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Chapter 1

Chapter Title: Neuro-Causal Models

Bryon Aragam, University of Chicago

Pradeep Ravikumar, Carnegie Mellon University

We describe a novel neuro-symbolic model architecture we term “neuro-causal models,”
that uses a synthesis of deep generative models and causal graphical models to automati-
cally infer higher level symbolic information from lower level “raw features”, while also
allowing for rich relationships among the symbolic variables.

A key advance over the past decade and a half within artificial intelligence and ma-
chine learning has been the development of approaches to learn higher level represen-
tations from lower level raw input features such as image pixel intensities and word se-
quences [[1, 2,3} 14} 5,160 7]. A key advantage of these higher level representations is that
they capture richer semantics with fewer variables, and accordingly, on top of which we
can then learn statistically efficient models for a variety of downstream tasks such as
prediction, classification, and clustering. The critical advance in recent years has been
the learning of these representations, rather than the use of traditional handcrafted fea-
tures that can be difficult to specify adequately and correctly. This has led to notable
applications such as DALL-E, StableDiffusion, ChatGPT, and AudioLM, among many
others.

In practice, we typically learn such representations using black-box deep neural
networks, and which have led to considerable recent empirical successes. Deep gener-
ative models (DGMs) such as variational autoencoders (VAEs) [2, 13] are a prominent
example of such neural approaches. These empirical successes notwithstanding, there
are two caveats with such black-box neural approaches. The first is that the training of
these DGMs and neural models is an intricate task: They are susceptible to posterior
collapse and poor local minima [} |9} |10l [11]. The second caveat is that it is a diffi-
cult and open problem to provide guarantees on what features will (or won’t) be learned
[12}[13]], and in general to characterize the latent space of DGMs [14} [15]. For example,
does the latent space represent semantically meaningful or practically useful features?
Are the learned representations stable, or are they simply artifacts of peculiar choices of
hyperparameters? These questions have been the subject of numerous studies in recent
years [16, 17, [13} 18} [19} 20]. These caveats become problematic when these methods
are used in high stakes settings such as medicine, health care, law, and finance, where
accountability and transparency are not just desirable but often legally required.



It has thus become necessary to place representation learning on a more rigorous
scientific footing. In order to do this, it is crucial to be able to discuss ideal, target fea-
tures and the underlying representations that define these features. In other words, given
the distribution over low-level raw inputs, does there exist a reproducible set of feature
representations that we can recover? This is what is referred to as identifiability. Re-
cently, the ML literature has turned its attention to fundamental identifiability questions
[21L 22} [11], in order to move beyond consideration solely of ill-specified downstream
tasks (e.g. classification, prediction, sampling, etc.).

In addition to simply extracting higher-level, possibly even conceptual, feature rep-
resentations, we might also wish to understand the relationships between the objects
and/or concepts underlying the feature representations, which form a core component of
human reasoning, and by extension, a core component of artificial intelligence [23] [24].
Crucially, for high-dimensional data such as images, videos, and audio, the dependence
between raw input features (e.g. pixels in an image) is much less relevant than the depen-
dence between high-level, latent features (e.g. concepts or objects). Moreover, an impor-
tant desideratum in high-stakes settings discussed earlier is that these relationships also
be causal [25] 26]. Causal relationships are robust to perturbations, encode invariances
in a system, and enable agents to reason effectively about the effects of their actions in
an environment. Although deep learning—and in particular, deep generative modeling—
is popular for learning latent representations, adapting deep architectures to also extract
causal relationships has remained an outstanding challenge. A key hurdle is the afore-
mentioned identifiability problem, which is an important prerequisite for interpreting
learned representations causally. Although identifiability is a foundational concept in
causal inference, it has only recently gained traction in the wider literature on deep gen-
erative models and representation learning. In order to interpret learned features causally,
identifiability is critical.

We are thus faced with a two-fold challenge: 1) The extraction of high-level causal
features from raw data, where the latent features may have general, potentially nonlinear
relationships with raw input features, and 2) The inference of causal relationships be-
tween these high-level features, that in turn may have complex non-linear dependencies
among them. Given such a model, we could adapt it for various causal and Al reasoning
tasks, ranging over estimating the magnitude of causal effects, the effect of interventions,
reasoning about counterfactuals, etc. The application of deep architectures to these prob-
lems has exploded in recent years: For estimating causal effects, see [27, 28} 29]; for
causal discovery, see [30} 31}132,133].

A natural framework for addressing these problems is provided by causal graphi-
cal models [25} 23], which have long been used to model causal systems with hidden
variables [34} 35} 136, 137, 38, 39]. It is well-known that in general, without additional
assumptions, a causal graphical model given by a directed acyclic graph (DAG) is not
identifiable in the presence of latent variables 23] 26]]. In fact, this is a generic property
of nonparametric structural models: Without assumptions, identifiability is impossible,
however, given enough structure, identifiability can be rescued. Examples of this phe-
nomenon include linearity [40, 41} 142, 43| 44]), independence [45} 46 43], rank [40, 41,
sparsity [44], and graphical constraints [42}47]]. Building upon these results, in this chap-
ter we discuss how combining graphical constraints with neural architectures points to a
sweet spot of identifiability and expressivity that is well-suited to modern applications.



We draw from these ideas to develop the model architecture of neuro-causal models,
with a hierarchy of conceptual latent variables, that are specified given inputs via hierar-
chical neural layers. We show how this neuro-symbolic structure naturally leads to iden-
tifiability guarantees by extending established ideas from causal graphical models. To-
gether, this leads to a foundational model architecture for designing latent causal models
on top of representations learned by deep generative models. We will consider a general
setting for this problem that allows for arbitrary (e.g. generally nonlinear) relationships
between the conceptual latent features and the raw inputs. The latent causal graph be-
tween the latent variables is also allowed to be arbitrary: No assumptions are placed on
the structure of this DAG, and the number of hidden variables, their state spaces, and
their relationships are entirely unknown. The idea is to provide explicit conditions under
which all of this can be recovered uniquely. Our focus in this chapter will be the problem
of learning causal relationships between latent variables, which is closely related to the
problem of learning causal representations [48]]. This problem should be contrasted with
the equally important problem of causal inference in the presence of latent confounders
[49! 150l 142} 1511 152]). To accomplish this, we blend ideas from graphical models, deep
representation learning, and nonparametric statistics to address the foundations of causal
representation learning as it is commonly practiced.

Outline of chapter The structure of this chapter is broken into two main parts, the first
as a prerequisite for the second: After discussing background in Section we begin
in Section[[.2]by discussing the special case of so-called measurement models with dis-
crete latents. We then generalize this to the case of continuous latents with general de-
pendencies in Section[I.3] The former special case, while interesting in its own right, is
an important subroutine for the general case, and hence is presented first.

1.1. Background

In this section, we provide brief background on the key ingredients of our neuro-causal
model architecture: latent variable models, graphical models, and identifiability.

1.1.1. Latent variable models

We study latent variable models with latent variables H and observed variables X. The
goal will to reconstruct some (or all) of the latent space: the number of latents |H|, their
state spaces, and the latent distribution P(H); as well as the decoder P(X | H). Recall the
elementary representation of the observed marginal P(X) in terms of the latent codes and
the decoder:

P(X):JP(X|H:h)P(H:h)dh. €))
As it will be useful to distinguish discrete and continuous latents, we further decompose
H as H = (U,Z), where |H| = k+ m and:

s U= (Up,...,Up) € Q) X -+ x Q1= Q, where each Q; is a discrete space with
|Q;] > 2.
«Z=(Z,...,Zn) ER™.
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Figure 1. Illustration of a directed graphical model. The DAG G can be decomposed as G = TUT” UA, where
T = solid blue arrows, I = dotted blue arrows, and A = solid orange arrows.

Throughout we will also assume that X = (X, ...,X,) € R", although extensions to more
general spaces are possible.

1.1.2. Graphical models

Our approach is based on interpreting (1)) as a directed graphical model H — X with addi-
tional structure. Under now standard assumptions, this graph can be interpreted causally—
see [25} [26]] for details. For this, we adopt the following definitions from the graphical
modeling literature.

Let G = (V,E) be a DAG with V = (X, H). The main assumption is that there are
no edges directed from any observed variable X; to any latent variable H;: This encodes
the goal of learning hidden representations, but not latent confounders that are affected
by the observed variables. Under this assumption, the graph G can be decomposed as the
union of three subgraphs as follows:

G=TUT'UA, 2)
where

* I = is the bipartite graph connecting H — X;
I = is the subgraph consisting of edges between the observables X ;
* A = is the subgraph consisting of edges between the latents H.

See Figure[d]
We say that a distribution P(V') satisfies the Markov property with respect to G if
P(V) =120 |pac(v)). 3)
vev

An important consequence of the Markov property is that it allows one to read off condi-
tional independence relations from the graph G. More specifically, we have the following
[231126]:

* For each v € V, v is independent of its non-descendants, given its parents.

* For disjoint subsets V|,V,,V3 C V, if V| and V, are d-separated given V3 in G, then
Vi L V2| V3in P(V).



The concept of d-separation (see §3.3.1 in [23] or §2.3.4 in [26]) gives rise to a set
of independence relations, often denoted by .#(G). The Markov property thus implies
that .7 (G) C .#(V), where .# (V) is the collection of all valid conditional independence
relations over V for the distribution P(V'). When the reverse inclusion holds, we say that
P(V) is faithful to G (also that G is a perfect map of V).

Throughout this chapter, we use standard terminology and notation for ancestral re-
lationships in a DAG, such as pa(j) for parents, ch(j) for children, and ne(j) for neigh-
bors. Specifically, we define

* The parents of a node v € V are denoted by pa(v) = {u €V : (u,v) € E};
* The children of a node v € V are denoted by ch(v) ={u €V : (vu) € E};
* The neighborhood of a node v € V is denoted by ne(v) = pa(v) Uch(v).

Given a subset V' C V, pa(V’) := U ¢y pa(j) and given a subgraph G’ C G, pag (V') :=
pa(V’)N G, with similar notation for children and neighbors. We let A € {0, 1}XI*I
denote the adjacency matrix of I" and denote its columns by a; € {0, 1}\){ |. Finally, we
adopt the convention that H is identified with the indices [m] = {1,...,m}, and similar X
is identified with [n] = {1,...,n}. In particular, we use pa(i) and pa(H;) interchangeably
when the context is clear.

1.1.3. Identifiability

A statistical model is specified by a (possibly infinite-dimensional, as in our setting) pa-
rameter space @, a family of distributions &, and a mapping 7 : ® — &;i.e. n(0) € ¥
for each 6 € ©. In more conventional notation, we define &7 = {pg : 6 € ®}, in which
case pg = m(0). A statistical model is called identifiable if the parameter mapping 7
is one-to-one (injective). In practical applications, the strict definition of identifiability
is too strong, and relaxed notions of identifiability are sufficient. Classical examples in-
clude identifiability up to permutation, re-scaling, or orthogonal transformation. More
generally, a statistical model is identifiable up to an equivalence relation ~ defined on ®
ifr(0)=n(0") = 6~0.

More precisely, we use the following definition. Let f;P denote the pushforward
measure of P by f.

Definition 1. Let &2 be a family of probability distributions on R™ and % be a family
of functions f : R™ — R".

1. For (P,f) € & x .F we say that the prior P is identifiable (from f;P) up to an
affine transformation if for any (P', f') € & x .7 such that f;P = f{P' there exists
an invertible affine map h: R™ — R™ such that P' = hyP (i.e., P' is the pushforward
measure of P by h).

2. For (P,f) € & x .F we say that the pair (P, f) is identifiable (from f;P) up to an
affine transformation if for any (P, f') € & x .F such that fyP = fﬁ’P’ there exists
an invertible affine map h: R™ — R™ such that f' = foh™' and P’ = hyP.

This definition is extended to transformations besides affine transformations (e.g. permu-
tations, translations, etc.) in the obvious way.
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Figure 2. Measurement model with discrete latent variables U. Insert caption here.

Identifiability is a crucial primitive in machine learning tasks that is useful for prob-
ing stability, consistency, and robustness. Without identifiability, the output of a model
can be unstable and unreliable, in the sense that retraining under small perturbations of
the data and/or hyperparameters may result in wildly different models. In the context of
deep generative models, the model output of interest is the latent space and the associated
representations induced by the model as in Definition |1} The failure of identifiability,
also known as underspecification and ill-posedness, has recently been flagged in the ML
literature as a root cause of many failure modes that arise in practice [22} (8} [11]]. As a
result, there has been a growing emphasis on identification in the deep learning literature,
which motivates the current work. Finally, in addition to these reproducibility and in-
terpretability concerns, identifiability is a key component in many applications of latent
variable models including causal representation learning [48]], independent component
analysis [53], and topic modeling [54}155].

1.2. Neuro-Causal Models: Discrete Latents

We begin by discussing the special case of so-called measurement models [42,140,1521 43|
56\ [57]] with discrete latents. In a measurement model, we assume I’ = 0, i.e. there are
no direct dependencies between observables. Furthermore, since the latent variables are
discrete, we have H = U. As such, in this section we write U for the latents. See Figure@
Although interesting in its own right, this model will serve as an important black-box in
Section (1.3} where both of these assumptions will be relaxed.

The results in this section are enabled by assuming access to a so-called mixture
oracle (see Section for details), which is an oracle that returns the parameters (i.e.
components, weights, and order) of a mixture model. This is a richly studied problem
158, 159, 145, 160], and in the next section we will discuss how such an oracle can be
constructed for a wide class of deep generative models.

1.2.1. Assumptions

Without additional assumptions, the latent variables U cannot be identified from X. For
example, we can always replace a pair of distinct hidden variables U; and U; with a single
hidden variable Uy that takes values in Q; x Q;. Similarly, a single latent variable can be
split into two or more latent variables. In order to avoid this type of degeneracy, we make
the following assumptions:

Assumption 2 (No twins). For any hidden variables U; # U; we have ner(U;) #
ner(Uj).



Assumption 3 (Maximality). There is no DAG G' = ((X,U’),E’) such that:

1. P(X,U’) is Markov with respect to G';

2. G’ is obtained from G by splitting a hidden variable (equivalently, G is obtained
from G' by merging a pair of vertices);

3. G satisfies Assumption|2]

These assumptions are necessary for the recovery of A in the sense that, without
these assumptions, latent variables can be created or destroyed without changing the ob-
served distribution P(X) [61} 35]. Informally, the maximality assumption says that if
there are several DAGs that are Markov with respect to the given distribution, we are
interested in recovering the most informative among them. Finally, we need to avoid de-
generate cases where certain configurations of the latent variables have zero probability:

Assumption 4 (Nondegeneracy). The distribution over V.= (X,U) satisfies:

(a) P(U=u)>0forallhe Q) x...x .

(b) For all S C X and a # b, P(S|pa(S) = a) # P(S|pa(S) = b), where a and b are
distinct configurations of pa(S).

Without this nondegeneracy condition, H again cannot be identified.
1.2.2. Mixture oracles

Let S C X be a subset of the observed variables. We can always write the marginal dis-
tribution P(S) as

P(S) =Y P(U = u)P(S|U = u). 4)
ucQ

When S = X, this can be interpreted as a mixture model with K := |Q| components. When
S C X, however, multiple components can “collapse” onto the same component, resulting
in a mixture with fewer than K components. Let J(S) denote this number, so that we may
define a discrete random variable G with J(S) states such that for all j € [J(S)], we have

J(S) J(S)
P(S) =Y P(G=j)P(S|G=j) =) n(S,/)C(S,)). Q)
e D S |
=7(S,j :=C(S.J)

Then (S, j) is the weight of the jth mixture component over S, and C(S, j) is the corre-
sponding jth component. It turns out that these probabilities precisely encode the condi-
tional independence structure of U. To make this formal, we define the following oracle:

Definition 5. A mixture oracle is an oracle that takes S C X as input and returns the
number of components J(S) as well as the weights ©t(S, j) and components C(S, j) for
each j € [J(S)]. This oracle will be denoted by MixOracle(S).



A sufficient condition for the existence of a mixture oracle is that the mixture model
over X is identifiable. This is because identifiability implies that the number of compo-
nents K, the weights P(G = j), and the mixture components P(X | G = j) are determined
by P(X). The marginal weights (S, j) and components C(S, j) can then be recovered by
simply projecting the full mixture over X onto S.

Identifiability results for mixtures are readily available in the literature. For example,
if the mixture model (4) comes from any of the following families, a mixture oracle is
known to exist:

. a mixture of gaussian distributions [58l 162]], or
. a mixture of Gamma distributions [58]], or
. an exponential family mixture [62]], or

. a mixture of product distributions [63]], or

Whn AW N =

. a well-separated (i.e. in TV distance) nonparametric mixture [60].

The list above is by no means exhaustive, and many other results on identifiability of
mixture models are known (e.g., see 64, 65]). The results in Section are also based
on a new identifiability result for nonparametric mixtures.

1.2.3. Recovery of the latent causal graph

Observe that the problem of learning G can be reduced to learning (I',P(U)): Since we
can decompose G into a bipartite subgraph I" and a latent subgraph A (recall I" = 0 in
this section), it suffices to learn these two components separately. We then further reduce
the problem of learning A to learning the latent distribution P(U). First, we will show
how to reconstruct I' from MixOracle(S). Then, we will show how to learn the latent
distribution P(U) from MixOracle(S).

Thus, the problem of learning G is reduced to the mixture oracle:

G — (T,P(U)) — MixOracle(S).

In the sequel, we focus attention on recovering (I',P(U)). In order to recover P(U), we
will require the following assumption, which strengthens Assumption

Assumption 6 (Subset condition). We say that the bipartite graph T satisfies the subset
condition (SSC) if for any pair of distinct hidden variables U;,U; the set ner(U;) is not a
subset of ner(U;).

This assumption is weaker than the common “anchor words” assumption from the topic
modeling literature [54! 66l
Under Assumption [6] we have the following key result:

Theorem 7. Under Assumptions and [6] (T,P(U)) can be reconstructed from
P(X) and MixOracle(S). Furthermore, if additionally the columns of the bipartite adja-
cency matrix A are linearly independent, there is an efficient algorithm for this recon-
struction.



The proof is constructive and leads to an efficient algorithm as alluded to in the previous
theorem. An overview of the main ideas behind the proof of this result are presented in
Sections[[.2.4]and

Once we know P(U) (e.g. via Theorem([7)), identifying A from P(U) is a well-studied
problem with many solutions [26, 23]. For example, if we assume that P(U) is faithful
to A, then A can be learned up to Markov equivalence. Beyond faithfulness, any number
of alternative identifiability assumptions on P(U) can be plugged in; e.g. triangle faith-
fulness [67], independent noise [68) 169], post-nonlinearity [70], equality of variances
[714172], etc.

1.2.4. Learning the bipartite graph

In this section we outline the main ideas behind the recovery of I in Theorem[7} We begin
by establishing conditions that ensure I" is identifiable, and then proceed to consider
efficient algorithms for its recovery.

We study a slightly more general setup in which the identifiability of I" depends
on how much information we request from the MixOracle. Clearly, we want to rely on
MixQOracle as little as possible. In fact, the only information required for this step are the
number of components: Neither the weights nor the components are needed.

Definition 8. We say that I is t-recoverable if I" can be uniquely recovered from X and
the sequence (MixOracle(S) | |S] <1).

Theorem 9. Let I” be the bipartite graph between X and U.

(a) Assume that ner(U;) # ner(U;) for any i # j. Then T and dim(U;) are n-
recoverable.
(b) Lett > 3. Assume that for every S C U with |S| > 2 we have

2
dimspan{a; | j € S} > ?|S|—&—17

then I and dim(U;) are t-recoverable.

Note that Assumption [6]implies the assumption in Theorem [J[a). Finally, as in Sec-
tion [I.T]| we argue that in the absence of additional assumptions, this assumption is in
fact necessary:

Observation 10. If there is a pair of distinct variables U;,U; € U such that ner(U;) =
ner(U,), then T is not n-recoverable.

Under a simple additional assumption I" can be recovered efficiently. We are primar-
ily interested in the case # = 3. The main idea is to reduce the problem to the recovery of
a rank-three tensor involving the columns of A. We can then apply Jennrich’s algorithm
[[73]] to decompose the tensor and recover these columns, which yield I'. To see this, let
I = (i1,i2,i3) C X be a triple of indices, and note that

Y wi(a)i(@))i(ay)i = ( Y wiaj®a, ®a,~) - (©)
jeu jeu (i1,i2:i3)

Theorem 11. Assume that the columns of A are linearly independent. Then I" and
dim(U;), for all i, are 3-recoverable in O(n®) space and O(n*) time.
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Figure 3. Example of (a) a latent causal graph and (b) its corresponding mixture distribution.
1.2.5. Learning the latent distribution

In this section we outline the main ideas behind the recovery of P(U) in Theorem

Remark 12. Since the variables U are not observed, MixOracle(S) only tells us the set

{(i,7(8,),C(S,0)) | i € [k(S)]}-

But the correspondence Q 3 h > j € [K] between a possible tuple h of values of hidden
variables and the corresponding mixture component is unknown.

Since the values of U are not observed, we may learn this correspondence only up to
a relabeling of Q;. By definition, the input distribution has K = |Q| mixture components
over X and k; = J(X;) mixture components over X;. Fix any enumeration of these com-
ponents by [K] and [;], respectively. To recover the correspondence Q 3 k< j € [K], we
will need access to the map

L: K] — [ki] x -+ X [kn], @)

defined so that [L(j)]; equals to the index of the mixture component C(X, j) (marginal-
ized over X;) in the marginal distribution over X;. Crucially, this discussion establishes
that L can be computed from a combination of MixOracle(X) and MixOracle(X;) for
each i.

The map L encodes partial information about the causal structure in G. Indeed, if
U,,U; € Q are a pair of states of hidden variables U that coincide on pa(X;) for some
X; € X, then by the Markov property the components that correspond to U; and U, should
have the same marginal distribution over X;.

Example 13. Consider the DAG on Figure 3] We do not make any assumptions about
the causal structure between hidden variables. This DAG has 3 hidden variables, and



Figure 4. Deep generative model with continuous latents and a mixture prior. Insert caption here.

we assume that each of them takes values in the set {0,1}. Then by Assumption every
observed variable is a mixture of 4 components, while the distribution on X is a mixture
of 8 components. Note that the anchor word assumption is violated here, while (SSC)
assumption is satisfied. The map L : [8] — [4] x [4] x [4] for an example as in Fig. 3| has
form

i1 2 3 4 5 6 7 8
L(i):(2,4,3),(4,3,4), (4,4,2), (3,2,4), (2,3,1), (1,1,3), (3,1,2), (1,2,1)

The goal is to find the correspondence between h € Q = {0,1}* and i € [8)]. (The projec-
tion on the third variable is not shown on Figure |3} so the third coordinate of L cannot
be deduced from the plot.)

We now show that there is an algorithm that exactly recovers P(U) from the bipar-
tite graph T, the map L : [K] — [k{] X - -~ X [ky], and the mixture weights (probabilities)
{n(X,i)|i€[K]} ={P(Z =) | i€ [K]}. Each of these inputs can be computed from
MixOracle.

Definition 14. Let J be an order-m tensor whose i-th mode is indexed by values of Uj,
such that J(Uy,Us, ..., Uy) =P(U = u). That is, J is the joint probability table of U.

Theorem 15. Suppose Assumptions | and [6 hold. Then the correspondence Q > h <
C(X,i) and the tensor J(Uy,Uy, ..., Uy) = P(U = (U1,Us,...,Uy)) can be efficiently
reconstructed from L, T and {7t(X i) }ic k).

Remark 16. If Assumption [6] is violated, then in general J cannot be reconstructed
uniquely and moreover, G cannot be uniquely identified.

1.3. Neuro-Causal Models: Continuous Latents

We now consider a generalization of the measurement model from Section [[.2]to allow
for continuous latents and dependencies between observables, i.e. I # 0, as in [74]. As
we shall see, this model is easily interpreted as a deep generative model that has been
commonly adopted in practice.



Consider the following generative model for observations x:
x=f(z)+e, x=(x1,....,x,) €ER", z=(z1,...,2m) ER™, (8)

where the latent vector z follows a Gaussian mixture model (GMM)E f:R" - R"is
a piecewise affine nonlinearity such as a ReLU network, and € € R" is independent,
random noiseE We do not assume that the number of mixture components, nor the ar-
chitecture of the ReLU network, are known in advance, nor do we assume that z has
independent components. Both the mixture model and neural network may be arbitrar-
ily complex, and we allow for the discrete hidden state that generates the latent mixture
prior to be high-dimensional and dependent. This includes both vanilla VAEs (i.e. with
a standard isotropic Gaussian prior) and classical ICA models (i.e. for which the latent
variables are mutually independent) as special cases. Since both z and f are allowed to
be arbitrarily complex, the model (8) has universal approximation capabilities, which is
crucial for modern applications in Al

This model has been widely studied in the literature from a variety of different per-
spectives:

* Nonlinear ICA. When the z; are mutually independent, recovers the stan-
dard nonlinear ICA model that has been extensively studied in the literature
(12, [75L 1761 77, [78L [79]. Although our most general results do not make indepen-
dence assumptions, they cover nonlinear ICA as a special case (see Section
for more discussion).

* VAE with mixture priors. When the prior over z is a mixture model (e.g. such as a
GMM), the model (8) is closely related to popular autoencoder architectures such
as VaDE [80], SVAE [81]], GMVAE [82]], DLGMM [83]], VampPrior [84], MFC-
VAE [83]], etc.

* Warped mixtures. Another closely related model is the warped mixture model of
[86]], which is a Bayesian version of .

* {VAE. Finally, is also the basis of the iVAE model introduced by [21], where
identifiability (up to certain equivalences) is proved when there is an additional
auxiliary variable u that is observed such that z; Al z;|u.

Thus, the proposed neuro-causal architecture provides a general framework for analyz-
ing these models, and blends practical modeling assumptions that have been adopted in
practice with theoretical guarantees.

1.3.1. Assumptions
As before, the observations x € R" are realizations of a random vector X, and are gen-

erated according to the generative model (8), where z € R™ represents realizations of an
unobserved random vector Z. We make the following assumptions on Z and f E

!See Remark|17|for extensions to more general mixture priors.

2Qur results include the noiseless case € = 0 as a special case.

3In the sequel, we will use (P#) to index assumptions on the prior P(Z), and (F#) to index assumptions on
the decoder f.



Assumptions on f  Assumptions on Z Theoretical guarantees Result

(P1) (F1)||(F2) P(Z) identifiable up to Theorems
an affine transformation a),a)
(P1) (F1)||(F4) P(Z) and f up to identifiable Theorems

an affine transformation c), d)
PD)|P2) (F1) P(Z) and £ identifiable up to Theorems

permutation, scaling and translation b),b)
(P1)||P2)}[P3) (FD)l|E4) P(U,Z) and f are identifiable upto ~ Theorems

permutation, scaling and translation c), d)

Table 1. Summary of identifiability results. The strength of the assumptions increases in each successive row,
as do the strength of the guarantees. See Section for formal statements.

(P1) P(Z) is a (possibly degenerate) Gaussian mixture model with an unknown number
of components J > 1, i.e.

J J
p@) =Y Aiozusx), Y A=1, A;>0, ©)
j=1 j=1

where p(z) is the density of P(Z) with respect to some base measure, and
¢@(z;uj, L) is the gaussian density with mean p; and covariance X ;.

(F1) f is a piecewise affine function, such as a multilayer perceptron with ReLU (or
leaky ReL.U) activations.

Recall that an affine function is a function x — Ax + b for some matrix A. As already
discussed, special cases of this model have been extensively studied in both applications
and theory, and both [[PT){(FI) are quite standard in the literature on deep generative
models and represent a useful model that is widely used in practice [82} [85} [80L [81} 1877,
88, 189} 187]. In particular, when J = 1 this is simply a classical VAE with an isotropic
Gaussian prior (see Section [I.3.3]for more discussion).

Remark 17. The assumption that P(Z) is a GMM can be replaced with more general
exponential family mixtures [90|] as long as (a) the resulting mixture prior p(z) is an
analytic function and (b) the exponential family is closed under affine transformations.

Remark 18. Under assumptions the model (8) has universal approximation
capabilities. In fact, any distribution can be approximated by a mixture model (9) with
sufficiently many components J [91)]. Alternatively, when J is bounded, by taking f to
be a sufficiently deep and/or wide ReLU network, any distribution can be approximated
by f(Z) [921193)], even if f is invertible [94]]. Thus, there is no loss in representational
capacity in|(P1)i(F1)

For any positive integer d, let [d] = {1,...,d}. By|(P1l), we can write the model
as follows. Let U = (Uy,...,Uy) € [di] X -+ [dy] where d; := dim(U;) and k := dim(U);
we allow U to be multivariate (k > 1) and dependent—i.e., we do not assume that the U;



are marginally independent. It follows trivially from[(P1) that P(U; = uy, ..., Uy = u) €
{A1,..., Ay} and J = [];d;, where we recall that J is the unknown number of mixture
components in P(Z). Denote the marginal distribution of U, which depends on A;, by P, .
The variables (U,Z) are unobserved and encode the underlying latent structure:

U=u~P(U=u)
(Z|U = u] ~ N(thu, u) — U—>Z->X. (10)
X|Z=2]~ f(z)+€, &€~ (0,6%)

Here, Pj, is the distribution on U described above. The goal is to identify the latent dis-
tribution P(U,Z) and/or the nonlinear decoder f from the marginal distribution P(X)
induced by (10).

Our main results (Theorems 22}23)) provide a hierarchy of progressively stronger
conditions under which P(U,Z), f, or both, can be identified in progressively stronger
ways. The idea is to illustrate explicitly what conditions are sufficient to identify the la-
tent structure up to affine equivalence (the weakest notion of identifiability we consider),
equivalence up to permutation, scaling, and translation, and permutation equivalence (the
strongest notion of identifiability we consider, and the strongest possible for any latent
variable model).

Possible assumptions on f: To distinguish cases where f is and is not identifiable, we
require the following technical definition. Recall that for sets A, B, f~!'(A) = {x: f(x) €
A} and f(B) = {f(x) : x € B}.

Definition 19. Letm <nand f : R™ — R".

(F2) We say that f is weakly injective if (i) there exists xo € R" and 6§ > 0 s.1.
IF~Y({x})| = 1 for every x € B(xo,8) N f(R™), and (ii) {x e R" : |f~1({x})| =
oo} C f(R™) has measure zero with respect to the Lebesgue measure on f(R™).

(F3) We say that f is observably injective if {x € R" : |f~1({x})| > 1} C f(R™) has
measure zero with respect to the Lebesgue measure on f(R™). In other words, f is
injective for almost every x in its image f(R™) (i.e. almost every “observable” x).

(F4) We say that f is injective if | £~ ({x})| = 1 for every x € f(R™).

Example 20. In general, a deep ReLU network may be either injective or observably
injective, or neither (e.g. ReLU(—ReLU(x)) = 0). For example, although x — ReLU(x)
is not injective, it is observably injective, where ReLU(x) = max{0,x} is the usual rec-
tified linear unit. To see this, note that image of ReLU is the set R> = {y | y > 0}, and
ReLU has the unique preimage for everyy € Rs. = {y|y > 0}. Clearly, (R>\R>) = {0}
has measure zero inside R>. At the same time, x — 0 and x — |x| are not even weakly
injective.

Remark 21. Under simple assumptions on their architecture, ReLU networks or Leaky
ReLU networks are generically observably injective (and hence also weakly injective)
[74].



Possible assumptions on Z: The weakest result in the identifiability hierarchy requires
no additional assumptions on Z beyond [(PT). Under stronger assumptions, more can be
concluded. As with the previous section, the assumptions presented here are not neces-
sary, but may be imposed in order to extract stronger results.

The first condition is a mild condition that allows us to strengthen affine identifiabil-

ity:

(P2) Z; L. Z; | U for all i # j and there exist a pair of states U = u; and U = uy such
that all ((Zy,),,/ (Z4,),, | € [m]) are distinct. (Note that this implies J > 2).

The second condition is taken from Section and is only necessary if K > 1 and we
wish to identify P(U) in addition to P(Z). Note that P(U) is not needed to sample from
(8), as long as we have P(Z).

(P3) Assumptions 2} 3] {] and [g]hold.
1.3.2. Main identifiability results

When dim(U) = 1, there is no additional structure in U to learn, and so the setting simpli-
fies considerably. We begin with this special case before considering the case of general
multivariate U.

Theorem 22. Assume dim(U) = 1. Under|(P1){(F1)| we have the following:

(a) (F2)|=> P(U,Z) is identifiable from P(X) up to an affine transformation of Z.
(b) (F2)H(P2)|—> P(U,Z) is identifiable from P(X) up to permutation, scaling,
and/or translation of Z.

(c) In either (a) or (b), if additionally holds and f is continuous, then f is also
identifiable from P(X) up to an affine transformation.

The next result generalizes Theorem 22]to arbitrary (possibly multivariate) discrete U.
Theorem 23. Under|(PI){(F1)| we have the following:

(a) (F2)|=> P(Z) is identifiable from P(X) up to an affine transformation.

(b) :> P(Z) is identifiable from P(X) up to permutation, scaling, and/or
translation.

(c) (P3)|=—> (k,di,...,dy,P(U)) are identifiable from P(X) up to a per-
mutation of U, and P(Z) is identifiable up to permutation, scaling, and/or transla-
tion.

(d) In any of (a), (b), or (c), ifadditionallyholds and f is continuous, then f is
also identifiable from P(X) up to an affine transformation.

Without @, [57]] have shown that it is not possible to recover the high-dimensional
latent state U, however, we can still identify the continuous latent state Z, which is
enough to generate random samples from the model (8). In order to have fine-grained
control over the individual variables in U, however, it is necessary to assume @



Remark 24. If the assumption|(F2)|that f is weakly injective is removed, then the claim
of Theorem[22]is not true anymore. Consider g(x) = f(x) = |x| and

1 1 1
P=_-N(-2,6%)+-N(-1,6%)+=-N(3,6°) and
3 3 3 (an

1 1 1
P = g1\7(—2,02) + §N(1,62) +3NG, a?).

It is easy to verify that P cannot be transformed into P' by an affine transformation, but
fiP and g4P' are identically distributed.

Remark 25. In Theorems[2a)land the identifiability up to an affine transforma-
tion is the best possible if no additional assumptions on Z are made (i.e. beyond [(PI)).
Indeed, for an arbitrary invertible affine map h : R™ — R™, h(Z) has a GMM distribu-
tion, foh™' is an invertible piecewise affine map, and (U,Z, f) and (U,h(Z),foh™ ") in
model generate the same distribution.

1.3.3. Special cases and counterexamples

These results contain some notable special cases that warrant additional discussion.

Classical VAE The classical vanilla VAE [2, 3] with an isotropic Gaussian prior is
equivalent to with J = 1. In this case, U is trivial and the Gaussian distribution P(Z)
can be transformed by an affine map to a standard isotropic Gaussian .#"(0,1). In this
case, Theorem@ shows that f is identifiable from P(X) up to an orthogonal transfor-
mation. In fact, this case can readily be deduced from known results on the identifiability
of ReLU networks, e.g. [95].

Although the J = 1 case is already identifiable, there are clear reasons to prefer a
clustered latent space: It is natural to model data that has several clusters by a latent space
that has similar clusters (e.g. Figure [5). Although in principle any distribution can be
approximated by f(Z) where Z ~ .47(0,1) and f is piecewise affine, such f is likely to
be extremely complex. At the same time, the same distribution may have a representation
with Z being a simple GMM and f being a simple piecewise affine function. Clearly, the
latter representation is preferable to the former and can likely be more robustly learned
in practice. This is consistent with previous empirical work [82} 185, 180} |81} 87, 88}, [89]].

Linear ICA 1In classical linear ICA [53]], we observe X = AZ, where Z is assumed to
have independent components. Compared to the general model (8)), this corresponds to
the special case where f is linear and € = 0. In the most general setting under [(F2) only,
Theorems [22] and [23| imply that P(Z) can be recovered up to an affine transformation
without assuming independent components, which might seem surprising at first. This is,
however, easily explained: In this case, X is also a GMM, and hence P(Z) can already be
trivially recovered up to the affine transformation z — Az. This follows from well-known
identifiability results for GMMs [58]]. This provides some intuition to how the mixture
prior assumption [(PT) helps to achieve identifiability.
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Figure 5. Recovered latent spaces for 5 runs of VaDE on pinwheel dataset with 3 clusters

Nonlinear ICA 1In classical nonlinear ICA, one assumes the model with (a) no as-
sumptions on f and (b) independence assumptions in the latent space. It is well-known
that this model is nonidentifiable [[12]. Our problem setting is distinguished from the
classical nonlinear ICA model via assumptions [(PT){(FI). While we do not require the Z;
to be mutually independent, we impose assumptions on the form of f. It is precisely this
inductive bias that allows us to recover identifiability. As a result, the identifiability the-
ory developed here does not contradict known results such as the Darmois construction
[96] discussed in [12].

Finally, a natural question is whether or not the mixture prior [(PT) or the piecewise
affine nonlinearity [(FI) can be relaxed while still maintaining identifiability. In fact, it
is not hard to show this is not possible: If either [[PT) or [(FI) is broken, then the model
becomes nonidentifiable. Of course, this is entirely expected given known negative
results on nonlinear ICA [12].

1.4. Implementation and evaluation

Although the development so far has been primarily theoretical, these ideas lead to prac-
tical algorithms and estimators that can be implemented. For full details of the algorithm
implementing the discrete measurement model from Section[I.2] see [57]]. We focus here
on the more general setting of Section [I.3] which can be implemented as a variational
autoencoder (VAE) with a Gaussian mixture prior.

There has been extensive work to verify empirically that the model (8) under [[PT)-
[(FT) is identifiable. For example, [97] observe that deep generative models with clus-
tered latent spaces are empirically identifiable, and compared this directly to models that
rely on side information, and [85] show that meaningful latent variables can be learned
consistently in a fully unsupervised manner even when they have high-dimensional
structure. Moreover, [85] indicate that high-dimensional structure is important for im-
proved performance. Beyond these, it is well-known that VAEs with mixture priors
such as VaDE [80] achieve competitive performance on many benchmark tasks; see
(1821 185L 181} 1871 188 |89, |87]] for additional experiments and verification.

Here we briefly illustrate these methods on (misspecified) simulated models and the
MNIST dataset. Figure [3] illustrates the performance of VaDE on the simulated “pin-
wheel” dataset. The learned latent spaces show strong evidence of recovery of the latent
space up to affine transformations. This can in fact be quantified explicitly; see [[/4] for
more details. Figure[6] further illustrates the stability of the learnt latent space by training
MFCVAE [85]] on MNIST 10 times with different initializations and then comparing the
latent representations learnt.
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Figure 6. Output of MFCVAE on MNIST data: Synthetically generated samples. Each row corresponds to a
different learnt component. The columns are samples generated from the component. The rows are sorted by
average confidence.

1.5. Summary

Ensuring that the representations learned by deep generative models are replicable and
causally interpretable is a major unresolved challenge in modern artificial intelligence.
Classical approaches lean heavily on purely neural approaches, however, by combining
the best of both neural and symbolic approaches leads to a rich theory of identifiable
neuro-causal models with strong guarantees. This theory establishes general sufficient
(and essentially necessary) conditions under which a latent causal model G is identifi-



able (Theorem , and leads to efficient algorithms by a reduction to a mixture oracle,
which exists whenever the mixture model over X, naturally induced by symbolic latent
variables, is identifiable. This further leads to a general series of results describing a hi-
erarchy of identifiability for deep generative models that are currently used in practice,
and have state-of-the-art performance on real data.

Our approach in this chapter has been purely observational: We attempt to recover
latent causal structure from i.i.d. draws from the observed marginal P(X). This is a noto-
riously challenging problem, and the limitations of learning causal structure from purely
observational data are well-known [26} 25]]. These challenges are exacerbated in the non-
parametric setting [12} [13]. Neuro-causal models offer a suitable nonparametric frame-
work for combining graphical constraints with neural architectures that addresses these
problems directly by providing a “sweet spot” of identifiability and flexibility. Fortu-
nately, in many applications, we have access to richer data modalities, such as weak su-
pervision, interventions, and multiple environments. Exploiting these richer data modal-
ities is an important direction for future work on neuro-causal models. Indeed, there has
recently been an explosion of progress on these fronts which we briefly outline here for
the interested reader.

One of the earliest approaches to identifiability in deep generative models was to
assume we have weak supervision in the form of auxiliary information, which could
be a time index, segment label, or environment index. This approach was pioneered in
an influential paper introducing the identifiable VAE [21], which inspired many follow-
up works [98 199, (100, 101} 102} 103} {104, [105]. Another approach is to combine data
arising from multiple environments [[106 [107,|108]]. A special case of different environ-
ments arises when each “environment” corresponds to a different experiment, i.e. data
from different interventions [|109, (110, 111} 112, {113} {114, [115} 116, [117]]. Unlike the
neuro-causal models introduced in this chapter, many of these results rely on parametric
assumptions, although recent developments have extended these ideas to nonparamet-
ric neuro-causal models [118} [119]. Interventions can also be interpreted as a type of
mechanism shift, and several hypotheses regarding the behaviour of mechanism shifts are
known to encourage identifiability [120} [121} [122} [111} [123} [124]]. These are all active
and ongoing areas of research.
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