) [29], i.e., each variable is defined as a nonlinear
function over a subset of the remaining variables plus a random noise (see Section 2 for formal
definitions). Importantly, we do not make any structural assumptions (e.g., sparsity, small maximum-
degree, or bounded tree-width) on the individual DAGs. Even though ANMs are well-known to
be identifiable [29, 59], we aim to detect the local distribution changes without estimating the full
structures individually. See Figure 1 for a toy example of what we aim to estimate. A similar setting
to this problem was studied in [82, 23] albeit in the restrictive linear setting. Finally, it is worth
noting that even with complete knowledge of the entire structure of each SCM, assessing changes
in non-parametric functions across different groups or environments remains a very challenging
problem [see for instance, 44].

Contributions. Motivated by recent developments on causal structure learning of ANMs [65],
we propose a two-fold algorithm that (1) Identifies shifted variables (i.e., variables for which their
causal mechanism has changed across the environments); and (2) If needed, for each shifted variable,
estimates the structural changes among the SCMs. More concretely, we make the following set of
contributions:

• To identify shifted variables (Definition 3), we prove that the variance of the diagonal
elements of the Hessian matrix associated with the log-density of the mixture distribution
unveils information to detect distribution shifts in the leaves of the DAGs (see Theorem 1).
Due to this result, our algorithm (Algorithm 1) iteratively chooses a particular leaf variable
and determines whether or not such variable is shifted. Importantly, this detection step
does not rely on any structural assumptions on the individual DAGs, and can consistently
detect distribution shifts for non-parametric functionals under very mild conditions such as
second-order differentiability.

• To identify structurally shifted edges (Definition 4), we propose a nonparametric local parents
recovery method (Algorithm 2) based on a recent measure of conditional dependence [3].
In addition, based on recent results in [4], we provide a theoretical justification for the
asymptotic consistency of Algorithm 2 in Theorem 2. Importantly, since structural changes
can only occur on shifted nodes, this second step can be conducted much more efficiently
when the sparse mechanism shift hypothesis [69] holds, which posits that only a small subset
of the causal model’s mechanisms change.

• We empirically demonstrate that our method can outperform existing methods such as DCI,
which is tailored for linear models, as well as related methods for estimating unknown
intervention targets such as UT-IGSP [72]. See Section 5 and Appendix C for more details.
Moreover, in Section 5.2, we provide experiments on an ovarian cancer dataset, thus,
showcasing the applicability of our method.
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(a) Underlying SCM M∗.

X1 = f∗
1 (N1)

def
= N1,

X2 = f∗
2 (X3, N2)

def
= tanh(X3) +N2,

X3 = f∗
3 (X1, N3)

def
= sinc(X1) +N3,

X4 = f∗
4 (X1, N4)

def
= X3

1 −X1 +N4,

X5 = f∗
5 (X3, X4, N5)

def
= X4 · sin(X3) +N5.

(b) Structural equations of the unknown SCM M∗.
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(c) Env. E1, originated by an un-
known intervention on X5.

X1

X3 X4

X2 X5

σ(
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(d) Env. E2, originated by unknown
interventions on X3 and X5.

X1

X3 X4

X2 X5

(e) Shifts in mechanisms between
E1 and E2.

Figure 1: Illustration of two different environments (see Definition 2) in (1c) and (1d), both orig-
inated from the underlying SCM in (1a) with structural equations given in (1b). Between the two
environments, we observe a change in the causal mechanisms of variables X3 and X5—the red nodes
in (1e). Specifically, for X5, we observe that its functional dependence changed from X4 in E1 to X3

in E2. For X3, its structural dependence has not changed between E1 and E2, and only its functional
changed from sinc(X1) in E1 to the sigmoid function σ(X1) in E2. Finally, in (1e), the red edges
represent the structural changes in the mechanisms. The non-existence of an edge from X1 to X3

indicates that the structural relation between X1 and X3 is invariant.

2 Preliminaries and Background

In this section we introduce notation and formally define the problem setting. We use [d] to denote the
set of integers {1, . . . , d}. Let G = ([d], E) be a DAG with node set [d] and a set of directed edges
E ⊂ [d] × [d], where any (i, j) ∈ E indicates and edge from i to j. Also let X = (X1, . . . , Xd)
denote a d-dimensional vector of random variables. An SCMM = (X, f,PN ) over d variables is
generally defined as a collection of d structural equations of the form:

Xj = fj(PAj , Nj), ∀j ∈ [d], (1)

where PAj ⊆ {X1, . . . , Xd} \ {Xj} are the direct causes (or parents) of Xj ; f = {fj}dj=1 is a set
of functional mechanisms fj : R|PAj |+1 → R; and PN is a joint distribution2 over the noise variables
Nj , which we assume to be jointly independent3. Moreover, the underlying graph G of an SCM is
constructed by drawing directed edges for each Xk ∈ PAj to Xj . We henceforth assume this graph
to be acyclic, i.e., a DAG. Finally, every SCMM defines a unique distribution PX over the variables
X [Proposition 6.3 in 58], which by the independence of the noise variables (a.k.a. the Markovian
assumption), PX admits the following factorization:

P(X) =
d∏

j=1

P(Xj | PAj), (2)

where P(Xj | PAj) is referred as the causal mechanism of Xj .

2We will always assume the existence of a density function w.r.t. the Lebesgue measure.
3Note that this implies that there is no hidden confounding.
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The model above is often too general due to problems of identifiability. In this work we will consider
that the noises are additive.
Definition 1 (Additive noise models (ANMs)). An additive noise model is an SCMM = (X, f,PN )
as in (1), where each structural assignment has the form:

Xj = fj(PAj) +Nj , ∀j ∈ [d].

Depending on the assumptions on fj and Nj , the underlying DAG of an ANM can be identifiable
from observational data. E.g., when fj is linear and Nj is Gaussian, in general one can only identify
the Markov equivalence class (MEC) of the DAG, assuming faithfulness [54]. For linear models, an
exception arises when assuming equal error variances [56, 78, 47], or non-Gaussian errors [70]. In
addition, when fj is nonlinear on each component and three times differentiable then the DAG is
also identifiable [59, 29]. Very recently, Rolland et al. [65] proved DAG identifiability when fj is
nonlinear on each component and Nj is Gaussian, using information from the score’s Jacobian.

2.1 Data from multiple environments

Throughout this work we assume that we observe a collection of datasets, D = {Xh}Hh=1, from H
(possibly different) environments. Each dataset Xh = {Xh,i}mh

i=1 from environment h contains mh

(possibly non-independent) samples from the joint distribution Ph
X , i.e., Xh ∈ Rmh×d. We consider

that each environment originates from soft interventions4 [54] of an unknown underlying SCMM∗

with DAG structure G∗ and joint distribution P∗(X) =
∏d

j=1 P∗(Xj | PA∗
j ). Here PA∗

j denotes the
parents (direct causes) of Xj in G∗. Then, an environment arises from manipulations or shifts in
the causal mechanisms of a subset of variables, transforming from P∗(Xj | PA∗

j ) to P̃(Xj | P̃Aj).
Throughout, we will make the common modularity assumption of causal mechanisms [54, 38], which
postulates that an intervention on a node Xj only changes the mechanism P(Xj | PAj), while all
other mechanisms P(Xi | PAi), for i ̸= j, remain unchanged.
Definition 2 (Environment). An environment Eh = (X, fh,Ph

N ), with joint distribution Ph
X and

density phx, independently results from an SCMM∗ by intervening on an unknown subset Sh ⊆ [d]
of causal mechanisms, that is, we can factorize the joint distribution Ph(X) as follows:

Ph(X) =
∏
j∈[d]

Ph(Xj | PAh
j ) =

∏
j∈Sh

P̃h(Xj | P̃A
h

j )
∏
j /∈Sh

P∗(Xj | PA∗
j ), (3)

where P̃A
h

j is a (possibly empty) subset of the underlying causal parents PA∗
j , i.e., P̃A

h

j ⊆ PA∗
j ; and,

P∗(Xj | PA∗
j ) are the invariant mechanisms.

Remark 1. In the literature [e.g., 55], it is common to find the assumption that in a soft intervention

the direct causes remain invariant, i.e., P̃A
h

j = PA∗
j for all j ∈ Sh, h ∈ [H]. In this work we

consider a more general setting where none, some, or all of the direct causes of an intervened node

are removed, i.e., P̃A
h

j ⊆ PA∗
j for all j ∈ Sh, h ∈ [H].

We next define shifted nodes (variables).
Definition 3 (Shifted node). Given H environments {Eh = (X, fh,Ph

N )}Hh=1 originated from an
ANMM∗, a node j is called a shifted node if there exists h, h′ ∈ [H] such that:

Ph(Xj | PAh
j ) ̸= Ph′

(Xj | PAh′

j ).

To conclude this section, we formally define the problem setting.

Problem setting. Given H datasets {Xh}Hh=1, where Xh ∼ Ph
X consists of mh (possibly non-

independent) samples from the environment distribution Ph
X originated from an underlying ANM

M∗, estimate the set of shifted nodes and structural differences.

We note that [82, 23] have study the problem setting above for H = 2, assuming linear functions
fh
j , and Gaussian noises Nh

j . In this work, we consider a more challenging setting where fh
j are

nonparametric functions (see Section 3 for more details).
4These types of interventions are more realistic in practice than “hard” or perfect interventions. However,

note that we allow a soft intervention on a variable to remove some or all of its causes, where the latter is also
known as an stochastic hard intervention.
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2.2 Related Work

First we mention works most closely related to ours. The problem of learning the difference between
undirected graphs has received much more attention than the directed case. E.g., [88, 46, 85, 19]
develop algorithms for estimating the difference between Markov random fields and Ising models.
See [87] for recent developments in this direction. In the directed setting, [82, 23] propose methods
for directly estimating the difference of linear ANMs with Gaussian noise. More recently, [67]
studied the setting where a dataset is generated from a mixture of SCMs, and their method is capable
of detecting conditional distributions changes; however, due to the unknown membership of each
sample, it is difficult to test for structural and functional changes. Moreover, in contrast to ours, all
the aforementioned work on the directed setting rely on some form of faithfulness assumption.

Causal discovery from a single environment. One way to identify mechanism shifts (albeit
inefficient) would be to estimate the individual DAGs for each environment and then test for structural
differences across the different environments. A few classical and recent methods for learning DAGs
from a single dataset include: Constraint-based algorithms such as PC and FCI [71]; in score-based
methods, we have greedy approaches such as GES [16], likelihood-based methods [56, 47, 59, 2, 1,
29], and continuous-constrained learning [89, 51, 39, 8]. Order-based methods [75, 41, 24, 65, 48],
methods that test for asymmetries [70, 12], and hybrid methods [50, 76]. Finally, note that even if we
perfectly estimate each individual DAG (assuming identifiable models such as ANMs), applying these
methods would only identify structural changes. That is, for variables that have the same parents
across all the environments, we would require an additional step to identify distributional changes.

Testing functional changes in multiple datasets. Given the parents of a variable Xj , one could
leverage prior work [44, 25, 9, 26] on detecting heterogeneous functional relationships. However,
we highlight some important limitations. Several methods such as [25, 9, 26] only work for one
dimensional functionals and assume that the datasets share the exact same design matrix. Although
[44] relaxes this assumption and extends the method to multivariate cases, the authors assume that
the covariates (i.e., PAh

j ) are sampled from the same distribution across the environments, which is a
strong assumption in our context since ancestors of Xj could have experienced mechanism shifts.
Finally, methods such as [53] and [11], although nonparametric, need knowledge about the parent set
PAj for each variable, and they assume that PAj is same across different environments.

Causal discovery from heterogeneous data. Another well-studied problem is to learn the underlying
DAG of the SCMM∗ that originated the different environments. Under this setting, [83] provided
a characterization of the I-MEC, a subset of the Markov equivalence class. [55] provided DAG-
identifiability results by leveraging sparse mechanism shifts and relies on identifying such shifts,
which this work aims to solve. [10] developed an estimator considering unknown intervention targets.
[79] primarily focuses on linear SEM and does not adapt well to nonlinear scenarios. Also assuming
linear models, [22, 21] applied ideas from linear invariant causal prediction [ICP, 57] and ICM to
identify the causal DAG. [72] proposes a nonparametric method that can identify the intervention
targets; however, this method relies on nonparametric CI tests, which can be time-consuming and
sample inefficient. [49] introduced the joint causal inference (JCI) framework, which can also
estimate intervention nodes. However, this method relies on an assumption that the intervention
variables are fully connected, a condition that is unlikely to hold in practice. [31] introduced a
two-stage approach that removes functional restrictions. First, they used the PC algorithm using
all available data to identify the MEC. Then, the second step aims to orient the remaining edges
based on a novel measure of mechanism dependence. Finally, we note that a common assumption
in the aforementioned methods is the knowledge of which dataset corresponds to the observational
distribution; without such information, their assumptions on the type of interventions would not hold
true. In contrast, our method does not require knowledge of the observational distribution.

3 Identifying Causal Mechanism Shifts via Score Matching

In this section, we propose iSCAN (identifying Shifts in Causal Additive Noise models), a method for
detecting shifted nodes (Definition 3) based only on information from the Jacobian of the score of the
data distribution5.

5In this work, the score of a pdf p(x) means ∇ log p(x)
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Let X be the row concatenation of all the datasets Xh, i.e., X = [(X1)⊤ | · · · | (XH)⊤]⊤ ∈ Rm×d,
where m =

∑H
h=1 mh. The pooled data X can be interpreted as a mixture of data from the H

different environments. To account for this mixture, we introduce the probability mass wh, which
represents the probability that an observation belongs to environment h, i.e.,

∑H
h=1 wh = 1. Let Q(X)

denote the distribution of the mixture data with density function q(x), i.e., q(x) =
∑H

h=1 whp
h(x).

In the sequel, we use sh(x) ≡ ∇ log ph(x) to denote the score function of the joint distribution of
environment h with density ph(x). Also, we let s(x) ≡ ∇ log q(x) to denote the score function of
the mixture distribution with density q(x). We will make the following assumptions on fh

j and Nh
j .

Assumption A. For all h ∈ [H], j ∈ [d], the functional mechanisms fh
j (PA

h
j ) are assumed to be

non-linear in every component.
Assumption B. For all j ∈ [d], h ∈ [H], the pdf of the real-valued noise Nh

j denoted by phNj
satisfies

∂2

(∂nh
j )

2 log p
h
Nj

(nh
j ) = chj where chj is a non-zero constant. Moreover, E[Nh

j ] = 0.

For an ANM, Rolland et al. [65] showed that under Assumption A and assuming zero-mean Gaussian
noises (which satisfies Assumption B), the diagonal of the Jacobian of the score function reveals the
leaves of the underlying DAG. We next instantiate their result in our context.
Proposition 1 (Lemma 1 in [65, 68]). For an environment Eh with underlying DAG Gh and pdf
ph(x), let sh(x) = ∇ log ph(x) be the associated score function. Then, under Assumptions A and B,
for all j ∈ [d], we have:

Node j is a leaf in Gh ⇐⇒ VarX

[
∂shj (X)

∂xj

]
= 0.

Motivated by the ideas of leaf-identifiability from the score’s Jacobian in a single ANM, we next
show that the score’s Jacobian of the mixture distribution can help reveal mechanism shifts among
the different environments.
Theorem 1. For all h ∈ [H], let Gh and ph(x) denote the underlying DAG structure and pdf of
environment Eh, respectively, and let q(x) be the pdf of the mixture distribution of the H environments
such that q(x) =

∑H
h=1 whp

h(x). Also, let s(x) = ∇ log q(x) be the associated score function.
Then, under Assumptions A, and B, we have:

(i) If j is a leaf in all DAGs Gh, then j is a shifted node if and only if VarX
[
∂sj(X)
∂xj

]
> 0.

(ii) If j is not a leaf in at least one DAG Gh, then VarX

[
∂sj(X)
∂xj

]
> 0.

Theorem 1 along with Proposition 1 suggests a way to identify shifted nodes. Namely, to use
Proposition 1 to identify a common leaf, and then use Theorem 1 to test if such a leaf is a shifted
node or not. We then proceed to remove the leaf and repeat the process. See Algorithm 1. Note that
due to the fact that each environment is a result of an intervention (Definition 2) on an underlying
ANMM∗, it follows that the leaves in G∗ will remain leaves in each DAG Gh.

Algorithm 1 iSCAN—Identifying Shifts in Causal Additive Noise models.

Input: Datasets X1, . . . ,XH .
Output: Shifted variables set Ŝ, and topological sort π̂.

1: Initialize Ŝ = {}, π̂ = ( ), N = {1, . . . , d}
2: Set X = [(X1)⊤ | · · · | (XH)⊤]⊤ ∈ Rm×d.
3: while N ̸= ∅ do
4: ∀h ∈ [H],Varh ← VarXh

[
diag(∇2 log ph(x))

]
.

5: Var← VarX
[
diag(∇2 log q(x))

]
6: L←

⋂
h∈[H]

{
j | Varhj = 0, j ∈ [d]

}
. ▷ Identify leaves.

7: Ŝ ← Ŝ
⋃ {

j | Varj ̸= 0, j ∈ L
}

▷ Identify shifted nodes.
8: N ← N − {L}
9: ∀l ∈ L, remove the l-th column of Xh, ∀h ∈ [H], and X .

10: π̂ ← (L, π̂).
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Remark 2. See Appendix A for a practical implementation of Alg. 1. Finally, note that Alg. 1 also
estimates a valid topological sort for the different environments by leveraging Proposition 1.

3.1 Score’s Jacobian estimation

Since the procedure to estimate Varq[
∂sj(x)
∂xj

] is similar for estimating Varph [
∂shj (x)

∂xj
] for each h ∈ [H],

in this section we discuss the estimation for Varq[
∂sj(x)
∂xj

], which involves computing the diagonal
of the Hessian of log q(x). To estimate this quantity, we adopt a similar approach to the method in
[45, 65]. First, we estimate the first-order derivative of log q(x) by Stein’s identity [73]:

Eq

[
h(x)∇ log q(x)⊤ +∇h(x)

]
= 0, (4)

where h : Rd → Rd′
is any test function such that limx→∞ h(x)q(x) = 0. Once we have estimated

∇ log q(x), we can proceed to estimate the Hessian’s diagonal by using second-order Stein’s identity:

Eq[h(x)diag(∇2 log q(x))⊤] = Eq[∇2
diagh(x)− h(x)diag(∇ log q(x)∇ log q(x)⊤)] (5)

Using eq.(4) and eq.(5), we can estimate the Hessian’s diagonal at each data point. Thus allowing us
to obtain an estimate of Varq

[
∂sj(x)
∂xj

]
. See Appendix A.1 for additional details.

Remark 3 (Consistency of Algorithm 1). The estimators in eq.(6) and eq.(7), given in Appendix
A.1, correspond to Monte Carlo estimators using eq.(4) and (5), respectively, then the error of the
estimators tend to zero as the number of samples goes to infinity. See for instance the discussion in
Section 3.1 in [45]. We empirically explore the consistency of Algorithm 1 in Figure 2.
Remark 4 (Computational Complexity). Since we adopt the kernel-based estimator, SCORE, from
[65]. The computational complexity for the estimation of the score’s Jacobian in a single environment
is O(dm3

h). In Algorithm 1, computation is dominated by the SCORE function applied to the pooled
data X ∈ Rm×d. Therefore, the overall complexity of Algorithm 1 is O(dm3). See Figure 2.

Figure 2: (Left) F1 score of the output of Alg. 1 w.r.t. to the true set of shifted nodes. For different
number of nodes, we observe how iSCAN recovers the true set of shifted nodes as the number of
samples increases, thus empirically showing its consistency. (Right) Runtime vs number of nodes for
different number of samples. We corroborate the linear dependence of the time complexity on d.

4 On Identifying Structural Differences

After estimating the set of shifted nodes Ŝ through Algorithm 1, it is of high interest to predict
which causal relations between a shifted node and its parents have undergone changes across the
environments. The meaning of a change in a causal relationship can vary based on the context and the
estimation objective. This section primarily centers on structural changes, elaborated further below,
while additional discussion about other types of changes is available in Appendix D.
Definition 4 (Structurally shifted edge). For a given shifted node Xj , an edge Xi → Xj is called a
structurally shifted edge if ∃h, h′ ∈ [H] such that Xi ∈ PAh

j and Xi /∈ PAh′

j .

In other words, a structurally shifted edge is an edge that exists in one environment but not in another,
indicating a change in the underlying structure of the causal mechanism. To detect the structurally
shifted edges, we will estimate the parents of each shifted node in Ŝ for all environments Eh.

7



Remark 5. Note that under the sparse mechanism shift hypothesis [69], i.e., |S| ≪ d, estimating the
parents of each shifted node is much more efficient than estimating the entire individual structures.

Kernel regression and variable selection. A potential strategy to estimate structurally shifted
edges involves employing the estimated topological order π̂ obtained from Algorithm 1. If this
estimated topological order remains valid across all environments, it can serve as a guide for the
nonparametric variable selection process to identify the parents of a shifted node Xj . Specifically,
we can regress the shifted node Xj on its predecessors P̂re(Xj) and proceed with a nonparametric
variable selection procedure. Here P̂re(Xj) consists of the set of nodes that appear before Xj in
the estimated topological order π̂. To achieve that, there exist various methods under the hypothesis
testing framework [42, 17, 63], and bandwidth selection procedures [40]. These methods offer
consistency guarantees, but their time complexity might be problematic. Kernel regression, for
example, has a time complexity of O(m3), and requires an additional bandwidth selection procedure,
usually with a time complexity of O(m2). Consequently, it becomes imperative to find a more
efficient method for identifying parents locally.

Feature ordering by conditional independence (FOCI). An alternative efficient approach for
identifying the parents is to leverage the feature ordering method based on conditional independence
proposed by Azadkia and Chatterjee [3]. This method provides a measure of conditional dependency
between variables with a time complexity of O(m logm). By applying this method, we can perform
fast variable selection in a nonparametric setting. See Algorithm 4 in Appendix A.3.
Theorem 2 (Consistency of Algorithm 4). Under Assumption C, given in Appendix B.2, if the
estimated topological order π̂ output from Algorithm 1 is valid for all environments, then the output

P̂A
h

j of Algorithm 4 is equal to the true parents PAh
j of node Xj with high probability, for all h ∈ [H].

Motivated by Theorem 2, we next present Algorithm 2, a procedure to estimate the structurally shifted
edges. Given the consistency of Alg. 1 and Alg. 2, it follows that combining both algorithms will
correctly estimate the true set of shifted nodes and structural shifted edges, asymptotically.

Algorithm 2 Identifying structurally shifted edges

Input: Data {Xh}h∈[H], topological order π̂, shifted nodes Ŝ
Output: Structurally shifted edges set Ê

1: Initialize Ê = ∅
2: for Xj in Ŝ do
3: for h in [H] do
4: Estimate P̂A

h

j from Alg. 4 (FOCI) with input {P̂re(Xh
j ),X

h
j }

5: if ∃Xk, h, h
′ such that Xk ∈ P̂A

h

j , Xk /∈ P̂A
h′

j then
6: Ê ← Ê ∪ (Xk, Xj)

5 Experiments

We conducted a comprehensive evaluation of our algorithms. Section 5.1 focuses on assessing the
performance of iSCAN (Alg. 1) for identifying shifted variables. In Section 5.2, we apply iSCAN for
identifying shifted nodes along with FOCI (Alg. 2) for estimating structural changes, on apoptosis
data. Also, in App. C, we provide additional experiments including: (i) Localizing shifted nodes
without structural changes (App. C.1), and where the functionals are sampled from Gaussian processes
(App. C.1.1); (ii) Localizing shifted nodes and estimating structural changes when the underlying
graphs are different; and (iii) Evaluating iSCAN using the elbow method for selecting shifted nodes
(see App. C.3 and Remark 6). Code is publicly available at https://github.com/kevinsbello/iSCAN.

5.1 Synthetic experiments on shifted nodes

Graph models. We generated random graphs using the Erdős-Rényi (ER) and scale free (SF) models.
For a given number of variables d, ERk and SFk indicate an average number of edges equal to kd.
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Data generation. We first sampled a DAG, G1, of d nodes according to either the ER or SF model
for env. E1. For env. E2, we initialized its DAG structure from env. E1 and produced structural
changes by randomly selecting 0.2 · d nodes from the non-root nodes. This set of selected nodes S,
with cardinality |S| = 0.2d, correspond to the set of “shifted nodes”. In env. E2, for each shifted
node Xj ∈ S, we uniformly at random deleted at most three of its incoming edges, and use Dj to
denote the parents whose edges to Xj were deleted; thus, the DAG G2 is a subgraph of G1. Then, in
E1, each Xj was defined as follows:

Xj =
∑

i∈PA1
j\Dj

sin(X2
i ) +

∑
i∈Dj

4 cos(2X2
i − 3Xi) +Nj

In E2, each Xj was defined as follows:

Xj =
∑

i∈PA2
j

sin(X2
i ) +Nj

Experiment details. For each simulation, we generated 500 data points per environment, i.e.,
m1 = 500,m2 = 500 and m = 1000. The noise variances were set to 1. We conducted 30
simulations for each combination of graph type (ER or SF), noise type (Gaussian, Gumbel, and
Laplace), and number of nodes (d ∈ {10, 20, 30, 50}). The running time was recorded by executing
the experiments on an Intel Xeon Gold 6248R Processor with 8 cores. For our method, we used
η = 0.05 for eq.(6) and eq.(7), and a threshold t = 2 (see Alg. 3).

Evaluation. We compared the performance of iSCAN against several baselines, which include:
DCI [82], the approach by [11], CITE [79], KCD [53], SCORE [65], and UT-IGSP [72]. Figure 3
illustrates the results for ER4 and SF4 graphs. We note that iSCAN consistently outperforms other
baselines in terms of F1 score across all scenarios. Importantly, note how the performance of some
baselines, like DCI, CITE, Budhathoki’s, and SCORE, degrades faster for graphs with hub nodes, a
property of SF graphs. In contrast, iSCAN performs similarly, as it is not dependent on structural
assumptions on the individual DAGs. Additionally, it is worth noting that our method exhibits faster
computational time than KCD, Budhathoki’s, and SCORE, particularly for larger numbers of nodes.

In Appendix C.1, we provide experiments on sparser graphs such as ER2/SF2, and denser graphs
such as ER6/SF6. We also include Precision and Recall in all plots in the supplement.
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Figure 3: Experiments on ER4 and SF4 graphs. See the experiment details above. The points indicate
the average values obtained from these simulations. The error bars depict the standard errors. Our
method iSCAN (light blue) consistently outperformed baseline methods in terms of F1 score.

5.2 Experiments on apoptosis data

We conducted an analysis on an ovarian cancer dataset using iSCAN (Algorithm 1) to identify shifted
nodes and Algorithm 2 to detect structurally shifted edges (SSEs). This dataset had previously been
analyzed using the DPM method [88] in the undirected setting, and the DCI method [82] in the
linear setting. By applying our method, we were able to identify the shifted nodes and SSEs in the
dataset (see Figure 4a). Our analysis revealed the identification of two hub nodes in the apoptosis
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pathway: BIRC3, and PRKAR2B. The identification of BIRC3 as a hub node was consistent with the
results obtained by the DPM and DCI methods. Additionally, our analysis also identified PRKAR2B
as a hub node, which was consistent with the result obtained by the DCI method. Indeed, BIRC3,
in addition to its role in inhibiting TRAIL-induced apoptosis, has been investigated as a potential
therapeutic target in cancer treatment including ovarian cancer[35, 81]; whereas PRKAR2B has been
identified as an important factor in the progression of ovarian cancer cells. The latter serves as a key
regulatory unit involved in the growth and development of cancer cells [84, 13].

TP53

CSF2RB

IL1R1 FAS

BIRC3

TNFSF10

PRKAR2B

AIFM1

PIK3R1

ENDOG

(a) The red nodes are the shifted nodes estimated by
iSCAN (Alg. 1). The edges are the structurally shifted
edges estimated by FOCI (Alg. 2).

TP53

CSF2RB

IL1R1 FAS

BIRC3

TNFSF10

PRKAR2B

AIFM1

PIK3R1

ENDOG

(b) Undirected difference network estimated by DPM
[88]. The red nodes indicate hub nodes, however, it is
not clear which node mechanisms have changed.

Figure 4: Results on apoptosis data.

6 Conclusion

In this work, we showed a novel connection between score matching and identifying causal mech-
anism shifts among related heterogeneous datasets. This finding opens up a new and promising
application for score function estimation techniques.

Our proposed technique consists of three modules. The first module evaluates the Jacobian of the
score under the individual distributions and the mixture distribution. The second module identifies
shifted features (variables) using the estimated Jacobians, allowing us to pinpoint the nodes that have
undergone a mechanism shift. Finally, the third module aims to estimate structurally shifted edges,
a.k.a. the difference DAG, by leveraging the information from the identified shifted nodes and the
estimated topological order. It is important to note that our identifiability result in Theorem 1 is
agnostic to the choice of the score estimator.

The strength of our result lies in its capability to recover the difference DAG in non-linear Additive
Noise Models (ANMs) without making any assumptions about the parametric form of the functions
or statistical independencies. This makes our method applicable in a wide range of scenarios where
non-linear relationships and shifts in mechanisms are present.

6.1 Limitations and future work

While our work demonstrates the applicability of score matching in identifying causal mechanism
shifts in the context of nonlinear ANMs, there are several limitations and areas for future exploration:

Extension to other families of SCMs: Currently, our method is primarily focused on ANMs where
the noise distribution satisfies Assumption B, e.g., Gaussian distributions. It would be valuable to
investigate the application of score matching in identifying causal mechanism shifts in other types of
SCMs. Recent literature, such as [48], has extended score matching to additive Models with arbitrary
noise for finding the topological order. Expanding our method to accommodate different noise models
would enhance its applicability to a wider range of real-world scenarios.

Convergence rate analysis: Although the score matching estimator is asymptotically consistent, the
convergence rate remains unknown in general. Understanding the convergence properties of the
estimator is crucial for determining the sample efficiency and estimating the required number of
samples to control the estimation error within a desired threshold. Further theoretical developments,
such as [37], on score matching estimators would provide valuable insights into the performance and
sample requirements of iSCAN.
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SUPPLEMENTARY MATERIAL
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise

Models

A Practical Implementation

In this section, we present a more practical version of Alg. 1 that considers estimation errors, see Alg.
3. First, we provide more details of the score’s Jacobian estimation.

A.1 Practical Version of SCORE

Let X = {x1, . . . , xm} be a dataset of m possibly non-independent but identically distributed
samples. From Li and Turner [45], we next present the estimator for the point-wise first-order partial
derivative, corresponding to eq.(4):

Ĝ = −(K + ηI)−1⟨∇,K⟩ (6)

where H = (h(x1), . . . , h(xm)) ∈ Rd′×m, ∇h = 1
m

∑m
k=1∇h(xk), K = H⊤H , Kij =

κ(xi, xj) = h(xi)⊤h(xj), ⟨∇,K⟩ = mHT∇h, ⟨∇,K⟩ij =
∑m

k=1∇xk
j
κ(xi, xj), and η ≥ 0 is a

regularization parameter. Here Ĝ is used to approximate G ≡ (∇ log p(x1), . . . ,∇ log p(xm))⊤ ∈
Rm×d.

From [65], we now present the estimator for the diagonal elements of the score’s Jacobian at the
sample points, i.e. J ≡ (diag(∇2 log p(x1)), . . . (diag(∇2 log p(xm)))⊤ ∈ Rm×d, the estimator of
J is:

Ĵ = −diag
(
ĜĜ⊤

)
+ (K + ηI)−1⟨∇2

diag,K⟩ (7)

where H = (h(x1), . . . , h(xm)) ∈ Rd′×m, ∇2
diagh = 1

m

∑m
k=1∇2

diagh(x
k), (∇2

diagh(x))ij =
∂2hi(x)

∂x2
j

, K = H⊤H , Kij = κ(xi, xj) = h(xi)⊤h(xj), ⟨∇2
diag,K⟩ = mHT∇2

diagh,

⟨∇2
diag,K⟩ij =

∑m
k=1

∂2κ(xi,xk)

(∂xk
j )

2 , and η ≥ 0 is a regularization parameter.

In the sequel, we use SCORE(X) to denote the procedure to compute the sample variance for the
estimator of the diagonal of the score’s Jacobian via eq.(7).

A.2 Practical Version of Algorithm 1

Let V̂ar
h

be a d-dimensional vector, where d is the number of nodes. We introduce a d-dimensional
vector rankh, which represents the index of each element in V̂ar

h
after a non-decreasing sorting.

For example, if V̂ar
h
= (5.2, 3.1, 4.5, 1.6), then rankh = (3, 1, 2, 0). Furthermore, we define a

d-dimensional vector rank as the element-wise summation of rankh over all h ∈ [H]. In other
words, rank is calculated as rank =

∑
h∈[H] rank

h.

Recall that in Section 3.1 we remarked that we leverage the SCORE approach from Rolland et al.
[65] for estimating diag(∇2 log p(x)) at each data point. Recall also that our identifiability result
(Theorem 1) depends on determining whether a leaf node has variance Varq(

∂sj(x)
∂xj

) = 0. In practice,
it is unrealistic to simply test for the equality VarL = 0 since VarL carries out errors due to finite
samples. Instead, we define the following statistic for each estimated leaf node L (Line 10 in
Algorithm 3):

statsL =
VarL

minh Var
h
L + ϵ

. (8)



Algorithm 3 Practical version of Algorithm 1

Input: Datasets X1, . . . ,XH , threshold t

Output: Shifted variables set Ŝ, and topological sort π̂.
1: Initialize Ŝ = ∅, π̂ = ( ), N = {1, . . . , d}
2: stats← (0, . . . , 0) ∈ Rd

3: Set X = [(X1)⊤ | · · · | (XH)⊤]⊤ ∈ Rm×d.
4: while N ̸= ∅ do
5: ∀h ∈ [H], V̂ar

h
← SCORE(Xh). ▷ Estimate VarXh

[
diag(∇2 log ph(x))

]
.

6: ∀h ∈ [H], rankh ← arg sort(V̂ar
h
).

7: rank←
∑

h∈[H] rank
h

8: L̂← argminj rankj ▷ Estimate a leaf node
9: V̂ar← SCORE(X) ▷ Estimate VarX

[
diag(∇2 log q(x))

]
.

10: statsL =
V̂arL

minh V̂ar
h

L
11: N ← N − {L}
12: Remove the L̂-th column of Xh, ∀h ∈ [H], and X .
13: π̂ ← (L̂, π̂).
14: Ŝ =

{
j | statsj > t, ∀j ∈ [d]

}
The intuition behind this ratio is that if the leaf node L is a shifted node then we can expect VarL

minh VarhL

to be large since VarL > 0 (by Theorem 1), and VarhL ≈ 0 (by Proposition 1). On the other hand, if
the leaf node L is not a shifted node then we can expect VarL

minh VarhL
to be small. This is due to the fact

that, given a consistent estimator, VarL would converge towards 0 (by Theorem 1) at a faster rate
than VarhL since we utilize a larger amount of data for estimating VarL. Finally, ϵ in the denominator
is a very small value, e.g. 10−9, and acts as a safeguard against encountering a division by zero6.

Then, given the statistic in eq.(8), we can set a threshold t and define the set of shifted nodes S by all
the nodes j such that statsj > t (Line 14 in Algorithm 3).

Remark 6 (The elbow strategy). Alternatively, we can employ an adaptive approach to identify the
set of shifted nodes by sorting stats in non-increasing order, and look for the “elbow” point. For
example, Figure 5 illustrates the variance ratio in (8) for each node sorted in non-increasing order.
In this case, node index 5 corresponds to the elbow point, allowing us to estimate nodes 5 and 8 as
shifted nodes. Identifying the elbow point has the advantage to detect shifted nodes without relying
on a fixed threshold.

A.3 Algorithm details for FOCI

Algorithm 4 Feature ordering by conditional independence (FOCI)

Input: Data P̂re(Xh
j ),X

h
j

Output: Estimated parents of Xj , P̂A
h

j

1: P ← ∅
2: Let Tm(i, j, P ) ≡ Tm(Xh

j ,X
h
i |Xh

P ) ▷ Tm is the estimator in Azadkia and Chatterjee [3].
3: while max

Xi /∈P, Xi∈P̂re(Xj)
Tm(i, j, P ) > 0 do

4: P ← P ∪
{
argmax

Xi /∈P, Xi∈P̂re(Xj)
Tm(i, j, P )

}
5: P̂A

h

j ← P

6In practice, one could omit ϵ from the denominator as it is unusual to obtain minh VarhL = 0 from finite
samples and computational precision.
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Figure 5: Statistic in eq.(8) for each node sorted in non-increasing order. In this case, node index 5
corresponds to the elbow point, allowing us to estimate nodes 5 and 8 as shifted nodes.

B Detailed Proofs

B.1 Proof of Theorem 1

To prove Theorem 1 we will make use of the following lemmas.

Lemma 1. Let {ah}Hh=1 and {bh}Hh=1 be two sequences of real numbers, where ah > 0, ∀h. Then
we have:  H∑

h=1

ahb
2
h

 H∑
h=1

ah

−
 H∑

h=1

ahbh

2

≥ 0,

with equality if and only if bi = bj , ∀j ̸= i ∈ [H].

Proof. We can invoke the Cauchy–Schwarz inequality with vectors u = (
√
a1, . . . ,

√
aH), and

v = (b1
√
a1, . . . , bH

√
aH), then we have:

(u⊤v)2 ≤ ∥u∥22∥v∥22,

which proves the inequality. The equality holds if and only if u and v are linearly dependent, i.e.,
when bi = bj for all i ̸= j ∈ [H].

Lemma 2. For any j, if Ph(Xj | PAh
j ) = Ph′

(Xj | PAh′

j ), then chj = ch
′

j .

Proof. Denote the associated density of Ph(Xj | PAh
j ) when Xj = xj as phNj

(xj − fh
j (PA

h
j )) and

let u = xj − fh
j (PA

h
j )

∂2

∂(xj)2
log phNj

(xj − fh
j (PA

h
j ))

=
∂ log phNj

(u)

∂u

∂2u

∂(xj)2
+

∂2 log phNj
(u)

∂u2

(
∂u

∂xj

)2

=0 + chj = chj

where we use the fact that ∂u
∂xj

= 1, ∂2u
∂(xj)2

= 0. Then it immediate follows that if Ph(Xj | PAh
j ) =

Ph′
(Xj | PAh′

j ), then chj = ch
′

j

Lemma 3. For any j, under Assumption B, ∂
∂xj

log phNj
(xj − fh

j (PA
h
j )) = ∂

∂xj
log ph

′

Nj
(xj −

fh′

j (PAh′

j )) if and only if Ph(Xj | PAh
j ) = Ph′

(Xj | PAh′

j ), where ph and ph
′

are the probability
density functions corresponding to the probability measures Ph and Ph′

when Xj = xj .
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Proof. Denote the associated density of Ph(Xj | PAh
j ) when Xj = xj as phNj

(xj − fh
j (PA

h
j )), we

proceed as follows:

∂

∂xj
log phNj

(xj − fh
j (PA

h
j )) =

∂

∂xj
log ph

′

Nj
(xj − fh′

j (PAh′

j ))

⇐⇒ log phNj
(xj − fh

j (PA
h
j )) = log ph

′

Nj
(xj − fh′

j (PAh′

j )) + const

⇐⇒ phNj
(xj − fh

j (PA
h
j )) = ph

′

Nj
(xj − fh′

j (PAh′

j )) · econst

⇒
∫
R
phNj

(xj − fh
j (PA

h
j ))dxj = econst ·

∫
R
ph

′

Nj
(xj − fh′

j (PAh′

j ))dxj

⇒
∫
R
phNj

(xj − fh
j (PA

h
j ))d(xj − fh

j (PA
h
j )) = econst ·

∫
R
ph

′

Nj
(xj − fh′

j (PAh′

j ))d(xj − fh′

j (PAh′

j ))

⇒1 = 1 · econst

⇒const = 0

Here, const is a constant that is independent of xj . Integrating both sides with respect to xj and using
the fact that

∫
ph(x)dx = 1, we conclude that const = 0. Hence, we can establish the following:

∂

∂xj
log phNj

(xj − fh
j (PA

h
j )) =

∂

∂xj
log ph

′

Nj
(xj − fh′

j (PAh′

j ))

⇐⇒ phNj
(xj − fh

j (PA
h
j )) = ph

′

Nj
(xj − fh′

j (PAh′

j ))

⇐⇒ Ph(Xj | PAh
j ) = Ph′

(Xj | PAh′

j )

Proof of Theorem 1. Let us first expand the log density of the mixture distribution:

log q(x) = log

 H∑
h=1

whp
h(x)


Then, recall that s(x) = ∇ log q(x), the j-entry reads:

sj(x) =

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

 ∂

∂xj
log ph(xj | PAh

j ) +
∑

i∈CHh
j

∂

∂xj
log ph(xi | PAh

i )


=

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

 ∂

∂xj
log phNj

(
xj − fh

j (PA
h
j )
)
+
∑

i∈CHh
j

∂

∂xj
log phNi

(
xi − fh

i (PA
h
i )
)

(9)

Condition (i). First we will prove condition (i). That is, given a leaf node Xj in all DAGs Gh, Xj

is not a shifted node (i.e. an invariant node) if and only if Var(∂sj(x)∂xj
) = 0.

If xj is a leaf node in all the DAGs Gh, then CHh
j = ∅, ∀h ∈ [H], and we can write eq.(9) as:

sj(x) =
H∑

h=1

whp
h(x)∑H

k=1 wkpk(x)

∂

∂xj
log phNj

(
xj − fh

j (PA
h
j )
)

We use Den(
∂sj(x)
∂xj

) and Num(
∂sj(x)
∂xj

) to denote the denominator and numerator of ∂sj(x)
∂xj

, respec-
tively. Then we have:

Den(
∂sj(x)

xj
) =

 H∑
k=1

wkp
k(x)

2
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Num(
∂sj(x)

xj
) =

 H∑
h=1

whp
h(x)

∂2

∂x2
j

log phNj
(xj − fh

j (PA
h
j )) + whp

h(x)

(
∂

∂xj
log phNj

(xj − fh
j (PA

h
j ))

)2


×

 H∑
k=1

wkp
k(x)

−
 H∑
h=1

whp
h(x)

∂

∂xj
log phNj

(xj − fh
j (PA

h
j ))

2

Now, dividing Num(
∂sj(x)
∂xj

) over Den(
∂sj(x)
∂xj

), we obtain:

∂sj(x)

∂xj
=

Num(
∂sj(x)

xj
)

Den(
∂sj(x)

xj
)
=

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

∂2

∂x2
j

log phNj
(xj − fh

j (PA
h
j ))

+
H∑

h=1

whp
h(x)∑H

k=1 wkpk(x)

(
∂

∂xj
log phNj

(xj − fh
j (PA

h
j ))

)2

−

 H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

∂

∂xj
log phNj

(xj − fh
j (PA

h
j ))

2

(10)

Note that since xj /∈ PAh
j , the function fh

j (PA
h
j ) is independent of xj .

Let ah = whp
h(x), and let bh = ∂

∂xj
log phNj

(xj − fh
j (PA

h
j )). Then, the last two summands of the

RHS of eq.(10) can be written as:

1(∑H
h=1 ah

)2

 H∑

h=1

ahb
2
h

 H∑
h=1

ah

−
 H∑

h=1

ahbh

2
 ≥ 0, (11)

where the last inequality holds from Lemma 1. Then, by Lemma 3, we have that bh = bh′ ⇐⇒
Ph(Xj | PAh

j ) = Ph′
(Xj | PAh′

j ) for all h, h′ ∈ [H]. Then if bh = bh′ holds, by Lemma 2, we have
chj = ch

′

j := cj and then the first term for eq.(10) boils down to a constant cj . Finally, from Lemma 1,
we have that equality in eq.(11) holds if and only if bh = bh′ for all h, h′ ∈ [H]. Thus, we conclude
that:

If Xj is a leaf node for all Gh, then Xj is not a shifted node ⇐⇒ ∂sj(x)

∂xj
= cj ,

where ∂sj(x)
∂xj

= cj is equivalent to Varq(
∂sj(x)
∂xj

) = 0.

Condition (ii). We now prove that if Varq(
∂sj(x)
∂xj

) > 0, then only one of the following two cases
holds: Case 1) Xj is a leaf node for all Gh and a shifted node. Case 2) Xj is not a leaf node in at
least one DAG Gh.

Case 1 follows immediately from the proof of condition (i) above.

For Case 2, we study whether there exists a non-leaf node Xj with Varq(
∂sj(x)
∂xj

) = 0. Taking the
partial derivative of sj(x) in eq.(9) w.r.t. xj , we have:

∂sj(x)

∂xj
=

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

 ∂2

∂x2
j

log phNj
(xj − fh

j (PA
h
j )) +

∑
i∈CHh

j

∂2

∂x2
j

log phNi
(xi − fh

i (PA
h
i ))



+
H∑

h=1

whp
h(x)∑H

k=1 wkpk(x)

 ∂

∂xj
log phNj

(xj − fh
j (PA

h
j )) +

∑
i∈CHh

j

∂

∂xj
log phNi

(xi − fh
i (PA

h
i ))


2
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−

 H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

 ∂

∂xj
log phNj

(xj − fh
j (PA

h
j )) +

∑
i∈CHh

j

∂

∂xj
log phNi

(xi − fh
i (PA

h
i ))



2

By Assumptions B, we have ∂2

∂x2
j
log phNj

(xj − fh
j (PA

h
j )) = chj . For simplicity, let ah =

∂
∂xj

log phNj
(xj − fh

j (PA
h
j )) +

∑
i∈CHh

j

∂
∂xj

log phNi
(xi − fh

i (PA
h
i )). Then, we have:

∂sj(x)

∂xj
=

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)
chj +

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)

∑
i∈CHh

j

∂2

∂x2
j

log phNi
(xi − fh

i (PA
h
i ))

︸ ︷︷ ︸
term 1

+
H∑

h=1

whp
h(x)∑H

k=1 wkpk(x)
a2h −

 H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)
ah

2

︸ ︷︷ ︸
term 2

. (12)

We prove that ∂2

∂x2
j
log phNi

(xi − fh
i (PA

h
i )), is not constant under any circumstance, by contradiction.

Let Gh be an environment’s DAG where Xj is not a leaf, and let Xu ∈ CHh
j such that Xu /∈

∪i∈CHh
j
PAh

i . Note that Xu always exist since Xj is not a leaf, and it suffices to pick a child Xu

appearing at the latest position in the topological order of Gh. Now suppose that ∂2

∂x2
j
log phNu

(xu −

fh
u (PA

h
u)) = a, where a is a constant. Then we have:

∂

∂xj
log phNu

(xu − fh
u (PA

h
u)) = axj + g(x−j),

∂

∂xj
fh
u (PA

h
u) ·

∂

∂nu
log phNu

(nu) = axj + g(x−j).

By deriving both sides w.r.t. xu, we obtain:

∂

∂xj
fh
u (PA

h
u) ·

∂2

∂n2
u

log phNu
(nu) =

∂g(x−j)

∂xu

∂

∂xj
fh
u (PA

h
u) · chj =

∂g(x−j)

∂xu
.

Since the RHS does not depend on xj , then ∂fh
u

∂xj
cannot depend on xj neither, implying that fh

u

is linear in xj , thus contradicting the non-linearity assumption (Assumption A). Consequently, it
becomes evident that term 1 cannot be a constant, regardless of whether the node Xj has undergone a
shift or not.

Now let us take a look to term 2 in eq.(12). We have:

H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)
a2h −

 H∑
h=1

whp
h(x)∑H

k=1 wkpk(x)
ah

2

≥ 0,

where the inequality follows by Jensen’s inequality. Thus we conclude that if Xj is a non-leaf node,
we have Varq(

∂sj(x)
∂xj

) > 0.

B.2 Proof of Theorem 2

To proof the theorem we will need the following assumptions:

Assumption C. Let MBh
j denote the Markov Blanket of node Xj under environment h, then assume
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• There are non-negative real number β and C such that for any subset XS ⊆ Pre(Xh
j ) of

size ≤ 1/δ + 2, any x, x′ ∈ R|XS | and any t ∈ R,

| P(Xh
j ≥ t | XS = x)− P(Xh

j ≥ t | XS = x′) |≤ C(1 + ∥x∥β + ∥x′∥β)∥x− x′∥
where |XS | is the size of the set XS .

• There are positive numbers C1 and C2 such that for any XS of size ≤ 1/δ + 2 and any
t > 0, P(∥XS∥ ≥ t) ≥ C1e

−C2t

• For any subset XS ⊆ Pre(Xh
j ) such that XS ⊊ MBh

j , there exists Xi with Xi ∈ MBh
j \XS ,

such that for any Xj with Xj /∈ MBh
j ,

Q(XS ∪ {Xi})−Q(XS ∪ {Xj}) ≥ δ/4 Q(XS) =

∫
Var(P(Xh

j ≥ t | XS))dµ(t)

where δ is the largest number such that for any subset XS from Pre(Xh
j ), there is some Xi /∈ XS

such that Q(XS ∪ {Xi}) ≥ Q(XS) + δ.

Proof. Under Assumption C, from Theorem 3.1 in [4] , we have

P(M̂B
h

j = MBh
j ) ≥ 1− C3e

−C4m

where C3 and C4 are constants that depend only on the data generation process, and m is the number
of samples. Since the estimated topological order π̂ is assumed to be valid for all environments, we
can conclude that node Xj is a leaf node in the input data {Pre(Xh

j ), X
h
j } for all h. As a result, we

have MBh
j = PAh

j based on the Markov blanket definition. Therefore, the output of Algorithm 4 is
equal to the true parent set PAh

j with high probability.

B.3 Proof of Theorem 3 in Appendix D

To prove Theorem 3 we will make use of the following lemmas.
Lemma 4. Suppose X is an n × kx dimension matrix, Y is an n × ky dimension matrix. Let
the columns of the concatenated matrix Z = (X,Y ) be linearly independent. Consider β̃x, a
kx-dimensional vector, and β̃y and βy , both ky-dimensional vectors. If Xβ̃x + Y β̃y = Y βy , then it
follows that β̃y = βy and β̃x = 0.

Proof.

Xβ̃x + Y β̃y − Y βy = (X,Y )

(
β̃x

β̃y

)
− (X,Y )

(
0kx

βy

)
= Z

(
β̃x

β̃y − βy

)
= 0

Since Z has full column rank, then the null space of Z is 0, which implies β̃x = 0, β̃y = βy .

Lemma 5. For any h ∈ [H], if ∑
k∈Pre(Xj)

Ψjkβ̃
h
jk =

∑
k∈PAh

j

Ψjkβ
h
jk,

then β̃h
jk = βh

jk if k ∈ PAh
j , and β̃h

jk = 0 if k /∈ PAh
j .

Proof. Rearrange the set Pre(Xj) so that Pre(Xj) = {Xk1
, Xk2

, . . . , Xkm
, Xkm+1

, . . . , Xkp
},

where {Xk1
, . . . , Xkm

} = Pre(Xj) \ PAj , and {Xkm+1
, . . . , Xkp

} = PAj . Then let X =
(Ψk1

, . . . ,Ψkm
), Y = (Ψkm+1

, . . . ,Ψkp
), and Z = (X,Y ). By the linear independence prop-

erty of the basis functions of Pre(Xj), we have that the columns of Z are linearly independent. Also,
let

β̃x =


β̃h
jk1

...
β̃h
jkm

 , β̃y =


β̃h
jkm+1

...
β̃h
jkp

 , βy =


βh
jkm+1

...
βh
jkp


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Then we must have:∑
k∈Pre(Xj)

Ψjkβ̃
h
jk =

∑
k∈PAh

j

Ψjkβ
h
jk ⇒ Xβ̃x + Y β̃y = Y βy.

Then by Lemma 4, we have β̃h
jk = βh

jk if k ∈ PAh
j , β̃h

jk = 0 if k /∈ PAh
j .

Proof of Theorem 3. We know that Pre(Xj) contains the ancestors of Xj . Then, in environment h,
we have:

Eph [Xj | Pre(Xj)] = Eph [fh
j (PA

h
j ) | Pre(Xj)] + Eph [Nj | Pre(Xj)]

= fh
j (PA

h
j ),

where the last equality follows since the first conditional expectation is equal to fh
j (PAj), due

to PAj ⊆ Pre(Xj). Moreover, in the second conditional expectation term, we have that Nj is
marginally independent of Pre(Xj) by the d-separation criterion. Thus the conditional expectation
of Nj equals to the marginal expectation of Nj , which is 0. Finally,∑

k∈Pre(Xj)

Ψjkβ̃
h
jk = Eph [Xj | Pre(Xj)] = fh

j (PA
h
j ) =

∑
k∈PAh

j

Ψjkβ
h
jk

By Lemma 5, we have β̃h
jk = βh

jk if k ∈ PAh
j , β̃h

jk = 0 if k /∈ PAh
j .

C Additional Experiments

This section provides a thorough evaluation of the pipeline of our method. We begin by assessing the
performance of our method in detecting the shifted nodes. Subsequently, we extend the evaluation to
include the recovery of the structurally shifted edges.

C.1 Experiments on detecting shifted nodes

Graph models. We ran experiments by generating adjacency matrices using the Erdős–Rényi (ER)
and Scale free (SF) graph models. For a given number of variables d, ERk and SFk indicate an
average number of edges equal to kd.

Data generation process. We first sampled a Directed Acyclic Graph (DAG) according to either the
Erdős-Rényi (ER) model or the Scale-Free (SF) model for environment E1.

For environment E2, we used the same DAG structure as in environment E1, ensuring a direct
comparison between the two environments. To introduce artificial shifted nodes, we randomly
selected 0.2 · d nodes from the non-root nodes, where d represents the total number of nodes in the
DAG. These selected nodes were considered as the "shifted nodes," denoted as S, with |S| = 0.2d.

The functional relationship between a node Xj and its parents in environment E1 was defined as
follows:

Xj =
∑

i∈PAj

sin(X2
i ) +Nj ,

while for environment E2, we defined the functional relationships between each node and its parents
by:

Xj =

{∑
i∈PAj

sin(X2
i ) +Nj , if Xj /∈ S,∑

i∈PAj
4 cos(2X2

i − 3Xi) +Nj , if Xj ∈ S.

Experiment detail. In each simulation, we generated 500 data points, with the variances of the
noise set to 1. We conducted 30 simulations for each combination of graph type, noise type, and
number of nodes. The running time was recorded by executing the experiments on an Intel Xeon
Gold 6248R Processor with 8 cores. For our method, we used the hyperparameters eta_G = 0.005,
eta_H = 0.005, and threshold t = 2 (see Algorithm 3).
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Evaluation. We conducted a comparative analysis to evaluate the performance of our method in
detecting shifted nodes compared to DCI. The evaluation was based on F1 score, precision, and recall
as the evaluation metrics. Furthermore, we examined the robustness of our method by conducting
tests using Gumbel and Laplace as noise distributions.

Figures 6, 7, and 8 illustrate our method’s performance across varying numbers of nodes and sparsity
levels of the graphs. Our method consistently outperformed DCI in terms of F1 score, precision, and
recall.

Figure 6: Shifted nodes detection in ER2 and SF2 graphs. For each point, we conducted 30 simulations
as described in Section C.1. The points indicate the average values obtained from these simulations,
while the error bars depict the standard errors. For each simulation, 500 samples were generated. Our
method iSCAN (green) consistently outperformed DCI (red) in terms of F1 score, precision, and
recall.
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Figure 7: Shifted nodes detection in ER4 and SF4 graphs. For each point, we conducted 30 simulations
as described in Section C.1. The points indicate the average values obtained from these simulations,
while the error bars depict the standard errors. For each simulation, 500 samples were generated. Our
method iSCAN (green) consistently outperformed DCI (red) in terms of F1 score, precision, and
recall.

Figure 8: Shifted nodes detection in ER6 and SF6 graphs. For each point, we conducted 30 simulations
as described in Section C.1. The points indicate the average values obtained from these simulations,
while the error bars depict the standard errors. For each simulation, 500 samples were generated. Our
method iSCAN (green) consistently outperformed DCI (red) in terms of F1 score, precision, and
recall.
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C.1.1 Experiments in detecting shifted nodes from Gaussian process

Data generation process. We first sampled a DAG according to the ER or SF model. In our
experiment, we considered two environments, E1 and E2, with the same DAG structure. Each node in
the graph had a functional relationship with its parents defined as Xj = fh

j (PA
h
j ) +Nj , where Nj

is an independent standard Gaussian variable. Recall that the superscript h denotes the function for
environment Eh.

To introduce shifted nodes, we randomly selected 0.2 · d nodes from the non-root nodes, denoted as
S, to be the shifted nodes. In other words, |S| = 0.2d. For the non-shifted nodes Xj (i.e j /∈ S), we
set f1

j = f2
j . However, for each shifted node Xj in S, we changed its functional relationship with its

parents to Xj = 2 · f2
j (PA

2
j ) +Nj .

To test our method in a more general setting involving nonlinear functions, we followed the approach
in [65, 39]. Specifically, for non-shifted nodes, we generated the link functions f1

j by sampling
Gaussian processes with a half unit bandwidth RBF kernel, and we set f2

j = f1
j . For shifted nodes,

Xj ∈ S, we generated the link functions f1
j and f2

j by sampling Gaussian processes with a half unit
bandwidth RBF kernel independently. This allowed us to simulate different functional relationships
for the shifted nodes across the two environments.

Experiment detail. In each simulation, we generated 1000 data points, with the variances of the
noise set to 1. We conducted 30 simulations for each combination of graph type, noise type, and
number of nodes. The running time was recorded by executing the experiments on an Intel Xeon
Gold 6248R Processor with 8 cores. For our method, we used the hyperparameters eta_G = 0.005,
eta_H = 0.005, and elbow = True (see Remark 6).

Evaluation. We conducted a comparative performance analysis between our proposed Algorithm
1 (iSCAN, green) and the DCI (red) method. The results for ER2 and SF2 graphs under Gaussian,
Gumbel, and Laplace noise distributions are shown in Figure 9. In certain cases, our method may
underperform DCI in terms of precision, resulting in a lower F1 score. However, it is important to
note that our method consistently outperforms DCI in terms of recall score.

Furthermore, Figure 10 and Figure 11 present the results for ER4/SF4, and ER6/SF6 graphs. In terms
of precision, our method exhibits competitive performance and, in many cases, outperforms DCI.
Notably, iSCAN consistently surpasses DCI in terms of recall score and F1 score.

These findings emphasize the strengths of our proposed method in accurately detecting shifted nodes
and edges, particularly in terms of recall and overall performance. In denser graphs, our method
demonstrates a superior ability to recover shifted nodes compared to DCI. This suggests that our
method is well-suited for scenarios where the graph structure is more complex and contains a larger
number of nodes and edges. The improved performance of our method in such settings further
highlights its potential in practical applications and its ability to handle more challenging tasks.

Top-k precision. We have observed that in some cases, the precision of our method underperformed
DCI. We attribute this to the elbow method rather than statsL. To further investigate this, we
conducted an analysis using only statsL and measured the precision based on different criteria.
Specifically, we identified nodes as shifted if their statsL ranked first, first two, or within the top k,
denoted as top-1 precision, top-2 precision, and top-k precision, respectively, where k = |S|.
Figure 12 presents the results of precision for top-1, top-2, and top-k criteria under various graph
models and noise combinations. In most cases, the precision exceeds 80% and even approaches
100%. These results indicate that when using statsL alone, our method still provides accurate
information about shifted nodes. The findings suggest that the lower precision observed in Figure 9
can be attributed to the elbow strategy rather than the effectiveness of statsL. Overall, this analysis
strengthens the reliability and usefulness of statsL in accurately identifying shifted nodes in our
method.
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Figure 9: Experiments on detection of shifted nodes in ER2/SF2 graphs using Gaussian processes.
Details described in Appendix C.1.1. The error bars represent the standard errors.
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Figure 10: Experiments on detection of shifted nodes in ER4/SF4 graphs using Gaussian processes.
Details described in Appendix C.1.1. The error bars represent the standard errors.
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Figure 11: Experiments on detection of shifted nodes in ER6/SF6 graphs using Gaussian processes.
Details described in Appendix C.1.1. The error bars represent the standard errors.
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Figure 12: Top 1, 2 and K performance of iSCAN where functionals are sampled from Gaussian
processes. Details described in Appendix C.1.1. The error bars represent the standard errors.
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C.2 Experiments on estimating structural shifts

Data generation. We first sampled a DAG, G1, of d nodes according to either the ER or SF model
for env. E1. For env. E2, we initialized its DAG structure from env. E1 and produced structural
changes by randomly selecting 0.2 · d nodes from the non-root nodes. This set of selected nodes S,
with cardinality |S| = 0.2d, correspond to the set of “shifted nodes”. In env. E2, for each shifted
node Xj ∈ S, we uniformly at random deleted at most three of its incoming edges, and use Dj to
denote the parents whose edges to Xj were deleted; thus, the DAG G2 is a subgraph of G1. Then, in
E1, each Xj was defined as follows:

Xj =
∑

i∈PA1
j\Dj

sin(X2
i ) +

∑
i∈Dj

4 cos(2X2
i − 3Xi) +Nj

In E2, each Xj was defined as follows:

Xj =
∑

i∈PA2
j

sin(X2
i ) +Nj

Experiment details. For each simulation, we generated 500 data points per environment, i.e.,
m1 = 500,m2 = 500 and m = 1000. The noise variances were set to 1. We conducted 30
simulations for each combination of graph type (ER or SF), noise type (Gaussian, Gumbel, and
Laplace), and number of nodes (d ∈ {10, 20, 30, 50}). The running time was recorded by executing
the experiments on an Intel Xeon Gold 6248R Processor with 8 cores. For our method, we used
η = 0.05 for eq.(6) and eq.(7), and a threshold t = 2 (see Alg. 3).

In the case of the method introduced by Budhathoki et al. [11], we employed Kernel Conditional
Independence (KCI) tests [86] for conducting conditional independence tests. As for CITE, KCD,
UT-IGSP, and SCORE, we used their respective default parameter settings provided within their
packages. Additionally, for SCORE, we employed it to estimate the DAGs independently for different
environments and then compared the recovered DAGs to identify the shifted nodes. Given that
Budhathoki’s and KCD methods require information about the parents PAj for each node Xj , we
employed the SCORE method to find the parent sets PAj .

Evaluation. In this experiment, we assessed the performance of our method in two aspects: detecting
shifted nodes and recovering the strucutral changes (difference DAG). For the evaluation of shifted
node detection, we measured F1 score, recall, and precision. In the evaluation of difference DAG
recovery, we compared the estimated difference DAG with the ground truth difference DAG using F1
score. Additionally, we considered the running time of the methods as another evaluation criterion.

Figures 13, 14, and 15 illustrate our method’s performance in detecting shifted nodes across varying
numbers of nodes and sparsity levels of the graphs. Our method consistently outperformed baselines
in terms of F1 score, precision, and recall.

Figures 16 showcase the performance of our method in recovering difference DAG across different
noise distribution, different numbers of nodes and sparsity levels in the graphs. Our method achieves
higher F1 score in recovering the difference DAG compared with DCI.
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Figure 13: Shifted nodes detection performance in ER2/SF2. See App. C.2 for experimental details.
iSCAN (light blue) consistently outperformed baselines in terms of F1 score, precision, and recall.
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Figure 14: Shifted nodes detection performance in ER4/SF4. See App. C.2 for experimental details.
iSCAN (light blue) consistently outperformed baselines in terms of F1 score, precision, and recall.
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Figure 15: Shifted nodes detection performance in ER6/SF6. See App. C.2 for experimental details.
iSCAN consistently outperformed baselines in terms of F1 score, precision, and recall.
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Figure 16: Difference DAG recovery performance in all different graphs. iSCAN-FOCI (green)
consistently outperformed DCI (red) in terms of F1 score.
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C.3 Performance of Alg. 3 using the elbow method

In this section, we aim to understand the performance of our method when using the elbow approach
discussed in Remark 6, random functions for shifted nodes, and different noise variances per variable
within an environment.

Data generation process. We first sampled a Directed Acyclic Graph (DAG) according to either the
Erdős-Rényi (ER) model or the Scale-Free (SF) model for environment E1.

For environment E2, we used the same DAG structure as in environment E1, ensuring a direct
comparison between the two environments. To introduce artificial shifted edges, we randomly
selected 0.2 · d nodes from the non-root nodes, where d represents the total number of nodes in the
DAG. These selected nodes correspond to shifted nodes, denoted as S, with |S| = 0.2d. For each
shifted node Xj ∈ S, we uniformly and randomly deleted 3 edges originating from its parents for
environment E2. The parent nodes whose edges to Xj were deleted are denoted as Dj .

The functional relationship between shifted node Xj and its parents Dj in environment E1 was
defined as follows:

Xj =
∑

i∈PAj ,i/∈Dj

sin(X2
i ) +

∑
i∈Dj

cij · fij(−2X3
i + 3X2

i + 4Xi) +Nj ,

where cij ∼ Uniform([−5,−2]∪[2, 5]), and fij is a function from {sinc(·), cos(·)} chosen uniformly
at random. For environment E2, where the adjacency matrix has undergone deletions, we defined the
functional relationship between each node and its parents as follows:

Xj =
∑

i∈PAj

sin(X2
i ) +Nj

Experiment detail. In each simulation, we generated {500, 1000} data points, with the variances of
the noises set uniformly at random in [0.25, 0.5]. We tested three types of noise distributions, namely,
the Normal, Laplace, and Gumbel distributions. We conducted a 100 simulations for each combination
of graph type, noise type, and number of nodes. The running time was recorded by executing the
experiments on an Intel Xeon Gold 6248R Processor with 8 cores. For our method, we used the
hyperparameter η = 0.001. Different from the hard threshold of t = 2 used in previous experiments,
we now used the elbow approach to determine the set of shifted nodes. To automatically select the
elbow we made use of the Python package Kneed7, with hyperparameters curve=‘convex’,
direction=‘decreasing’, online=online, interp_method=‘interp1d’.

Evaluation. In this experiment, we assessed the performance of our method in two aspects: detecting
shifted nodes and recovering the difference DAG. For the evaluation of shifted node detection, we
measured F1 score, recall, and precision. In the evaluation of difference DAG recovery, we compared
the estimated difference DAG with the ground truth difference DAG using F1 score.

In Figures 17 and 18 we present the performances when using the elbow approach discussed in
Remark 6. In Figure 17, we note that iSCAN performs similarly for number of samples 500 and
1000. We also show the top-1, top-2, and top-k precision of iSCAN when choosing the first, first 2,
and first k variables of stats (see Algorithm 3) after sorting in decresing order, respectively. We
remark that the superbly performance of iSCAN in top-1 or top-2 precision suggests that in situations
that is difficult to choose a threshold for Algorithm 3, the practioner can consider that the first or
first two variables of stats are more likely to be shifted nodes. Finally, in Figure 18 we show that
iSCAN outperforms DCI in recovering the underlying structural difference.

7We used the latest version found at: https://kneed.readthedocs.io/en/stable/.
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Figure 17: Shifted nodes detection performance in ERk and SFk for k ∈ {2, 4, 6}. For each point
in each subplot, we conducted 100 simulations as described in Section C.3. The points indicate
the average values obtained from these simulations. The error bars depict the standard errors. Our
method iSCAN (green) consistently outperformed DCI (red) in terms of F1 score, precision, and
recall.
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Figure 18: Difference DAG recovery performance in all different graphs. For each point in each
subplot, we conducted 100 simulations as described in Section C.3. The points indicate the average
values obtained from these simulations. The error bars depict the standard errors. Our method iSCAN
with FOCI (green) consistently outperformed DCI (red) in terms of F1 score.
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D Additional Discussion on Shifted Edges

In Section 4, we focused on estimating structural changes across the environments (Definition 4).
However, in some situations it might be of interest to determine whether the functional relation-
ship between two variables has changed across the environments. The latter could have multiple
interpretations, in this section, we elaborate on a particular type of functional change via partial
derivatives.
Definition 5 (functionally shifted edge). Given environments E = (X, fh,Ph

N ) for h ∈ [H], an edge
(Xi → Xj) is called a functionally shifted edge if there exists h, h′ ∈ [H] such that:

∂

∂xi
fh
j (PA

h
j ) ̸=

∂

∂xi
fh′

j (PAh′

j ).

Without further assumptions about the functional form of fh
j , certain ill-posed situations may arise

under Definition 5. Let us consider the following example.
Example 1. Let EA and EB be two environments, each consisting of three nodes. Let the structural
equations for node X3 be: XA

3 = exp
(
XA

1 +XA
2

)
+N3, and XB

3 = exp
(
2 ·XB

1 +XB
2

)
+N3. In

this scenario, one could consider that the causal relationship X2 → X3 has not changed. However,
we note that ∂fA

3

∂xA
2
̸= ∂fB

3

∂xB
2

, thus, testing for changes in the partial derivative would yield a false
discovery for the non-shifted edge X2 → X3.

Ill-posed situations such as the above example can be avoided by additional assumptions on the
functional mechanisms. We next discuss a sufficient condition where the partial derivative test for
functional changes is well-defined.
Assumption D (Additive Models). Let S be the set of shifted nodes across all the H environments.
Then, for all j ∈ S, h ∈ [H]:

fh
j (PA

h
j ) = ahj +

∑
k∈PAh

j

fh
jk(Xk),

where ahj is a constant, fh
jk is a nonlinear function, where fh

jk(·) lies in some space of function class
F .
Remark 7. Assumption D amounts to modelling each variable as a generalized linear model [27]. It
is widely used in nonparametrics and causal discovery [12, 43, 80]. Moreover, it not only provides a
practical framework but also makes the definition of shifted edges (as per Definition 5) well-defined
and reasonable.
Remark 8. Note that Assumption D makes assumptions only on the set of shifted nodes. This is
because the set of invariant nodes can be identified regardless of the their type of structural equation,
and it is also clear these nodes cannot have any type of shift.

Now consider a function class F , which incorporates the use of basis functions to model the additive
components fh

jk. Specifically, we express fh
jk(xk) = Ψh

jk(xk)β
h
jk, where feature mapping Ψh

jk is
a 1 × r matrix whose columns represent the basis functions and βh

jk is an r-dimensional vector
containing the corresponding coefficients. Moreover we assume that the functions f1

jk, . . . , f
H
jk share

a same feature mapping Ψ1
jk(·) =, . . . ,= ΨH

jk(·) but can have different coefficients βh
jk across the H

environments. The latter has been assumed in prior work, e.g., [44]. The approach of using a basis
function approximation is widely adopted in nonparametric analysis, and it has been successfully
employed in various domains such as graph-based methods [80], and the popular CAM framework
[12]. Then, under Assumption D and Definition 5, we present the following proposition:
Proposition 2. Under Assumption D, an edge (Xi → Xj) is a functionally shifted edge, as in
Definition 5, if and only if the basis coefficients are different. That is,

∂fh
j

∂xi
̸=

∂fh′

j

∂xi
⇐⇒ βh

ji ̸= βh′

ji .

Proof. We have,

∂fh
j

∂xi
=

dfh
ji(xi)

dxi
=

d(Ψji(xi)β
h
ji)

dxi
=

dΨji(xi)

dxi
βh
ji.
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Then,

∂fh
j

∂xi
−

∂fh′

j

∂xi
=

dΨji(xi)

dxi
(βh

ji − βh′

ji ) ̸= 0 ⇐⇒ βh
ji − βh′

ji ̸= 0

The last ⇐⇒ relation is due to the linear independence of the basis functions Ψji, then the null
space of dΨji/dxi can only be the zero vector 0.

Note that the output of Algorithm 1 also estimates a topological order π̂. However, the exact parents
of a node Xj across the environments are not known, and they are possibly different. To estimate
the coefficients without knowledge of the exact parents, we can consider the set P̂re(Xj), which
consists of nodes located before Xj in the topological order π̂. By regressing Xj on P̂re(Xj) for
each environment, we can obtain coefficient estimations, which are the same coefficients obtained by
regressing Xj on its exact parents, in large samples.

Theorem 3. In large samples, let {β̃h
jk}k∈Pre(Xj) be the coefficients obtained by regressing Xj on

the feature mapping of Pre(Xj), and let {βh
jk}k∈PAj

be the coefficients obtained by regressing Xj

on the feature mapping of PAj . Then, β̃h
jk = βh

jk if k ∈ PAh
j , and β̃h

jk = 0 if k ∈ Pre(Xj) \ PAh
j .

Proof. Proof can be found in Appendix B.3.

Motivated by Theorem 3, and given an estimated {β̃h
jk}k∈P̂re(Xj)

, one could conduct a hypothesis
testing as follows:

H0 : β̃1
jk = · · · = β̃H

jk (13)

If the null hypothesis H0 is rejected, it indicates that there is evidence of a functionally shifted
edge between nodes Xk and Xj across the environments. In this paper we leave the hypothesis test
unspecified to allow for any procedure that can test eq.(13).

Algorithm 5 Functionally shifted edges detection

Input: Sample data X1, . . . ,XH , shifted nodes set Ŝ, topological order π̂, significance level α.
Output: Set of functionally shifted edges Ê

1: for j ∈ Ŝ do
2: Estimate β̃h

jk for all k ∈ P̂re(Xj) and h ∈ [H]

3: for k ∈ P̂re(Xj) do
4: Conduct hypothesis testing H0 (equation 13) under significant level α.
5: If H0 is rejected, add edge (Xk → Xj) to Ê.
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