
SQuBA: Social Quorum Based Access Control for
Open IoT Environments

Yixuan Wang
University of Minnesota, Twin Cities

yixua003@umn.edu

Abhishek Chandra
University of Minnesota, Twin Cities

chandra@umn.edu

Jon Weissman
University of Minnesota, Twin Cities

jon@cs.umn.edu

Abstract—Internet of things (IoT) devices have been ubiquitous
in recent years. An emerging model for IoT deployment is an
open edge-based infrastructure. Edge resources are commonly
used to coordinate capabilities and manage access due to IoT
device resource limitations and IoT vendor heterogeneity. The
open IoT environment often exists in a multi-user setting, where
multiple users interact with a single IoT device. In this setting,
we assume that none of the users or the edges are fully
trusted, thus IoT data privacy may be compromised. Limited
attention has been paid to authorization and auditing in this
environment. However, exploiting inter-user relationships gives
us leverage. In this work, we propose a social quorum based
architecture, SQuBA, as an access control mechanism for IoT
which provides relationship-driven authorization and auditing.
We present a tiered approach to support access control rules and
relationship-based trustworthiness. We implemented a prototype
and carried out experiments using a real-world dataset under
various scenarios and configurations. The results demonstrate
both SQuBA’s promising near real-time response latency that
is in the order of milliseconds, and good resilience to different
edge faulty models. We also compare with various baselines and
SQuBA is able to improve end-to-end latency by up to 10X and
tolerate the number of faulty edges by up to 2X.

Index Terms—Edge Computing, Internet of Things, Privacy,
Access Control, Distributed Ledger Technologies

I. INTRODUCTION

Emerging IoT devices and applications have been applied
to various domains: healthcare [1], transportation [2], [3],
agriculture [4], and others [5]. As a result, IoT devices
collect and process large amounts of private and confidential
information. This makes privacy a key concern in the context
of open IoT systems in which IoT devices are open to multiple
users and data consumers. Today, IoT privacy research is
focused on software practices [6]–[8], human interaction [9],
vendor heterogeneity [10], [11], insecure data flow [8], [12]–
[15], and authentication [17], [18]. Less attention has been
given to authorization and auditing. Access control consists
of three components: authentication (verifying user identity),
authorization (enforcing access control rules and preventing
illegal actions), and auditing (tracking down and verifying
activities).

Access control for IoT devices is a challenging task. IoT
devices are unable to directly authorize users and audit
activities because of their limited resources [9]. Thus, the
traditional computer access control mechanisms [35], [36] are

This work is supported in part by NSF grant NSF CNS-1908566.

not applicable. In addition, vendor and device heterogeneity
make it more challenging to build and enforce access control
rules in a consistent way [11]. Meanwhile, IoT applications
like surveillance and visual analytics usually require real-time
performance [19], so it’s critical that access control be done
in a timely manner.

Complicating matters, authorization and auditing for IoT
devices are fundamentally different from traditional devices
[9]. Traditional edge devices like personal computers and
phones usually interact only with a single user/owner. Once
user authentication is completed, further authorization and
auditing can be easily accomplished in the same device
[20]. However, numerous users may simultaneously share one
device in an IoT environment and this leads to different
requirements of data ownership and management [21], such as
a smart home’s shared voice assistant [9] or surveillance in an
Airbnb room [22]. Such IoT devices with limited resources are
not capable of authenticating and auditing all users’ activities.
Furthermore, users may have complex social relationships with
each other, which complicates the problem [9]. For instance,
mischievous children [23], abusive romantic partners [24],
and parents who keep their teens under surveillance [25] are
internal threats to the home IoT environment [9]. In such
scenarios, individual users intimately sharing IoT devices may
occasionally abuse private data. As another example, smart
cities may suffer from malicious service providers that corrupt
or leak sensitive data and cause financial or privacy-related
damage [26], [27]. To provide smart environment services, like
weather and noise monitoring [27], many service providers
need to collaborate and share data. Such collaboration relation-
ships are similar to social relationships among individual users.
Internal malicious providers are also significant threats in
smart cities [26] and none of them are fully trusted to control
data access. Thus, conventional role-based access control [35]
does not fit in the above scenarios.

On the other hand, the challenges of multi-user settings and
complex user relationships can provide leverage for the IoT
access control problem. With multi-user settings, we assume
that no single user or edge device is trusted, thus we require a
trusted quorum to perform secure authorization and auditing.
Furthermore, real-world relationships can be used to emulate
the trust relationships between edge devices to build quorums
and assist in access control.

In this paper, we propose a new IoT access control archi-



tecture that supports a multi-user IoT ecosystem. We consider
a common IoT infrastructure [9], [10], [28], [29] in which
users use their edge devices such as personal computers and
smartphones, to interact with IoT devices and perform activi-
ties. This architecture supports consistent access control rules
and fits multi-user scenarios. We adopt a trust model based on
localized IoT device usage and real-world user relationships
to establish local quorums and validate access requests. The
key observation is that real-world relationships can be utilized
to develop quorums for access control. Specifically, devices
owned by the same user shall trust each other. And users
who are in primary relationships that enjoy direct and intimate
connections, like commercial partners and spouses, may be
included to assist in the authorization process. In addition, the
users who are in an indirect relationship, such as the users’
parents of parents, maybe less trustworthy. We define such
trustworthiness as a tiered structure and use it to develop a
local quorum per device. The local quorums conduct autho-
rization decisions through a lightweight consensus algorithm
based on Federated Byzantine Agreement (FBA). In addition,
quorum edges maintain distributed logs to audit IoT device
activities. Specifically, we make the following contributions:

• Analysis of the IoT multi-user setting in edge-based
infrastructure. We observed that the unique challenges
and threat models require a new access control method
that is significantly different from that of traditional
computer systems.

• Propose a social relationship driven method for IoT
access control. We develop local hierarchical quorums
using real-world relationships between individuals for
collaborative authentication of access requests to address
these unique challenges.

• Adopt a lightweight local consensus algorithm. We
adopt a lightweight consensus algorithm suitable for
distributed and hierarchical local quorums in the authen-
tication process.

We implement a prototype of our system called SQuBA in
AWS platform and evaluate its performance with a real-world
IoT dataset, SIoT [30], which includes social information and
proximity of an IoT network that consists of 14600 devices.
Based on this dataset, we construct a trust model in a multi-
user environment. We then study the configurations, assess
end-to-end latency and resilience to faulty edges, and com-
pare our architecture with other consensus-based authorization
methods. The experimental results show that our architecture
provides promising real-time performance and good privacy
guarantees. SQuBA is able to reduce end-to-end latency by
up to 10X and tolerate the number of faulty edges by up to
2X when compared to baselines.

II. BACKGROUND

A. Edge-based IoT Infrastructure

We assume an edge-based IoT infrastructure [10], [12], [28],
[29] as shown in Fig. 1. In this deployment, the network con-
sists of two types of entities: IoT devices and edges. The IoT

Fig. 1: Edge-based Infrastructure. IoT devices interface with
edges and users.

devices, such as surveillance devices and smart TV, interface
with one or multiple edges that undertake the tasks of various
applications. The edge infrastructure comprises multiple types
of edges such as gateways, controllers, edge servers, and edge
devices. We assume that the consumers of IoT data, such as
end-users and service providers, are authenticated by the edge
devices [9], such as smartphones and personal computers, and
use it to interact with IoT devices. In the following sections,
the terms ”edge” and ”edge device” are used interchangeably.
For example, the household can turn on the smart TV through a
smartphone app; an intelligent healthcare provider may access
the patient’s heartbeat rate through a web app. In this setting,
the users and service providers may have complex real-world
relationships and their edge devices are further interconnected
to form a peer-to-peer network, which can accomplish more
complicated tasks in more distributed settings [10].

B. IoT Multi-User Settings

The multi-user setting refers to the scenario in which
multiple entities interact with the same IoT device. They can
be end-users in smart homes or service providers in smart
cities.

IoT privacy is a rising concern. Studies [22], [31], [32] show
that the multi-user setting is a key challenge in IoT privacy.
In the era of emergent IoT, it is very often that complete
strangers may share personal services, such as surveillance
in an Airbnb room. These sharing schemes raise significant
concerns about IoT data privacy [22], [33]. Smart cities that
require collaboration between service providers [27] is also a
typical multi-user scenario.

In addition, some prior work [9] has identified social ties
between users in home IoT environments, such as roommates,
neighbors, and children. Given the importance of social rela-
tionships, privileged-abused users, such as abusive romantic
partners, are internal threats that are magnified in the IoT
environment. Considering that IoT devices are able to perform
various operations, such as reading heart-rate and monitoring
noise level, an access control mechanism should exploit both



social relationships and IoT device operations together [9] to
provide resilience to internal threats.

C. Threat Model

The two major classes of threats are external third parties
and internal privilege-abused entities. The former class refers
to the attacks from external adversaries that exploit software
vulnerabilities attempting to span malicious edges in the
network. Examples are discussed in [7], [8], [12]. The latter
class includes those internal entities that abuse the privilege.
In this case, a user might be compromised by attackers or
motivated to subvert a smart-home system’s access control
rules for disobedience, such as a child attempting to take
actions forbidden by their parents [9]. It also includes users
that attempt to compromise the data privacy of IoT devices that
are shared with other users. For instance, abusive romantic
partners [24] may secretly download household surveillance
videos. Also, it considers the local threat that is in proximity
and misuse of IoT devices, such as a maintenance worker
might unlock the door through a smartphone app. Additionally,
the service providers who attempt to corrupt and leak data
also belong to this class. Overall, in the multi-user scenario,
no single user, service provider, or edge is eligible to manage
an IoT device alone. We aim for an architecture that fits the
IoT context and supports the multi-user setting.

D. Challenges and Opportunities

The open IoT access control problem presents two main
challenges. First, limited resources prevent IoT devices from
completing the access control tasks. As a result, delegating
these tasks to edge devices becomes a common solution. How-
ever, multi-user settings in the IoT environment complicate
data ownership and management, which creates another unique
challenge. Second, none of the edge devices are trusted. On the
one hand, the multi-user setting is vulnerable to internal threats
such as privilege-abuse users. On the other hand, the intricate
relationship between the users provides leverage. We observe
the opportunity to utilize users’ relationships to guarantee
privacy by collaboratively enforcing access control rules.

III. SQUBA DESIGN AND IMPLEMENTATION

We next present our consensus-based architecture, SQuBA,
to provide access control for the open IoT environment.

A. System Overview

SQuBA is a consensus-based authentication approach in
a edge-based IoT infrastructure where the end-users interact
with IoT devices through edges. Each IoT and edge device
are authorized and identified as uniquely identifiable by a set
of secure, non-replicable credentials. In this work, certificate
equivalent signatures generated by ECDSA algorithm [16]
are used as the credentials. After authorization, IoT devices
will own their own local quorums based on their real-world
relationship (More details are discussed in the following
sections). Quorum edges shall enforce the access control rules
and vote to either deny or approve access requests. The

1-hop 
quorum (C)

2-hop
quorum

3-hop 
quorum

(P)

(D1) (S1) (D2)

(S2) (N1) (N2)

Fig. 2: An example of a 3-hop tiered quorum.

local quorums are responsible for enforcing access control
rules, authenticating future access requests, and auditing IoT
activities. Specifically, our architecture supports operations-
based access control rules considering its fine-granularity [9],
[17]. Each rule is a triplet that includes [Operation, User,
Contextual Information]. In addition, the quorum edges keep
distributed, consistent, and append-only ledgers of realized
activities for auditing.

B. Relationship Driven Quorum

To adapt to the multi-user scenario, each IoT device owns
a local quorum that is a union of end-users’ quorums. The
key insight is that we consider real-world relationships to
construct the IoT devices’ trust assumptions. First, all users
of the given IoT device should participate in the request
validation for that IoT device. Further, the entities might have
intimate connections with others and rely on them to make
decisions. Thus, we can also employ social ties to construct
the local quorum. In the real world, people who are in primary
relationships that enjoy direct and intimate connections, like
commercial partners and parents, usually trust each other,
while people who are in indirect relationships may be regarded
as less trustworthy. This trust model results in tiered quorums.

The tiered structure consists of a succession of edges of
decreasing trustworthiness. The primary trusted edges of a
given IoT device are called 1-hop edges. They are edges
that belong to the users of the IoT devices. Those edges
participate in the daily usage of IoT devices and are most
relevant to IoT device privacy, and are mostly likely the device
and edge owner. Thus, 1-hop edges are the most trustworthy
from the IoT device’s perspective. Then, the edges that are
primarily connected to 1-hop edges are called 2-hop edges.
The 2-hop edges are closely connected with the 1-hop edges
but they may be less trustworthy in the IoT device’s view.



The tiered structure is needed because 1-hop edges can be
compromised by an adversary, thus multi-level consensus is
required. However, the trustworthiness attenuates with more
hops away from the given IoT device. A hop threshold can
be set up to constrain the trustworthiness and quorum size.
As a consequence, the local quorum can be built in a tiered
structure, and Fig. 2 presents an example of a tiered quorum
with a hop threshold as 3. In this example, a sensor monitors
a patient’s heart rate and synchronizes data to the user’s
smartphone (P) and the clinic database (C). These two edges
are the 1-hop quorum of the sensor. We can expand the 1-
hop quorum based on users’ social ties and obtain the 2-hop
quorum, where the patient depends on her spouse (S1) and
daughter (D1) and the clinic depends on the doctor (D2).
Similarly, the 3-hop quorum further includes the daughter’s
spouse (S2) and nurses (N1 and N2) who work with the doctor.

C. Local Consensus

The quorum edges enforce access control rules and make
authorization decisions through a lightweight consensus al-
gorithm, tiered federated voting (TFV), which is based on
federated voting in the Federated Byzantine Agreement (FBA)
[48].

First, all quorum edges will synchronize the access control
rules of the given device. Then they vote to approve the
request only when all three factors of the access control
rules are satisfied. Otherwise, they should vote for rejection.
Specifically, the edges will check the client identity of the
request and the capability of the target IoT device.

In addition, contextual information, such as the time of the
day and the location of the client, will also be considered.
For example, if the access control rule is [Turn on SmartTV,
child#1, 9 am-9 pm], the client whose identity is not child#1
should be rejected. Also, the child#1 will not get permission
from the edges to turn on the TV at 10 pm because of a
contextual violation. Furthermore, each edge will multi-cast
its voting ballot to all quorum edges to avoid byzantine votes.
Similarly, the final decision must be propagated to the quorum
and visible to everyone for future auditing.

As for the consensus algorithm, federated voting [48] is
designed for a tiered structure quorum. The key insight behind
federated voting is that edges can be convinced by their own
local quorums. Specifically, it employs a three-phase protocol
in which edges first vote for a statement (access request in
this architecture), then accept/reject it, and finally confirm the
decision [48]. Fig. 3 shows the steps of federated voting: A
node v may vote for any valid statement a and only accepts a
when v is a member of a quorum in which every node either
votes for a or accepts a. Even if v did not vote for a, if v’s
quorum contains a node accepting a, then v also accepts a.
Finally, when v is a member of a quorum in which every
node accepts a, then v confirms a [48]. However, the most
important nodes in federated voting are the leaf-level nodes
[49] because the leaves can persuade the top nodes. This is
incompatible with the attenuating trustworthiness of social ties
in our architecture and requires modification.

Fig. 3: Federated Voting [48].

To fit the trust relationship that the top-tiered nodes are
the most trustworthy from the IoT device’s perspective, we
propose tiered federated voting (TFV). The principle is that the
top-tiered edges are more important because they are directly
and closely related to IoT device usage. In other words, they
have more influence when making authorization decisions.
However, due to software vulnerabilities and privilege misuse,
any edges may turn out to be faulty regardless of their position
in the quorums. In fact, internal threats from an intimate
connection are a significant consideration. Faulty edges may
violate access control rules and intend to cause physical,
financial, and privacy-related damage. Hence, the voting shall
expand quorum hops and involve more edges when some of
the top-tiered edges turn out to be faulty and fail to reach a
consensus. In this case, the adversary must make more efforts
to either investigate the quorum structure or compromise more
edges to control the majority and final decisions. Based on
these insights, we modified federated voting as follows: The
voting process contains multiple iterations. The first voting
iteration only happens among the 1-hop edges, it terminates
once consensus is reached among the top-tiered nodes. Other-
wise, it starts the second voting iteration and initiates federated
voting among the 2-hop quorum. Overall, it gradually expands
the voting to a lower level of edges until the hop threshold or
consensus is reached.

As for the agreement threshold, each quorum can have its
own threshold depending on the quorum quality and trust
level [51]. It can be 100% for critical security or simply 51%
majority if the quorum edges are fully trusted. Moreover, the
hierarchy of quorums provides more flexibility to define the
agreement threshold. In particular, each level of a quorum can
have an individual agreement threshold. It is an interesting
question to weigh the quality of quorums and set up an
agreement threshold accordingly. For instance, the threshold
of the majority can be simply 51% among the 1-hop quorum,
and the 2-hop quorum threshold might be 0.67 since they are
less trustworthy. Similar to access control rules, setting the
agreement threshold is outside our scope.

Fig. 4 shows an example of tiered federated voting applied
to the healthcare example. When a new access request is
received, the patient edge (P) and the clinic database (C) shall
vote to either approve or reject the request. This 1-hop quorum
can draw a decision once a consensus is reached. Otherwise,
they should initiate the second voting iteration among the



Access 
Requests

FedVoting 
among 1-hop

FedVoting 
among 2-hop

no consensus 

no consensus 

2 hop
quorum

1 hop 
quorum

3 hop 
quorum

FedVoting 
among 3-hop

P C

D1 S1 D2

S2 N1 N2
consensus

reached 

Final 
Decision

Fig. 4: A Tiered Federated Voting process.

P C D1 S1 D2 S2 N1 N

 1
2

3

Ite
ra

tio
n

Fig. 5: Ballots of the above voting process.

2-hop quorum. In this case, the patient edge (P) and the
clinic database (C) might be convinced by their own quorums
and finally reach a consensus. Similarly, if no consensus is
achieved among the 2-hop quorum, the tier 3 edges, the spouse
of the daughter (S2), and nurses (N1 and N2), will participate
in the third iteration of federated voting.

There are three outcomes of the tiered federated voting.
First, when non-faulty edges control the majority, they can
reach a decision that respects the access control rules and the
IoT device is secure. In the healthcare example with a simple
51% agreement threshold, the IoT device is protected when
the 1-hop quorum edges, the patient (P) and the clinic (C), are
honest. Even if the higher-level edges become faulty, the non-
faulty lower-level edges can still persuade the top-tiered edges
and reach a correct decision. This is demonstrated in Fig. 4.
The red shaded nodes P and D2 turned out to be faulty and this
led to a lack of consensus in the first two iterations as shown
in Fig. 5. However, the third iteration involves S2, N1, and
N2. Those honest nodes will finally persuade the faulty nodes
and achieve proper consensus. The second possible outcome
is a lack of majority and consensus. Given the healthcare
example, this happens when P, D1, S1, and S2 are all faulty.
Alternatively, there is no consensus when C, D2, and N1 are
faulty. The third outcome is a faulty decision where the faulty
edges outvote the non-faulty edges and control the majority.
In this case, the protection of given IoT devices completely
fails when the 1-hop quorum, P and C, are faulty. The same

outcome is obtained at the second voting iteration when C,
D1, and S1 are faulty.

When the local quorum reaches a consensus to approve the
access request, all 1-hop edges of the IoT local quorum send
the approved action to the IoT device which then responds
accordingly. The IoT device will not respond until it receives
approval messages from a majority of 1-hop edges to mitigate
approval messages from rogue edges. In this case, choosing
one single entity to enforce the consensus decision and route
the request to the IoT device is insecure due to internal
threats. Actually, avoiding faulty nodes when enforcing the
consensus decision is still an open research problem in such
open systems: round-robin [52] and random selection [50]
are common techniques, however, they are not promised to
eliminate the probability of selecting faulty nodes.

Local quorums and the tiered structure make our archi-
tecture more resilient to failure under the threat model. For
example, if the adversary made an external attack by spanning
a million malicious edges to the system, a typical system-wide
agreement would fail because the majority of voting is con-
trolled by the adversary. However, this does not affect SQuBA
because of the distributed local quorums of IoT devices. As
for internal threats from privilege-abused edges, the top-tier
faulty edges will be persuaded by the honest edges in the lower
level of quorums. Meanwhile, the leaf-tier faulty edges do not
participate in the voting if the top-tier honest edges reach a
consensus and dominate the decision. In addition, because of
no global consensus, a failure of an individual quorum does
not interfere with the others. Overall, the adversary must make
a greater effort to deduce the structure of all quorums and then
compromise a sufficient number of edges.

D. Journals

In addition to authorization, our architecture also provides a
multi-user auditing mechanism based on a distributed ledger.
The aim is that all users shall be able to audit the realized
activities of the IoT devices. Constructing a log of activities
is a common solution for auditing [42]. But a distributed
ledger usually refers to whole system-wide records which
contain information for all entities’ activities. This consumes
huge storage space and it may take hours to synchronize
when new participants join [40]. In addition, the global public
history reveals activity patterns and this may compromise data
privacy [40]. Thus, we present device-oriented journals for
audit activities.

Generally, a journal [40] is a public data structure of a
group of nodes and contains only part of the records of the
whole system. In this work, each IoT device owns a local
quorum; each journal only maintains information of a single
IoT device; and each edge in the quorum of that IoT device
keeps the consistent, append-only, immutable journal. The
journal is updated when access control decisions are made by
the quorum. Thus, the distributed journal is compatible with
local consensus and keeps it consistent per IoT device.

Each device-oriented journal consists of three categories of
information:



• quorum relationship, the edges that are included in the
IoT device’s quorum;

• access control rules, the triplets to validate access re-
quests;

• hashes of historical approved access.
The journal is implemented as a hashchain. A hashchain

is an ordered set of blocks with a cryptographical hash to
commit to every approved request of an IoT device in the
ordered chain [42]. Each block has a unique header that
contains a hash of current configurations that consists of
access control rules and quorum relationships. The header
also keeps a timestamp that proves the session of accesses
happened after the block was created. Further, the quorum
edges can reach a consensus about lease time for each block
to guarantee liveness. A new block will be created when the
lease time is expired. In addition, the hash of the previous
block is maintained in the block header so that the chain is
irreversible and append-only. When a new request is approved
through the quorum, all quorum edges check it and ensure
that the new access statement is a valid extension of the
block it previously had from the IoT device. Specifically,
each approved access statement contains the client ID hash,
requested capability, and real-time contextual information.
Each block only accommodates accesses that happen under
the block header’s configurations. Once the configuration is
changed, a new block with an updated header will be created
for future records. The journals can be used to audit the IoT
device’s activities for posterior analysis, such as looking up
periodic requests and tracking down the potential cause when
data leakage occurs.

The IoT devices synchronize and update the quorum re-
lationship and access control rules by multicasting (sending
data to multiple receivers simultaneously [41]) to its quorum
edges. The historical hashes are synchronized during the
voting process. When a new approval consensus is reached,
all quorum edges distribute confirmation [48] thus they can
automatically append the hashes and keep synchronized. The
journal should be identical among all quorum edges during
the life-cycle of the IoT device. In addition, the quorum edges
can send a catchup message [52] to each other to check that
their distributed journals are consistent.

Our design uses a hashchain with respect to each IoT device.
This approach is compatible with our quorum and consensus
architecture. Additionally, it does not require each edge to
store a system-wide log of activities. This leads to less storage
consumption and protects data access patterns.

There are other interesting directions and open questions
about combining hashchains in IoT ecosystems. For instance,
the hashchain can be capability-oriented so that one contains
logs of temperature control and another one keeps lighting
system history. In this case, the question of how to update
and where to store the hashchain must be decided.

E. Skip-voting Mechanism

Access requests in IoT environments are more likely to be
repeated due to periodic queries. We take advantage of the

recorded access history to reduce latency for such requests
by re-using prior decisions. We introduce a skip-voting mech-
anism to accelerate the voting process of repeated requests.
When a new request is marked as repeated, the quorum edges
will look up the journal history and skip the first voting stage
among the three phases (voting, accepting, and confirming). In
other words, the voting process of a repeated request consists
of three phases: the edges of the corresponding 1-hop quorum
1) lookup the request if the historical access is approved, 2) ac-
cept the request if the real-time contextual information aligns
with access control rules, 3) confirm the decision, update and
synchronize the journal with the whole quorum accordingly.
The skip-voting mechanism can save communication overhead
of the first voting stage and following the tiered voting process.
Thus, it can save end-to-end latency for periodic requests.

The journal guarantees the freshness of quorum configu-
rations and prevents stale updates. In this case, the expired
previous blocks will not be accessed. So an access history un-
der stale configurations is not considered when applying skip-
voting. Also, the quorum edges still account for contextual
information for repeated requests. For instance, considering a
smart TV policy, [Turn on TV, Child, 10am - 9pm], although
historical access under the same configuration is approved at
4pm, a repeated request at 10pm shall not be accepted because
of a contextual information violation.

IV. EVALUATION

In this section, we evaluate SQuBA using a real-world
dataset in terms of end-to-end latency to validate access
requests and resilience to faulty edges. We analyze the system
configurations and compare them with four baseline authoriza-
tion methods.

The dataset, SIoT [30], contains information about IoT and
edge devices that are installed in the city of Santander in Spain.
A total of 14600 devices are owned by 4000 users. Among
those, 7000 devices are edge devices, such as smartphones
and PCs. 7600 devices are IoT devices such as smart fitness
devices, printers, home devices, etc. The dataset also provides
device relationships and we take advantage of ownership and
social relationships to emulate multi-user scenarios. Owner-
ship means devices are owned by the same owner. Social
relationship means the devices ”meet” (are in close proximity)
with each other beyond a certain frequency (more than 3 times
per 10 days) and duration (more than 15 minutes). Because
proximity is an important usage factor in the IoT context [9],
the users who are in ”social relationships” with IoT devices
are considered as users of the given IoT device to emulate
the multi-user scenario. We also deploy social relationships
as a primary relationship between edge users. Thus, each IoT
device’s 1-hop quorum contains the edges that are likely to be
the users of the given IoT device.

Experiments are performed on 100 AWS EC2 machines,
each machine contains 70 threads emulating edges. Based on
the SIoT dataset, edges develop quorums for 7600 IoT devices
and validate access requests based on their access control rules.
All access control rules and access requests are synthetic.



500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

1000

2000

3000

4000
nu

m
be

r o
f s

ec
ur

e 
de

vi
ce

s
0.51
0.67
0.9
0.99
non-uniform

(a) Number of secure devices

500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

1000

2000

3000

4000

nu
m

be
r o

f n
eu

tra
l d

ev
ice

s

0.51
0.67
0.9
0.99
non-uniform

(b) Number of devices lack consensus

500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

500

1000

1500

2000

2500

3000

3500

4000

nu
m

be
r o

f f
ai

le
d 

de
vi

ce
s

0.51
0.67
0.9
0.99
non-uniform

(c) Number of failed devices

Fig. 6: Effects of various agreement thresholds

1 2 3 4
hops thresholds

0

200

400

600

800

av
g 

lo
ca

l q
uo

ru
m

 si
ze

Fig. 7: Quorum sizes vs. hop thresholds

1 2 3 4
hops thresholds

2

4

6

8

av
g 

en
d-

to
-e

nd
 la

te
nc

y 
(m

s)

3000 faulty edges
2000 faulty edges
1000 faulty edges
500 faulty edges

Fig. 8: Average end-to-end latency with various numbers of
faulty nodes and hop thresholds.

A. Configuration Analysis

1) Agreement Threshold: The agreement threshold is an
important parameter. Each quorum can have its own agreement
threshold depending on the quorum quality and trust level
trade-off. The threshold can be 100% for critical security
or simply 51% majority for high-quality quorums. Given the
threat of software vulnerabilities and privileged-abused inter-
nal users, the edges can be faulty when they are compromised
or misused. Consequently, the faulty edges attempt to allow
illegal access without respecting IoT devices’ access control
rules. In this case, the quorum can not reach a consensus when

1 2 3 4 5
number of faulty nodes

500

1000

1500

2000

2500

3000

3500

4000

nu
m

be
r o

f s
ec

ur
ed

 d
ev

ice
s

500 faulty nodes
1000 faulty nodes
1500 faulty nodes
2000 faulty nodes
2500 faulty nodes
3000 faulty nodes

Fig. 9: Number of secured IoT devices with various numbers
of faulty nodes and hop thresholds.

faulty edges obstruct voting. In the worst case, if the faulty
edges control the majority, then they can outvote the non-faulty
edges. The quorum hierarchy complicates the analysis of the
agreement threshold. In Fig. 6, we assess the effects of various
agreement thresholds: 0.51, 0.67, 0.9, 0.99. Additionally, we
also examine non-uniform agreement thresholds where the
agreement threshold of the 1-hop quorum is 0.51, and the
2-hop quorum threshold is 0.6 since they are less trustworthy.
Then the 3-hop quorum threshold is 0.7. Each quorum contains
3-hop and all faulty nodes are randomly selected. Because each
IoT device owns its local quorum, the number of secure, failed,
and lack consensus IoT devices are measured to present the
effects of various agreement thresholds.

Obviously, more faulty edges lead to more unprotected IoT
devices. However, higher agreement thresholds induce fewer
failed IoT devices but increase the risk of failing to reach a
consensus. Surprisingly, the non-uniform threshold performs
similarly to the 0.9 threshold in the given dataset.

2) Hop Threshold: SQuBA constructs tiered quorums and
the trustworthiness attenuates with more hops away from the
given IoT device. A hop threshold can be set to constrain
the trustworthiness and quorum size. Generally, a larger hop
threshold leads to larger local quorums and deeper hierarchies.
Intuitively, there is a trade-off between privacy guarantees
and latency. Including more edges will increase the difficulty



in compromising the quorum but increase the latency to
validate access requests. We present the average quorum sizes
with various hop thresholds in Fig. 7. It demonstrates that
expanding to more hops can involve more edges in the quorum.

We then evaluate the end-to-end latency with various hop
thresholds. End-to-end latency is the time interval between
sending a request and receiving a response. Fig. 8 is the
average latency to process requests when the hop thresholds
change and uses a uniform agreement threshold of 51%
everywhere. In this case, the latency increases with a larger
hop threshold. Generally, more hops lead to larger quorums.
This results in longer end-to-end latency. However, because
the voting is likely to converge among the top-tiered edges
when there are few faulty edges, the latency does not grow as
the hop threshold increases in this scenario.

The hop thresholds will also affect the privacy level of our
architecture. Here, we assess the resilience to faulty edges with
different hop thresholds in Fig. 9. The internal edges are faulty
when they are compromised due to software vulnerabilities
or privileged-abused users. The faulty edges attempt to allow
illegal access without respecting IoT devices’ access control
rules. As a result, the IoT devices are not secure if the
faulty nodes control the majority of the quorum. Due to
local quorums and journals, authorization and auditing are
granted per device. Thus, we consider the number of secured
IoT devices to quantify the privacy level. In this case, all
faulty nodes are randomly selected and a uniform agreement
threshold is set as 51% which is a simple majority. The
results indicate that arbitrarily increasing hop thresholds and
increasing quorum size do not enhance privacy guarantees.

The Fig. 9 and Fig. 8 also demonstrate the trade-off between
privacy guarantees and latency. Keeping a smaller quorum size
enjoys better end-to-end latency. But it may be more vulnera-
ble to internal faulty edges. In the SIoT dataset, choosing the
hop threshold as 3 or 4 is reasonable.

B. Performance Comparisons

We now compare SQuBA performance with other authoriza-
tion methods: a system-wide authorization protocol, a single
host edge authorization, a 1-hop quorum, and a flat 3-hop
quorum. For system-wide authorization, we deploy the two-
phase commit protocol as the consensus algorithm [53] among
all edge nodes of the network. For the single host edge
authorization, one edge that is owned by the same user with
the IoT device is assigned to be its authoritative entity. To
assess the impact of quorum hierarchies, we also develop local
quorums based on trust assumptions without hierarchy: the 1-
hop and flat 3-hop quorums. They will perform a two-phase
commit protocol among the local 1-hop and 3-hop quorums
without hierarchy to reach a consensus. Generally, the system-
wide quorum will conduct global consensus. The 1-hop, flat
3-hop, and SQuBA quorums conduct local consensus and the
quorums are built on users’ real-world relationships. Further-
more, SQuBA appreciates the trust attenuation along with hops
expansion by deploying a hierarchy of quorums while the 1-
hop and flat 3-hop do not consider such a trustworthiness

500 1000 2000 3000
number of faulty edges

0

5

10

15

20

Av
g 

en
d-

to
-e

nd
 la

te
nc

y 
(m

s)

1-hop
flat 3-hop
uniform SQuBA
non-uniform SQuBA
system-wide

Fig. 10: Average end-to-end latency of various authorization
methods.

setting. The uniform agreement threshold is set as 0.9 since
it is for strict security. Additionally, the SQuBA quorums set
the hop threshold as 3 so that the SQuBA will have exactly
the same quorum elements as the flat 3-hop quorums.

1) Latency Performance: We compare the latency with
other authorization methods in various configurations in
Fig. 10. Obviously, a larger quorum size leads to higher end-to-
end latency. The 1-hop quorum has the smallest latency since
it involves a small number of edges. Meanwhile, SQuBA can
outperform the system-wide and flat 3-hop quorum because
SQuBA can early terminate the voting once consensus is
reached among the top-tiered edges. Especially when compar-
ing the system-wide authorization protocol with the two-phase
commit protocol, SQuBA saved about 10X end-to-end latency.
The non-uniform threshold setting can further save latency due
to a smaller threshold among high-level edges. Thus, the tiered
quorum and voting can save latency by exploiting real-world
social relationships. Currently, both real-time query generation
[18] and processing time [54] of IoT systems are typically in
the range of milliseconds. Thus, our architecture is able to fit
IoT applications.

2) Resilience to Internal Faulty Edges: In this part, we
consider three faulty models regarding internal threats. The
first faulty model is that internal edges turn out to be faulty
in a random manner. The second model is hotspots-prior in
which the edges that are more likely to be top-tiered became
faulty first. This corresponds to the scenario that internal
privilege-abuse users, such as romantic abusive partners [24],
attempt to violate given access control rules. This may also
happen when the adversary may observe the network traffic
and hack the hotspots first. In the SIoT dataset, there are
around 1800 edges that are involved in more than 23 IoT
devices’ 1-hop quorum. These edges are more likely to be
top-tiered nodes of local quorums. Thus, they might be more
participative and important when making decisions. Hence,
they are regarded as hotspots and the rest are viewed as
bystanders who are less participative in the authorization
process. The third faulty model is bystanders-prior in which
the bystanders are compromised first. This corresponds to the
scenarios in which the less trusted participants are malicious.



500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

1000

2000

3000

4000
nu

m
be

r o
f s

ec
ur

ed
 d

ev
ice

s
system-wide
flat 3-hop
1-hop
uniform SQuBA
non-uniform SQuBA

(a) Under evenly distribution

500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

1000

2000

3000

4000

nu
m

be
r o

f s
ec

ur
ed

 d
ev

ice
s

system-wide
flat 3-hop
1-hop
uniform SQuBA
non-uniform SQuBA

(b) Under hotspots-prior distribution

500 1000 1500 2000 2500 3000 3500
number of faulty nodes

0

1000

2000

3000

4000

nu
m

be
r o

f s
ec

ur
ed

 d
ev

ice
s

system-wide
flat 3-hop
1-hop
uniform SoQuo
non-uniform SoQuo

(c) Under bystanders-prior distribution

Fig. 11: Resilience comparisons

1 2 3 4
hop thresholds

0.0

0.5

1.0

1.5

2.0

2.5

av
g 

en
d-

to
-e

nd
 la

te
nc

y 
(m

s)

3000 faulty edges
2000 faulty edges
1000 faulty edges
500 faulty edges

Fig. 12: Average end-to-end latency for repeated requests.

External attacks are not discussed because it never affects
SQuBA’s privacy due to distributed quorums.

The results are shown in Fig. 11. Generally, SQuBA is
the most resilient to faulty edges under all of the above
faulty models. First, injecting new faulty edges does not affect
SQuBA’s privacy because these new malicious edges are not
included in IoT devices’ local quorums. But the system-wide
consensus fails when the number of new faulty edges grows.
Similarly, as shown in Fig. 11a, the flat 3-hop and system-
wide quorums completely fail to protect IoT privacy with a
limited number of faulty edges, while the 1-hop and SQuBA
can still protect many IoT devices. This result suggests that a
local quorum based on users’ social ties is beneficial in terms
of privacy. Blindly expanding the quorum does not guarantee
better privacy but increases the risk of involving malicious
edges. In addition, because the local quorums do not interfere
with each other, some IoT devices are still secure even if a
significant number of edges turn out to be faulty.

Furthermore, the quorum hierarchy is also beneficial.
Specifically, all types of local quorums perform better in the
bystanders-prior model in Fig. 11c and are more sensitive
to the hotspots-prior model in Fig. 11b. This is because the
hotspots are more likely to be top-tiered edges of various
quorums. Thus, they might be participants and important
when voting. Once the top-tiered edges are compromised,
the IoT device is more likely to be unprotected. However,

the SQuBA outperforms flat 3-hop and 1-hop quorums in all
models. This presents the benefits of the quorum hierarchy.
The privilege-abused users’ ballots are persuaded by the lower-
level non-faulty edges. As for the faulty edges caused by
software vulnerabilities, the adversaries cannot control the
validation decisions of SQuBA unless they make a greater
effort to discern the quorum structure or compromise more
edges. Particularly, the non-uniform threshold is beneficial
in the bystanders-prior model. This is because the smaller
threshold among top-tiered edges allows them to dominate
the voting and prevent faulty edges in the lower level. As
a consequence, SQuBA can tolerate approximately 2X the
number of faulty nodes vs. the system-wide authentication
methods when securing the majority of the IoT devices.

C. Skip-Voting Performance

We proposed the skip-voting mechanism to more efficiently
handle repeated requests. Fig. 12 is the average end-to-end la-
tency to process repeated requests under various configurations
with a uniform agreement threshold of 51%. The skip-voting
mechanism significantly reduces latency up to 5X. In addition,
the average end-to-end latency for validating repeated requests
stays constant irrespective of environmental conditions (e.g.
size of network, load, etc.).

V. RELATED WORK

1) Traditional Access Control: There has been much work
on privacy-aware and context-based access control [36], [37],
which enhances access control models with specific compo-
nents, such as roles and contexts. But they are designed for tra-
ditional computer systems. However, the multi-user setting and
constrained resources of IoT devices make it non-applicable
to the IoT access control problem. Also, collaborative access
control [34], [35] does not consider the complex relationships
among users and potential internal threats in the open IoT
environments.

2) IoT Access Control: Much research has been conducted
on access control architectures in the IoT environment. This
work can be divided into three main categories: cloud service,
single host edge, and system-wide consensus.



Using a cloud service to manage IoT access is a common
solution in many IoT applications [38]. The disadvantage is
that vendor and device heterogeneity can lead to complex in-
terfaces that are confusing to the user [11]. As a consequence,
users may fail to set up a proper access control rule. Cloud
data leakage is also a significant concern [15].

The second class is a user-provided host edge. This host
edge is fully responsible to enforce access control rules of IoT
devices before releasing data to the vendors and other edges
[11], [12], [39]. However, this approach relies on a single
trusted host edge which is not suitable for open multi-user
environments. In addition, authorization fails when the given
edge is compromised and non-trusted.

Another approach is to conduct a system-wide consen-
sus when validating access requests. This approach usually
relies on blockchain platforms [22], [33], [40], [42]. Such
architectures require independent edges and IoT devices to
build a global consensus around a public, distributed, and
append-only ‘ledger’ that is a chain of access hashes, without
relying on a central coordinator to provide the authoritative
version of the records. Furthermore, the current generation of
blockchains, such as Ethereum [43] and Bitcoin [44], have
introduced smart contracts [45], a programming logic residing
in the blockchain as byte codes that are automatically executed
when certain messages are triggered. Blockchain and smart
contracts have been proposed by many [22], [33], [45], [46] as
an access control mechanism. This authorization architecture
fails when the majority of the entities are controlled by the
adversary. Furthermore, blockchain platforms suffer from high
overheads and require intensive computation and storage [47]
that are unfavorable for IoT devices and applications. The
execution of a smart contract may take up to hours [46]
which may be unacceptable for many IoT applications. One
study [47] proposed a blockchain optimization to fit in the IoT
context. This approach keeps a trust rating system of entities to
decrease certain mining process overheads. But it still requires
a global ledger of all IoT devices in the given network and is
less efficient when the set of users is changing.

3) Comparing with Prior Methods: We also contrast our ar-
chitecture with other IoT access control methods. Specifically,
cloud-based authorization suffers from vendor heterogeneity
and fails to provide consistent access control rules [11].
And it does not guarantee real-time response due to network
congestion and round-trip time [40]. In addition, Cloud data
leakage can lead to a complete failure of access control [15].
For the blockchain-based approach, it is resource intensive and
may be too expensive. Furthermore, it completely fails against
51% attack when the adversaries controlling more than half
of the hashing power of a whole system [55]. In other words,
all IoT devices of the system are insecure once the attacker
controls the majority of hashing power. For the single-host
edge method, it is hard to support multi-user scenarios because
it can not prevent the host edge from abusing IoT data. Once
the attacker controls the edge host, all IoT devices that are
managed by the victim edge will be vulnerable. Also, it can not
prevent the edge owner from misusing data because of the edge

host completely dominates IoT access. However, our proposed
architecture is able to support multi-user settings in the open
IoT environment and provide real-time end-to-end latency. As
for privacy, due to hierarchical structure of quorums, it only
fails when the attacker learns the quorums’ structures and
compromises enough edges accordingly. Furthermore, because
each IoT device owns a local quorum, failures do not interfere
with each other. As the Fig .11b suggests, certain IoT devices
stay safe under SQuBA even if a significant number of edges
are compromised vs. all other baselines that fail completely.

VI. DISCUSSION

SQuBA simultaneously achieves good resilience to faulty
edges and near real-time end-to-end latency.To the best of our
knowledge, this is the first work that deploys social relation-
ships in IoT access control in an open untrusted environment.
As a consequence, our work is able to accommodate real-world
trustworthiness in the IoT environment.

1) Social Relationships in IoT: Social relationships brings
more challenges into the IoT environment [31], [32]. On one
side, it amplifies internal threats of privilege-abuse users and
complicates the rules and vocabulary of IoT privacy [9]. On
the other side, it creates opportunities to develop a new access
control mechanism that takes advantage of social ties. Our
work distinguishes the intimate and indirect social ties and
constructs local quorums accordingly. However, there are other
complex relationships that may also make a difference in the
IoT context, like neighbors and visiting families [9]. Properly
including more types of social ties remains an open challenge.

2) Local Consensus for Privacy: Our experimental results
inspire us to rethink the consensus-based approaches to IoT
privacy. In our experiments, all types of local quorums based
on users’ social ties perform better than the system-wide quo-
rums. It suggests that aggressively expanding the consensus
quorum does not guarantee better privacy but introduces the
risk of involving malicious entities. Figuring out the trade-off
between local quorum size and performance demands more
effort.

VII. CONCLUSION

With the rapid development of IoT networks, this work
focuses on access control for IoT devices in multi-user en-
vironments. We introduce SQuBA into an edge-based IoT
infrastructure with the key insight that authorization should
consider users’ real-world social relationships. Specifically, we
propose the tiered local quorum structure and authorization
voting algorithm to validate access requests using quorum
edges. We evaluated our architecture using a real-world IoT
dataset. We assess configuration factors, latency, and resilience
to faulty edges. Our experimental results show promising near
the real-time performance and good privacy guarantees that
perform better than state-of-the-art approaches.

ACKNOWLEDGMENT

This work is supported in part by NSF grant NSF CNS-
1908566.



REFERENCES

[1] J. Leng, Z. Lin, and P. Wang, “An implementation of an internet of things
system for smart hospitals,” IEEE/ACM Fifth International Conference
on Internet-of-Things Design and Implementation (IoTDI), pp. 254-255,
2020.

[2] S. Li, et al., “Mf-iot: A mobilityfirst-based internet of things architecture
with global reach-ability and communication diversity,” IEEE First Inter-
national Conference on Internet-of-Things Design and Implementation
(IoTDI), pp. 129-140, 2016.

[3] S. Jog, et al., “Enabling IoT self-localization using ambient 5G signals,”
19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), pp. 1011-1026, 2022.

[4] D. Vasisht, et al., “FarmBeats: An IoT platform for data-driven agri-
culture,” 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pp. 515-529, 2017.

[5] M. Symeonides, et al., “5g-slicer: An emulator for mobile IoT appli-
cations deployed over 5g network slices,” IEEE Seventh International
Conference on Internet-of-Things Design and Implementation (IoTDI),
pp. 115-127, 2022

[6] E. Fernandes, A. Rahmati, K. Eykholt, and A. Prakash, “Internet of
things security research: A rehash of old ideas or new intellectual
challenges?” IEEE Symposium on Security and Privacy, vol. 15(4), pp.
79-84, 2017.

[7] M. Antonakakis, “Understanding the mirai botnet,” 26th USENIX Se-
curity Symposium, pp. 1093-1110, 2017.

[8] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” IEEE Symposium on Security and Privacy,
pp. 636-654, 2016.

[9] W. He, et al., “Rethinking access control and authentication for the
home internet of things (IoT),” 27th USENIX Security Symposium, pp.
255-272, 2018.

[10] Z. Leidall, A. Chandra, and J. Weissman, “An edge-based framework for
cooperation in internet of things applications,” 2nd USENIX Workshop
on Hot Topics in Edge Computing, 2019.

[11] G. Yuan, D. Mazières, and M. Zaharia, “Extricating IoT Devices from
Vendor Infrastructure with Karl,” arXiv:2204.13737, 2022.

[12] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos, “Privacy
mediators: Helping iot cross the chasm,” 17th International Workshop
on Mobile Computing Systems and Applications, pp. 39-44, 2016.

[13] M. Novotny and F. Zavoral, “BubbleTrust: a reliable trust management
for large P2P networks,” Recent Trends in Network Security and Ap-
plications: Third International Conference, Springer Berlin Heidelberg,
pp. 359-373, 2010.

[14] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of IFTTT recipes,” 26th International Conference on
World Wide Web, pp. 1501-1510, 2017.

[15] Q. Wang, W. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” Network and Distributed Systems Symposium,
2018.

[16] D. Johnson, A. Menezes, and S. Vanstone. ”The elliptic curve digital
signature algorithm (ECDSA).” International journal of information
security 1, pp. 36-63, 2001.

[17] Y. Tian, et al., “SmartAuth: User-centered authorization for the Internet
of Things,” 26th USENIX Security Symposium, pp. 361-378, 2017.

[18] M. Ali, et al., “Real-time data analytics and event detection for IoT-
enabled communication systems,” Journal of Web Semantics, Elsevier,
vol. 42, pp. 19-37, 2017.

[19] K. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: Dnn model slicing
for visual analytics containers at the edge,” 4th ACM/IEEE Symposium
on Edge Computing, pp. 179-194, 2019.

[20] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest to
replace Passwords: A framework for comparative evaluation of web
authentication schemes,” IEEE Symposium on Security and Privacy, pp.
553-567, 2012.

[21] J. Gubbi, et al. ”Internet of Things (IoT): A vision, architectural
elements, and future directions.” Future generation computer systems,
vol. 29(7),pp. 1645-1660, 2013

[22] M. Islam and S. Kundu, “Preserving IoT privacy in sharing economy via
smart contract”, IEEE/ACM Third International Conference on Internet-
of-Things Design and Implementation (IoTDI), pp. 296-297, 2018.

[23] S. Schechter, “The user is the enemy, and (s) he keeps reaching for that
bright shiny power button”, Workshop on Home Usable Privacy and
Security (HUPS), 2013.

[24] T. Matthews, et al., “Stories from survivors: Privacy & security practices
when coping with intimate partner abuse,” CHI Conference on Human
Factors in Computing Systems, pp. 2189-2201, 2017.

[25] B. Ur, J. Jung, S. Schechter, “Intruders versus intrusiveness: teens’
and parents’ perspectives on home-entryway surveillance,” ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing,
pp.129-139, 2014.

[26] K. Zhang, et al., “Security and privacy in smart city applications:
Challenges and solutions,” IEEE Communications Magazine, vol. 55(1),
pp. 122-129, 2017.

[27] D. Eckhoff and I. Wagner, “Privacy in the smart city—applications,
technologies, challenges, and solutions,” IEEE Communications Surveys
& Tutorials, vol. 20(1), pp. 489-516, 2017.

[28] “HomeKit,” Apple Developer. https://developer.apple.com/homekit/.
[Accessed Feb. 15, 2023].

[29] “Google iot solutions,” Google Developer. https://developers.
google.com/iot. [Accessed Feb. 18, 2023].

[30] C. Marche, L. Atzori, M. Nitti, “A dataset for performance analysis of
the social internet of things,” IEEE 29th Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pp. 1-5, 2018.

[31] P. Naeini, et al., “Privacy expectations and preferences in an IoT world,”
Thirteenth Symposium on Usable Privacy and Security (SOUPS), pp.
399-412, 2017.

[32] E. Zeng, S. Mare, and F. Roesner, “End user security and privacy
concerns with smart homes,” Thirteenth Symposium on Usable Privacy
and Security (SOUPS), pp. 65-80, 2017.

[33] A. Pouraghily, M. Islam, S. Kundu, and T. Wolf, “Privacy in blockchain-
enabled iot devices”, IEEE/ACM Third International Conference on
Internet-of-Things Design and Implementation (IoTDI), pp. 292-293,
2018.

[34] B. Carminati and E. Ferrari. ”Collaborative access control in on-line so-
cial networks.” 7th international conference on collaborative computing:
Networking, applications and worksharing, 2011.

[35] Q. Ni, et al., “Privacy-aware role-based access control,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13(3), pp.
1-31, 2010.

[36] F. Paci, A. Squicciarini, and N. Zannone. ”Survey on access control for
community-centered collaborative systems,” ACM Computing Surveys
(CSUR), vol. 51(1), pp. 1-38, 2018.

[37] D. Kulkarni and A. Tripathi, ”Context-aware role-based access control in
pervasive computing systems,” 13th ACM symposium on Access control
models and technologies, pp. 113-122, 2008.

[38] B. Zhang, et al., “The cloud is not enough: Saving iot from the cloud,”
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2015

[39] G. Petracca, L. Marvel, A. Swami, and T. Jaeger, “Agility maneuvers
to mitigate inference attacks on sensed location data,” IEEE Military
Communications Conference, pp.259-264, 2016.

[40] X. Liu, B. Farahani, and F. Firouzi. ”Distributed ledger technology.”
Intelligent Internet of Things: From Device to Fog and Cloud, pp. 393-
431, 2020.

[41] “Multicast”, Wikipedia. https://en.wikipedia.org/wiki/Multicast. [Ac-
cessed Feb. 15, 2022]

[42] S. Basu and E. Sirer, “Trustless IoT: A logic-driven architecture for IoT
hubs,” USENIX Workshop on Hot Topics in Edge Computing, 2020.

[43] G. Wood, et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.

[44] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, pp. 21260, 2008.

[45] O. Novo, “Blockchain meets IoT: An architecture for scalable access
management in IoT,” IEEE Internet of Things Journal, vol. 5(2), pp.
1184-1195, 2018.

[46] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things”, vol. 6(2), pp. 1594-1605,
2018.

[47] A. Dorri, S. Kanhere, and R. Jurdak, “Towards an optimized blockchain
for IoT,” IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation (IoTDI), pp. 173-178, 2017.



[48] D. Mazières, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32,
2015.

[49] G. Losa, E. Gafni, and D. Mazières, “Stellar consensus by instantiation,”
International Symposium on Distributed Computing (DISC), 2019

[50] G. Losa and M. Dodds, “On the formal verification of the Stellar con-
sensus protocol”, 2nd Workshop on Formal Methods for Blockchains,
2020.

[51] M. Lokhava, et al., “Fast and secure global payments with Stellar,” 27th
ACM Symposium on Operating Systems Principles, pp. 80-96, 2019.

[52] A. Clement, et al. ”Making Byzantine fault tolerant systems tolerate
Byzantine faults.” 6th USENIX symposium on Networked systems
design and implementation. The USENIX Association, 2009.

[53] “Two-phase commit protocol”, Wikipedia. https://en.wikipedia.org/w/
index.php?title=Two-phase commit protocol&oldid=1078983413. [Ac-
cessed Aug. 28, 2022]

[54] M. Bermudez-Edo, et al. ”IoT-Lite: a lightweight semantic model for
the internet of things and its use with dynamic semantics.” Personal and
Ubiquitous Computing, pp. 475-487, 2017.

[55] S. Sayeed, and H. Marco-Gisbert. ”Assessing blockchain consensus and
security mechanisms against the 51% attack.” Applied sciences vol. 9(9),
pp. 1788, 2019.

[56] “Echo,” Amazon. https://www.amazon.com/echo. [Accessed Feb. 15,
2023].

[57] “Hue,” PHILIPS. https://www.meethue.com. [Accessed Feb. 15, 2023].
[58] “SmartThings,” SAMSUNG. https://www.smartthings.com. [Accessed

Feb. 15, 2023].


