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Abstract. A major concern in smart power grids is when malicious
or manipulated data is injected into measurement data due to mali-
cious activities. Several approaches have been investigated to counter
such false data injection attacks (FDIAs). However, such data-driven
detectors present two major limitations. First, they neglect capturing the
grid’s spatial characteristics. Second, they offer limited attack identifica-
tion to familiar types of FDIAs since they are present within the model’s
train sets. To conquer such limitations, we propose the use of an arti-
ficial intelligence-based graph autoencoder (GAE) for FDIAs detection.
Our proposed detector offers three main advantages compared to existing
detectors. First, it employs the operation of graph convolution to appre-
hend the grid’s spatial characteristics. Second, it offers an unsupervised
autoencoder-based anomaly detection that requires only benign sam-
ples under normal operation for training. Third, it outperforms existing
detectors by 16–47% in FDIAs detection rate (DR) when tested against
unseen FDIAs on an IEEE 39-bus system.

Keywords: Cyberattacks · Graph neural network · Machine learning ·
Smart grid

1 Introduction

The decision making within smart power grids is highly dependent on measure-
ment data collected from several components among the power grid for proper
operation [1]. Therefore, the integrity of the collected data is critical to ensure
the reliability of the system and for stable operation. However, malicious enti-
ties may carry out stealthy attacks (e.g., false data injection attacks (FDIAs)) to
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manipulate measurement data from sensors and hence jeopardize the integrity of
the power grid data [2]. As a result, decision making will be based on inaccurate
measurement values, which might lead to instabilities or overload in the system
[3]. Unfortunately, such stealthy attacks can bypass existing bad data detectors
[4]. Thus, more complex attempts have been proposed to detect such FDIAs
employing multiple data-driven-based approaches.

1.1 Related Work and Limitations

Several approaches have been investigated to counter such FDIAs. We divide
these approaches into three main categories, namely, shallow machine learning
(ML), deep learning (DL), and graph-based models. Next, we report the perfor-
mance of relevant studies along with their limitations.

Shallow ML Models Relevant shallow ML-based FDIAs detection schemes
employ the following. Support vector machines (SVMs) provided 82% in F1-
Score [5]. A decision trees model offered an F1-Score of 88% [6]. A random
forest model reported an attack detection rate (DR) of 93% [7]. Nevertheless,
such shallow models do not apprehend the patterns and spatial characteristics of
the data [8]. They also present supervised learning that offers detection limited
to the familiar attacks that are seen the models’ train sets. Hence, they are
susceptible to new types of attacks (i.e., not present in the train sets).

DL Models DL-based detectors have been proposed to apprehend the pattern
characteristics within the data [9]. To achieve this, DL-based detectors employ
the following models. A feedforward neural network (FNN) model provided an
accuracy (ACC) score of 90% [10]. A convolutional neural network (CNN) model
offered an ACC score of 93% [11]. A recurrent neural network (RNN) model
offered a DR of 96% [12]. Although these DL-based detectors are able to appre-
hend the data patterns that are sophisticated using deep neural networks, they
still fail to detain the system’s spatial characteristics [4]. Also, they still offer
limited detection performance against new types of attacks that are not present
in the train sets [13].

Graph Models Graph-based detectors have been proposed to capture the grid
spatial information. In particular, graph-based detectors employ graph signal
processing (GSP) and graph neural network (GNN) models. GPS models employ
spectral filters that are manually designed [14–16] and provided DRs of nearly
90%. However, the custom design of the filter limits the scalability of the model
[4]. To overcome this, GNN models have been proposed. Specifically, a convo-
lutional GNN (CGNN) model that incorporates the GSP operation automat-
ically and utilizes undirected graphs offered DRs of 83–96% [4]. Despite the
provided advantages, existing GNN-based FDIAs detection schemes still offer
attack detection only against seen attack types that are part of their training
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sets due to their supervised learning nature. However, in practice, the system
might encounter new unseen attack types (i.e., zero-day attacks) that are differ-
ent than the types the detector has been trained on.

According to the presented limitations, there is a need to improve the attack
identification performance of existing state-of-the-art models. This could be
achieved by proposing an artificial intelligence-based robust detection strategy
that apprehends the system’s sophisticated patterns as well as the spatial char-
acteristics while offering robust identification against new types of attacks that
are not present in the train sets.

1.2 Contributions

We conquer the drawbacks of existing FDIAs detection schemes by proposing
a graph-based unsupervised anomaly detector. The proposed detector employs
a graph autoencoder (GAE) providing three major benefits. The advantages of
the proposed detector are highlighted by comparing it to various data-driven
detection strategies. Specifically, the GAE model offers the following.

– It presents a deep structure with stacked graph encoder and decoder layers
that detain the complex patterns of the measurement data. It is also able
to detain the grid’s spatial characteristics as it employs a graph Chebyshev
convolution operation.

– It offers detection of new FDIA types (i.e., types that are not present dur-
ing training) as it represents an unsupervised anomaly detection scheme that
relies only on benign data during training. During testing, it marks unseen
malicious samples of under-attack operation according to the presented dis-
similarity from the features of normal operation (benign samples) that were
learned during the training stage.

– It offers a superior DR of 90.2% against unseen attacks in an IEEE 39-bus
system, providing DR enhancements of 16–47% compared to a comprehensive
list of benchmarks including shallow, deep, and graph-based detectors.

The layout of the paper is as follows. Section 2 describes the data preparation
and the investigated attack types. Section 3 presents the architecture of the GAE
model. Section 4 introduces the benchmark detectors and reports the detection
performance. Section 5 concludes the outcomes of this work.

2 Data Preparation

For the training and testing of the studied models, we employ an IEEE 39-
bus system. To generate malicious samples replicating the under-attack system
operation, we acquire three FDIA types [17].
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2.1 System Model

In this work, we detain the spatial and temporal characteristics of the power
system (i.e., IEEE 39-bus system). Specifically, we model the system via an undi-
rected graph. Within the graph, buses are depicted by vertices (nodes) whereas
power lines are denoted by edges. Figure 1 shows the adopted IEEE 39-bus sys-
tem modeled as an undirected graph. Let G = (V, E ,W ) denote the undirected
graph with vertices V, edges E , and weighted adjacency matrix W ∈ R

n×n. In
G, when bus i is connected to bus j, a weight Wij is allied to an edge e = (i, j)
according to the line admittance.

Fig. 1. IEEE 39-bus system graph illustration.

In addition to the spatial aspects, temporal characteristics referring to power
injections and flows are also captured where V and E are accompanied with
features. To detain such features, we adopt an analysis of the power flow through
Newton’s method via MATLAB MATPOWER toolbox [18]. This is carried out
to establish the flows of real and reactive power in the system. Specifically, the
features of V comprise the active power (i.e., real power demand) Pi and reactive
power demand Qi in MW and MVAr, respectively. The features of E comprise
the real power flow Pij from bus i to bus j in MW and the reactive power flow
Qij from bus i to bus j in MVAr.

2.2 Benign Data

We adopt the feature values discussed above to represent measurement data of
normal operation, which results in generating benign samples denoted as xb(t, i)
at bus i and timestamp t. Specifically, over a period of half a year, each hour,
we report 4 power dynamics timestamps, which leads to approximately 17, 000
timestamps in total.
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2.3 Malicious Data

To constitute the malicious data representing the under-attack system operation,
we adopt three FDIA functions, namely, direct, replay, and general attacks.
These attacks are applied to xb(t, i) and bypass existing bad data detectors
since they present similar data patterns as benign samples [19]. The generated
malicious samples are denoted as xm(t, i) at bus i and timestamp t. The three
FDIA types are described next.

The direct attack applies specific perturbations bounded by a scaling factor
|α| ≤ 0.05 that are injected into benign samples. For instance,

xm(t, i) = xb(t, i) + α.xb(t, i). (1)

The replay attack generates malicious samples throughout a false repetition
of readings from a prior timestamp t−1. As a result, the true reading of a present
timestamp t is replaced as follows

xm(t, i) = xb(t − 1, i). (2)

The general attack [20] uses a true measurement value interval along with a
binary β and uniform random 0 ≤ γ ≤ 1 variables to create malicious samples
where

xm(t, i) = xb(t, i) + (−1)βα.γ.Range(xb(t, i)), (3)

2.4 Dataset Splitting

The generated sample types (benign xb and malicious xm) are equal in number.
Supervised models are required to be trained and tested on both sample types
(xb and xm). On the other hand, unsupervised models necessitate to be trained
on xb, but they are still tested on both samples types. To carry out the exper-
iments, we split the samples into three sets where the training Xtr, validation
Xva, and testing Xts sets represent 80, 10, and 10% of samples, respectively.
To avoid any bias, all sets have equal numbers of samples of both types.

3 GAE-Based Detector

To detect FDIAs, we put forward an unsupervised GAE-based anomaly detector.
For training, the proposed detector relies on graph expressions of data during
normal operation (benign samples) [21]. Hence, it offers identification ability
against new types of attacks that are not present in the train sets.

3.1 GAE Model Architecture

The GAE model employs an autoencoder that utilizes graph encoding and decod-
ing layers. Such layers help when it comes to apprehending the graph expressions
of normal operation (i.e., benign data) via a data reconstruction process [22],
[23]. The overall process is illustrated in Fig. 2.
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Fig. 2. Proposed unsupervised GAE model architecture.

The GAE model operates as follows. First, it takes benign samples’ xb with
[Pi, Qi] ∈ R

n×2 measurements as input. Then, following the input layer, the
encoder E with Le hidden graph encoding convolution layers are placed. Apply-
ing the convolution operation to graph signals is essential when detaining the
grid’s spatial characteristics. The graph encoding block is responsible for com-
pressing the data. On the graph encoder side, the number of channels depicting
what is fed to the convolution layers is denoted by cle in a hidden encoding
layer le. The input and output of le are X le−1 ∈ R

n×cle−1 and X le ∈ R
n×cle ,

respectively. The presence of the encoding layers helps in capturing the spatial
characteristics as well as constructing the output tensor, which is expressed next

X le = ReLU(θle ∗G X le−1 + ble). (4)

In (4), θle ∈ R
K×cle−1×cl , ble ∈ R

cle , and ∗G depict the Chebyshev coeffi-
cients, bias, graph convolution operator. The role of the added bias and ReLU
activation function is to improve the model’s non-linearity ability [24].

The encoding block is followed by a latent layer, which is responsible for
holding the representations of the compressed data throughout the encoding
process. Thus, the presence of the latent layer enhances the features’ learning
process and helps in learning simpler data representations. The graph decoder
block is placed after the latent layer. The role of the decoder D is decompressing
the data and reconstructing the input. The graph decoder consists of Ld hidden
decoding graph Chebyshev convolution layers with cld channels. Each graph
decoding layer ld has the input and output of X ld−1 ∈ R

n×cld−1 and X ld ∈
R

n×cld , respectively. Finally, X̃ denotes the reconstructed input by the graph
decoder.

3.2 Training and Testing the GAE Model

Our GAE model is trained on benign samples and tested on both, benign and
malicious samples. Specifically, it recognizes malicious samples of under-attack
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operation based on the presented dissimilarity from the learned normal patterns
during training. Since the model is familiar with the patterns of normal opera-
tion during training, the dissimilarity is expected to be small during testing. This
means that under-attack operation samples are expected to present higher dis-
similarity during testing. Marking samples during testing is carried out based on
a reconstruction error ζ of the data regeneration procedure. The graph encoder
and decoder are denoted as E = fΦ(X) and D = gΦ(X), respectively, where Φ
depicts the GAE model parameters, which are expressed as follows

min
Φ

C(X, gΦ(fΦ(X))), X ∈ Xtr. (5)

In (5), C(X, gΦ(fΦ(X))) represents a mean squared error (MSE) cost func-
tion that imposes a penalty on gΦ(fΦ(X)) for the presented dissimilarity from
X. In other words, (5) estimates the MSE between the original input X and the
reconstructed output X̃. The proposed GAE model is trained with the goal of
identifying parameters Φ with the aim of optimizing (5). Using the iterative gra-
dient descent approach, the minimization of (5) is accomplished where we divide
the training samples X ∈ Xtr into small batches. Following (5), the value of ζ,
which indicates the level of the model’s familiarity against X ∈ Xtst, is antici-
pated to be small and large for benign and malicious samples, respectively. When
the value of ζ becomes higher than a threshold value ψ, a malicious sample xm

reflecting an attack is flagged with y = 1, otherwise, the sample is considered
benign xb with a y = 0 label.

4 Experimental Results

This section assesses the performance of the GAE model compared to several
benchmark detectors. Also, we present the used hyperparameters for each model
that are selected based on a grid-search selection process. We then analyze the
performance of the examined detectors.

4.1 Benchmark Detectors

For an exhaustive analysis, we include multiple data-driven benchmark detec-
tors with shallow, deep, and graph models that are either supervised (trained on
benign samples only and tested on benign and attack samples) or unsupervised
(trained and tested on benign and attack samples). The adopted shallow mod-
els are listed next. The unsupervised auto-regressive integrated moving average
(ARIMA) model is trained to predict future data patterns [25]. The supervised
SVM model classifies samples using a hyperplane that separates both sample
types [5]. The adopted deep models include the FNN, which is a supervised
model that employs feedforward layers that are fully-connected to classify sam-
ples [10]. The supervised RNN model exploits temporal correlations via utilizing
recurrent cells [26]. The supervised CNN model performs the convolution oper-
ation to classify samples [11]. We also adopt a classical stacked autoencoder
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(SAE), which is an unsupervised model that identifies samples using a recon-
struction process using fully-connected feedforward layers [22] without employing
a graph convolution operation. Finally, we adopt a graph-based detector, which
is a supervised CGNN model that utilizes vertices and edges for modeling the
spatial aspects of the data [4].

4.2 Hyperparameter Selection

To select the most suitable hyperparameters for each of the adopted models,
we utilize a grid-search selection process that is carried out on multiple stages.
The best hyperparameter option is picked from a pool of options according to
the offered DR calculated against Xva by that value. The selected hyperpa-
rameters are listed next. ARIMA uses 1 and 0 as the differencing and moving
averages, respectively. SVM uses scale and sigmoid as the kernel and gamma val-
ues, respectively. FNN employs 4 layers, 32 units, Adamax optimizer, and ELU
activation without dropout. RNN employs 3 layers, 16 units, Adam optimizer,
and ReLU activation with a dropout rate of 0.2. CNN employs 4 layers, 32 units,
5 neighborhood order, Adam optimizer, and ReLU activation. SAE employs 3
encoding layers with (32, 16, 8) units, 3 decoding layers with (8, 16, 32) units,
Adam optimizer and Simoid activation without dropout. CGNN employs 4 lay-
ers, 32 units, 3 neighborhood order, Adam optimizer, and ReLU activation. The
proposed GAE-model employs 3 encoding layers with (32, 16, 8) units, 3 decod-
ing layers with (8, 16, 32) units, 4 neighborhood order, Rmsprop optimizer, and
ReLU activation.

4.3 Evaluation Metrics

To evaluate the models, we adopt the following assessment metrics. First, DR =
TP/(TP + FN) reflects the model’s ability to correctly mark malicious samples,
where TP and FN denote true positive and false negative, respectively. Second,
false alarm rate (FAR) = FP/(FP + TN) reflects the quantity of benign samples
that the model incorrectly marks as malicious, where FP and TN depict false
positive and true negative, respectively. Third, ACC = (TP + TN)/(TP + TN
+ FP +FN) reflects the model’s ability to mark both sample types.

4.4 Detection Performance

Tables 1 and 2 present the results of the investigated detectors. Table 1 reports
the evaluation results when the supervised models (SVM, FNN, RNN, CNN,
and CGNN) encounter seen attacks and when unsupervised detectors (ARIMA,
AE, and GAE) encounter unseen (new) attacks. The GAE model demonstrates
superior DR by 33.1−36.3%, 17.8−29.2%, and 2.5% compared to the graph, deep,
and shallow ML-based detectors, respectively. The reason behind the superior
performance of the proposed detector is that it learns the graph representations
and captures spatial aspects of normal operation of the power system without
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the need of being trained on malicious samples. Hence, unlike existing supervised
detectors, the offered attack identification results by the GAE model are not
limited to a set of FDIAs, which highlights its superiority.

Table 1. Evaluation results against FDIAs (%).

Detector DR FAR ACC

ARIMA 53.9 53.6 53.1

SVM 57.1 45.8 56.1

FNN 61 39.3 60

RNN 66.6 32.8 65.4

CNN 71.6 25.9 71.3

SAE 72.4 24.7 72

CGNN 84.4 13.6 83.5

GAE 90.2 9.3 89.8

In real-life, attackers might launch unseen new FDIA types. These attack
types might not be present during training stage of the model. To reflect such a
scenario, in Table 2, we present the evaluation results of supervised models when
encountering new unseen attacks compared to the unsupervised GAE model.
The detection performances of such detectors significantly degrade when they
are tested against unseen FDIA types. Specifically, the DRs of shallow, deep,
and graph-based detectors deteriorate by 13.9%, 10.1–12.7%, and 9.8% com-
pared to encountering seen attacks. This means that the proposed GAE-based
detector provides an increase of 47–15.6% in DR compared to supervised bench-
mark detectors against unseen FDIA types. The reason behind such enhance-
ments is that the proposed GAE-based detector offers unsupervised training that
learns the graph representations of benign behavior through the encoder-decoder
benign data reconstruction process, which increases its robustness against unseen
FDIA types.

Table 2. Evaluation results against unseen FDIAs (%).

Detector DR FAR ACC

SVM 43.2 59.9 42.2

FNN 48.3 52.1 47.9

RNN 54.8 44.6 53.6

CNN 61.5 36.5 61.7

CGNN 74.6 24.3 73.7

GAE 90.2 9.3 89.8
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5 Conclusions

This work proposed adopting an artificial intelligence-based GAE unsupervised
anomaly detector that provides three major advantages compared to existing
FDIA detectors. First, it employs Chebyshev graph convolution operation. Thus,
it captures the grid’s spatial characteristics. Second, it offers an unsupervised
learning strategy using an autoencoder that relies only on benign samples of
normal operation for training and hence offers robust detection of unobserved
types of FDIAs that do not take part of the training process. Third, due to
its structure that is equipped with stacked graph layers and its unsupervised
learning nature, employing the proposed detector leads to a superior detection
performance as opposed to benchmark detectors by 16–47% in DR against unseen
FDIA types.
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