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Abstract—Edge computing is increasingly applied to various
systems for its proximity to end-users and data sources. To
facilitate the deployment of diverse edge-native applications,
container technology has emerged as a favored solution due to its
simplicity in development and resource management. However,
deploying edge applications at scale can quickly overwhelm
edge resources, potentially leading to violations of service-level
objectives (SLOs). Scheduling edge containerized applications to
meet SLOs while efficiently managing resources is a significant
challenge. In this paper, we introduce Jingle, an autoscaler for
edge clusters designed to efficiently scale edge-native applications.
Jingle utilizes application performance metrics and domain-
specific insights collected from IoT devices to construct a hybrid
model. This hybrid model combines a predictive-reactive module
with a lightweight learning model. We demonstrate Jingle’s
effectiveness through a real-world deployment in a classroom
setting, managing two edge-native applications across edge con-
figurations. Our experimental results show that Jingle can fulfill
SLO requirements while requiring up to 50% fewer containers
than a state-of-the-art cloud scheduler, which highlights its
resource management efficiency and SLO compliance.

Index Terms—Resource Management, Autoscaling, Workload
Prediction, Internet of Things, Edge Computing

I. INTRODUCTION

Edge computing, characterized by its proximity to data
sources and end-users, is increasingly needed in supporting
a diverse set of latency-sensitive, and privacy-centric applica-
tions. In this environment, container technology has emerged
as an attractive application deployment approach. Container
technology is well-suited to the resource-constrained nature
of edge servers due to its flexibility and elasticity.

Autoscaling refers to the dynamic allocation of containers
to match workload demands. It was originally proposed to
serve cloud environments [1]-[3]. However, directly apply-
ing existing autoscaling algorithms to edge environments en-
counters several challenges. First, the traditional rule-based
methods, depending on static thresholds (e.g., CPU usage or
memory utilization), struggle against the diverse application
requirements at the edge because fine-tuning system metrics
to align with the SLOs of a diverse application set is a complex
task [4]. Secondly, cloud autoscalers that prioritize application
performance may lead to resource over-allocation, thus making
them unsuited for resource-limited edge scenarios. Thirdly,
the sudden workload spikes typical in edge environments
negatively impact the latency between the detection of SLO
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breaches and the execution of scaling decisions, resulting
in SLO violations. Lastly, many works incorporate machine-
learning models [1], [3], [4] and optimization techniques [2],
[5] into autoscaling. However, their computational and storage
requirements make them unsuitable for edge environments.
Due to constrained resources and privacy concerns of edge
applications, monitoring and collecting long-term deployment
data is difficult.

This paper proposes Jingle, an edge-native autoscaler de-
signed to address the challenges of edge-computing resource
management. By harnessing the power of IoT devices, Jingle
anticipates workload fluctuations caused by crowd movements,
which allows for utilizing domain-specific knowledge. Our
proposed solution outperforms the traditional rule-based algo-
rithms by dynamically adapting to application performance. It
also outperforms a machine learning based workload predic-
tion model with restricted history data. Instead, it utilizes a
lightweight, IoT sensing-based prediction mechanism, which
avoids the pitfalls of intensive training and expensive compu-
tation that are inappropriate in edge servers.

Jingle achieves domain awareness and application scaling
with a two-level autoscaling algorithm. During deployment,
Jingle utilizes IoT sensors to track environmental variables,
like crowd arrival and departure, translating this information
into predictive workload fluctuations. Then, its hybrid au-
toscaling model combines a predictive-reactive module with
a proactive learning model, ensuring SLOs with the minimum
allocations.

We have implemented Jingle on a Kubernetes [6] edge
cluster and present a detailed experimental evaluation of Jingle
in the context of a classroom setting. We experimentally show
that Jingle can manage resources efficiently, outperforming ex-
isting autoscaling methods while maintaining SLO compliance
with efficient container allocations.

In summary, our contributions are:

o The design of a domain-aware autoscaler, Jingle, opti-
mized for edge computing resource management.

o The novel incorporation of 10T devices as an indicator of
crowd-driven workload spikes for workload prediction,
deployed in a real-world classroom for the experiment.

o The deployment of Jingle within an edge computing
cluster, showing easy integration with Kubernetes.



« An extensive experimental evaluation of Jingle with com-
parisons to state-of-the-art autoscalers

II. BACKGROUND

A. Horizontal Autoscaling

Horizontal autoscaling refers to automatically scaling up or
down the number of containers per application. Designing
an edge-native autoscaler is challenging, and the existing
autoscaling algorithms are ill-suited for the edge environment.
In this section, we provide an overview of existing approaches
and analyze why they commonly result in issues like delayed
and inaccurate scaling decisions.

First, the traditional rule-based approach [7], [8] configures
a static upper and lower threshold for certain system metrics,
such as CPU and memory usage. This method lacks con-
sideration for the application’s specific requirements. Given
the diverse requirements of edge native applications, it is
challenging and labor-intensive to tune and evaluate the system
metrics thresholds to meet each edge application’s SLO.
Further, application performance metrics can be collected
from third-party monitoring tools [9] and integrated into the
traditional rule-based approach to prioritize the application
performance and requirements. One example is the K8s hor-
izontal pod autoscaling (HPA) [10]. It calculates the ratio
between the desired and current metric values and adjusts the
container amount accordingly. This performance-driven rule-
based method only adjusts container counts in response to
SLO violations, such as when the current metrics significantly
deviate from the desired metrics. Thus, this approach may lead
to delayed decisions and SLO violations.

Additionally, ML-based approaches have emerged in recent
years. For example, AWARE [4] encodes spatial and temporal
characteristics of cloud systems to enable machine learning
techniques. MagicScalar [11] proposed a Gaussian process-
based predictor. Ernest [12] predicts performance under vari-
ous resource configurations. However, these approaches often
require hundreds of hours of data traces and intensive training,
which is impractical in edge environments. Yet, insufficient
training data can result in sub-optimal allocations.

B. Predictive Autoscaling

Predictive autoscaling is a technique to adjust the number
of containers in advance of application usage. It is well-
suited for a workload that shows typical recurring patterns or
cyclical traffic [13]. This is because predictive scaling usually
incorporates a workload prediction mechanism that could
forecast workload. It potentially mitigates the delay of scaling
decisions, compared to using only horizontal scaling that is
reactive. Cilantro [2] predicts future workload and makes
scheduling decisions accordingly. However, speculative au-
toscaling may lead to temporary over- or under-provisioning.
This results in sub-optimal resource utilization [14]. Further,
oscillations in this process may degrade performance due to
frequent autoscaling adjustments [14].

III. JINGLE DESIGN

Jingle is an edge native autoscaler that utilizes edge domain
knowledge to satisfy applications’ SLOs and manage resources
efficiently. This is achieved without the requirement of prior
data gathering or profiling. In this section, we define the
scaling problem, describe the Jingle design, and discuss the
model assumptions.

A. Problem definition

Symbol  Description
i Performance metrics of the ¢-th application.
Di Predefined SLOs for the i-th application.
@i prev  Allocation for the i-th application in the preceding
allocation round.
a; Proposed allocation for the ¢-th application in the
current allocation round.
l; Recorded workload experienced by the i-th application
in the previous allocation round.
I Estimated workload for the i-th application projected
for the current allocation round.
Ai Service quality ratio achieved by an instance of the i-

th application during the last allocation round.

TABLE I: Notation employed in this paper.

We target the efficient autoscaling of containerized edge
native applications to satisfy SLOs without over-provisioning
resources. Edge environments are characterized by their lim-
ited resources and proximity to end-users, which imposes strict
latency requirements. In such a context, the autoscaling mech-
anism must be responsive, accurate, and resource-efficient.

The Autoscaling Problem. For a collection of edge ap-
plications, each with specified Service Level Objective (SLO)
requirements {rq,rz,...,r,}, determine the minimal set of
container instances {a1,as,...,a,} required for each appli-
cation such that all the SLOs are met.

B. Jingle Overview

The Jingle’s design is informed by two key insights.

1. In many edge environments, the arrival of people
can be used as an indicator of workload spikes. In this
work, we focus on edge native applications that are specifically
designed to operate at the edge due to performance, privacy,
and management reasons. Notably, we observed scenarios
where the arrival of people in a space served as the trigger for
edge application deployment and/or access, such as students
arriving at a large class, people arriving at a virtual meeting,
or people arriving at a train station at rush hour. In these sit-
uations, edge applications encounter sudden workload spikes
and require autoscaling actions to avoid SLO violations.

2. Edge-native autoscaling demands knowledge of both
immediate and long-term allocation behavior. Our objective
is to support edge servers that operate beyond the traditional
data center. The heterogeneous nature of edge-native applica-
tions and edge resources, coupled with operational constraints,
poses a significant challenge in collecting and preserving
long-term accurate application knowledge. Consequently, an
efficient autoscaler must exhibit responsiveness to immediate
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Fig. 1: Jingle Infrastructure.

performance metrics while concurrently cultivating a com-
prehensive long-term understanding of historical allocation
decisions.

We leverage these observations to develop Jingle. Fig. 1
demonstrates the Jingle infrastructure. Jingle employs an
online feedback loop to continuously monitor application
performance by periodically pulling application-specific data
from edge worker nodes. Jingle then decouples the autoscaling
task into two components: 1) A workload predictor that
develops a model to aggregate IoT sensing data of crowd
presence and use this to make workload predictions for the
next allocation round; 2) An allocation estimator that makes
autoscaling decisions according to the workload prediction
and application performance feedback. After the allocation
adjustment is decided, the allocation decision is sent to the
cluster control plane and actuated in the corresponding edge
worker. Fig. 2 presents the workflow of Jingle’s components.
We describe each component in the following sections.

C. loT-Enhanced Workload Predictor

Edge applications are characterized by their fluctuating
workloads throughout their deployment, necessitating an adept
workload prediction mechanism to make autoscaling decisions
accurately. Traditional time-series models, while robust for
steady-state analysis, often fall short of capturing the sudden
workload spikes inherent to edge environments. To address
this shortfall, we introduce a refined time-series model that
considers historical workload patterns and integrates real-time
crowd presence data, as provided by IoT sensors.

Traditional time-series forecasting methods, such as the
Autoregressive Integrated Moving Average (ARIMA) and
moving average (MA), typically depend on a recent window of
historical data to predict future trends. These models, by their
historical nature, are not predisposed to anticipate immediate,
spike-driven changes in workload. However, accurate forecast-
ing of spikes in such dynamic scenarios is critical for accurate
predictive autoscaling.

Allocation, Load, Perf
Qi prev li Pi

Hybrid Estimator

P-R
Module

Learning
Module

Workload Prediction ii

Workload Predictor

Fig. 2: Jingle Implementation.

\ ,' Crowd detection

-~

’ ~
4 N
! o \
I |
\\

)
Se_-’

Our approach is based on the observation that human traffic,
as measured as arrivals and departures, correlates strongly with
edge-native workload intensity. To harness this correlation, we
implement a rudimentary yet effective IoT sensing solution for
edge environments. This sensor logs the time and direction of
human movement (arrivals or departures). It transmits a tiny
data packet comprising the timestamp and binary movement
indication to the workload predictor in real-time. This data
is then used to derive a crowd movement frequency and
the workload predictor continuously monitors it. When this
frequency exceeds a predefined threshold, a signal denoting a
crowded arrival/departure is generated accordingly.

To accommodate the limited computational resources at the
edge, our workload predictor is based on a simple ARIMA(1,
1, 1) model. It operates on a data horizon encompassing only
the 20 most recent data points (equivalent to a period of 10
minutes), chosen for its balance between prediction capability
and computational simplicity.

The prediction mechanism is designed to be responsive to
real-time sensing data inputs, particularly those indicative of
sudden changes in workload. Upon detecting a signal that
suggests a likely increase in workload (an uptick in crowd
arrivals), the predictor proactively amplifies the forecasted
demand by a factor of 1.5. This amplifying factor is chosen
empirically. We leave a self-adaptive amplifying mechanism
as future work. This amplification is a preemptive measure
to mitigate potential SLO breaches due to sudden workload
spikes. Conversely, the predictor takes a conservative approach
in response to crowd departure signals to prevent oscillated
scaling actions, which could lead to performance degradation.
The predictor withholds immediate downward adjustments. A
reduction in the predicted workload is deferred until the sub-
sequent allocation cycle and is only enacted if the preceding
cycle does not manifest a workload increase. This conservative
strategy ensures a smoother scaling process and avoids scaling
oscillations.

D. Hybrid Allocation Estimator

The allocation estimator utilizes a hybrid model that consists
of a learning model and a predictive-reactive module as shown
in Fig. 2. The learning model cumulatively learns from the
recent application data and constructs a model that correlates



the application’s performance metrics with workload and the
number of containers. Simultaneously, the predictive-reactive
module directly evaluates the allocations of the last alloca-
tion round and suggests adjustments. To perform autoscaling,
Jingle first makes load predictions from the IoT-enhanced
workload predictor. Then, the hybrid model makes autoscaling
decisions aiming to satisfy SLOs with the minimum number
of containers.

1) Predictive-Reactive Module: We now describe the
predictive-reactive module (PRM) of the allocation estimator,
which allocates resources utilizing anticipated workload and
reacting to previous allocation actions (Algorithm 1).

Service Quality Ratio. In PRM, the service quality ratio
is a pivotal metric that informs the allocation adjustments
for containerized applications. We observed that the service
quality of a containerized application is influenced not only
by performance metrics but also by the application’s workload
and the predefined SLOs. Therefore, we introduce a metric,
service quality ratio, that calculates the proportionality be-
tween the application’s load, the predefined SLOs, and the
empirically observed performance metrics. Consequently, we
employ a heuristic reactive approach to adjust the allocation
decisions from the previous allocation round, guided by the
calculated service quality ratio. The equations that underpin
this process are as follows: R

A = l—p (1) = G

Equation (1) deﬁllles the service quality ratio, Z/\Z-, as the ratio
of the SLO of the i-th application (p;) and the performance
metrics (p;), scaled by the workload (I;). This expression
encapsulates the desired service quality by correlating the
actual performance with the expected performance (SLOs).

Utilizing the previously calculated service quality ratio
and the predicted workload, we can adjust the allocation
for the current round as per Equation (2). This adjustment
aims to provision resources in a manner that anticipates the
predicted demand while reactively correcting any over- or
under-allocation from the previous round.

Equation (2) outlines the reactive scaling strategy for the
current scaling action. It scales the last allocation (a; prev)
in accordance with the predicted workload (l;) and inversely
to the service rate ()\;). This ensures that the allocation
is responsive to changes in the workload and performance,
intending to continuously align resource provision with the
SLO targets.

2) Learning Model: In this section, we introduce the second
component of our hybrid allocation estimator: a lightweight
learning model that incorporates knowledge from historical
allocation rounds. This model continuously assesses the re-
lationship between allocation decisions and their consequent
impact on actual performance metrics. It incrementally refines
the model through periodic data polling and model updates.
Unlike the universal PRM applicable to all applications, this
model grants each application its specialized learning instance,
enabling a long-term determination of application-specific
allocation behaviors.

Algorithm 1 Predictive-Reactive Algorithm

Input: Workload /;, SLO p;, Performance metrics p;, Pre-
vious allocation (a; prev) for all applications
Output: Adjusted allocation a; for all applications
procedure PREDICTIVE-REACTIVE ALLOCATION

for each application ¢ do

Calculate service rate \; using \; = li}; Pi

Predict next workload Z7
Adjust allocation a; using a; = li'if‘l
Return new allocation a; '
end for
Monitor actual performance and iterate the procedure
end procedure

Allocation Function. At the core of the learning model
lies the allocation function that is designed to explore the
complex correlations between allocations, actual performance
outcomes, and workloads. Our empirical experiment has re-
vealed that the relationship is not merely linear; doubling the
resources does not guarantee optimally addressing a double
increase in workload. Furthermore, the variability of service
quality offered by edge servers adds a layer of complexity, as
identical allocations may yield fluctuating performance levels.
To address the fluctuating nature of edge server performance
and to limit allocation volatility, the SLO is scaled by a
coefficient 0.9. This coefficient is chosen empirically and this
multiplication offers a margin to tolerate noise from some
edge-case scenarios. The code interfaces are as follows:

def model_update (latest_data)
def get_allocation(perf_goal=SLO =*
scaling_coeff, predict_load=load)

Listing 1: Learning Model Interfaces

The core idea of our allocation function is monotonicity
— assuming that an increase in the number of instances per
application will not decrease performance. The architecture
of our learning model is plug-and-play and provides an in-
terface to generate allocation recommendations a;, based on
the specified SLOs and forecasted workloads. This flexible
approach allows the integration and adaptation of various
learning algorithms as needed by the evolving SLOs.

Furthermore, we acknowledge the initial *warm-up’ phase
inherent to the learning model. During this phase, the learning
model does not make correct allocation suggestions until
it reaches a threshold level of confidence in its decisions.
This confidence is quantified by an internal loss function
that evaluates the effectiveness of its recommendations, using
feedback from the system to compare its suggestions with
proceeding allocations and performance.

3) Decision Making: Jingle periodically collects real-time
performance metrics and workload data from deployed appli-
cations to continuously assess and monitor SLO adherence.
However, we consider the latency inherent in starting a new
container and its subsequent impact on application perfor-



mance. Therefore, we define an allocation round that is a
designated time interval during which new allocation decisions
are made and executed.

The final allocation decision for each application is an ag-
gregation of insights pulled from both the PRM and the learn-
ing model. During the learning model’s warm-up phase, the P-
R module’s decision dominates. As the learning model matures
and its confidence in allocation recommendations increases,
its influence over the final decision increases. Specifically, the
final allocation is computed as a ceiling of the average of the
outputs from the learning model and PRM.

IV. IMPLEMENTATION

We next describe the implementation details of Jingle.

A. Integration with Kubernetes

Jingle has been implemented to work seamlessly with
containerized edge-native applications. These applications are
containerized using Docker and managed through Kubernetes.
It employs two approaches to monitor application performance
metrics. The first method allows applications to record their
performance data in a log file, which Jingle then periodically
reads to update performance metrics. This approach is com-
patible with applications that use third-party monitoring tools
like Prometheus, enabling seamless integration.

Additionally, Jingle provides an online profiling client
within the edge nodes. This client can send profiling requests
during each allocation round to collect up-to-date performance
metrics. We have designed these methods to be generally ap-
plicable across a diverse range of applications and to integrate
with existing orchestration systems easily.

Jingle functions as a standalone scheduler within the edge
cluster, interfacing directly with Kubernetes. It pulls container
allocation information from Kubernetes’ worker monitors and
posts its scaling decisions to Kubernetes’ control plane to
replace the default scheduler’s decisions. This integration
allows for straightforward deployment and operation within
the Kubernetes systems.

B. Learning Model of Allocation Estimator

The hybrid allocation estimator of Jingle utilizes two dis-
tinct methods to adapt to applications. We have designed these
methods to be modular, allowing for a pluggable interface that
can be tailored to specific application needs. In our current
implementation, we have implemented two types of learning
models, which we will describe below.

The first model leverages a classic structure known as
an interval binary tree (IBT) [2]. For a given performance
metric, it assumes that each request occupies a certain range of
allocations, thereby recording the highest and lowest allocation
points for every workload request. Thus, it stores the maximum
and minimum points of allocations per workload request.
When making allocation adjustments, the IBT can quickly
find the allocation intervals with the workload predictions and
given SLO value. It is well-suited to storing and managing
historical performance data associated with different container

configurations. Its key advantage is to perform efficient in-
sertion and search operations, typically within tens of mil-
liseconds. This makes it an ideal structure for maintaining a
historical record of performance and allocations, enabling it to
perform near real-time adjustments for upcoming allocation
rounds. This model is particularly effective with a single
SLO parameter and operates under the assumption that the
allocation scales linearly with the workload.

The second model is constructed using a lightweight Sup-
port Vector Regressor (SVR) that benefits from online feed-
back. Unlike the interval binary tree with a linear assumption
of workload and allocations, the SVR can explore more
complex relationships between application performance, work-
load, and allocations. By considering the performance metrics,
workload, and previous allocations as input data, the SVR
model can accommodate multi-objective SLOs, representing
them as vectors, and develop a model to map (performance,
workload) to allocations. SVR allows for a more nuanced
understanding of the interplay between various factors influ-
encing application performance. However, it is important to
note that the SVR model generally requires more training
when compared to the interval binary tree approach.

C. Integration with loT Devices

Jingle enhances its workload predictor and decision-making
quality by utilizing real-time crowd movement from IoT
devices. For instance, we configured a entry sensor in a
room, connected to a Raspberry Pi. This setup is designed to
detect and record entry and exit events. Whenever someone
enters or exits the room, the sensor logs the event with a
precise timestamp and sends this data to the Raspberry Pi.
The Raspberry Pi processes this information and stores it as a
CSV file. Jingle then accesses this file at five-second intervals
to update its understanding of room occupancy patterns in real-
time. To guarantee ease of deployment, Jingle does not require
any complex IoT data pre-processing.

D. Assumptions

Jingle makes the following assumptions:

No Request Imbalance. Jingle assumes that a load balancer
[15] evenly distributes requests across all instances. It does
not account for the potential skewness of request distribution
that might lead to unrepresentative performance metrics. Such
an imbalance, which could negatively affect performance
evaluation, is not within the scope of this model to solve by
scaling adjustments. Additionally, we assume that all requests
are uniform, meaning the I/O and computation demands of
each request are considered to be the same.

No distribution of pipelined applications. For pipelined
applications that consist of multiple containers, we do not
distribute these containers across various servers.

Basic IoT Sensing Capabilities. The model presumes that
IoT sensing capabilities are fundamentally coarse-grained,
equipped solely with the functionality to detect and timestamp
human motions. The system is not required to perform gran-
ular tracking, such as counting each individual’s movements



—— K8s Jingle —— pid
§° inEnETEnEtninteataintatninlnin
2 | | | | | f | | |
- L L O O O A I T Y R O N O R O
R} FVL L v v Y o=t | L A
L IO 0O U0 1t 50 0/ s s e s
0 0 500 1000 1500 2000 2500 3000 3500

time (s)

Fig. 3: Allocations over time: Jingle vs. baselines in assignment distribution application with multi-SLOs.

Bandwidth Violations P99 Violations

20 301
15
201
10
5 10
oL o o o
& ® S ® ® &

N N

Fig. 4: Comparing jingle and baselines in assignment distri-
bution application with multi-SLOs

explicitly. This assumption allows for a simplification of the
sensing mechanism with minimal operational requirements.
Moreover, we assume that IoT devices maintain consistent
connectivity with the edge server. In scenarios where IoT
sensing data is unavailable or delayed, Jingle would default
to using the ARIMA model for workload prediction. This is
to ensure that the system can still perform properly in the
absence of real-time sensing data.

V. EVALUATION

Our evaluation of Jingle is structured around three core
questions:

1) How does Jingle perform across various edge-native ap-
plications, compared to other state-of-the-art baselines?

2) How does Jingle scale to address increasing users and
workload?

3) What is the performance impact of each individual
component within Jingle?

In the following sections, we begin by describing the
configuration of our experimental testbed. Subsequently, we
assessed Jingle regarding each of the questions outlined above.

A. Experimental Setup

Testbed Configuration. We test on a single-node Kuber-
netes cluster. For our edge server testbed, we have selected
hardware equipped with an Apple M1 Pro chip, complemented
by 16 GB of RAM. This setup also includes an Aqara Motion
Sensor P1 and a Raspberry Pi that enable the collection of
crowd-moving data in real-time. Jingle monitors application
performance metrics, workload (over the previous 30 seconds),
and allocations, updating every 30 seconds. Furthermore,
Jingle is configured to adjust allocations every 2 minutes. This
adjustment frequency was chosen based on the time required
to prepare a container on our test server.

To demonstrate Jingle’s ability to support applica-
tions across diverse environments, particularly in resource-
constrained situations, we have limited the scheduler to use
only 200 milliCPU units (20% of a single CPU core). This
constraint ensures that our findings apply to servers with
various resource limitations.

Application Test Scenarios. We simulated a realistic edge
environment within a university lab classroom. We evaluated
the performance of several edge-native applications:

1) An assignment distribution application, powered by Ng-
inx, facilitates the process for students to access and
download their assignments. It is I/O intensive, meaning
that it heavily relies on managing a large number of
concurrent connections and the ability to transmit files
of significant size efficiently. It has two SLOs: the
capacity of concurrent connections and the bandwidth
of transmitted file size.

2) A coding assignment application, designed to handle the
submission of students’ C programming assignments.
It processes submissions by compiling the code and
validating it against pre-defined test cases to check cor-
rectness, making it a computation-intensive application.
Its SLO is the latency to process the submissions.

Both applications are deployed without any prior data.

Data Traces. We synthesized request traces based on actual
classroom activity data from 2023 Oct. 16th, between 12:56
pm and 1:56 pm, which is a university recitation section with
30 students. We recorded room student occupancy, generating
synthetic traces assuming each student sent 20 requests follow-
ing a normal distribution during their stay in the class. Nginx
ingress [15] is utilized to balance requests across containers.

B. Comparing with Baselines

This section focuses on comparing Jingle with state-of-
the-art autoscalers across various applications. It is divided
into two parts: the first part evaluates Jingle’s ability to
manage applications with multiple SLOs, while the second
part examines its performance with single-SLO applications.

1) Multiple Performance Objectives: We assess Jingle to
handle the application with multiple SLO parameters in this
section. The SLOs for our assignment distribution application
consist of various performance metrics. The first SLO is that
each container should not exceed 4 concurrent connections for
downloading assignment files to ensure capacity. The second
SLO parameter is the throughput of file size transmission,
stipulating the need for scaling when the data transfer rate
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netes HPA in achieving throughput SLO over time. Notably,
Jingle exhibits a 34% reduction in throughput violations in Fig.
4, while the number of containers utilized remains comparable,
with an allocation of only 11% more containers. These results
suggest that our method is a promising approach to handling
multiple SLOs without excessive allocations.

Furthermore, Jingle demonstrates a smoother allocation
curve in Fig. 3 when comparing to all baselines, with 35%
fewer fluctuations compared to Kubernetes HPA. This stability
is particularly beneficial for handling dynamic workloads,
where frequent reallocations can degrade performance.

2) Single Performance Objective: We conducted a com-
parative evaluation of Jingle against several state-of-the-art
autoscalers, utilizing the coding assignment application as our
test case. In this case, the application has only one performance
objective, and this is well-aligned with the capabilities of

TABLE II: Jingle and baselines comparisons.

In terms of their operational patterns, the Kubernetes default
method, the PID controller, and Pseudo-DS2 are reactive sys-
tems. They adjust allocations solely based on the performance
metrics from the last allocation round, without predicting
future workload. In contrast, Cilantro [2] is a predictive
autoscaler, making allocation decisions based on anticipated
workload demands. While the original design of Cilantro was
focused on minimizing the P99 latency, we adapted it to
minimize the discrepancy between actual latency and the SLO
requirement. This adaption is intended to alleviate the issue of
resource over-provisioning.

We conducted three iterations of experiments and the aggre-
gated results of which are shown in Fig. 5a and Fig. 5b. Jingle



exhibits a more consistent allocation trajectory that mirrors
the demand of assignment distribution application. Regarding
allocation efficiency, Jingle, and the Kubernetes HPA deployed
a similar number of containers, whereas Cilantro [2] required
nearly double the allocations made by Jingle. This underscores
Jingle’s ability to avoid resource over-provisioning effectively.
Moreover, Jingle recorded the fewest P99 latency violations,
reducing them by 9% compared to Cilantro—even though
Cilantro allocated twice as many containers as shown in Fig. 6.
These results highlight Jingle’s proficiency in meeting latency
SLO while optimizing container utilization, striking an ideal
balance between resource efficiency and SLO compliance.

C. Scalability

We also evaluated the scalability of Jingle with more users.
The initial benchmark, as shown in Fig. 8, was set in a class-
room environment with 30 students. To assess Jingle’s perfor-
mance under growing workload conditions, we incrementally
increased the number of students from 30 to 120. This scenario
simulates a larger classroom setting with more students. The
outcomes of these tests are presented in Fig. 10. Notably,
larger classrooms might require additional IoT sensors for
several entrances. Jingle can seamlessly accommodate more
IoT sensors because it operates on the frequency of human
movements.

Our results demonstrate that Jingle effectively scales its
mean allocations in response to the growing users, exhibiting a
near-linear trend as depicted in Fig. 10. Furthermore, in terms
of SLO compliance, Jingle consistently maintained a constant
level of application violations across all scenarios. This con-
sistency underscores Jingle’s robustness and its capacity to
handle growing users without compromising performance.

Fig. 10 also illustrates the scalability of Jingle in comparison
to the second-best baseline models for both applications. No-
tably, Jingle is able to allocate a smaller number of containers
even as it scales up. Simultaneously, it consistently maintains
a constant fraction of violations, underlining its efficiency and
stability in handling increasing workloads.

D. Assessment of Jingle’s Individual Components

1) Workload Prediction Enhanced by IoT Sensing: We
compare our lIoT-enhanced workload predictor against com-
mon prediction models to demonstrate its effectiveness. In
this case, we introduce another evaluation metric: the Criti-
cal Success Index (CSI), a metric traditionally employed in
meteorology. This adaptation of the CSI specifically measures
the predictor’s ability to accurately forecast workload spikes. A
key aspect of this adaptation is the consideration of the time re-
quired for preparing containers, necessitating that the predicted
peak values precede the actual spikes by 1 to 2 rounds. The
CSI calculation involves counting ’hits’ (accurate predictions
of peaks in advance), 'misses’ (instances where spikes are not
predicted), and ’false alarms’ (incorrect predictions of peaks).
The CSI is then calculated as the ratio of hits to the aggregate
of hits, misses, and false alarms. This approach provides a

Mean Allocations at Scale P99 Violations at Scale

30 ©£0.10
—— Jingle o —— Jingle
25| —— Cilantro ®0.08 —— Cilantro
o
20 <
2 0.06
15 g
0.04
10 g
C
5 §0.02
0 E 0.00 ——
30 60 90 120 T30 60 90 120

(a) Comparing Jingle with Cilantro in a larger scale of users for
coding assignment application.

Mean Allocations at Scale Violations at Scale

v 0.10
6 . Jingle 5 —— Jingle bandwidth
—— K8s E 0.08 —— Jingle capacity
5 o —— K8s bandwidth
?_ 0.06 —— K8s capacity
4 s}
§0.04
3 o
§0.02 \\/
2 @ —_—
€0.00

30 60 90

[y
N
o

30 60 90 120

(b) Comparing Jingle with K8s HPA in a larger scale of users for
assignment distribution application.

Fig. 7: Jingle’s scalability comparisons.

detailed and precise evaluation of the predictor’s capability to
anticipate and manage peak workloads.

IoT Sensor Deployment. We installed an Aqara Motion
Sensor P1 at the classroom entrance to detect student move-
ment during the specified hour on Oct. 16th, 2023. This sensor
could only identify entry and exit events without an exact
count of individuals.

Baselines. We compare Jingle’s workload predictor, which
employs a lightweight ARIMA model augmented with IoT
data (ARIMA-IoT), to several baselines:

1) Moving average (MA), which utilizes recent workload
data within a specified window for predictions;

2) A recurrent Neural Network (RNN) model, which learns
from past workload patterns;

3) A standard ARIMA model without IoT data;

4) An ARIMA model supplemented with static class sched-
ules (ARIMA-static), enabling workload adjustments
around the class start and end times.

We assessed the MAE and CSI of the evaluated models
in Fig. 9. The results indicate that the ARIMA model with
IoT sensing data is the most effective in forecasting upcoming
workload spikes, as evidenced by its outstanding CSI metric.
Notably, the ARIMA-IoT model exhibits a marginally higher
MAE compared to the standard ARIMA model. This in-
crease in MAE is an expected consequence of advanced spike
prediction, which inherently involves discrepancies between
predicted and actual workloads. Importantly, CSI is arguably
a more important metric, presenting the model’s proficiency in
preemptively identifying workload surges, thereby providing
valuable insights for subsequent autoscaling algorithms.

2) Assessment of Jingle’s Components: We conducted an
in-depth analysis of various underlying components of Jingle,



—— ground truth —— RNN
MovingAvg —— ARIMA-static
10| . ARIMA —— ARIMA-lOT

5|4,

0 500 1000 1500

2000 2500 3000 3500

Time (s)

Fig. 8: Workload predictor simulation: comparing IoT-enhanced ARIMA model with time-series forecasters.

Mean Absolute Error (MAE) Critical Success Index (CSI)

5 0.4
4 0.3
3
0.2
2
1} 0.1
0 < N 0.0 S L
YIS 58 I PO
.\Q W V‘é \\‘\?‘ \QQ W < ?‘é \Q\V
S Q}\“ NS S Q§“ W
¥ ¥

Fig. 9: Comparing workload predictors with MAE and CSI.

which include:

e PRM: The Predictive-Reactive Module (PRM) with the
standard ARIMA workload predictor.

o« PRM+IBT: A hybrid model that combines PRM with the
Interval-Binary Tree (IBT) learning module, also utilizing
the standard ARIMA predictor.

o PRM+SVR: A hybrid model that combines PRM with the
Support Vector Regressor (SVR) learning module, also
utilizing the standard ARIMA predictor.

o Jingle: An advanced integrated approach that merges
PRM, the IBT module, and an IoT-enhanced ARIMA
workload predictor.

ToT-Info Immediate Long—t.erm
Response Learning
PRM N N
PRM+IBT N
PRM+SVR N
Jingle

TABLE II: Four combinations of Jingle’s components.

It’s crucial to highlight that PRM was a consistent element
in all these evaluations. This strategic inclusion is due to the
learning module’s requirement for an initial *warm-up’ phase,
which is necessary to build a robust profile of application de-
ployment patterns, especially in scenarios lacking pre-existing
historical data. PRM’s role is thus fundamental across all
configurations. Table.IIl illustrates the characteristics of the
four combinations of Jingle’s components. Our evaluations
centered on these Jingle sub-components, with the coding
assignment application, where the SLO is the end-to-end
latency.

Fig. 10a and Fig. 10b illustrate the allocations and P99
latency over time for the coding assignment application. Ad-
ditionally, Fig. 11 evaluates average allocations and total SLO

violations. Overall, Jingle leverages long-term learning and
domain awareness with IoT sensing to reduce SLO violations,
at the cost of utilizing a slightly higher number of containers.
Additionally, among the allocation modules with learning
modules, the PRM+IBT is better than PRM+SVR, demon-
strating the fewest P99 latency violations. This is due to IBT’s
effective recording of performance and allocation history with
a linear relationship, enabling faster warming up’. The SVR
model, learning through a non-linear relationship, requires
more extensive training data for optimal allocation decisions.
Significantly, Jingle, compared to the PRM module, allocates
30% more containers but achieves a 50 times reduction in
P99 latency, showcasing the benefits of IoT-sensing domain
awareness and long-term learning mechanism.

VI. RELATED WORK

In this section, we compare Jingle with prior work. Table.II
summarizes the key differences between Jingle with baselines.

Containerization in Edge Computing Integrating con-
tainer technology in edge computing has gained significant
attention. Numerous studies [16] have developed containerized
edge applications. For instance, DeathStarBench [17] offers
a suite of pipelined containerized applications, that serve
as a benchmarking tool. Similarly, Comb [18] presents a
containerized video analytics application tailored for edge en-
vironments. These developments are complementary to Jingle,
which seamlessly integrates with Kubernetes, facilitating its
compatibility with a broad range of containerized applications.

Performance Monitoring Accurately gathering online per-
formance metrics presents a notable challenge. Cilantro [2]
introduces an online profiling client for real-time performance
assessment, whereas Quasar [19] leverages offline profiling
to gather proxy metrics. Paragon [20] addresses resource
heterogeneity and inter-job interference to ensure performance
consistency. AGILE [21], on the other hand, models resource
pressure to minimize SLO violations. These methodologies
demonstrate diverse strategies for performance measurement
and adaptation. [22] develops an interface and APIs to report
metrics for the scheduler for scheduling workflow. [23] fo-
cused on power metrics such as CPU and GPU consumption.
Jingle distinguishes itself by directly interfacing with container
logs to extract real-time performance and workload data, offer-
ing an adaptable solution applicable to various configurations.

Reactive Autoscaling Reactive approaches, such as those
employed by Kubernetes HPA [10] and PID [24] primarily
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Fig. 10: Time-series analysis of comparing four combinations of Jingle’s components
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Fig. 11: Comparing four combinations of Jingle’s components

involve scaling up in response to observed conditions. How-
ever, such reactive adjustments are triggered only upon viola-
tion occurrences, which is suboptimal for edge environments
characterized by sudden workload fluctuations. DS2c [14] and
Henge [25] are primarily designed for stream processing sys-
tems and are reactive to SLO violations. They did not include
workload prediction since the stream processing prediction is
very complex and inaccurate [25].

Predictive Autoscaling Predictive strategies typically uti-
lize forecasting models to preemptively adjust resources be-
fore potential violations. Cilantro [2], for example, employs
an ARIMA model, while MagicScalar [11] utilizes a more
sophisticated Guassian process-based predictor. AWARE [4]
and [26] are based on reinforcement learning. Ernest predicts
performance under various resource configurations [12]. These
systems rely on significant computational resources and ex-
tensive data for model training. Lack of training can lead to
inaccurate prediction and over-provision. Consequently, they
are not suitable for edge environments, where resources are
constrained and training data may be insufficient.

In addition, [27] proposed a tool to predict the performance-
cost tradeoff of applications. The Wing dependency profiler
[28] focused on uncovering the job dependencies for better
scheduling. Narya [29] predicts failures of cloud machines to
make better migration decisions. These prediction and profil-

ing mechanisms are orthogonal to Jingle and can potentially
collaborate with Jingle.

VII. CONCLUSION AND FUTURE WORK

This paper introduced Jingle, an autoscaler specifically
designed for edge-native applications. By leveraging a hybrid
model that combines a heuristic predictive-reactive module
with a lightweight learning model, Jingle is able to provide
near-optimal allocations for containerized applications. Our
real-world deployment in a classroom setting demonstrated
Jingle’s capability to meet stringent SLOs while efficiently
managing resources. Significantly outperforming traditional
and state-of-the-art cloud schedulers, Jingle required up to
50% fewer containers, underscoring its efficiency in resource
management and minimizing the number of violations in
all experiments. Unlike existing autoscalers that either focus
on reactive or predictive methods, Jingle adeptly navigates
the challenges unique to edge computing, such as limited
resources and the need for real-time performance metrics. Our
study contributes to the evolving field of edge computing by
offering a solution that is both resource-efficient and adaptable
to a range of containerized applications.

In the future, we plan to extend Jingle to co-schedule
multiple applications. This task is challenging as it involves
allocating limited resources among various competing applica-
tions. In addition, we may also extend Jingle to support multi-
component applications whose containers can be distributed
across heterogeneous edge nodes.
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APPENDIX
A. Introduction

Jingle is an autonomous autoscaler for edge clusters de-
signed to efficiently scale edge-native applications. Jingle
utilizes application performance metrics and domain-specific
insights collected from IoT devices to construct a hybrid
model. To evaluate the effectiveness of Jingle, we implemented
two edge-native applications and deployed Jingle on a Kind
Kubernetes cluster with a synthetic workload that is adapted
from real-world classroom activities. This artifact is designed
to reproduce the experiments with coding-assignment applica-
tion and comparisons to the state-of-the-art autoscalers. How-
ever, we also provide the implementation of all other necessary
objects to completely reproduce the experiments. This project
is available through Zenodo (DOI: 10.5281/zenodo.10668807)
and GitHub (https://github.com/YixuanJiujiu/Jingle).

B. System Requirements

1) Hardware: The primary experiments are performed on
a personal workstation equipped with an Apple M1 Pro
chip, complemented by 16 GB of RAM. However, thanks to
the container technology, this hardware is not critical when
reproducing the project. We still suggest a machine with at
least 6 CPU cores to demonstrate the autoscaling results.

2) Software: Docker and Kubernetes are required. We also
deploy Kind cluster to perform single edge node experiments.

C. Test Applications

This Jingle experiments focus on two edge native applica-
tions:

1) An assignment distribution application, powered by Ng-
inx, allowing students to access and download assignments,
where the capacity of concurrent connections and bandwidth
of transmitted file size are the SLOs. It takes a GET HTTP
request as a standard workload request. The worker container
shall return with the desired file.

2) A coding assignment application, where students submit
code and validate it with test cases, with latency as SLO; It
takes a POST HTTP request as a standard workload request.
The worker container shall compile the assignment code, run
a couple of test cases, and return with test results.
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Fig. 12: Expected file content of root—coding-assign.csv.

The workload generators for the applications are different.
Switching the workload generator requires re-modifying the
images of the Jingle scheduler, thus we provide the guide
to run experiments of coding assignments. You can simply
modify the worker/workload/driver.py to switch the workload
generator and re-build the images of Jingle scheduler. Please
note that re-building and updating the image shall require a
Docker account.

D. Data Traces

1) Workload Traces: We synthesized request traces based
on actual classroom activity data from 2023 Oct. 16th, between
12:56 pm and 1:56 pm, which is a university recitation
section with 30 students. We have implemented the workload
generator and it is deployed by the workload generator.

2) IoT Sensing Traces: Jingle utilizes an Aqara Motion
Sensor P1 and a Raspberry Pi that collect crowd-moving data.
To enable reproducibility, we kindly provide the real-world
students-moving data as sensing trace in the file Jingle/sched-
uler/allocation_policies/raw_sensing.csv. The Jingle scheduler
will process it automatically to emulate the room crowd-
moving activities.

E. Experiment Guide

In this section, we will introduce the steps to reproduce the
experiments with the coding assignment application and do
comparisons with significant baselines. We provide the shell
script to deploy all baselines. Before running the experiments,
please make sure that the port 10000, 6000, and 8000 are
available. It shall take at least 5 hours to finish the script.

cd Jingle/real_experiments/ca

cd starter; ./create_kind _cluster.sh #
this creates a kind cluster

cd ds2; ./deploy_all.sh
Listing 2: Commands to test ALL Algorithms

In addition, to run a single round for a specific autoscaling
algorithm, you need to follow these commands.

cd Jingle/real_experiments/ca

cd starter; ./create_kind_cluster.sh

cd ds2;

Listing 3: Commands to test a single algorithm

./deploy.sh

In this scenario, the default autoscaling algorithm is Jingle. To
deploy another algorithm, you will need to modify line 9 of
the file Jingle/real_experiments/ca/ds2/deploy.sh. Specifically,
you can replace the config file with another algorithm that you
tend to test. You shall allow for about one hour to finish the
experiment.

During the experiments, you can view the container logs
through:

./starter/view_logs.sh

Listing 4: Commands to check live logs

After finishing the script, you need to fetch the experimental
results from the containers:

./fetch_results.sh

Listing 5: Commands to fetch results

cd ds2;

After fetching results, the results of the experiments are stored
in Jinle/real_experiments/ca/ds2/workdirs_kind/.
Then you can clean the cluster:

./starter/clean_kind_cluster.sh

Listing 6: Commands to fetch results

F. Expected Output

The raw experimental results should be stored in the folder
Jinle/real_experiments/ca/ds2/workdirs_kind/. Each algorithm
result owns an unique folder that contains four files: 1) env.txt;
2) info.txt; 3) root—coding-assign.csv; 4) Jinglescheduler.log.
An example of root—coding-assign.csv is shown as in Fig. 12

Plot Results. We also provide the plotting functions in
Jingle/real_experiments/ca/plot_demo.py.

To plot the experimental results, you need to modify the
folder names in plot_demo.py from lines 41-65. Replacing
it with your evaluation results that are stored in the folder
Jingle/real _experiments/ca/ds2/workdirs_kind/.

After replacing the directory names, you can plot the results
by:

python plot_demo.py

Listing 7: Commands to plot results



G. Konw Issues

Performance Fluctuations. Due to network conditions
and various readiness time of containers, the same alloca-
tion decisions may result in different performance metrics.
Consequently, the experiments of the same algorithm may
result in different evaluation results regarding the number of
SLO violations and the number of containers. We recommend
running a couple of rounds of experiments to alleviate this
bias.

Nginx Ingress. We applied a patch to the nginx-ingress to
achieve load balance between containers. However, applying
the patch at the first time may result in some errors. We
recommend cleaning the cluster and re-start the experiment
after a few minutes.



