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Abstract

Rapid advancement in inverse modeling methods have
brought into light their susceptibility to imperfect data. This
has made it imperative to obtain more explainable and trust-
worthy estimates from these models. In hydrology, basin
characteristics can be noisy or missing, impacting streamflow
prediction. We propose a probabilistic inverse model frame-
work that can reconstruct robust hydrology basin charac-
teristics from dynamic input weather driver and streamflow
response data. We address two aspects of building more
explainable inverse models, uncertainty estimation (uncer-
tainty due to imperfect data and imperfect model) and ro-
bustness. This can help improve the trust of water managers,
handling of noisy data and reduce costs. We also propose
an uncertainty based loss regularization that offers removal
of 17% of temporal artifacts in reconstructions, 36% reduc-
tion in uncertainty and 4% higher coverage rate for basin
characteristics. The forward model performance (streamflow
estimation) is also improved by 6% using these uncertainty
learning based reconstructions.

1 Introduction

Researchers in scientific communities study engineered
or natural systems and their responses to external
drivers. In hydrology, streamflow prediction [16, 17]
is one crucial research problem for understanding hy-
drology cycles, flood mapping, water supply manage-
ment, and other operational decisions. For a given
entity (river-basin/catchment), the response (stream-
flow) is governed by external drivers (meteorological
data) and complex physical processes specific to each en-
tity (basin/entity characteristics). Process-based mod-
els are commonly used to study the relation between
basin characteristics and streamflow. However, these
hydrological models are constrained by assumptions,
contain many parameters that need calibration and in-
cur enormous computation cost. Machine learning (ML)
paradigms in inverse modeling offer a promising alter-
nate to infer entity characteristics from streamflow re-
sponse. In our study, an entity’s response to external
drivers depends on its inherent properties (called entity
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characteristics). For example, for the same amount of
precipitation (external driver), two river basins (enti-
ties) can have very different streamflow (response) val-
ues depending on their land-cover type (entity char-
acteristic) [38] - this presents the issue of navigating
a large search space to learn one of the many right
model structures. Knowledge-guided self-supervised
learning (KGSSL) [17] is an inverse model that can ex-
tract these entity characteristics using the input drivers
and output-response data. The framework uses a self-
supervised paradigm, where ML models are trained us-
ing labels that can be generated without any exter-
nal annotation process. Through contrastive learning,
the framework leverages the spatio-temporal correlation
among the basins for more effective learning.

Developing such inverse models requires addressing
several challenges. Often, the measured characteristics
are only surrogate variables for the actual entity charac-
teristics, leading to inconsistencies and high uncertainty.
Uncertainty can arise due to several reasons, such as
measurement error, missing data, and temporal changes
in characteristics. Moreover, in real-world applications
these characteristics may be essential in modeling the
driver-response relation. However, they may be com-
pletely unknown, not well understood, or not present in
the available set of entity characteristics. A principled
method of managing this uncertainty due to imperfect
data can contribute in improving trust of data-driven
decision making from these methods.

In this paper, we introduce uncertainty quantifica-
tion in learning representations of static characteristics.
Such a framework can help quantify the effect of multi-
ple sources of uncertainty that introduce bias and er-
ror in decision-making. For instance, Equifinality of
hydrological modeling (different model representation
result in same model results) is a widely known phe-
nomenon affecting the adoption of hydrology models in
practice [21]. Uncertainty in model structure and input
data are also widespread. In real world applications,
studying these can help improve trust of water man-
agers, improve process understanding, reduce costs and
make predictions more explainable and robust [36].

To achieve this, we propose a probabilistic in-
verse model for simultaneously learning representations
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Figure 1: KGSSL for representation learning. The forward model learns streamflow (y) as functional
approximation of weather drivers (x) and river basin static attributes (z). KGSSL leverages an inverse modeling
framework for learning robust static attribute estimates (ẑ). The robust estimates aid in improving prediction
performance of the forward model.

of static characteristics and quantifying uncertainty in
these predictions. As a consequence, we analyze the
framework’s reconstruction capabilities and its suscepti-
bility to adversarial perturbations - our model is able to
maintain the same level of robustness as KGSSL. We use
the same loss formulation as KGSSL and the same au-
toencoder based inverse model architecture. We modify
the architecture such that the parameters in the encoder
are estimated using the Bayes by Backprop method, en-
abling learning of the posterior weight distribution and
uncertainty quantification in static characteristic recon-
structions. To study robustness, we investigate the im-
pact of different levels of Gaussian noise in training data
on test set reconstructions. We also propose an uncer-
tainty based learning (UBL) method to reduce epistemic
uncertainty (uncertainty in predictions due to imperfect
model and imperfect data) in our reconstructions. This
method utilizes a spectral regularization based objective
formulation wherein reconstructions with higher uncer-
tainty are penalized in the loss. We show that it results
in reducing the temporal artifacts in static characteris-
tic predictions by 17% and also reduces the epistemic
uncertainty by 36%. Bayesian neural networks, in an
overparameterized regime, are known to provide robust
results. In practice, prediction skill, robustness and un-
certainty go hand-in-hand. Therefore, we also demon-
strate the improvement in streamflow prediction (in the
forward model) using these robust reconstructed static
characteristics (6% increase in test R2). We provide
model performance for reconstruction and forward mod-
eling and compare it against the baselines, KGSSL [17]
and CT-LSTM [30], both state-of-the-art frameworks
for streamflow prediction. Since, we use a probabilistic
model for estimating static characteristics, we obtain a
posterior distribution instead of point estimates. This

enables us to compute coverage rate of how often the
observed values lie within the bounds of the inferred
static characteristics’ posterior prediction distribution.
In practice, this can help water managers and the public
to understand if we can reliably obtain a close enough
prediction, even if we are not always accurate - analy-
sis that can not be done with the deterministic inverse
model. UBL offers a 4% increase in coverage rate.

2 Related Work

Robustness: In several large-scale applications in areas
like computer vision and natural language processing,
the presence of even small, imperceptible perturbation
can exacerbate model performance [10, 48, 51]. While,
several robustness studies focus on the effect of differ-
ent noises [32,56], many other studies focus on methods
to mitigate the adverse effects of these perturbations
[35, 42, 50]. Through objective modification [11, 25, 27]
or propagation of input-output relationship constraints
[9, 22], deep learning architectures have been modified
to improve robustness. In real-world data, natural vari-
ations (like blurring) have been studied [41, 47]. Issues
like adversarial transferability [23] and data brittleness
(robustness issues due to overfitting [40]) bring to light
the limitations of modern machine learning methods.
More recent studies also look at Bayesian deep learning
models for their robustness properties [4, 5, 43].

Inverse Problems: In physical sciences [7, 39, 54],
several recent advances have focused on solving inverse
problems. Unlike standard inversion methods in math-
ematics, that rely on non-linear optimization for calcu-
lating the inverse of a forward model, recent machine
learning methods allow us to learn the inverse mapping
from datasets. This makes it imperative to mitigate any
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representation error and data biases before solving the
inverse problem [2]. Further, within this vast array of
methodologies, selection of the right method is crucial
- since, searching for an inverse mapping may be diffi-
cult due to the large search space. Bayesian optimiza-
tion and iterative gradient descent based methods may
only provide a locally optimal inverse map [31]. There-
fore, a principled MAP formulation or generative mod-
eling may be viable for addressing these data related
issues [46, 53]. Inverse modeling approaches that rely
on a single neural network may not accurately capture
the spatio-temporal heterogeneity in basin characteris-
tics. Moreover, entity characteristics can be unknown or
noisy (due to measurement or estimation bias). There-
fore, a robust framework for learning entity characteris-
tic can be useful in hydrology applications. Uncertainty
quantification in inverse models also provides a viable
pathway for learning entity characteristic. We discuss
this more in the next section.

Probabilistic Modeling: Probabilistic inverse models
offer richer learning than a deterministic inverse model
as they offer distributional recovery for the input em-
beddings. For a given input xi, the standard deviation
of the prediction distribution is called the epistemic un-
certainty estimate (Ãi). Any deficiencies in the model
framework (e.g., capturing only linear effects) and in-
put data (e.g., missing / noisy data, low sample size)
would increase this uncertainty. Smaller uncertainty es-
timates mean more “confident” predictions. Several re-
cent efforts use generative models for inverse problem
solving [2, 8, 53].

We develop a Bayesian inverse model for robust re-
covery of the complete distribution of the entity charac-
teristics. Our framework achieves this by obtaining esti-
mates of static variables from time series driver-response
data. This, however, introduces temporal bias in our
static characteristics. We propose an uncertainty based
learning scheme to reduce the uncertainty associated
with this temporal bias in inverse model estimates of
static characteristics.

3 Method

3.1 Autoencoder - based Inverse Model We use
the CAMELS [1] dataset with streamflow, weather
drivers and entity characteristics information (lake,
river-basin or streams in river network). Each entity i

(i = 1, ..., N) has daily information, where x
j
i ∈ R

Dx

represents dynamic characteristics (weather drivers),
y
j
i ∈ R

Dy represents streamflow, zji ∈ R
Dz represents

static characteristics for the ith entity at the jth time
step. Similar to KGSSL [17], our framework estimates
static characteristics (z) from time-series information
([x, y]). Contrastive learning allows us to utilize the

spatio-temporal correlation among river basins [6]. The
objective function for training KGSSL is

(3.1) L = λ1LRec + λ2LCont + λ3LInv

where, reconstruction loss LRec enables accurate
reconstruction of [x, y]; contrastive loss LCont utilizes
the implicit relationships among driver-response time
series data, enabling invariant approximation of static
features; pseudo-inverse loss (or static loss) LInv uti-
lizes available static variable examples to enable ac-
curate representation learning. The loss weights are
learned using hyper-parameter tuning. The Sequence
Encoder, comprised from a bidirectional LSTM, encodes
the driver-response time-series. Each (forward and
backward) LSTM use [xt; yt] input to generate the carry
state and the hidden state h = [hforward;hbackward].

Using a ReLU tranformation , a linear layer is used
in the encoder to get a transformation of the hidden
embedding. These transformed embeddings are used as
input to the LSTM decoder D. The observed sequence
Sei are compared with the reconstructed sequence Ŝei

from the decoder in the reconstruction loss, LRec =
1

2N

∑
e∈{a,p}

∑N

i=1 MSE(Ŝei , Sei).

it = σ(Wi

[

[xt; yt];ht−1

]

+ bi)

ft = σ(Wf

[

[xt; yt];ht−1

]

+ bf )

gt = σ(Wg

[

[xt; yt];ht−1

]

+ bg)

ot = σ(Wo

[

[xt; yt];ht−1

]

+ bo)

ct = ft » ct−1 + i» gt

ht = ot » tanh (ct)

(3.2)

Knowledge-guided Contrastive Loss ensures that
the association among similar entities can allow for
more efficient representation learning. The implicit
physical properties (in embeddings hai

and hbi) of
“positive pairs” of sequences (Sai

and Spi
, respectively)

are compared to other entity sequences. Here, positive
pairs (of sequences) refers to learning from temporal
associations in basin while negative pairs (of basins)
refers to samples that enable learning from spatial
correlation among basins.

l(ai, pi) =
exp (sim(hai

,hpi
)/τ)

∑

e∈{a,p}

∑N
j=1

exp (sim(hai
,hej

)/τ)

+
exp (sim(hpi

,hai
)/τ)

∑

e∈{a,p}

∑N
j=1

exp (sim(hpi
,hej

)/τ)

(3.3)

where, sim(hai
,hpi

) =
hai

Thpi

∥hai
∥∥hpi

∥ . Thus, the total

contrastive loss for 2N such positive pairs is given as,
LCont =

1
2N

∑N

i=1 l(ai, pi).
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LCont and LRec do not require any supervised
information. This enables us to evaluate these losses on
a large number of samples. Pseudo-Inverse Loss allows
for a source of supervision to be based on the available
static feature data. A feed-forward layer I on sequence
encoder output is used to estimate ẑ = I(h).

(3.4) LInv =
1

N

N∑

i=1

1

z

z∑

j=1

(zji − ẑ
j
i )

2

Temporal heterogeneity in driver-response time-
series is a source of uncertainty in the static feature
reconstructions. For T time steps and W window size,
unci provides us with this standard deviation in static
feature reconstruction over time,

(3.5) unci =

√

√

√

√

W

T

T/W
∑

j=1

(ẑj
i − ẑi)2

3.2 Uncertainty Estimation We modify the
KGSSL framework to aid in uncertainty quantification.
The uncertainty in estimation of static characteristics is
obtained using a perturbation-based weight uncertainty
method called Bayes by Backprop [3, 52]. As a method
that relies on learning posterior distribution of weight
parameters, Bayes by Backprop makes different layers
of the architecture non-deterministic. This allows us
to measure and mitigate the uncertainty from different
components incorporated in the framework.

Introducing perturbations in weights while training
has historically been used as a regularization method
[18, 20, 26, 34, 44]. Some recent advances utilize per-
turbations to induce non-deterministic behavior in su-
pervised learning models [19, 49]. Several variations of
Bayesian neural networks implement the reparameter-
ization trick [28] to learn affine transformation of per-
turbation using variational inference. All these meth-
ods rely on drawing a Gaussian perturbation term ϵ ∼
N (0, 1). The scale and shift parameters Σ and µ can be
learned by optimizing for variational free energy [19].
Therefore, the weight parameters, w, are learned as,
w = µ + log(1 + exp(Σ)) » ϵ. Here, log(1 + exp(Σ))
is non-negative and differentiable. The variational pa-
rameters ¹ = {µ,Σ} are minimized by variational free
energy [12,19,24,37,55] that ensures a trade-off between
learning a complex representation of the data (the like-
lihood cost) and learning a parsimonious representation
similar to the prior (complexity cost). The variational
free energy cost [3] can be written as,

(3.6) F = KL[q(w|¹)||Pr(w)]− Eq(w|θ)[log Pr(D|w)]

The complexity cost is the KL divergence between
the learned posterior distribution of weight parameters
q(w|¹) and the prior probabilitiy Pr(w). The likelihood
cost includes the negative log likelihood indicating the
probability that the weight parameters capture the
complexity of the dataset D. Through this cost we
are able to ensure that the weight distribution learns
a rich representation and also does not overfit. The
Gaussian perturbations in each mini-batch allows the
gradient estimates of the cost to be unbiased.

In our sequence encoder, we obtain ReLU transfor-
mation of the final embeddings h in a final linear layer.
The weight distribution in the linear layer are learned
using Bayes by Backprop. We also tried other layers for
learning parameter distribution (Table 5).

3.3 Uncertainty Based Learning (UBL) It is
also imperative to manage uncertainty in complex deep
learning architectures that may arise due to imperfect
data. This can be achieved by penalizing static charac-
teristics estimates with higher uncertainty. Uncertainty
estimates from probabilistic models can therefore enable
formulation of a regularization scheme to obtain lower
uncertainty estimates. We can penalize the pseudo-
inverse loss (Equation 3.4) such that the characteristics
with higher uncertainty in the estimates will have higher
loss due to bigger penalty coefficients. In order to do
that we look at the following theorem.

Theorem 3.1. Let g be our inverse model receiving

training set S as input such that, gS : [xi
t, y

i
t] →

zi. A loss Lg for prediction function gS defined as
1
t

1
N

∑N

i=1
1
|z|

∑z

j=1 w
j(zji − ẑ

j
i )

2 minimizes uncertainty

ÃS where wj corresponds with Eλ1
, the eigenvector

corresponding to the largest eigenvalue of Ã.

The proof for this and more discussion are given in
Appendix B. If our inverse model g ∈ G, where G is
a hypothesis class, the empirical risk of the hypothesis
class, ERMG , can be decomposed into an approxima-
tion and an estimation error. While, our uncertainty
guided methodology provides prior knowledge on the
hypothesis class with lower uncertainty estimation for
certain characteristics, the estimation error for other
characteristics with lower penalty coefficients might be
higher. As we will see in our experimental results, a
subset of features (geo-morphology based features) that
were reconstructed successfully using KGSSL, saw an in-
crease in bias in estimates from the UBL method. Also,
the soil based features that were experiencing higher
model approximation error in KGSSL estimates, saw
an improvement in uncertainty estimates.
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Average Metrics Climate Soil Geology Geo-
morphology

Deterministic KGSSL RMSE 0.292 0.575 0.430
Probabilistic KGSSL RMSE 0.294 0.580 0.438
Deterministic KGSSL CORR 0.958 0.792 0.878
Probabilistic KGSSL CORR 0.958 0.788 0.873
Deterministic KGSSL UNC 0.182 0.290 0.218
Probabilistic KGSSL UNC 0.175 0.258 0.205

Table 1: Model performance of deterministic and prob-
abilistic KGGSL in terms of test RMSE, test correlation
between predicted and observed static feature and test
uncertainty over time, unc. The metrics are averaged
over 9 features in each category. Probabilistic KGSSL
is able to achieve same level of model performance and
allows for uncertainty quantification as well.

4 Results

Dataset: We use the CAMELS dataset, which is a pub-
licly available hydrology dataset for multiple hydrology
entities (including the 531 entities that were included in
our study). The input variables for the forward model
are 5 time-varying weather drivers and 27 static charac-
teristics about the entities (weather descriptive statis-
tics, soil based features, and geo-morphology based fea-
tures are included in the study. These affect the stream-
flow, water runoff processes). The response variable
is streamflow values. In practical setting, static char-
acteristics information for all the entities may not be
known. This makes it imperative to explore representa-
tion learning frameworks that can provide inferred char-
acteristics for predicting streamflow for all entities. In
our inverse model, the streamflow - weather time series
are used for learning static characteristics.

Experimental Setup: Daily data from year 1980
- 2000 are used for training, year 2000 - 2005 are
used for validation and year 2005 - 2015 are used for
testing. We report mean squared error (MSE), NSE
(Nash-Sutcliff Efficiency is a measure similar to R2.
It is used to measure prediction performance in time-
series hydrological models), and uncertainty estimates
(standard error in prediction estimates). We predict
static characteristics for all 531 river basins in the
test period (Appendix E, Figure 5). These predictions
are made from KGSSL and probabilistic encoder based
KGSSL.

4.1 Epistemic Uncertainty The probabilistic in-
verse model can be obtained by making different compo-
nents of the framework non-deterministic as suggested
in Sub-section 3.2. One variant is probabilistic en-
coder based inverse model that not only provides us
with best validation inverse loss (Appendix C, Table 5),
but also allows simultaneous uncertainty quantification
in basin characteristics and driver-response reconstruc-
tions. More details on exploring different sources of un-
certainty in Appendix C. Moreover, uncertainty over

time, unci, and epistemic uncertainty, Ãi, have been
shown to be correlated (Appendix D, Figure 4). This
association enables a loss formulation where we can pe-
nalize reconstructions with higher epistemic uncertainty
to obtain a learned model where uncertainty over time is
also reduced. More discussion provided in Appendix D.
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Figure 2: Robustness to noise with 10% samples per-
turbed, 20% samples perturbed and 50% samples per-
turbed at 4 levels of standard error. The probabilistic
model is able to maintain same level of bias as the de-
terministic model.

Figure 3: Trade-off ratio is computed as ratio of fraction
decrease in uncertainty estimates and fraction increase
in MSE values using the Uncertainty Based Learning.

4.2 Robustness Due to the imperfection in driver-
response data, it is important to address robustness of
our framework to noise. We evaluate the static char-
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acteristics reconstruction by perturbing different frac-
tions of training data with different size of perturba-
tions. Table 2 shows the reconstruction performance for
weather drivers and streamflow as reconstruction MSE

loss and reconstruction performance for static charac-
teristics as the static loss. Since accurate reconstruction
of static variables is of interest, the epistemic uncer-
tainty in the static estimates are mentioned as static

uncertainty. The percent of training examples that are
perturbed with noise is varied from 1% to 50% while
the perturbation size is determined by the standard er-
ror of the Gaussian noise that is added to the train-
ing data. Training examples are perturbed and model
performance is evaluated on the clean test set. The
static reconstruction loss increases marginally with the
addition of noise when the standard error remains be-
low 5. In Table 2 and Figure 2, for the deterministic
and probabilistic models, we notice similar levels of bias
in static feature reconstruction, where the probabilistic
model can also measure the variability in the prediction
estimates.

The bias in prediction estimates are robust to cor-
ruption in training data, but the variance in estimates
increases. This may also impact the association that we
observe between the uncertainty over years and epis-
temic uncertainty. Figure 4 shows us the correlation
between the two uncertainties. To observe the effect
of higher levels of perturbation, we look at the sce-
nario when 50% of the training data is perturbed.In
sub-figure 4b, we notice increased correlation between
the weather and geo-morphology based static features.
The increased epistemic uncertainty due to perturba-
tions (as shown in Table 2), indicate a greater variability
in static features, over time and otherwise. Therefore,
with increased variance in static feature reconstruction,
the correlation between the two types of uncertainty
(measuring the deficiency in our input data), also in-
creases with higher perturbation levels.

4.3 Uncertainty Based Learning (UBL) Learn-
ing static characteristics using the UBL methodology,
we penalize reconstructed representations with higher
uncertainty estimates in preliminary modeling perfor-
mance (on validation dataset). Allowing for regulariza-
tion that manages uncertainty results in a model that
has lower uncertainty estimates and lower variance in
static features over time. This however, also leads to an
increase in bias for all static features. We can look at
the percent decrease in uncertainty estimates and per-
cent increase in mean squared error values on the test
set to understand the trade off between variance and
bias. Figure 3 shows us the trade off ratio computed as
the ratio of percent decrease in uncertainty and percent

increase in test set MSE values. The blue dashed line
represents a trade-off ratio of 1. A trade-off ratio above
1 represents scenarios where percent improvement in un-
certainty is more than the percent increment in MSE
values for a given variable. For instance, for the ”car-
bonate rocks fraction” variable, the percent decrease in
uncertainty was 25% while the increase in MSE was 2%
- therefore, the trade-off ratio is 12.5. We notice, for
the soil based static features, UBL resulted in improve-
ment in uncertainty. Since, geo-morphology characteris-
tics like “elevation mean” and “slope mean” are already
well approximated with lower temporal variance in the
estimates, the trade-off ratios reflect the ineffectiveness
of UBL for those cases.

We can also compare the UBL model performance
in terms of test set NSE values with the determinis-
tic and probabilistic KGSSL model (Table 3). In ad-
dition to improvement in static feature reconstruction,
the probabilistic model also enables us to measure if
our mean prediction estimates lie within the confidence
intervals created using the standard error in the predic-
tions. We look at the one standard deviation and two
standard deviation confidence interval coverage rates.

(4.7) coverage rate =
I(zi ∈ [µzi − σzi , µzi + σzi ])

N × |z|

While we obtain a lower test NSE using the UBL
method, we also obtain a higher coverage rate than
the probabilistic KGSSL method. This may indicate
that the regularization of uncertain predictions results
in more confident estimation with wider coverage. In
Table 2, we also compare the results in the presence of
noise in training examples. We notice similar levels of
robustness as compared to the previous models.

4.4 Enhanced Forward Model In our analysis, we
investigate methods to reconstruct static characteristic
values that are not only more robust to noise but also
enable estimation in scenarios where samples might be
missing in the observed data. KGSSL enables repre-
sentation learning that solves the data missing-ness and
robustness challenges in the real world static character-
istic data [17]. We compare forward modeling results in
streamflow prediction using original and reconstructed
static characteristic values. As can be seen in Table 4,
KGSSL offers improvement in forward model perfor-
mance using reconstructed static features. We are also
able to see improvement using the probabilistic KGSSL
model and the UBL variants.

5 Conclusion

Rapid advancements in deep learning methods have
made it imperative to obtain more explainable and
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Method Noise Reconstruction Loss Static Loss Static Uncertainty

Deterministic - 1.940 0.3137 0.000

Probabilistic Encoder - 2.022 0.2829 0.0011

Deterministic 1% corruption, 10 s.d. 1.937 0.3001 0.000

Probabilistic Encoder 1% corruption, 10 s.d. 1.935 0.3119 0.0017

Deterministic 5% corruption, 10 s.d. 1.947 0.3095 0.000

Probabilistic Encoder 5% corruption, 10 s.d. 2.004 0.3054 0.0021

Deterministic (UBL) 1% corruption, 10 s.d. 1.955 0.3021 0.000

Probabilistic Encoder (UBL) 1% corruption, 10 s.d. 1.938 0.3135 0.0008

Deterministic (UBL) 5% corruption, 10 s.d. 1.944 0.3128 0.000

Probabilistic Encoder (UBL) 5% corruption, 10 s.d. 1.946 0.3234 0.0007

Table 2: Streamflow, weather driver reconstruction MSE test loss, static characteristic MSE test loss and static
characteristic estimate epistemic uncertainty. The model performance in terms of test MSE for higher levels of noise
in training data are given in Figure 2.

Model NSE 63% C.I.
Coverage
Rate

95% C.I.
Coverage
Rate

KGSSL 0.6556 - -
Probabilistic KGSSL 0.6858 0.8169 0.9386
KGSSL (UBL) 0.6587 - -
Probabilistic KGSSL (UBL) 0.6669 0.8220 0.9783

Table 3: Static reconstruction NSE and coverage rate.
We can compare the static characteristic reconstruction
NSE values among the deterministic and probabilistic
models. Probabilistic models also ensure that our
predictions will lie within the (mean ±zα s.d) interval.

Model Average NSE Ensemble NSE

Baselines EALSTM (original
static characteristics)

0.7031 0.7238

KGSSL 0.7501 0.7570
Probabilistic KGSSL 0.7561 0.7597

KGSSL (UBL) 0.7611 0.7582
Probabilistic KGSSL (UBL) 0.7636 0.7594

Table 4: NSE in forward model streamflow prediction
using reconstructed static characteristics as input. Over
5 runs, we build 5 inverse and forward models. Average
NSE is average of test NSEs obtained from each forward
model. Ensemble NSE is computed from average of
predictions from the 5 runs.

trust-worthy decisions from these models. For solving
inverse problem, ensuring explainability is even more
critical. In hydrology, a probabilistic inverse model
offers us the ability to infer basin characteristics that
are more trust-worthy. This eliminates the need for
thorough curating of large datasets that might be
very expensive and time-consuming [15]. This method
offers us improvement in streamflow prediction skill,
offers the same level of robustness as previous methods
and provides a wider coverage rate as well. We also
incorporate inductive bias through our prior assumption
on behavior of static characteristics. While this method
utilizes penalty coefficients that were estimated in “one-
shot” on the validation dataset, in future work a more
adaptive approach can be explored to learn the penalty
coefficients during training. Similar to a learnable
dropout rate [13, 14], such a method may utilize a
variational energy optimization scheme to learn these

coefficients.
In hydrology, probabilistic inverse modeling can of-

fer many insights. Better reconstructions for variables
like soil porosity and conductivity imply their impact
on streamflow generation process is easily predictable as
they govern soil water storage and permeability behav-
ior more closely. In contrast, for variables like carbonate
rock fraction is poorer because the fraction by itself is
not directly related to flow characteristics; a more pre-
dictable alternate would be fraction of solution chan-
nels. This effect is also showcased in lower prediction
skill of the inverse model and higher uncertainty. There-
fore, model users can be more cautious about inferred
basin characteristics that have higher uncertainty.

Beyond the scientific applications of streamflow in
river basins, the need to build robust and personalized
prediction models exists in several real-world applica-
tions. For example, while predicting mood (response),
the personality (characteristics) of the patient (entity)
will impact how the patient responds to outside weather
(driver), or while assessing the aesthetics of an image
(driver), the rating (response) by the assessor (entity)
depends on the personality (characteristics). Thus, we
hope that framework can be generalized to setting where
taking into account these entity characteristics will be
essential.
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