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Abstract

We study the problem of learning causal representations from unknown, latent interventions in
a general setting, where the latent distribution is Gaussian but the mixing function is completely
general. We prove strong identifiability results given unknown single-node interventions, i.e., without
having access to the intervention targets. This generalizes prior works which have focused on weaker
classes, such as linear maps or paired counterfactual data. This is also the first instance of causal
identifiability from non-paired interventions for deep neural network embeddings. Our proof relies
on carefully uncovering the high-dimensional geometric structure present in the data distribution
after a non-linear density transformation, which we capture by analyzing quadratic forms of precision
matrices of the latent distributions. Finally, we propose a contrastive algorithm to identify the latent
variables in practice and evaluate its performance on various tasks.

1 Introduction

Modern generative models such as GPT-4 [59] or DDPMs [26] achieve tremendous performance for a
wide variety of tasks [7]. They do this by effectively learning high-level representations which map to
raw data through complicated non-linear maps, such as transformers [89] or diffusion processes [79].
However, we are unable to reason about the specific representations they learn, in particular they are
not necessarily related to the true underlying data generating process. Besides their susceptibility to
bias [20], they often fail to generalize to out-of-distribution settings [5], rendering them problematic in
safety-critical domains. In order to gain a deeper understanding of what representations deep generative
models learn, one line of work has pursued the goal of causal representation learning (CRL) [75]. CRL
aims to learn high-level representations of data while simultaneously recovering the rich causal structure
embedded in them, allowing us to reason about them and use them for higher-level cognitive tasks such
as systematic generalization and planning. This has been used effectively in many application domains
including genomics [52] and robotics [43, 94].

A crucial primitive in representation learning is the fundamental notion of identifiability [37, 70], i.e.,
the question whether a unique (up to tolerable ambiguities) model can explain the observed data. It is
well known that because of non-identifiability, CRL is impossible in general settings in the absence of
inductive biases or additional information [29, 50]. In this work, we consider additional information in the
form of interventional data [75]. It is common to have access to such data in many application domains
such as genomics and robotics stated above (e.g. [17, 58, 57]). Moreover, there is a pressing need in such
safety-critical domains to build reliable and trustworthy systems, making identifiable CRL particularly
important. Therefore, it’s important to study whether we can and also how to perform identifiable CRL
from raw observational and interventional data. Here, identifiability opens the possibility to provably
recover the true representations with formal guarantees. Meaningfully learning such representations
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with causal structure enables better interpretability, allows us to reason about fairness, and helps with
performing high-level tasks such as planning and reasoning.

In this work, we study precisely this problem of causal representation learning in the presence of
interventions. While prior work has studied simpler settings of linear or polynomial mixing [84, 88, 2,
71, 11], we allow for general non-linear mixing, which means our identifiability results apply to complex
real-world systems and datasets which are used in practice. With our results, we make progress on
fundamental questions on interventional learning raised by [75].

Concretely, we consider a general model with latent variables Z and observed data X generated
as X = f(Z) where f : R? - R? is an arbitrary non-linear mixing function. We assume Z satisfies
a Gaussian structural equation model (SEM) which is unknown and unobserved. A Gaussian prior is
commonly used in practice (which implies a linear SEM over Z) and further, having a simple model
for Z allows us to learn useful representations, generate data efficiently, and explore the latent causal
relationships, while the non-linearity of f ensures universal approximability of the model. We additionally
assume access to interventional data X (@) = f(Z®) for i € I where Z(* is the latent under an intervention
on a single node Z;,. Notably, we allow for various kinds of interventions, we don’t require knowledge of
the targets t;, and we don’t require paired data, (i.e., we don’t need counterfactual samples from the joint
distribution (X, X (i)), but only their marginals). Having targets or counterfactual data is unrealistic in
many practical settings but many prior identifiability results require them, so eliminating this dependence
is a crucial step towards CRL in the real world.

Contributions Our main contribution is a general solution to the identifiability problem that
captures practical settings with non-linear mixing functions (e.g. deep neural networks) and unknown
interventions (since the targets are latent). We study both perfect and imperfect interventions and
additionally allow for shift interventions, where perfect interventions remove the dependence of the target
variable from its parents, while imperfect interventions (also known as soft interventions) modify the
dependencies. Below, we summarize our main contributions:

1. We show identifiability of the full latent variable model, given non-paired interventional data with
unknown intervention targets. In particular, we learn the mixing, the targets and the latent causal
structure.

2. Compared to prior works that have focused on linear/polynomial f, we allow non-linear f which
encompasses representations learned by e.g. deep neural networks and captures complex real-world
datasets. Moreover, we study both imperfect (also called soft) and perfect interventions, and always
allow shift interventions.

3. We construct illustrative counterexamples to probe tightness of our assumptions which suggest
directions for future work.

4. We propose a novel algorithm based on contrastive learning to learn causal representations from
interventional data, and we run experiments to validate our theory. Our experiments suggest that
a contrastive approach, which so far has been unexplored in interventional CRL, is a promising
technique going forward.

2 Related work

Causal representation learning 75, 74] has seen much recent progress and applications since it generalizes
and connects the fields of Independent Component Analysis [13, 28, 30], causal inference [81, 61, 63, 64, 82]
and latent variable modeling [40, 3, 78, 96, 32]. Fundamental to this approach is the notion of identifiability
[36, 15, 93]. Due to non-identifiability in general settings without inductive biases [29, 50], prior works
have approached this problem from various angles — using additional auxiliary labels [36, 27, 6, 76]; by
imposing sparsity |75, 42, 54, 103]; or by restricting the function classes [41, 9, 104, 22|. See also the
survey [32]. Moreover, a long line of works have proposed practical methods for CRL (which includes
causal disentanglement as a special case), [19, 95, 16, 97, 44, 14] to name a few. It’s worth noting that
most of these approaches are essentially variants of the Variational Autoencoder framework [39, 68].

Of particular relevance to this work is the setting when interventional data is available. We first
remark that the much simpler case of fully observed variables (i.e., no latent variables), has been studied
in e.g. [23, 62, 83, 34, 18] (see also the survey [82]). In this work, we consider the more difficult setting of
structure learning over latent variables, which have been explored in [46, 42, 6, 104, 1, 84, 88, 2, 71, 11, 72].
Among these, [46] assumes that the intervention targets are known, [42] specifically consider instance-level
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Figure 1: Tllustration of an example latent variable model under interventions. (a) No interventions. (b)
An imperfect intervention on node t; = 3. Dashed edges indicate the weights could have potentially been
modified. (¢) A perfect intervention on node t; = 3.

pre- and post- interventions for time-series data and [6, 104, 1] assumes access to paired counterfactual
data. In contrast, we assume unknown targets and work in general settings with non-paired interventional
data, which is important in various real-world applications [85, 99]. The work [48] require several graphical
restrictions on the causal graph and also require 2d interventions, while we make no graphical restrictions
and only require d interventions (which we also show cannot be improved under our assumptions).
[71, 11, 84, 88| consider linear mixing functions f whereas we study general non-linear f. Finally,
[2] consider polynomial mixing in the more restricted class of deterministic do-interventions. Several
concurrent works study related settings [100, 35, 65, 45, 92]. For a more detailed comparison to the
related works, we refer to Appendix C.

Our proposed algorithm is based on contrastive learning. Contrastive learning has been used in
other contexts in this domain [31, 27, 55, 104, 91] (either in the setting of time-series data or paired
counterfactual data), however the application to non-paired interventional settings is new to the best of
our knowledge.

Notation In this work, we will almost always work with vectors and matrices in d dimensions where
d is the latent dimension, and we will disambiguate when necessary. For a vector v, we denote by v; its
i-th entry. Let Id denote the d x d identity matrix with columns as the standard basis vectors eq, ..., eq4.
We denote by N(u,X) the multivariate normal distribution with mean p and covariance X. For a set

C, let U(C) denote the uniform distribution on C. For two random variables X, X', we write X 2x
if their distributions are the same. We denote the set {1,...,d} by [d]. For permutation matrices we
use the convention that (P, );; = 1) for w € Sq. We use standard directed graph terminology, e.g.
edges, parents. When we use the term “non-linear mixing” in this work, we also include linear mixing as
a special case.

3 Setting: Interventional Causal Representation Learning

We now formally introduce our main settings of interest and the required assumptions. We assume that
there is a latent variable distribution Z on R? and an observational distribution X on R? given by
X = f(Z) where d < d’ and f is a non-linear mixing. This encapsulates the most general definition of a
latent variable model. As the terminology suggests, we observe X in real-life, e.g. images of cats and Z
encodes high-level latent information we wish to learn and model, e.g. Z could indicate orientation and
size.

Assumption 1 (Nonlinear f). The non-linear mizing f is injective, differentiable and embeds into R

Such an assumption is standard in the literature. Injectivity is needed in order to identify Z from X
because otherwise we may have learning ambiguity if multiple Zs map to the same X. Differentiability is
needed to transfer densities. Note that Assumption 1 allows for a large class of complicated nonlinearities
and we discuss in Appendix E why proving results for such a large class of mixing functions is important.

Next, we assume that the latent variables Z encode causal structure which can be expressed through
a Structural Causal Model (SCM) on a Directed Acyclic Graph (DAG). We focus on linear SCMs with
an underlying causal graph G on vertex set [d], encoded by a matrix A through its non-zero entries, i.e.,
there is an edge ¢ — j in G iff Aj; # 0.



Assumption 2 (Linear Gaussian SCM on Latent Variables). The latent variables Z follow a linear SCM
with Gaussian noise, so

Z = AZ 4+ D' (1)
where D is a diagonal matriz with positive entries, A encodes a DAG G and ¢ ~ N(0,1d).

For an illustration of the model, see Fig. la. It is convenient to encode the coefficients of linear SCMs
through the matrix B = D~Y/2(Id — A). Then Z = B~ '¢ and both D and A can be recovered from
B, indeed the diagonal entries of B agree with the entries of D~/2. Note that we can and will always

assume that the entries of D are positive since € 2 _.

Assuming that the latent variables follow a linear Gaussian SCM is certainly restrictive but nevertheless
a reasonable approximation of the underlying data generating process in many settings. The Gaussian prior
assumption is also standard in latent variable modeling and enables efficient inference for downstream
tasks, among other advantages. Importantly, under the above assumptions, our model has infinite
modeling capacity [53, 86, 33|, so they’re able to model complex datasets such as images and there’s no
loss in representational power.

The goal of representation learning is to learn the non-linear mixing f and the high-level latent
distribution Z from observational data X. In causal representation learning, we wish to go a step further
and model Z as well by learning the parameters B which then lets us easily recover A, D and the causal
graph G. For general non-linear mixing, this model is not identifiable and hence we cannot hope to
recover Z, but in this work we use additional interventional data, similar to the setups in recent works
[2, 84, 88].

Assumption 3 (Single node interventions). We consider interventional distributions Z @) fori e I which
are single node interventions of the latent distribution Z, i.e., for each intervention i there is a target

node t; and we change the assigning equation of Zt(:) to
2, = (ADZ0), + (DD),/3 (e, + 1) (2)

while leaving all other equations unchanged. We assume that Ag)k # 0 only if k — t; in G, i.e., no

parents are added and 0" denotes a shift of the mean.

For an illustration, see Fig. 1b. An intervention on node t; has no effect on the non-descendants of
t;, but will have a downstream effect on the descendants of ¢;. In particular, A is modified so that the
weight of the edge k — t; could potentially be changed if it exists already but no new incoming edges to
t; may be added. Also, the noise variable ¢, is also allowed to be modified via a scale intervention as well
as a shift intervention. Note that [84, 2] do not allow shift interventions, whereas we do.

Again, this can be written concisely as Z(®) = (B®)~1(e 4 n(De,,) where B = (D®))~1/2(Id — A®),
Let 7(Y) denote the row t; of B(), then we can write B®) = B —¢;,(BTe;, — r(¥)T. We assume that

. D
interventions are non-trivial, i.e., Z() # Z. In our model, we observe interventional distributions
X&) = f(Z®) for various interventions i € I.

Definition 1 (Intervention Types). We call an intervention perfect (or stochastic hard) if AE:) =0,
i.e., we remove all connections to former parents and potentially change variance and mean of the noise

variable. Note that for nodes without parents, either Dt(:z)f, # Dy,i, or 0D # 0 so that the intervention is

non-trivial. We call an intervention a pure noise intervention if AS) = Az, and Aq,. # 0 (i.e., node t; has
at least one parent). In other words, a pure noise intervention targets a node with parents by changing
only the noise distribution through a change of variance (encoded in D) or a mean shift (encoded in n).

We call a single-node intervention imperfect if it is not perfect (some prior works call it a soft
intervention). Note that perfect interventions are never of pure noise type because they necessarily change
the relation to the parents. For an illustration of perfect and imperfect interventions, see Fig. 1c, Fig. 1b
respectively. Finally, we require an exhaustive set of interventions.

Assumption 4 ((Coverage of Interventions)). All nodes are intervened upon by at least one intervention,
e, {ti:iel}=1d]

This assumption was also made in the prior works [84, 2, 88]. When the interventions don’t cover all
the nodes, we have non-identifiability as described in Section 4 and Appendix D. We also extensively
discuss that none of our other assumptions can simply be dropped in these sections.



Remark 1. e QOur theory also readily extends to noisy observations, i.e., X = f(Z) + v where v is
independent noise. In this case, we first denoise via a standard deconvolution argument [36, 42]
and then apply our theory.

o Similar to the results in [84] we can assume completely unknown intervention targets, i.e., there
maght be multiple interventions targeting the same node, and we do not need to know the partition.
We only require coverage of all nodes. In contrast to their work we assume that we know which
dataset corresponds to the observational distribution, but we expect that this restriction can be
removed.

To simplify the notation, it is convenient to use B = B, ) =0 for the observational distribution.
We also define / = IU{0}. Then, all information about the latent variable distributions Z (1) and observed
distributions X are contained in ((B®, 7" t;),c1, f).

4 Main Results

We can now state our main results for the setting introduced above.

Theorem 1. Suppose we are given distributions X ¥ generated using a model ((BW, 0™ t;).c1, f) such
that Assumptions 1-4 hold and such that all interventions i are perfect. Then the model is identifiable
up to permutation and scaling, i.e., for any model ((B(i),ﬁ(i),z;‘)ief, f) that generates the same data, the
latent dimension d agrees and there is a permutation w € Sy (and associated permutation matriz P,,) and
an invertible pointwise scaling matriz A € Diag(d) such that

ti=wt;), BY=PIBYA'P, f=foA"'P, 7 =n®, (3)
This in particular implies that

70 2 pTaz® (4)
and we can identify the causal graph G up to permutation of the labels.

This result says that for the interventional model as described in the previous section, we can identify
the non-linear map f, the intervention targets ¢;, the parameter matrices B, D, A up to permutations P,
and diagonal scaling A. Moreover, we can recover the shifts 17(*) exactly and also the underlying causal
graph G up to permutations.

Remark 2. Identifiability and recovery up to permutation and scaling is the best possible for our setting.
This is because the latent variables Z are not actually observed, which means we cannot (and in fact
don’t need to) resolve permutation and scaling ambiguity without further information about Z. See [84,
Proposition 1] for the short proof.

When we drop the assumption that the interventions are perfect, we can still obtain a weaker
identifiability result. Define < to be the minimal partial order on [d] such that i < j if (4, ) is an edge
in G, i.e., i <g j if and only if 7 is an ancestor of j in G. Note that any topological ordering of G is
compatible with the partial order <. Then, our next result shows that under imperfect interventions,
we can still recover the partial order <g.

Theorem 2. Suppose we are given the distributions XV generated using a model ((B(i),n(i),ti)iep )
with causal graph G such that the Assumptions 1-4 hold and none of the interventions is a pure noise
intervention. Then for any other model ((BW, 7% ;),c1, f) with causal graph G generating the same
observations the latent dimension d agrees and there is a permutation w € Sy such that ti = w(t;) and
i =g J iffw(i) =g w(j), i-e., <a can be identified up to a permutation of the labels.

Remark 3. We emphasize that neither the full graph nor the coefficients B or the latent variables Z;
are identifiable in this setting, even for linear mizing functions.

Theorem 1 and Theorem 2 generalize the main results of [84] which assume linear f while we allow
for non-linear f. The key new ingredient of our work is the following theorem, which shows identifiability
of f up to linear maps.



Theorem 3. Assume that X is generated according to a model ((BW, 0" t;),c1, f) such that the
Assumptions 1-4 hold. Then we have identifiability up to linear transformations, i.e., if (B®, 7 i),i;)7 f)

generates the same observed distributions f(Z(i)) L X then their latent dimensions d agree and there
is an invertible linear map T such that

f=for™t, ZW =120, ()

The proof of this theorem is deferred to Appendix A. In Appendix B we then review the results of
[84] and show how their results can be extended to obtain our main results, Theorem 1 and Theorem 2.
Now we provide some intuition for the proofs of the main theorems.

Proof intuition The recent work [84] studies the special case when f is linear, and the proof is
linear algebraic. In particular, they consider row spans of the precision matrices of X9, project them
to certain linear subspaces and use those subspaces to construct a generalized RQ decomposition of the
pseudoinverse of the linear mixing matrix f. However, once we are in the setting of non-linear f, such
an approach is not feasible because we can no longer reason about row spans of the precision matrices
of X, which have been transformed non-linearly thereby losing all linear algebraic structure. Instead,
we take a statistical approach and look at the log densities of the X(?). By choosing a Gaussian prior,
the log-odds lnpg? (x) — lnpg?) (z) of X with respect to X(© can be written as a quadratic form of
difference of precision matrices, evaluated at non-linear functions of x. For simplicity of this exposition,
ignore terms arising from shift interventions and determinants of covariance matrices. Then, the log-odds
looks like 6(x) = f~1(z)T(©® — ) f~1(x), where O is the precision matrix of Z().

At this stage, we again shift our viewpoint to geometric and observe that @) — ©() has a certain
structure. In particular, for single-node interventions, it has rank at most 2 and for source node targets,
it has rank 1. This implies that the level set manifolds of the quadratic forms 6(x) also have a certain
geometric structure in them, i.e., the DAG leaves a geometric signature on the data likelihood. We exploit
this carefully and proceed by induction on the topological ordering until we end up showing that f can
be identified up to a linear transformation, which is our main Theorem 3. Here, the presence of shift
interventions adds additional complexities, and we have to generalize all of our intermediate lemmas
to handle these. Once we identify f up to a linear transformation, we can apply the results of [84] to
conclude Theorems 1 and 2.

On the optimality and limitations of the assumptions  We make a few brief remarks on
our assumptions, deferring to Appendix D a full discussion and the technical construction of several
illustrative counterexamples.

1. Number of interventions: For our main results, Theorems 1 and 2, we assume that there are at least
d interventions (Assumption 4). This cannot be weakened even for linear mixing functions [84].
In addition, we also show in Fact 1 that for the linear identifiability proved in Theorem 3, d — 2
interventions are not sufficient. Thus, the required number of interventions is tight in Theorems 1,
2 and is tight up to at most one intervention in Theorem 3.

2. Intervention type: In the setting of imperfect interventions, the weaker identifiability guarantees in
Theorem 2 cannot be improved even when the mixing is linear [84, Appendix C]. We also show
in Fact 2 that if we drop the condition that interventions are not pure noise interventions, we
have non-identifiability. Concretely, we show that when all interventions are of pure noise type,
any causal graph is compatible with the observations. Finally, in contrast to the special case of
linear mixing, we show in Lemma 8 that we need to exclude non-stochastic hard interventions (i.e.,
do(Z; = z;)) for identifiability up to linear maps.

3. Distributional assumptions: We assume Gaussian latent variables, while allowing for very flexible
mixing f. This model has universal approximation guarantees and is moreover used ubiquitously in
practice. While the result can potentially be extended to more general latent distributions (e.g.,
exponential families), we additionally show in Lemma 9 that the result is not true when making no
assumption on the distribution of e.

5 Experimental methodology

In this section, we explain our experimental methodology and the theoretical underpinning of our approach.
Our main experiments for interventional causal representation learning focus on a method based on
contrastive learning. We train a deep neural network to learn to distinguish observational samples



z ~ X© from interventional samples z ~ X9, Additionally, we design the last layer of the model to
model the log-likelihood of a linear Gaussian SCM. Due to representational flexibility of deep neural
networks, we will in principle learn the Bayes optimal classifier after optimal training, which we show
is related to the underlying causal model parameters. Accordingly, with careful design of the last layer
parametric form, we indirectly learn the parameters of the underlying causal model. Similar methods
have been used for time-series data or multimodal data [27, 32] but to the best of our knowledge, the
contrastive learning approach to interventional learning is novel.

Denote the probability density of z ~ X@ (resp. z ~ Z®) by p (z) (resp. p¥(z)). The next lemma
describes the log-odds of a sample 2 coming from the interventional distribution X as opposed to the
observational distribution X (?). We focus on the identifiable case (see Theorem 1) and therefore only
consider perfect interventions. As per the notation in Section 3 and Appendix A.1, let s(¥) denote the row
t; of B and let ", \; denote the magnitude of the shift and scale intervention respectively.

Lemma 1. When we have perfect interventions, the log-odds of a sample & coming from X over coming
from X is given by

g ) ~ np (@) = e = SN @) +1ON - (T @)) + 507 @50 )

for a constant c; independent of x.

The proof is deferred to Appendix F. The form of the log-odds suggests considering the following
functions

gi(% Qj, 6i77i7w(i)7 9) =05 — ﬂzhi (l', 9) + Vzhtl (.’I], 9) + <h,(1', 6)) w(i)>2 (7)

where h(-,0) denotes a neural net parametrized by 6, parameters w® are the rows of a matrix W and
«;, Bi, i are learnable parameters. Note that the ground truth parameters minimize the following cross
entropy loss

i eli=igi()
L6t = Ejnau(o.) Bamx CE(Lii, 6:(2)) = ~Ejas((0. Esmx In (eq<ﬂv>+1> : ®)

Note that (compare (6) and (7)) W should learn B = D~'/2(Id — A) thus its off-diagonal entries should
form a DAG. To enforce this we add the NOTEARS regularizer [102] given by Ryorrars(W) =
trexp(Wy o Wy) — d (see Appendix F.3) where Wy equals W with the main diagonal zeroed out. We also

promote sparsity by adding the I; regularization term Rrrpq(W) = ||[Woll1. Thus, the total loss is given
by

Lo, 3,7, W,0) = Z ‘C(ng + 1iRyorears W) + 2Rreq(W) 9)

el

for hyperparameters 71 and 75. Our identifiability result Theorem 1 implies that when we assume that
the neural network has infinite capacity, the loss in (9) is minimized, 7, is large and 75 small, and we
learn Gaussian latent variables h(X @), 6), then we recover the ground truth latent variables up to the
tolerable ambiguities of labeling and scale, i.e., h recovers f~' and W recovers B up to permutation and
scale. Thus, we estimate the latent variables using 7 = h(X,0) and estimate the DAG using Wy. Full
details of the practical implementation of our approach are given in Appendix H.

Our experimental setup is similar to [84, 2], we consider d interventions with different targets (our
theory holds in full generality) and therefore, we can arbitrarily assign ¢; = i based on the intervention
index ¢ which removes the permutation ambiguity. We focus on non-zero shifts because the cross entropy
loss together with the quadratic expression for the log-odds results in a non-convex output layer which
makes it hard to find the global loss minimizer, as we will describe in more detail in Appendix G.1. We
emphasize that this is no contradiction to the theoretical results stated above. Even when there is no
shift intervention the latent variables are identifiable, but our algorithm often fails to find the global
minimizer of the loss (9) due to the non-convex loss landscape. For the sake of exposition and to set the
stage for future work, we also briefly describe an approach via Variational Autoencoders (VAE). VAEs
have been widely used in causal representation learning and while feasible in interventional settings, they
are accompanied by certain difficulties, which we detail and suggest how to overcome in Appendix F.4.
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Figure 2: Dependence of performance metrics for FR(d,2) graphs with d’ = 100 and nonlinear mixing f
on the dimension d.

6 Experiments

In this section, we implement our approach on synthetic data and image data. Complete details
(architectures, hyperparameters) are deferred to Appendix H. Additional experiments investigating the
effect of varsortability [66] and the noise distribution can be found in Appendix G.

Data generation For all our experiments we use Erdos-Rényi graphs, i.e., we add each undirected
edge with equal probability p to the graph and then finally orient them according to some random order
of the nodes. We write ER(d, k) for the Erdés-Rényi graph distribution on d nodes with kd expected
edges. For a given graph G we then sample edge weights from U(+£[0.25,1.0]) and a scale matrix D.
For simplicity we assume that we have n samples from each environment i € I. We only consider the
setting where each node is intervened upon once and thus the latent dimension is also known. We
consider three types of mixing functions. First, we consider linear mixing functions where we sample
all matrix entries i.i.d. from a Gaussian distribution. Then, we consider non-linear mixing functions
that are parametrized by MLPs with three hidden layers which are randomly initialized, and have
Leaky ReLU activations. Finally, we consider image data as described in [2]. Pairs of latent variables
(22i41, 22i+2) describe the coordinates of balls in an image and the non-linearity f is the rendering of
the image. The image generation is based on pygame [77]. A sample image can be found in Figure 3.

Evaluation Metrics We evaluate how well we can recover the ground truth
latent variables and the underlying DAG. For the recovery of the ground truth
latents we use the Mean Correlation Coefficient (MCC) [37, Appendix A.2|. For ‘
the evaluation of the learned graph structure we use the Structural Hamming
Distance (SHD) where we follow the convention that we count the number of edge .
differences of the directed graphs (i.e., an edge with wrong orientation counts as
two errors). Since the scale of the variables is not fixed the selection of the edge
selection threshold is slightly delicate. Thus, we use the heuristic where we match
the number of selected edges to the expected number of edges. As a metric that
is independent of this thresholding procedure, we also report the Area Under the
Receiver Operating Curve (AUROC) for the edge selection.

Methods We implement our contrastive algorithm as explained in Section F where we use an MLP
(with Leaky ReLU nonlinearities) for the function h for the linear and nonlinear mixing functions and a
very small convolutional network for the image dataset, which are termed “Contrastive”. For linear mixing
function we also consider a version of the contrastive algorithm where h is a linear function, termed
“Contrastive Linear”. As baselines, we consider a variational autoencoder with latent dimension d and also
the algorithm for linear disentanglement introduced in [84]. Since the variational autoencoder does not
output a causal graph structure we report the result for the empty graph here which serves as a baseline.

Results for linear f First, for the sake of comparison, we replicate exactly the setting from [84],
i.e., we consider initial noise variances sampled uniformly from [2,4] and we consider perfect interventions
where the new variance is sampled uniformly from [6,8]. We set d =5, d’ = 10, k = 3/2, and n = 50000.
Results can be found in Table 1. The linear contrastive method identifies the ground truth latent variables
up to scaling. The failure of the nonlinear method to recover the ground truth latents will be explained
and further analyzed in Appendix G.1. Note that the nonlinear contrastive and the linear contrastive
method recover the underlying graph better than the baseline.

Results for nonlinear f We sample all variances from ¢([1,2]) (initial variance and resampling

Figure 3: Sample im-
age with 3 balls.



Table 1: Results for linear f with d = 5,d" = 10, k = 3/2, n = 50000.

Method SHD | AUROC 1t MCC 1 Rt

Contrastive 46+05 0.84+0.02 0.05+£0.02 0.02+0.00
Contrastive Linear 54+1.6 0.80+0.07 0.904+0.03 1.00=+0.00
Linear baseline 70+05 0.644+0.05 0.83+0.04 1.00=+0.00

for the perfect interventions) and the shift parameters 1) of the interventions from 2([1,2]). Results can
be found in Table 2. We find that our contrastive method can recover the ground truth latents and the
causal structure almost perfectly, while the baseline for linear disentanglement cannot recover the graph
or the latent variables (which is not surprising as the mixing is highly nonlinear). Also, training a vanilla
VAE does not recover the latent variables up to a linear map as indicated by the R? scores. In Figure 2

we illustrate the dependence on the dimension d of our algorithm in this setting.

Table 2: Results for nonlinear synthetic data with n = 10000.

Setting Method SHD | AUROC 1 MCC?T R? 1t
Contrastive 1.8+ 0.5 0.974+0.01 0.97£0.00 0.96+0.00
ER(5, 2),d =20 VAE 10.,0+0.0 0.50+0.00 0.484+0.03 0.57=£0.07
Linear baseline 10.6+1.9 0.484+0.11 0.32+0.03 0.34+0.06
Contrastive 1.0£0.0 1.00£0.00 0.994+0.00 0.98+0.00
ER(5, 2), d’ = 100 VAE 10.0+0.0 0.50+0.00 0.5940.02 0.68=+0.04
Linear baseline 3.4+4+1.2 0.85+0.07 0.184+0.04 0.114+0.04
Contrastive 3.6+1.3 0.98+0.01 0.934+0.00 0.874+0.01
ER(10, 2), d' =20 VAE 186+0.9 0.50+0.00 0.594+0.02 0.72+0.02
Linear baseline 29.64+2.5 0.49+0.02 044+0.02 0.5140.02
Contrastive 1.6 +0.5 1.00 £0.00 0.984+0.00 0.97=£0.00
ER(10, 2),d =100 VAE 186+0.9 0.50+0.00 0.624+0.02 0.78+£0.01
Linear baseline 284+2.1 0.51+0.04 0.174+0.03 0.13+£0.03

Results for image data Finally, we report the results for image data. Here, we generate the graph
as before and consider variances sampled from o2 ~ 2/([0.01,0.02]) and shifts n® from #(]0.1,0.2]) (i.e.,
the shifts are still of order o). We exclude samples where one of the balls is not contained in the image
which generates a slight model misspecification compared to our theory. Again we find that we recover

the latent graph and the latent variables as detailed in Table 3.

Table 3: Results for image data with ER(d, 2) graphs with d = 2 - #balls and n;,; = 25000 (per

environment), Nobs = Nint - d-

# Balls Method SHD | AUROC 1T MCC 1 R? 1

9 Contrastive Learning 1.44+04  0.95+0.03 0.874+0.03 0.84+0.03
VAE 6.0+£0.0 0.50+0.00 0.19£0.06 0.16=+0.08

5 Contrastive Learning 2.0 +0.3 1.00£0.00 0.944+0.01 0.91+0.01
VAE 186£0.9 0.50£0.00 0.31+0.02 0.36+£0.03

10 Contrastive Learning 11.0+3.3 0.98+0.02 0.89 £0.01 0.83+0.01
VAE 372431 0.50+0.00 0.22+0.01 0.334+0.02

7 Conclusion

In this work, we extend several prior works and show identifiability for a widely used class of linear latent
variable models with non-linear mixing, from interventional data with unknown targets. Counterexamples



show that our assumptions are tight in this setting and could only potentially be relaxed under other
additional assumptions. We leave to future work to extend our results for other classes of priors, such as
non-parametric distribution families, and also to study sample complexity and robustness of our results.
We also proposed a contrastive approach to learn such models in practice and showed that it can recover
the latent structure in various settings. Finally, we highlight that the results of our experiments are very
promising and it would be interesting to scale up our algorithms to large-scale datasets such as [49].
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A Proof of Identifiability up to Linear Maps

In this section we give a full proof of Theorem 3. We try to make this essential self-contained. To make
this easy to read, we first introduce and recall the required notation in Section A.1, then we prove two
important key relations required for the proof in Section A.2. Finally, we prove first a simpler version of
Theorem 3 with more assumptions in Section A.3 and then give the full proof of Theorem 3 in Section A.4.

A.1 General Notation

Let us introduce some notation for our identifiability proofs. For a full list of assumptions we refer to
the main text, here we just recall the relevant notation concisely. We will assume that there are two
representations that generate the same observations, i.e., we assume that there are two sets of Gaussian
SCMs

A O (O (D(“)%(e +n@e,) (10)
70 = AW 70 4 (DW)z (€4 77(1')6{1_) (11)
where €,¢ ~ N(0,1Id) and ¢ = 0 corresponds to the observational distribution while ¢ > 0 correspond to

interventional settings where we intervene on a single node ¢; (or ﬂ) by adding a shift and changing the
relation to its parents (without adding new parents). Moreover, there are two functions f, f such that

X 2 £(z®) and XO 2 f(Z®). It is convenient to define
BW = (DM)=3(1d — AD) (12)
O O (BO)1e,

i

so that Z() = (B™)~1e 4 u() with € ~ N(0,1d). Note that all model information can be collected in
((B(i)a n(i)’ti)v f)

As in the main text, it is convenient to use the shorthand B = B A = A©),

We denote the row t; of B® by v ie.,

r@ = (B Te, .

i

(14)

Note that for perfect interventions where we cut the relation to all parents of node #; we have () = \e;,
for some \; # 0. Similarly, for the observational distribution we refer to the row t; of B(®) by s(, i.e.,

s = (BO)Te,.. (15)
We thus find
BO — BW = ¢, (e BY — e[ BW) = ¢;, (s —r)T. (16)
We also consider the covariance matrix X(*) and the precision matrix ©® of Z(9) which are given by
ol — (B(i))TB(i)7 nE) — (@(i))fl (17)
Indeed,
=0 = B(BO) e’ (BY)7T] = (BO) Blee|(BY) T = (B) 7 (BO) T
Finally, the mean (9 of Z(® given by

p =Ez0 = n(i)(B(i))—let__

i

(18)

We also define similar quantities for Z. To simplify the notation, we will frequently use the shorthand
v@w=v -w' €RX™ for v,w € R?.
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A.2 Two auxiliary lemmas
The key to our identifiability results is the relation shown in the following lemma.

Lemma 2. Assume that there are two latent variable models ((B®,n® t,)icr, f) and (B, 7D, &)scr, f)

as defined above such that f(Z®) L f(é(z)) Then their latent dimension d agree and h = f’l o f ewists
and is a diffeomorphism, i.e., bijective and differentiable with differentiable inverse. Moreover, it satisfies
the relation

%ZT(@u) — 0O, O (T,

(19)
1 ~ L _
= S0(2)T (00 =8 )h(z) =7 () Th(z) +
for all z and i and some constant ¢, If nV =7 =0 this simplifies to
%ZT(@@ _ o0y, = %h(z)T(ém — 8O h(z) 4 ), (20)

Proof. Note first that X (©) L f(z (©) implies since f is an embedding by assumption that the dimension
of the support of X(? is the same as the latent dimension and this dimension is identifiable from the
observations, e.g., by considering the tangent space. As Z(9) and Z(©) have full support and f and f are
by assumption embeddings, the equality f(Z(®) 2 f(Z (0)) implies that the two image manifolds agree
and h = ]?’1 o f is a differentiable map. Moreover, we find that h,Z(®) = Z@ where h, denotes the
pushforward map. The variables Z() are Gaussian with distribution Z(®) ~ N (,u(i), E(i)). This implies
that its density p(* can be written as

; n 1 . 1 ) . )
In(p)(2)) = ~ 5 n(2r) = 5 I [SO] = 5z = u®)TOO(= - ). (21)

A similar relation holds for p(*)(z), the density of AQR Finally, we have the relations
p'(z) = P (h(2))| det Jy(2)] (22)

which is a consequence of h, Z() = Z@_ Here Jp, denotes the Jacobian matrix of partial derivatives. Thus
we conclude that

1 X 1 ) ) )
—g In(27) — B In [2@] — §(z — N TeW (z — u)
(23)
1 o~ 1 PN »
= —g In(27) — 3 In 2@ — E(h(z) —ENTOW (h(z) — i) + In| det Jy(2)).

Calling this relation E?, we consider the difference E° — E*. Then the determinant term cancels, and we
obtain for some constant c(*)

1 . , _ 1

*(Z _ M(U)T@(z)(z _ lu(z)) _ *ZT@(O)Z

T 5 ' 1 i (24)
= 5(h(z) —1NTOWD (h(z) — p) — §h(Z)T@(o)h(z) o)

Expanding the quadratic expression on the left-hand side we obtain

1 ; ; ; 1 1 ; TP N
—(z—=pNTOD (z — )y - Z,Te, = izT(@(ﬁ) —0)z— 2000 4 i(u(l))T@(l)M(l)~ (25)

2 2
Finally we simplify the last term using (18)
0,0 = n(i)(B(i))TB(i)(B(i))—leti - n(i)(B(i))Teti = (26)

Apply the same simplification on the right hand side. Finally, we collect the constant terms independent
of z in ¢, to obtain

1 . , .

izT(@(l) — 0Oz — (T
) o (27)

= §h(z)T(@(i) —O0NA(z) = GO FDYTh(z) + D

which is (19) as desired. O
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A second key ingredient for our identifiability results is that the specific structure of the interventions
that each target a single node which implies that the difference of precision matrices ©(®) — ©() has rank
at most 2. This is also the key ingredient used (in a very different manner) in the proof of the main result
in [84]. Here we highlight this simple result because we make use of it frequently.

Lemma 3. The precision matrices satisfy the relation
0 _ 90 — () g () _ g0 g 40 (28)
Proof. Using (17) we find
0l _ ) — (B(i))TB(i) _B™B

d d
= (BT (Z eke;r) B®W _ BT (Z ekekT> B
k=1 k=1

d d
=3 (BN Ten(BO)Ter)T =Y BTep(BTer)T
=1 k=1
(BD)Ter,) @ (BD)Ter,) = (BTer,) @ (BT er,)
(

Here we used the fact that all rows except row t; of B() and B() agree as the intervention targets a
single node, i.e., (B®)Te, = (B)Te, for k # t;. O

A.3 Warm-up

To provide some intuition how identifiability arises, we first provide the proof for a simpler result with
a much stronger assumption on the set of intervention targets and the type of interventions. But note
importantly that we don’t relax the assumption of non-linearity of f.

Theorem 4. Let f(Z™) 4 F(ZD) for two sets of parameters (BD,nD t;)icr, ) and (BD, 5D T)icr, f)

as in the above model. We assume that there are 2n perfect pairwise different interventions (i.e., ALY 72 VA
for i # i), without shifts (i.e., n) = 7D =0). Finally, we assume that there are 2 interventions for
each node, and we know the intervention targets of the interventions, i.e., we assume that t; = t; for all i.
Then, Z® and ZD agree up to scaling, i.e., Z = DZ® for a diagonal matriz D € Diag(n).

Remark 4. Actually this result can be generalized to a setting where the latent SCM is non-parametric
[92].
Proof. We consider a node k and two interventions i; and i which target node k = t;, = t;, (by

assumption those interventions exist and é; and iy agree for both representations). Since we assumed
that the interventions are perfect, we have in our notation that

) = Nen, 702 =N, en (30)
for two constants \;, # s, > 0 and similarly for 7(%). Indeed, assuming positivity is not a restriction since
¢ follows a symmetric distribution (this is also contained in the parametrisation (D®)z) and A;, # Ay,

is necessary to ensure that the interventional distributions differ. Combining (20) from Lemma 2 with
Lemma 3 we obtain the relation

5T (r(m & rli) — gli) g S(m) =200 — ),
= h(z)T (01 — 0O)h(z) + 2:04) (31)
= h(z)" (;ﬁn @) _30) g ;m) h(z) + 260,

for 5 =1,2.
Note that since k = t;, = t;,, we have sli) = gli2) = BTe, by definition. Thus, we subtract the
relation in the last display for ¢; from the relation for is and find using (30),

(N2 = 22)zf = (2Tr()2 — (2T y(2))2
= (h(2) TF)2 — (h(2) T702))2 4 2(cl™) — () (32)
= (A7, = A7)hw(2)” +2(cl) — 62)),
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for all z. Since Xil # Xig > 0 we can divide and obtain
A2 )2 '
11 12 2 2
JOY) _

Since h is surjective, we have that hy is also surjective which implies that the range of the right hand side
is [2(c(1) — ¢li2)) /(A2 — A2 ), 00). The range of the left hand side is depending on the sign of the prefactor
and is either (—oo, 0] or [0,00). Since the ranges have to agree we conclude that (") = ¢(?2) and

(34)

Since k was arbitrary, this ends the proof. O

A.4 Proof of identifiability up to linear maps

The proof of our main result relies on two essentially geometric lemmas and a slight extension of Lemma 2
which we discuss now. The first lemma alone is sufficient to handle the case where interventions change
the scaling matrix D, while the second is required to handle interventions that change B and the third
allows us to consider pure shift interventions.

Lemma 4. Let g : R — R be a continuous and surjective function, Q a quadratic form on R% and o € R
a constant such that

9(2)’ =2-Qz +a. (35)
Then Q has rank 1 and g is linear, i.e., g(z) = v - z for some v € RY.

Proof. Assume that @ has the eigendecomposition Q@ = >/, A\iv;v; where 7 is the rank of @ and \; # 0
and v; has unit norm. Clearly g surjective implies r > 0. Since g is surjective we find that the range of
the left hand side is [0,00) and therefore z - Qz > —a. This implies that \; > 0 for all ¢ and therefore,
the range of the right hand side is [a, 00) which implies & = 0. Now we fix any ¢ > 0 and consider
E.={z € R z-Qz = c}. It is easy to see that E, is the product of an ellipsoid and R¢~" and thus is
connected if » > 2. We find by (35) that g(z) = ++/c for z € E, and if g(z) € {—+/c,y/c} then z € E..
By continuity of g and since E. is connected this implies that g(z) = y/c for all z € E, or g(z) = —\/c
for all z € E, contradicting the surjectivity of g. We conclude that r = 1, i.e., Q = A\jvjv] = 0,9, with
91 = v/ A1v1. Thus we find that

9(2)* = o - 2. (36)

Since g is continuous, this implies that g(z) = £01 - z or g(2) = £|0; - z|. As only the first functions are
surjective we conclude that g(z) = 497 - z and the claim follows with w = £%;. O

To handle shift interventions we need a slightly stronger version of the lemma above which contains
an additional linear term.

Corollary 1. Let g : R? — R be a continuous and surjective function, Q a quadratic form on R, w € R¢
a vector, and a € R a constant such that

g2 =2-Qz4+w-z+ . (37)
Then Q has rank 1 and g is affine, i.e., g(z) =v -z + ¢ for some v € R? and c € R.

Proof. Assume as before that @) has the eigendecomposition @ = 22:1 A\;iv;v; where r is the rank of Q
and A; # 0 and |v;| = 1. First, we show that w € (vq,...,v,) where (.) denotes the span. Indeed, suppose
that this is not the case. Then we could find zy such that zp-w < 0 and zgv; = 0 for 1 <4 < r, and
therefore zg - Qzo = 0. Plugging z = A\zp for A — oo in (37) the right-hand side tends to —oo while the
left-hand side is non-negative. This is a contradiction and therefore w € (vq,...,v,) holds. This implies
that there is w’ such that Quw’ = w/2 and thus

2 Qz4w-z+a=z+w) Qrz+uvw)+a—w-Qu'. (38)
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Then we consider §(2) = g(z — w'), @ = a — w’ - Qw’ which satisfy

g
P() = G- u)

(39)
=CZ-w+w)-QE—-vw+uw)+a—w-Qu (40)
=% QZ+a. (41)

Using Lemma 4 we conclude that @ has rank 1 and §(2) = v - z for some v. But then g(z) = g(z + w') =
z-v+w' - v which concludes the proof. O

The second lemma is similar, but slightly simpler.

Lemma 5. Assume that there is a quadratic form Q, a vector 0 # w € R4, w' € RY, av € R and a
continuous function g : R — R such that

g2)(w-2)=2z-Qz+w -2+ a. (42)
Then g(z) = v -z + c for some v € RY, c € R, i.e., g is an affine function.

Proof. By rescaling we can assume that w has unit norm. Plugging in z = 0 we find that « = 0. Denote
by II,, the orthogonal projection on w, i.e., IT,v = (w - v)w and by I} the projection on the orthogonal
complement of w, i.e., z = I,z + 112 for all z € R%. Then we find for all z

0=g(Mi2)w- -Miz = (T}2) - QU2 4 (Miz) - w'. (43)
By scaling z we find that both terms on the right hand side vanish and thus for all z
(k2) - Qutz =0, (14)
(Mtz)-w' =0. (45)
This implies (using also the symmetry of Q)
g(2)w -z =g(z)w -z
=z-Qz+w' -2
= (MMpz +112) - QIIyz + IIE2) + w' - (Myz + 1 2) (46)
= (Tly2) - Qlyz + 2(My2) QL2 + (M12) - QUL 2z + 1z - v’
= (Iy2) - (Q(Mz + QHILUz) +w').

Now we use I,z = (w - II,2)w and find

g(2)w - Mypz = (w- My2)w - (Q(IT, 2z + 215 2) + w'). (47)

This implies
9(z) =w - Q(Iyz + 2152) + w - w' (48)
for all z such that IL,,z # 0. By continuity we conclude that this holds for all z, i.e., g is affine. O

Again we need a slight generalization of this lemma.

Corollary 2. Assume that there is a quadratic form Q, a vector 0 #w € R?, w’ € R, o, B € R and a
continuous function g : R* — R such that

g2)(w-z+p8)=2-Qz+w -2+ . (49)
Then g(z) = v -z +c for some v € RY, c € R, i.e., g is an affine function.
Proof. Define g(2) = g(z — fw|w|=?). Then

3E)(w-2) = g(& - Bulw|)w - & - Bulw| ) + 8)
— (3 - Bulw| ) - QE - Bulw| ) +w' - (- Bwlw|2) +a (50)

—Z.Qi+0-Z+a

for some w and a. So, we conclude from Lemma 5 that g is affine and thus the same is true for g. O
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We now discuss a small extension of Lemma 2 by showing that we can complete the squares in (19)
which then allows us to obtain a relation that is very similar to (20).

Lemma 6. Assume the general setup as introduced above and also ©%) # ©. Then there is a vector ')
and a constant ¢ such that

(z — ﬂ(i))T@(i)(Z _ #(i)) —,TeO), — (z — M/(i))T(@(i) _ @(0))(2 _ l/(i)) +e. (51)

Proof. Using the symmetry of the precision matrices and expanding all the terms, we can express the
difference of the left-hand side and the right-hand side of (51) as

(z— Iu(i))T@(i)(Z _ Iu(i)) — T, _ (z — M'(i))T(@(i) _ @(0))(2 _ Iu/(i)) —ec
= 227000 £ 2:T(©W — ),/ 1 (1YTEW L, — (,/)T (@M — @),/ _ ¢

Hence, we can set ¢ at the end such the constant terms cancel and all we have to show is that there exists
' such that

(52)

09 — @)/ =e®,®, (53)

This is clearly not true for arbitrary () because @) — @ has only rank 2. However, such a x/) does
exist for p = n@(B@)~te, (see equation (18)). Indeed, we can simplify using (17) and Lemma 3

(@(i) _ @)M/(i) - r(i)((r(i))Tl/(i)) _ S(i)((s(i))Tl/(i)) (54)

0,0 — n(i)(B(“)TB(i)(B(i))*leti — n(i)(B(i))Teti =@, (55)

Now there are two cases. When 79 and s are collinear (but not identical, by assumption) we can
choose /) = Ar( for a suitable A\. Otherwise, we can pick any vector p/(*) such that /s = 0,
@/ @Dr( = p)  This is always possible for non-collinear vectors (project 7 on the orthogonal complement
of ). O

Let us now first discuss a rough sketch of the proof of our main result. This allows us to present the
main ideas without discussing all the technical details required for the full proof of the result. We restate
the theorem for convenience.

Theorem 3. Assume that X9 is generated according to a model (B™W, 0" t;),c1, f) such that the
Assumptions 1-4 hold. Then we have identifiability up to linear transformations, i.c., if (B®, 7%, t;), f)

generates the same observed distributions f(Z(i)) L X then their latent dimensions d agree and there
is an invertible linear map T such that

f=for™t, ZW =120, (®)

Proof Sketch. For simplicity of the sketch we ignore shift interventions here. We assume that we have two
sets of parameters ((B™ . ¢;);cr, ), (BY,4:);c1), f) generating the same observations. We can relabel
the interventions ¢ and the variables Zk such that ¢; = ¢ and such that 1,2,... is a valid causal order of
the graph. The general idea is to show by induction that (hi(z),...,hx(2)) is a linear function of z. Let
us sketch how this is achieved. The key ingredients here are Lemma 2 and Lemma 3. Applying (20) from
Lemma 2 in combination with Lemma 3 we obtain

1 1
izT(G(kH) — @(0))2 = ih(z)T(?{kH) @ FlktD) _5k+1) o §<k+1))h(2) + ck+D), (56)
By our assumption that the variables Z@ follow the causal order of the underlying graph, only the entries
77(Tk+l) for r < k + 1 are non-zero and similarly for $**1 . Therefore, the right-hand side is a quadratic
form of (h1(2),...,hg+1(2)). Now we apply our induction hypothesis which states that (hy(z),...,hx(2))
is a linear function of z. Then we find expanding the quadratic form on the right-hand side that there is

a matrix @, a vector v, a constant § (which we here assume to be non-zero) and another quadratic form
Q@' such that

%ZTQ/Z = %ZTQZ + (v 2) g1 (2) + 0h3 4 (2) + FHD

57)
_ 17 (v-2) 2 (v-2)? (k+1) (
= 5% Qz+6<hk+1(z)+ 55 ) Y +c .

Now we can apply Corollary 1 to conclude that hgy1(2) is an affine function of z. Adding the shifts and
considering also the case § = 0 adds several technical difficulties, which we handle in the full proof. O
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After all those preparations and presenting the proof sketch, we will finally prove our main theorem
in full generality.

Full proof of Theorem 3. As the proof has to consider different cases and is a bit technical we structure
it in a series of steps.

Labeling assumptions We can assume without loss of generality (by relabeling variables and interven-
tions) that the variables Z are ordered such that their natural order ¢ = 1,2,... is a valid topological
order of the underlying DAG and that intervention 1 < i < n targets node Z;, i.e., t; = i. We make no
assumption on the ordering of the Z; or targets of ¢; which are not necessarily assumed to be pairwise
different. Recall that we defined (and showed existence of) h = f~!f in Lemma 2 (including the fact
that their latent dimensions agree).

Induction claim We now prove by induction that hg(z) is linear for k£ > 0. The base case k = 0 is
trivially true. For the induction step, assume that this is the case for j <k, i.e., h;(z) = m; - z for some
m; € R?. We define My, = (my,...,my) " so that we can write concisely

(h1(2),...,he(2))T = M. (58)

Note that since h is surjective My, has full rank. To prove the induction step, we need to show that there
exists myy1 € RY such that hyiq(2) = mesy - 2.

Precision matrix decomposition For the DAG G underlying Z, let PA; denote the indices of
the set of parents of Z; and let PA; = {i} UPA;. Recall the notation 5 = BTe; (using t; = i) and
7 = (B™)Te,;. Now §§-l) # 0 only holds if j € PA; and we ordered the variables such that PA; C [i]. In

particular, Eﬁi) =0 and ?{Jt) =0 for j > i (interventions do not create new parents). By Lemma 3 we have

(09 — 8 =7 @) _ 51 g5 (59)
We find that
(é(kJrl) _ é(o)»S _ ;ﬁk+1)7:£k+1) -~ §k+1)§£k+1) —0 (60)

if r >k+1ors>k+ 1. In particular, there exists a symmetric A € RE+D>(*+1) guch that

k+1

h(z)"(0W — = > he(2)Apsha(2). (61)

r,s=1

Now we decompose A as

A= (g‘T g) (62)

for some A’ € RF** b € R* and 6 € R. Using the induction hypothesis we find

k+1
h(z)(OFD —0)h(z) = Y he(2)Arshia(z)
r,s=1 (63)
= Mz - A/M}CZ + 2hk+1(2)bTMkZ + 6hk+1(2)2.
We use the notation v.,. € R” for the vector (vy, ... ,’UT)T. Then we can write
n(k+1)77(k+1) h(z) = n(k+1)?§:+1) Mz +n(k+1)~(k+1)hk+1( ) (64)

Now we have to consider different cases.
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Case § 20 We assume first that § ## 0. In this case we find using the last two displays
h(2)T(O®HD) — §O)p(2) — 2p*HDFRFD b (5) 4 clhHD)

2
bT Mz — n(kﬂ)?:(]ﬁ;l)) 1

5 — —2- M, bb" Myz (65)

=z- M,;FA/MkZ +4 <hk+1(2’) + 5

2 1
+ gn(kﬂ);{kﬁl)berz _ g(n(k-i-l)ﬁ(cliﬁl))Q _ 2n(k+1);§:+1) Mz + B0,

Next we set
9(2) = hig1(2) +07"b - Myz — 6~ I+ DFERY, (66)

Looking carefully at (65) we find that there is a symmetric matrix QNQ, a vector w, and a constant ¢ such
that

h(z)T(OF+D — §O)p(z) — 2p+VFREI B (2) = §g(2)2 + 2 - Qz + Wz + C. (67)

We claim that g is continuous and surjective. Continuity follows directly from continuity of k. To show
that g is surjective we can ignore the constant shift, and we note that 6o ™ Mz = 6~ -F_ v,h,(z) and
thus surjectivity of h implies that g is surjective (for every c¢ pick z such that hi41(z) = c and h,.(z) =0
for r < k).

Using (19) from Lemma 2 we conclude that

59(2)2 = 2T (O — @)z —opk+Dp (kD) o Q2 — Gz — ¢ (68)
=z-Qz+w-z+a (69)

for all z and some symmetric Q € R4¥¢ w € R%. Corollary 1 then implies that
hiir(2) + 8 oMz + 6 OFED — gy =0z 4 e (70)
for some v € R?, ¢ € R. Thus hy; is an affine function, i.e., hi+1(2) = mgy1z + . But
0=EZj1 =EZ -mps1 +a=a (71)

and therefore hy1 is linear.

Case 6 =0, b#0 Now we consider the case that 0 = §. Using (63), (64), and (19) we find similarly to
above

Mkz . AMkZ + 2hk+1(z)bTMkz — 277(k+1);“':(£:+1) . Mkz — 277(k+1)?,(€]:§1)hk+1(2) + EUH—U

(72)
_ ZT (@(}C+1) o 6(0))2 o 2n(k+1)r(k+1)z
Collecting all terms we find that hg,q satisfies a relation of the type
his1(2)(w-2z+8)=2-Qz+w' 2+« (73)

for suitable Q, 8, w, w’, and «. Note in particular that w' = 26T M}, # 0 because M}, has full rank. If
w # 0 then Corollary 2 implies that hy(z) is affine and, as argued above, we conclude that hy, is linear.

Case 0 =0, b =0 It remains to address the case b = 0 and § = 0. Going back to the definition of b and
d (see (61) and (62)) we find

T )T = D B D) D) (k1)
(b70) T =Pl et~ Sy et (74)

Now ¢ = 0 implies Eﬁ:rll) = Aﬁ;l) (because they are both positive). But then we conclude Flht1) = 5(k+1)

from b = 0 and Afjﬁl) = %T]Hl) =0 for » > k + 1. This implies

(:)(k+1) - é(o) _ ?,(k+1) ® ;(k+1) _ §<k+1) ® 3(k+1) =0 (75)
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That is, this implies that intervention k + 1 is a pure shift intervention, i.e., B = B+ and n(*t1) £ 0
(otherwise we do not actually intervene). In this case, we conclude from Lemma 2 and Lemma 6 (if

Ok+1) £ @)
n(k+1);;(k+1)h(z) + c(k+1) — (Z _ M/(k+1))T(@(k+1) _ @)(Z _ ul(kJrl)) +e (76)

But then n*+DFE+DT(4/(F+1D)) = 0, this implies that V is not invertible which is a contradiction to
h being a diffeomorphism. Thus, we conclude that also ©*t1) = @, i.e., intervention k -+ 1 is also a pure
shift intervention for the Z variables. But then we find

ﬁkﬁl)hkﬂ(z) + ;{:II:H)MkZ — (ﬁ(kJrl))fl(n(kJrl)T(kJrl)Z + C(k:+1)). (77)

So we finally conclude that also in this case hjy1 is a linear function, this ends the proof. O

B From Linear Identifiability to Full Identifiability

In this section, we provide the proof of Theorem 1 which is a combination of our linear identifiability
result Theorem 3 proved in the previous section and the main result of [84] which shows identifiability
for linear mixing f. However, we need to carefully address their normalization choices and in addition
consider shifts.

We emphasize that the full identifiability results could also be derived from our proof of Theorem 3
by carefully considering ranks of quadratic forms and showing that we can inductively identify source
nodes. We do not add these arguments as our reasoning is already quite complex and because for linear
mixing functions this is not substantially different from the original proof in [84].

For the convenience of the reader, we will now restate the main results of [84]. For our work it is
convenient to slightly deviate from their conventions, i.e., we define the causal order of a graph by i < j
iff i € an(j), in particular ¢ — j implies i < j.

We rephrase their results using our notation. Let S(G) denote the set of permutations of the vertices
of G that preserve the causal ordering, i.e., all permutations p such that p(i) < p(j) if ¢ < j. They
consider linear mixing functions as specified next.

Assumption 5. Assume f(z) = Lz for some matriz L € RY >4 with trivial kernel and pseudoinverse

H = LT such that the largest absolute value of each row of H is one and the leftmost is positive.
Then the following result holds.

Theorem 5 (Linear setting, Theorems 1 and 2 in [84]). Suppose latent variables Z(*) are generated
following Assumptions 2 and 8 where nY) =0 (i.c., no shift) with DAG G and all A®) are lower triangular.
Suppose in addition that Assumption 4 holds and the mizing function satisfies Assumption 5. Then we
can identify intervention targets and the partial order < of the underlying DAG G up to permutation
of the node labels. If we in addition assume that all interventions are perfect the problem is identifiable

in the following sense. For every representation (E(i),H) such that all B® are lower triangular and

L(Z®) L2 XO) where L = H there is a permutation o € S(G) such that

H=P'H BY=p BOP,. (78)
Remark 5. A few remarks are in order.

1. Compared to their statement in Theorem 2 we replaced P, by P because we used the transposed
convention for the permutation matrices.

2. Note that their result per se doesn’t mention identifiability up to scaling but that’s because part of
their assumptions involve normalizing f. Since we don’t normalize the linear map f, we add scaling
in the theorem statement.

3. For the case of imperfect interventions, their result talks about identifiability of the transitive closure
G of the graph G, but this is the same as identifiability of the partial order <¢ that we state here.

4. We assume that interventions are not only acting on the noise but do change the corresponding row
of A. Note that this is equivalent to their genericity assumption which states that

r® = (B¢, = (Id — ADY, (DW), 2 (79)
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s = (BO)Te, = (1d - A, (D©), ? (80)

are linearly independent. Indeed, this holds iff AE?,) # Ag) (by acyclicity Agfil =0).

Let us provide a brief intuition why this result holds. The key ingredient is the same as in our proof
of linear identifiability above, namely, Lemma 3 which reads

00 _ 0O — 1) g 1) _ 40 g 40 (81)

This expression has rank 2 if ¢; is not a source node in the causal graph and the intervention is not a pure
noise intervention because s and r(*) are linearly independent as explained in the remark above. On
the other hand, this expression has rank one for source nodes because s o e¢, in this case and the same
is true for 7(¥). This allows us to identify interventions on source nodes. Moreover, ©*) — ©(*) has rank 2
if intervention ¢ and k target different source nodes and rank 1 if they target the same source node. Thus
we can also identify the set of interventions targeting the same source node. One can complete the proof
by an induction argument based on removing source nodes from the graph and studying the effect on the
precision matrix of the latent variables.
We are now ready to prove our main theorems.

Theorem 1. Suppose we are given distributions XV generated using a model ((BW,n™ t;).c1, f) such
that Assumptions 1-4 hold and such that all interventions i are perfect. Then the model is identifiable
up to permutation and scaling, i.e., for any model ((B(i), N(i)75)iej, f) that generates the same data, the
latent dimension d agrees and there is a permutation w € Sy (and associated permutation matriz P,,) and
an invertible pointwise scaling matriz A € Diag(d) such that

& =w(t;), BYW=PIBOAP, f=foA P, #¥=n, (3)
This in particular implies that
Z0 2 pTaz®) (4)
and we can identify the causal graph G up to permutation of the labels.

Proof of Theorem 1. Suppose there are two representations ((B™, 1" ¢;);cs, f) and ((E(i),ﬁ(i),ﬂ»)ie[, f)
of the distributions X® i > 0. As explained in the proof of Theorem 3 we can assume by relabeling
the nodes that the matrices B(") are lower triangular and the corresponding DAG G has the property
that for every edge i — j we have ¢ < j. We now apply Theorem 3 and find that there is an invertible

linear map 7 such that fz foT and T2 2 Z®. One minor difference to the setting in [84] is
that we in addition consider shift interventions. They are simpler to analyze than a change of variance,
but we can avoid additional arguments with the following trick. If () = 2 for some i we replace
ZW = N(u®, £®) by 2/@ = N(0,Z® + 4@ ()T, otherwise we set Z') = N(0,2() and similarly
for Z. Then T~1(Z®) 2 Z® implies T=1(2'®) 2 2/ Using (13) and (17) it can be shown that this
distribution corresponds to a change of variance of the noise, i.e., a change of Dt(:L This can also be
seen directly from the relation 2’ 2 (B®)=1(c + n'€ ey s)), where ¢ ~ N(0,1) and independent of e.
We can now apply Theorem 5 to the primed distributions. We first find a unique invertible A € Diag(d)
such that AT has largest absolute value entry 1 in every row (and in case of ties the leftmost entry is 1).
We can also find a permutation p € Sy such that B(®) = PpB(i)A_lPJ is lower triangular for all ¢ (note

the distinction between B and E(i)). Indeed, this is possible since the underlying DAG G is acyclic by
assumption, interventions do not add edges, and A is diagonal. Then we find

(TA P )(BD) 1 2 (T AP ) (BW) 1 P,e (82)
=T YBW) e (83)
2 (BO)le. (84)

Here the last step follows from the fact that 7-1Z@ 2 Z() which implies that the centered distributions
agree. B

Now we can apply Theorem 5 (with B replaced by B and identity mixing) and find that for the
alternative representation in terms of B

P,AT =P/1d, BY =PIBYP, (85)

26



for some p € S (é) because by assumption B and B are lower triangular. This implies that
_A=1pTpT
T=A"'PP], (86)
i T TpT R
BYW =PI BYP,A =P PIBYP,P,A. (87)

To summarize, there is a permutation w = (poo)~! (note that P, P, = P,.,) and a diagonal matrix A
such that

B(l) :ng(l)PJAy T:A_lpun Z(l) :Tva(l) :A_lpr(l)7 (88)

We also find the relation w(t;) = t; from here because P,e; = eu-1(i)- Equating the means of T-17®
and Z(® we find

ﬁ(i)(g(i))—lea _ ﬁ(i)T_l(B(i))_leti~ (89)
Multiplying by B® we find
ﬁ(i)ea = O BOT-Y(BO)le, =@ PTe, (90)
and we conclude that ﬁ(i) =7,
O

Theorem 2. Suppose we are given the distributions X generated using a model (B®, 0" t;),c1, f)
with causal graph G such that the Assumptions 1-4 hold and none of the interventions is a pure noise
intervention. Then for any other model ((B(A) 7t N)lel, f) with causal graph G generating the same
observations the latent dimension d agrees and there is a permutation w € Sy such that t; = w(t;) and
i =g J iffw(i) =g w(j), i-e., =g can be identified up to a permutation of the labels.

Proof of Theorem 2. Suppose there are two representations (B, n® . t;);cs, f) and (B®, 7 ,)761 )
of the observational distribution. As shown in Theorem 3 there is a linear map such that T-1Z0 ( ) = 7@,
Then the same is true for the transformed variables as explained above. Viewing Z 7() as new observations
obtained through a linear T' mixing we conclude from Theorem 5 that < and the intervention targets
are identifiable up to relabeling. O

C A comparison to related works

In this section, we will discuss the relation of our results to the most relevant prior works and put them
into context.

[84] This work considers linear mixing functions f, and we directly generalize their work to non-linear
f. In particular, their techniques are linear-algebraic and do not generalize to non-linear f (see more
technical details in proof intuition in Section 4); we handle this using a mix of statistical and geometric
techniques. Notably, their finding that the linearly mixed latent variables are recoverable after observing
one intervention per latent node is closely related to an earlier result in domain generalization, which
showed that a number of environments equal to the number of “non-causal” latent dimensions can ensure
recovery of the remaining latents [71], and later work showing that this requirement can be reduced further
under linear mixing with additional modeling structure [11, 72]. This connection is not coincidental—that
analysis was for invariant prediction with latent variables, which was originally presented as a method
of causal inference using distributions resulting from unique interventions [62]. Later this approach
was applied for the purpose of robust prediction in nonlinear settings [25], but the identifiability of the
latent causal structure under general nonlinear mixing via interventional distributions remained an open
question until this work.

[88] This work also considers linear mixing f, but allow for non-linearity in the latent variables. They
use score functions to learn the model and they raise as an open question the setting of non-linear
mixing, which we study in this work. While the models are not directly comparable, our model is more
akin to real-world settings since it’s not likely that high-level latent variables are linearly related to
the observational distribution, e.g. pixels in an image are not linearly related to high-level concepts.
Moreover, Gaussian priors and deep neural networks are extensively used in practice, and our theory as
well as experimental methodology apply to them.
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[48] While they do not discuss interventions, this work considers the setting of multi-environment
CRL with Gaussian priors and their results can be applied to interventional learning. When applied
to interventional data as in our setting (as also shown in [84, Appendix DJ]), they require additional
restrictive assumptions such as d = d’, a bijective mixing f and e < d where e is the number of edges in
the underlying causal graph whereas we make no such restrictions on d, f and e (therefore, the maximum
value of e can be as large as ~ d?/2 in our setting). And when these assumptions are satisfied, they
require 2d interventions whereas we show that d interventions are sufficient as well as necessary.

[2] This work also considers the setup of interventional causal representation learning. However, their
setting is different in various ways and we now outline the key differences.

1. Their main results assume that the mixing f is an injective polynomial of finite degree p (see
Assumption 2 in their paper). The injectivity requires their coefficient matrix to be full rank, which
in turn implies d' > Y7 _ ("jﬁ;l) = (p‘gd) (see the discussion below Assumption 2 in their work).
This means that we cannot set the degree of the decoder polynomial to be arbitrarily large for fixed
output dimension d’ (which is required for universal approximation). In contrast, we only require
d’ > d. For a general discussion of the relation between approximability and identifiability we refer

to Appendix E.

2. All their results for general nonlinear mixing functions rely on deterministic do-interventions which
is a type of hard intervention that assigns a constant value to the target. However, we focus on
randomized soft interventions (and also allow shift interventions which have found applications
[73, 58]), which as also pointed out by [84, 87] is less restricted. Moreover, they require multiple
interventions for each latent variable (as they use an e-net argument) to show approximate identifi-
ability, while the structural assumptions on the causal model allow us to show full identifiability
with just one intervention for each latent variable. Thus, their setting is not directly comparable to
ours and neither is strictly more general than the other. In particular, their proof techniques and
experimental methodology don’t translate to our setting, and we use completely different ideas for
our proofs and experiments.

D Counterexamples and Discussions

In this section, we first present several counterexamples to relaxed versions of our main results in
Section D.1 and then provide the missing proofs in Section D.2.

D.1 Main counterexamples

In this section, we will discuss the optimality and limitations of various assumptions of our main results.
In particular, we consider the number of interventions, the distribution of the latent variables, and the
types of interventions separately.

Number of interventions Our main results all require d interventions, i.e., one intervention per node.
This is necessary even in the simpler setting of linear f as was shown in [84, Proposition 4], directly
implying it is also necessary for the more general class of non-linear f that we handle here. Therefore,
the number of interventions in our main theorems 1, 2 is both necessary and sufficient. Going a step
further, it is natural to ask whether Theorem 3 remains true for less than d interventions. However, as
we show next, d — 2 interventions are not sufficient.

Fact 1. Suppose we are given distributions X V) generated by (B®, 0 t;),c1, f) satisfying Assumption 1-
3. If the number of interventions satisfies |I| < d — 2 it is not possible to identify f up to linear maps.
Consider, e.g., d = 2 and Z = N(0,1d) and no interventions. Then h(Z) 27 for (nonlinear) radius
dependent rotations as defined in [29, 9].

Let us next consider the case with a total of d environments which corresponds to d — 1 interventional
distributions plus one observational distribution. We can provide a non-identifiability result for a general
class of heterogeneous latent variable models that satisfy an algebraic property.

Lemma 7. Assume that d =2 and Z(© ~ N(0,2©)), Z1) ~ N(0,5M) and =) = £O) or 51 < 3(0)
in Loewner order (i.e., the difference is positive definite). Then there is a non-linear map h such that
WZ®D) 2 20 fori=0,1.
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We provide a proof of this lemma in Appendix D.2. Note that this non-identifiability lemma requires
the assumption on ¥(*. In Lemma 3 in Appendix A we have seen that for the interventions considered in
this work the relation () > %(0) or () < %(0) generally does not hold. This is some weak indication
that for Theorem 3, d — 1 interventions might be sufficient. We leave this for future work.

As an additional note, in the special case when f is a permutation matrix, we are in the setting of
traditional causal discovery and here, d — 1 interventions are necessary and sufficient [10, 18, 84].

Type of intervention Even when we restrict ourselves to only linear mixing functions as considered as
in [84], we need perfect interventions in Theorem 1. Otherwise, only the weaker identifiability guarantees
in Theorem 2 can be obtained. This is shown in [84]for linear f. Therefore, in the more general setting
of nonlinear f, we cannot hope to obtain Theorem 1 with imperfect interventions, showing that this
assumption is needed.

Next, we clarify that for the identifiability result in Theorem 2 , the condition that the interventions
are not pure noise interventions is also necessary.

Fact 2. Recall that we defined B/ = (D®)~2(Id—A®). Suppose XD is generated by (BD,nD t;),c1, f)
satzsfymg Assumptions 1-4 where all interventions are pure noise interventions. By definition, this im-

plies AW = A for all i. Consider any matrZINA such that the corresponding DAG is acyclic. Then
(B i ),ti)ief,f) with BW = (D®)~z2(Id — A) for all i and

f=fo(B'B)=fo(d—A) YD) 3(DO)3(1d - A) = fo (Id — A)~(Id — A) (91)
generates the same distributions XV . Indeed,

f(Z9) = fo(BT'B)(BY) (e +nVey,)

= f((1d — A)~(1d — A)(Id — A)~H(DD)2 (e + nDey,))
F(1d = A)~H(DD)z (e +7Dey,)) (92)
((B@) He+nWey,))
F(Z9).

This implies that any underlying causal graph could generate the observations. In other words, for pure
noise interventions we can identify the scale of the noise variables, but we obtain no intervention about the
causal variables and structure (exactly because the interventions do not target the actual causal variables
but the noise variables).

Finally, we remark that in contrast to the case with linear mixing functions, we need to exclude
non-stochastic hard interventions for linear identifiability.

Lemma 8. Consider d =2 and Z(©) = N(0,1d) and the non-stochastic hard interventions do(Z, = 0) and
do(Zy = 0) resulting in the degenerate Gaussian distributions Z(") = N(0, ea®e3) and Z) = N(0,e;®e1).

Then there is a nonlinear h such that h(Z®) 2z for all i.

Intuitively, to show this, we choose h to be identity close to the supports {Z; = 0} and {Z3 = 0} but
some nonlinear measure preserving deformation in the four quadrants. The full argument can be found in
Appendix D.2. A similar counterexample was discussed in [2]. However, here we in addition constrain the
distribution of the latent variables, which adds a bit of complexity.

Distribution of the Noise Variables Our key additional assumption compared to the setting
considered in [84, 2, 88| is that we assume that the latent variables are Gaussian which allows us to put
only very mild assumptions on the mixing function f. However, we do this in a manner so that we still
preserve universal representation guarantees.

[88] consider arbitrary noise distributions but restrict to linear mixing functions. We believe that our
result can be generalized to more general distributions of the noise variables, e.g., exponential families,
but those generalizations will require different proof strategies, which we leave for future work. However,
the result will not be true for arbitrary noise distributions, as the following lemma shows.

Lemma 9. Consider Z\©) = (e~1,62)T, ZW = (€1,€2), and Z?) = (e1,€)) where €1, e5 ~U([—1,1]) and
e, ey ~U([=3,3]). Also define Z(O) = (e1, 61 +€2), Z1) = (¢}, €, + €2), and ZP) = (e, €y). Then there is
h such that

2

hz®) 2 20, (93)
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A proof of this lemma can be found in Appendix D.2. The result shows that even with d perfect
interventions and linear SCMs it is not possible to identify the underlying DAG (empty graph for Z and
Zl — Zg) and we also cannot identify f up to linear maps. While our example relies on distributions
with bounded support, we conjecture that full support is not sufficient for identifiability.

Structural Assumptions A final assumption used in our results is the restriction to linear SCMs.
This is used for most works on causal representation learning (see Section 2), even when they restrict to
linear mixing functions. Although this may potentially be a nontrivial restriction, the advantage is that
the simplicity of the latent space will enable us to meaningfully probe the latent variables, intervene and
reason about them. Nevertheless, it’s an interesting direction to study to what generality this can be
relaxed. Indeed, even for the arguably simpler problem of causal structure learning (i.e., when Z () is
observed) there are many open questions when moving beyond additive noise models. We leave this for
future work.

D.2 Technical constructions

In this section, we provide the proofs for the counterexamples in Section D.1. For the first two counterex-

amples we construct functions h such that h(Z (i)) 276 by setting h = ®; where ®; is defined as the
flow of a suitable vectorfield X, i.e.,

8,4 (2) = X (Dy(2)). (94)

This is a common technique in differential geometry and was introduced to construct counterexamples to
identifiability ICA with volume preserving functions in [9, 8]. To find a suitable vectorfield X we rely on
the fact that the density p; of P, = (®;).P satisfies the continuity equation

Ope(2) + Div(p(2)X (2)) = 0. (95)
In particular P, = P holds iff
Div(p:(2)X(2)) = 0. (96)

Therefore it is sufficient to find a vectorfield X such that Div(p(¥ X) = 0 for all environments i to
construct a suitable h = ;.

Lemma 7. Assume that d =2 and Z(©) ~ N(0,%2©)), Z0) ~ N(0,5M) and =V = 5O or 51 < 3(0)
in Loewner order (i.e., the difference is positive definite). Then there is a non-linear map h such that
WZ®D) 2 20 fori=0,1.

Proof of Lemma 7. Let us first discuss the high-level idea of the proof. The general strategy is to construct

a vectorfield X whose flow preserves Z() for i = 0, 1. This holds if and only if the densities po, p1 of Z(©),
ZW satisfy

DiV(poX) = DiV(plX) =0 (97)
Using Div(fX) =Vf- X + fDivX we find

X V) () = S - S - EERE  BETES <0

We conclude that any X satisfying (97) must be orthogonal to V(Inpg(z) — Inp;(2)) and thus parallel
to the level lines of Inpy(z) — Inpy(z). This already fixes the direction of X and the magnitude can
be inferred from (97). To simplify the calculations we can first linearly transform the data so that the
directions of X, i.e., equivalently the level lines of Inpy(z) — Inp;(2) have a simple form. We assume
that ¥y < 3;. Clearly, it is sufficient to show the result for any linear transformation of the Gaussian

distributions Z(". Note that generally for G ~ N(u,%) we have AG ~ N(Au, ASAT) Applying H
_1 _1
we can reduce the problem to Id < ¥} = X, 2%,X, 2. Diagonalizing ¥} by U € SO(d) it is sufficient

to consider Id < A = UX{U T where A = Diag(\;, \2). Finally, we can rescale z; and zp such that the
resulting covariance matrices A° = Diag(\}, \9), A! = Diag(\}, \}) satisfy

1 1 1 1
I 99
NN TN A (99)
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Thus, it is sufficient to show the claim for such covariances A°, A' and the result for arbitrary covariances
follows by applying suitable linear transformation.
For such covariances we find for some constant ¢

A T
ln(po(z)) - ln(pl(z)) = _QAO - 2)\0 + 2)\1
1 2 1

2

—i—Z—Ql—&-c:z%—i—zS—i—c. (100)
223

The level lines are circles. Thus, we consider the vector field

Xo(z) = <_22> . (101)

21

We see directly that Div Xg = 0. We consider the Ansatz X (z) = f(|z])Xo(2)/po(z). We now fix the
radial function f: Ry — R such that it has compact support away from 0. We find using Div Xy =0

Div(X (=)po()) = Div(X (2)po(:) (102)
= Xo(2)- (VI 72 (103
() e (104)
— 0. (105)

Note, that close to 0 where |z| is not differentiable the vector field vanishes by our construction of f. We
find similarly using (100)

Dv(X (2)p1(2) = Xo2) - ¥ (#0255 (106)
= Xo(2) - V (f(lz)e ) (107)
— Xo(2)- V(2] (108
0. (109)

Finally we remark that the flow ®; of the vectorfield X generates a family of functions h as desired,
i.e., for all t we have (®;),Z® = Z() and ®, is clearly nonlinear as it is the identity close to 0 but not
globally. O

The proof of the next lemma is similar but simpler.

Lemma 8. Consider d =2 and Z() = N(0,1d) and the non-stochastic hard interventions do(Z, = 0) and
do(Zy = 0) resulting in the degenerate Gaussian distributions Z(") = N (0, ea®ez) and Z?) = N(0,e;®e1).
Then there is a nonlinear h such that h(Z®) 2z for all i.

Proof of Lemma 8. Pick any smooth divergence free vectorfield Xy with compact support in [e, 00)? for
some € > 0. Then the vector field X = X,/po satisfies

Div Xpo = Div X, = 0. (110)

Th_us the flow @, preserves the distribution of Z(9). But it also preserved the interventi(_)nal distributions
Z® for i = 1,2 because X (z) = 0 and thus ®,(z) = z for z close to the supports of Z(). O

Finally we prove Lemma 9 that shows that we cannot completely drop the assumption on the
distribution of the noise variables e.

Lemma 9. Consider Z°) = (e1,e3) ", ZM) = (€}, €2), and Z3) = (€1, €y) where €1, €5 ~ U([—1,1]) and
e, ey ~U([=3,3]). Also define Z(O = (e1, 61 +€2), Z1) = (¢}, €| +€2), and ZP?) = (e, €y). Then there is
h such that

IADENA2S (93)

Proof of Lemma 9. A sketch of the setting can be found in Figure 4. We define ho(z) = (21,21 + 22). If
h(z) = ho(2) for —1 < 25 < 1 we find W(Z®) 2 Z® for i = 0 and i = 1. It remains to modify ho such
that h preserves the uniform measure on [—1, 1] x [—3,3]. We do this in two steps, first we construct a
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Figure 4: Sketch of the setting in Lemma 9. The map h agrees with (z1,22) — (21,21 + 22) on the red
rectangle and maps R; to @); such that the uniform measure is preserved.

modification h of the map hg such that [—1,1] x [—3, 3] is mapped bijectively to itself but h = hg for
|22 < 1 (so that A(Z®) 2 ZO for i = 0 and i = 1 holds) and then we apply a general result to make
the map measure preserving. We start with the first step. Let ¢ : R — [0, 1] be differentiable such that
P(t)=1for =1 < z<1and¥(t)=0for —5/2 <z <5/2 with |[¢'(t)| < 1. Then

) = v + (L= vl = (| 20 ) (1)

is injective on [—1, 1] x [—3, 3] (note that the second coordinate is increasing in z9) and maps [—1, 1] x [—3, 3]
bijectively to itself and agrees with hg for |z2| < 1. However, it is not necessarily volume preserving. But
applying Moser’s theorem (see [56]) to the image of the rectangles Ry = [—1,1] x [-3,—1] and Ry =
[—1,1] x [1,3] which are the quadrilaterals @y = h(R;) with endpoints (-1, —3), (1,-3), (1,0), (—1,—2)
and Qa = h(Ry) with endpoints (1,3), (—1,3), (—1,0), (1,2) with the same size as R; and Ry we infer
that there is ¢ supported in Q1 UQ, such that h = @oh satisfies h(Z®) 2 Z® B 4([—1,1] x [-3,3]). O

E Identifiability and Approximation

In this section, we explain that approximation properties of function classes cannot be leveraged to obtain
stronger identifiability results. The general setup is that we have two function classes G C F and we
assume that G is dense in F (in the topology of uniform convergence on ), i.e., for f € F and any € > 0
there is g € G such that
sup [ f(z) —g(z)[ < e (112)
z€Q
We now investigate the relationship of identifiability results for mixings in either G or in F.

While this point is completely general, we will discuss this for concreteness in the context of nonlinear
ICA and considering polynomial mixing functions for G. We also assume that F are all diffeomorphisms
(onto their image). Suppose we have latents Z ~ U([—1,1]¢) and observe a mixture X = h(Z). We use
the shorthand Q = [~1,1]¢ from now on. Let us suppose that h € G. Then the following result holds.

Lemma 10. Suppose %(Z) Zxk hZ) where Z ~ U(R), h,h € G and h satisfies an injectivity condition
as defined in Assumption 2 in [2]. Then h and h agree up to permutation of the variables.

Proof. This is a consequence of Theorem 4 in [2]. Essentially, they show in Theorem 1 that h and h agree
up to a linear map and then use independence of supports to conclude (in our simpler setting here, one
could also resort to the identifiability of linear ICA). O
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The injectivity condition is a technical condition that ensures that the embedding h is sufficiently
diverse, but this is not essential for the discussion here. Let us nevertheless mention here that it is not
clear whether this condition is sufficiently loose to ensure identifiability in a dense subspace of F because
it requires an output dimension depending on the degree of the polynomials.

We now investigate the implications for F. It is well known that ICA in general nonlinear function

is not identifiable, i.e., for any f € F there is a fe F such that f(Z) 2 f(Z) To find such an fone
use, e.g., the Darmois construction, radius dependent rotations or, more generally, measure preserving

transformations m such that m(2) 2 Z. Then we have the following trivial lemma.

Lemma 11. For every € > 0 there are functions g,g € G such that

sgp\g—f|<6, Slglzp|£~7—f|<6 (113)

and then the Wasserstein distance satisfies Wa(f(Z),9(Z)) < e, Wa(f(Z),4(Z)) < e.

Remark 6. For the definition and a discussion of the Wasserstein metric we refer to [90]. Alternatively
we could add a small amount of noise, i.e. X = f(Z) + v and then consider the total variation distance.

Proof. The first part follows directly from the Stone-Weierstrass Theorem which shows that polynomials
are dense in the continuous function on compact domains. The second part follows from the coupling
Z = (f(Z2),9(Z)) and (113). O

The main message of this Lemma is that whenever there are spurious solutions in the larger function
class F we can equally well approximate the ground truth mixing f and the spurious solution f by
functions in G. In this sense, the identifiability of ICA in G does not provide any guidance to resolve the
ambiguity of ICA in F. So identifiability results in G are not sufficient when there is no reason to believe
that the ground truth mixing is exactly in G.

Actually, one could view the approximation capacity of G also as a slight sign of warning as we will
explain now. Suppose the ground truth mixing satisfies g € G. Since ICA in F is not identifiable we
can find f € F which can be arbitrarily different from g but such that g(Z) = f(Z). Then we can
approximate fby g with arbitrarily small error. Thus, we find almost spurious solutions, i.e., g € G
such that W5(g(Z2),g(Z)) < € for an arbitrary € > 0 but ¢ and g correspond to very different data
representations, in this sense the identifiability result is not robust.

When only considering the smaller space G this problem can be resolved by considering norms or
seminorms on G, for polynomials a natural choice is the degree of the polynomial. Indeed, suppose that
we observe data generated using a mixing g € G. Then there might be spurious solutions f € F which
can be approximated by g € G but this approximation will generically have a larger norm (or degree for
polynomials) than g. Therefore, the minimum description length principle [69] favors g over g.

This reasoning can only be extended to the larger class F if the ground truth mixing f (for the relevant
applications) can be better approximated (i.e., with smaller norm) by functions in G than all spurious
solutions f This is hard to verify in practice and difficult to formalize theoretically. Nevertheless, this
motivates to look for identifiability results for function classes that are known to be useful representation
learners and used in practice, in particular neural nets. We emphasize that alternatively one can also
directly consider norms on the larger space F penalizing, e.g., derivative norms, to perform model
selection.

F Additional details on experimental methodology

In this appendix, we give more details about our experimental methodology. First, we derive the log-odds
and prove Lemma 1 in Appendix F.1. Then, we use it to design our model and theoretically justify
our contrastive approach in Appendix F.2, by connecting it to the Bayes optimal classifier. Then, we
describe the NOTEARS regularizer in Appendix F.3, describe the limitations of the contrastive approach
in Appendix G.1 and finally, in Appendix F.4, we describe the ingredients needed for an approach via
Variational Autoencoders, the difficulties involved and how to potentially bypass them.
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F.1 Proof of Lemma 1

Lemma 1. When we have perfect interventions, the log-odds of a sample x coming from XD over coming
from X©) s given by

g (2) () = e = N @) +1O% - (P + 5 @507 (6)

for a constant ¢; independent of x.

Proof. We will write the log likelihood of X = f(Z(") using standard change of variables. As we
elaborate in Appendix A.1, we have

7@ — (B(i))fl6 + 1 with B® = (D(i))*1/2( —A® ), 1 (@) — n(%)(B( )) " (114)

Also, denote by ©®) = (B)T B() the precision matrix of Z() (see Appendix A.1 for full derivation). By
change of variables,

lnp (x) = |y | + Inply (' ()
n 1 i 1, .- i D)o i
= In|Jp| = 5 In(2m) — 5 0[S0 = 2(F~ () = uD)TOO (£ () = )
where J;-1 denotes the Jacobian matrix of partial derivatives. Let s 5@ 5@ denote the rows of

B We then compute the log-odds with respect to X9, the base distribution without interventions
(and where (9 = 0) to get

nplY (z) — npl ()

() . . . ) ) )
=( IE 5 ;(u(”)TG(”u(”>—;(f‘l(w))V@W—@‘0))(f‘1(x))+(f‘l(w))T@(“u“)
= ST © 0 - 5O @ sO) (@) 4 (@) T (B) e,
= L) T el — O)EOT(F @) O () e

=ci— o (f 7 (@) T (\ewef, = (sO) ()M @) + 0PN - (F7H @),
1

= ci = SN @) + 1N (@) + 50 @), 50
for a constant ¢; independent of z. For the second equality, we used Lemma 3. [

F.2 A theoretical justification for the log-odds model

In this section, we provide more details on our precise modeling choices for the contrastive approach, and
show theoretically why it encourages the model to learn the true underlying parameters.
Recall that, motivated by Lemma 1, we model the log-odds as

gi(l’, (078} ﬁia Yis w(l)7 9) = 0 — ﬁlhi (.T, 0) + 77,ht, (xa 9) + <h(l‘, 9)7 w(2)>2 (115)

where h(-,0) denotes a neural net parametrized by 0, parameters w® are the rows of a matrix W and «,
Bi, ;i are learnable parameters. Moreover, we have go(z) = 0 as we compute the log-odds with respect to
X () Therefore, the cross entropy loss given by

(’L) elg i9i (7:)
Loy = _EjNU({(]vi})Ex~X<j) In (6gi(w)-|-].> . (116)

Let C(z) € {0,1} denote the label of the datapoint = indicating whether it was an observational
datapoint or an interventional datapoint respectively. By using the cross entropy loss, we are treating
the model outputs as logits, therefore we can write down the posterior probability distribution using a
logistic regression model as

_ eXp(gi(xaaivﬂi77i7w(i)70)) (117)
1+ eXp(gi(as, Ay, Bi)fylﬁ w(i)7 9))
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Moreover, by using a sufficiently wide or deep neural network with universal approximation capacity
and sufficiently many samples, our model will learn the Bayes optimal classifier, as given by Lemma 1.
Therefore, we can equate the probabilities to arrive at

exp(gi(, 00, By, w,0) _ exp(npy (x) — np (x)) a18)
1+ exp(gi(z, ci, B, i, w®, 0)) 1+exp(lnpg?( ) — lnp( )( )
implying
a; — Bihi (2,0) + vihe, (2,0) + (h(z,0),w™)? (119)
= e AT @) + 0O (@) + 5 (@), 5O (120)
This suggests that in optimal settings, our model will learn (up to scaling)
o =c¢, fi= /\2 i =N, w® =59 h(z,0) = () (121)

27

thereby inverting the nonlinearity and learning the underlying parameters.

F.3 NOTEARS [102]

In our algorithm, using the parameters w(® as rows, we learn the matrix W, which we saw in optimal
settings will be B = D~1/2(Id — A). Note that the off-diagonal entries of B form a DAG. Therefore, the
graph encoded by Wy, which is defined to be W with the main diagonal zeroed out, must also be a DAG.

However, in our algorithm, we don’t explicitly enforce this acyclicity. There are two ways to get around
this. One way is to assume a default causal ordering on the Z;s, which is feasible as we don’t directly
observe Z. Then, we can simply enforce Wy to be triangular and train via standard gradient descent and
Wy is guaranteed to be a DAG. However, this approach doesn’t work because the interventional datasets
are given in arbitrary order and so we are not able to match the datasets to the vertices in the correct
order. So this merely defers the issue.

Instead, the other approach that we take in this work is to regularize the learnt W to model a directed
acyclic graph. Learning an underlying causal graph from data is a decades old problem that has been
widely studied in the causal inference literature, see e.g. [12, 102, 64, 80, 4] and references therein. In
particular, the work [102] proposed an analytic expression to measure the DAGness of the causal graph,
thereby making the problem continuous and more efficient to optimize over.

Lemma 12 ([102]). A matriz W € R¥*4 js a DAG if and only if
R:=trexp(WoW)—-d=0 (122)
where o 1s the matrix Hadamard product and exp s the matrix exponential. Moreover, R has gradient
VR =exp(WoW)T 0 2W (123)

Therefore, we add Ryorrars(W) = trexp(Wy o Wy) — d as a regularization to our loss function.
As in prior works, we could also consider the augmented Lagrangian formulation however it leads to
additional training complexity. There have been several follow-up works to NOTEARS such as [98] (see
[4] for an overview) that suggest different regularization schemes. We leave exploring such alternatives to
future work.

F.4 A Variational Autoencoder approach

In this section, we describe the technical details involved with adapting Variational Autoencoders (VAEs)
[39, 68] for our setting. We highlight some difficulties that we will encounter and also suggest possible
ways to work around them.

Indeed, most earlier approaches for causal representation learning have relied on maximum likelihood
estimation via variational inference. In particular, they have relied on autoencoders or variational
autoencoders [36, 2]. In our setting, VAEs are a viable approach. More concretely, we can encode
the distribution X to ¢, then apply the B®) parameter matrix before finally decoding to X(®). To
handle the fact that we don’t have paired interventional data as in [6], we could potentially modify the
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Evidence Lower Bound (ELBO) to include some divergence measure between the predicted and measured
interventional data. Finally, this can be trained end-to-end as in traditional VAEs. We now describe this
in more detail.

We will use VAEs to encode the observational distribution X(©) to €, so the encoder will formally
model B o (f~1(.) — u?) where we use the notation from Appendix A.1. Note here that we cannot
directly design the encoder to map X to Z because we do not know the prior distribution on Z. Indeed,
the objective is to learn it.

Let I denote the set of intervention targets. Assume the targets are chosen uniformly at random,
which can be done in practice by subsampling each interventional distribution to have the same size.
Suppose we had paired counterfactual data D = U;c;D; of paired interventional datasets, i.e. D; consists
of pairs (X(®, X#) with corresponding probability density denoted p( (2(?), 2(?)). Following [39, 101],
define an amortized inference distribution as g(e|z(?)). Then, we can bound the expected log-likelihood as

Ep[lnp® (2@, 2] = E; (1 Ep, [Inp' (2@, 2()] (124)
=Eivu(nEp, In /p“‘)(x“”, 2 e) de (125)
() ((0) (D) (0)
P (D, 2 €)q(e|z')
=E, ynEp,1 d 126
U= n/e q(elz(©) ‘ (126)

p@ (20 () ¢)
erq(elz(®) q(e|z®)

pD (20 20 ¢)

= EiNZx{(I)E'Di h’lE (127)

> Eiu(nEp, Ecy(z) In (Jensen’s inequality) — (128)

q(e]z()
= Eirs(nEp Eevyzo) In . (xzi)elifo)) |)€)P(€) 129
= E;~unEp, <E€Nq(x<0>) Inp® (2@, 20 |e) — E. gz In q(j(i(;))> (130)
= EivunE@© sy, |:]E6~q(ex(0)) np@ (29, 2e)] (131)
KL INO.0)| (32)

where the last term is the standard Evidence Lower Bound (ELBO). This can then be trained end-to-
end via the reparameterization trick. A similar approach was taken in [6] who had access to paired
counterfactual data.

However, we do not have access to such paired interventional data, but instead we only observe the
marginal distributions X (. To this end, conditioned on €, we can split the term Inp(® (x(o),x(i)k) =
In @ (2 ]e) +In p® (2 |e) where p(*) denotes the density of the intervened marginal of p(¥), which corre-
sponds to using the interventional decoder fo ((B®")7!(.)+ u(). Nevertheless, E, .y, [Inpt (z]e)] is
still not tractable in unpaired settings. As a heuristic, we could consider a modified ELBO by modifying
this term to measure some sort of divergence metric between the true interventional data X and the
generated interventional data p(¥)(z(|e), similar to [101]. We leave it for future work to explore this
direction.

G Additional experimental results

In this section, we provide additional experimental results and discussions to explore the effect of shift
strength of the interventions, data scale, and noise distribution.

G.1 Limitations of the contrastive approach

As mentioned in the main part of the paper, our contrastive algorithm struggles to recover the ground
truth latent variables when considering interventions without shifts. We illustrate the dependence on the
shift strength in Figure 5. In this section, we provide some evidence why this is the case. Apart from
setting the stage for future works, this also enables practitioners to be aware of potential pitfalls when
applying our techniques.

36



SHD AUROC MCC R?

20 - 1.0 4 1.0 A 1.0 A
0.9 1
10 A 0.5 A 0.5 1
0.8 1
T T T T T T T T T 0'0 T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
n n n n

Figure 5: Dependence of the performance metrics on the shift 1. Other settings are as for nonlinear
mixing functions (see Table 7) with ER(10,2) graphs and d’ = 100.
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Figure 6: Cross entropy loss for a =1, ¢ =0, 2o = 1 and b = 0 (left), b = 2 (right) as a function of the
estimated latent variable 2.

We suspect that the main reason for this behavior is the non-convexity of the parametric output
layer. Note that this is very different from the well known non-convexity of (overparametrized) neural
networks. While neural networks parametrize non-convex functions their final layer is typically a convex
optimization problem, e.g., a least squares regression or a logistic regression on the features. Moreover,
it is well understood that convergence to a global minimizer using gradient descent is possible under
suitable conditions, see, e.g., [47].

This is different for our quadratic log-odds expression where gradient descent is not sufficient to find
the global minimizer. To illustrate this we consider the case of a single latent, i.e., d = 1, then the ground
truth parametric form of the log-odds in 6 can be expressed as

mpl —mpl (@) = g(z) = h(f () = a(f~}(z) = b)* +c (133)
for some constants a, b, ¢ and b = 0 if (1) = 0, i.e., there is no shift. We moreover assume, for the sake of
argument, that the final layer implementing h(z) = a(z — b)? + ¢ is fixed to the ground truth parametric

form of the log-odds (then there is also no scaling ambiguity left). Now, let us fix a point xg and define
20 = f1(x0) and

PP (x0) e9(x0)

pg(l_)(xo) +pg?)($0) 1 4 e9(wo)

p=PlE=1X =z = (134)

Then the (sample conditional) cross entropy loss as a function of 2 = f~1(z¢) for our learned function f
is given by
eh(2)

Lo = —pln ( > —(1-p)hn <1+16h()> — _ph(2) + In(1 + ) (135)

1+ eh(®)
We here drop the intervention index, since we focus on a one dimensional illustration. We plot two
examples of such loss functions for b = 0 and b # 0 in Figure 6.

To verify that this is indeed the reason for our failure to recover the ground truth latent variables, we
investigate the relation between estimated latent variables and ground truth latent variables. The result
can be found in Figure 7 and, as we see, when n = 0, the distribution of the recovered latents is skewed.
Moreover, we find that we essentially recover the latent variable up to a sign, i.e., Z = |Z| (there is a
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Figure 7: Density of standardized ground truth latents and recovered latents for n = 0 (top left) and
17 =1 (top right), scatter plot of the ground truth latent variables Z; and recovered latent variables Z1
for n =0 (bottom left) and n = 1 (bottom right). Results shown for ER(10,2) graphs and d’ = 100, all
further parameters as in Table 7.

small offset because we enforce Z to be centered). Note that this explains the tiny MCC scores in Table 1,
since E(Z|Z|) = 0 for symmetric distributions. This observation might also be a potential starting point
to improve our algorithm. For non-zero shifts we recover the latent variables almost perfectly.

G.2 Varsortability and data scale

An important observation in causal discovery was that many benchmark settings exhibit specific correlation
structures that can be exploited to infer causal directions. The most prominent example is varsortability
[66] which measures how well the causal order agrees with the order induced by the magnitude of the
variance. This is a measure between 0 and 1 and for values close to 0 and 1 the variances contain a lot
of information about the causal order while close to 0.5 this is not the case. It was shown in [66] that
typical parameter choices exhibit high varsortability ~ 1 which can be exploited by trivial algorithms.
A related notion is R2-varsortability [67] which is a similar notion where the variance of the variable
is replaced by the residual variance after standardizing the variables and then regressing out all other
variables, i.e., the unexplained variance.

In our setting the varsortability of the latent variables Z is quite high (see [66] for the full definition),
e.g., for d = 10 and k = 2 average varsortability is 0.92 £ 0.02. Note that it is not obvious how this
can be exploited algorithmically. Indeed, we only observe a mixture X = f(Z) and the scale of YV is

38



Table 4: Results for nonlinear synthetic data with n = 10000 and standardized latent variables Z (up to
standardization the setting is the same as in Table 2 in the paper).

Setting Method SHD | AUROC 1t MCC 1 R? 1
ER(5, 2), d = 20 Contrastive Learning 2.6 4+04  0.92+0.02 0.96+0.01 0.934+0.01
e VAE 10.0+0.0 0.50£0.00 0.11+0.01 0.04+0.01
ER(5, 2), d' = 100 Contrastive Learning 1.44+04  0.98+0.02 0.98+0.00 0.97+0.01
e VAE 10.0+0.0 0.50+0.00 0.144+0.03 0.10=£0.04
ER(10, 2), d’ = 20 Contrastive Learning 9.6 +2.1 0.90£0.03 0.90+0.01 0.844+0.01
»E VAE 18.6+0.9 0.50£0.00 0.27+£0.04 0.29+0.04
Contrastive Learning 2.8 +1.4 0.994+0.01 0.98+£0.00 0.96=0.00

r_

ER(10, 2), d" =100 VAE 18.6+0.9 0.50+0.00 0.144+0.03 0.11+0.04

not identifiable. Nevertheless, to rule out that we implicitly use the scale of the variables we ran the
same experiments except that we standardized the latent variables Z of the observable distribution (and
apply the same scaling to the interventional distributions). The results can be found in Table 4 and
are roughly similar to the result in Table 2 for the same settings without standardization. Note that
R2-sortability is not substantially different from .5 (roughly 0.4) in our settings, thus the R2-sortability
cannot be exploited to infer the causal structure, even when observing Z.

G.3 Effect of noise distribution

Table 5: Noise dependence of contrastive algorithm for ER(5,2), d’ = 20, n = 10000 and nonlinear mixing
(same setting as first row of Table 2 in the paper).

Noise distribution SHD | AUROC 1t MCC 1 R? ¢

Gaussian 1.8£0.5 097+£0.01 097£0.00 0.96=+0.00
Laplace 3.0£06 089+£0.03 093+£0.01 0.89=£0.01
Gumbel 3.0£09 092£0.02 094+£0.01 0.91+0.01
Uniform 34+04 087+£0.03 0.96=x0.01 0.93£0.01
Exponential 3.8£05 0.86=£0.02 0.89+£0.02 0.86+0.02

Our theoretical results only cover the setting of Gaussian SCMs and we even show that identifiability
does not necessarily hold for uniformly distributed noise (see Appendix D.2). Nevertheless, we can
evaluate the performance of our algorithm for linear SCMs with non-Gaussian noise distribution. We
rerun one of the settings in Table 2 for different noise distributions. The results can be found in Table 5,
and they show a slightly worse but still reasonable performance than for Gaussian data. This is in line
with the observation that using a Gaussian likelihood for non-Gaussian data gives good results in, e.g.,
causal discovery.

H Hyperparameters, architectures and further additional details
on experiments

In this section, we give additional details on the experiments. We use PyTorch [60] for all our experiments.

Data generation To generate the latent DAG and sample the latent variables we use the sempler
package [21]. We always sample ER(d, k) graphs and the non-zero weights are sampled from the
distribution w;; ~ U(£[0.25,1.0]). To generate linear synthetic data, we sample all entries of the mixing
matrix i.i.d. from a standard Gaussian distribution. For non-linear synthetic data f is given by the
architecture in Table 9 with weights sampled from ([~ —= 1

T \/m]) For image data, similar to [2],

the latents Z are the coordinates of balls in an image (but we sample them differently as per our setting)
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and a 64 x 64 x 3 RGB image is rendered using Pygame [77] which encompasses the nonlinearity. Other
parameter choices such as dimensions, DAGs, variance parameters, and shifts are already outlined in
Section 6 but for clarity we also outline them in Tables 6, 7, and 8.

Table 6: Parameters used for linear synthetic data.

d 5

d 10

k 3/2

n {2500, 5000, 10000, 25000, 50000}
oons  U([2,4])

Tt U([6,8])

n(i) 0

runs 5

mixing linear

Table 7: Parameters used for nonlinear synthetic Table 8: Parameters used for image data.

data.
d 4,6
d {5,10} j 5-64}2
d {20, 100} : ho
o oo o
2 o2, U(]0.01,0.01])
Ooh u([LQ]) obs
o2 u(L2) Th U([0.01,0.02])
ipt ) )
n® U(+[1,2) U U(+£[0.1,0.2))
runs 5
runs 5

mixing 3 layer mlp mixing image rendering

Table 9: Synthetic data generation

Architecture Layer Sequence
MLP Embedding Input: z € R?

FC 512, LeakyReLU(0.2)
FC 512, LeakyReLU(0.2)
FC 512, LeakyReLU(0.2)
FC d' +— Output =

Models For synthetic data, the model architecture for h(z, ) is a one hidden-layer MLP with 512
hidden units and LeakyReLU activation functions. For the parametric final layer, we decompose the
matrix W as W = D(Id — A) where D is a diagonal matrix and A is a matrix with a masked diagonal
and they are both learned. This factorization shall improve stability. We initialize A = 0 and D = Id.
Also, the sparsity penalty and the DAGness penalty are only applied to A. For the baseline VAE we use
the same architecture for both encoder and decoder. The code for the linear baseline is from [84].

For image data, the model architectures for h(z, 8) are small convolutional networks. For the contrastive
approach the architecture can be found in Table 10. For the VAE model, we use the encoder architecture
as in Table 11 and the decoder architecture as in Table 12 respectively.

Training For training we use the hyperparameters outlined in Table 13. We use a 80-20 split for
train and validation/test set respectively. After subsampling each dataset to the same size, we copy the
observation samples for each interventional dataset in order to have an equal number of observational
and interventional samples so they can be naturally paired during the contrastive learning. We select the

40



Table 10: Contrastive model architecture for image data.

Architecture Layer Sequence

Conv Embedding Input: x € R64x64x3

Conv (3, 10, kernel size = 5, stride = 3), ReLU()
MaxPool (kernel size = 2, stride = 2)

FC 64, LeakyReLU()

FC d +— Output 2

Table 11: VAE Encoder architecture for image data

Architecture  Layer Sequence
Conv Encoder Input: x € R64x64x3

Conv(3, 16, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
Conv(16, 32, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
Conv(32, 32, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
Conv(32, 64, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
FC 2d «— Output (mean, logvar)

Table 12: VAE Decoder architecture for image data

Architecture Layer Sequence

Deconv Decoder Input: 2 € R?

FC (3x3)xd

DeConv (d, 32, kernel size = 4, stride = 2, padding = 0), LeakyReLU()
DeConv (32, 16, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
DeConv (16, 8, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
(
)

1
DeConv (8, 3, kernel size = 4, stride = 2, padding = 1), LeakyReLU()
Sigmoid() «— Output &

model with the smallest validation loss on the validation set, where we only use the cross entropy loss for
validation. For the VAE baseline we use the standard VAE validation loss for model selection.

Table 13: Hyperparameters used for training.

71 (see Eq. (9)) 1075

72 (see Eq. (9)) 10~*

learning rate 5-1074

batch size 512

epochs 200 (synthetic data), 100 (image data)
optimizer Adam [38]

learning rate scheduler ~CosineAnnealing [51]

Compute and runtime The experiments using synthetic data were run on 2 CPUs with 16Gb RAM
on a compute cluster. For image data we added a GPU to increase the speed. The runtime per epoch for
the synthetic data and 10000 samples was roughly 10s. The total run-time of the reported experiments
was about 100h (i.e. 200 CPU hours) and 20h on a GPU, but hyperparameter selection and preliminary
experiments required about 10 times more CPU compute.

Mean Correlation Coefficient (MCC) Mean Correlation Coefficient (MCC) is a metric that has

been utilized in prior works [37, 41] to quantify identifiability. MCC measures linear correlations up to
permutation of the components. To compute the best permutation, a linear sum assignment problem is
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solved and finally, the correlation coefficients are computed and averaged over. A high MCC indicates
that the true latents have been recovered. In this work, we compute the transformation using half of the
samples and then report the MCC using the other half, i.e. the out-of-distribution samples.

Further experimental attempts and dead Ends We will briefly summarize a few additional
settings we tried in our experiments.

e We fixed D = Id in the parametrization of W. This fixes the scaling of the latent variables in some
non-trivial way. This resulted in very similar results.

e We tried to combine the contrastive algorithm with a VAE approach. Since the ground truth latent
variables Z are highly correlated, they are not suitable for an autoencoder that typically assumes a
factorizing prior. Therefore, we map the estimated latent variables for the observational distribution
to the noise distribution € which factorizes. Note that for the ground truth latent variables the
relation € = B Z(© holds so we consider é = WZ. We use ¢ as the latent space of an autoencoder
on which we then stack a decoder. We train using the observational samples and the ELBO for
the VAE part and with the contrastive loss (and interventional and observational samples) for the
Z embedding. This resulted in a slightly worse recovery of the latent variables (as measured by
the MCC score) but much worse recovery of the graph. We suspect that this originates from the
fact that the matrix W is used both in the parametrization of the log-odds and to map Z toe
which might make the learning more error-prone. Note that this is different from the suggestion in
Section F.4.

e Choosing a larger learning rate for the parametric part than for the non-parametric part seemed
to help initially, but using the same sufficiently small learning rate for the entire model was more
robust.

e We tried larger architectures for both synthetic and image data. They turned out to be more
difficult to train without offering any benefit.

e For image data we often observed overfitting when using smaller sample sizes. The overfitting
persisted even when we used a pre-trained ResNet [24] with frozen layers. We suspect that for image
data the performance (in particular the sample complexity) can be further improved by carefully
tuning regularization and model size.
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