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Abstract—Real-time analytics over data streams is often per-
formed on edge devices, which offer privacy guarantees and
lower-latency responses compared to centralized processing in the
cloud. Data streams originating from sensors, mobile phones, or
IoT devices are diverse and span multiple modalities, including
RGB videos from cameras, time series data from wearable
sensors, and audio signals. Previous research has focused on
optimizing the individual analytical tasks associated with each
stream, with a special emphasis on deep learning, which is
computationally intensive and may be used to analyze video
streams, among other things. While advances in deep learning
have significantly improved inference accuracy (e.g. for computer
vision tasks), state-of-the-art models are not well-suited for
edge computing environments. Novel approaches are required to
substantially reduce the computational burden, since edge sys-
tems are heterogeneous and typically have fewer GPU resources
available for inference with deep learning models. We show
that leveraging data from multiple modalities can complement
or sometimes even replace resource-intensive inference, while
maintaining or enhancing accuracy. We present DAISY: a Data-
Aware Inference Serving sYstem which leverages multi-modal
data to increase inference accuracy by dynamically selecting an
appropriate model for each request. We thoroughly evaluate the
proposed approach using state-of-the-art models and real-world
data, which shows an increase in SLO attainment up to 60%,
with a corresponding increase in inference accuracy of 5%.

Index Terms—edge computing, inference serving, deep learn-
ing, multi-modal data, video analytics

I. INTRODUCTION

Data is increasingly generated in a geo-distributed manner

due to the rising prevalence of smart devices. Historically, data

generated by these devices could be streamed over the wide-

area network (WAN) to a cloud data center to be processed

and persisted. Performing analytics in the cloud is appealing

due to its large compute capacity and resource elasticity;

however, it is often infeasible for modern applications to rely

exclusively on the cloud due to local privacy restrictions and

WAN scarcity. The edge computing paradigm addresses these

constraints by executing analytical tasks on machines in close

proximity to the data generating devices, thereby addressing

the network and privacy constraints.

Edge workloads frequently process data from a diverse set

of devices, including video cameras, accelerometers, Bluetooth

beacons, microphones, motion sensors, WiFi access points and

temperature or air quality sensors. These devices produce data

streams that span multiple data modalities, and typically per-

form analytics targeted at each individual stream. Multi-modal

data sources underpin many useful applications, including traf-

fic monitoring [1], child and elder care [2], [3], aquatic activity

monitoring [4], autonomous vehicles [5], smart cities [6], [7]

and surveillance [8], [9], [10]. These applications often have

strict service level objectives (SLOs) and require low-latency
response times, since they have public safety implications.

This is challenging for edge computing, since modern ap-

plications process large volumes of data and leverage expen-

sive computation to produce high-accuracy inferences. Many

video analytics systems utilize deep learning models, which

increases the need for efficient processing at the edge, given

the computational demand. One analysis found that object

detection models such as YOLOv3 [11] can only run at 21.5

frames per second on a Jetson TX2 module [12]. Transformer

models, segmentation models, and recurrent neural networks

can also be deployed at the edge and consume significant

computational resources. Large transformer-based language

models like BERT can require hundreds of milliseconds to

perform a single inference on mobile phones [13]. As model

complexity continues to increase for new technologies such

as large language models, new algorithms will be required to

maximize efficiency, especially for edge deployments.

Existing work on efficient edge analytics largely focuses on

systems-level optimizations or the optimization of specific an-

alytical tasks. One mechanism for reducing edge computation

is to offload a subset of the data to the cloud for processing.

Network-aware systems have been developed to strike a bal-

ance between performing computation at the edge and in the

cloud [14], [15], [16], [17]. However, these approaches are still

dependent on constrained WAN links and may have privacy

implications for the end users. Other existing work focuses on

reducing the computational burden of a single modality, e.g.

deep learning over video streams at the edge [18], [1]. In multi-

modal settings, many different kinds of models may need to

be deployed to the edge, which presents scaling problems as

the number of devices continues to grow.

In this work, we show that resource intensive models

can be executed less frequently by leveraging the multi-

modal nature of data at the edge. Dynamically selecting the

best available modality or combining data from multiple

modalities has the potential to produce higher accuracy and

lower latency inferences. We first examine real-world use

cases and the challenges associated with performing analytics

at the edge (section II). Next, we examine the characteristics
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Fig. 1: Multiple devices stream data over a local network to

edge nodes, which perform inference tasks.

of multi-modal models and compare and contrast the different

modeling options available (section III). Finally, we propose

and evaluate a data-aware approach (DAISY) for exploiting

multi-modal data sources to dynamically select the best

inference models based on the incoming data (sections IV

and V).

Contributions. We make the following research contributions:

• We characterize and evaluate models that span multiple

modalities and derive actionable insights.

• We show that selecting models based on average inference

accuracy is suboptimal, since model accuracy varies sub-

stantially based on the data modality and target label.

• Using this information, we design a novel data-aware infer-

ence serving system (DAISY) which utilizes properties of

the data to improve dynamic model selection while attaining

high accuracy and respecting the target SLO.

• We thoroughly evaluate our proposed system using real-

world multi-modal data and examine the sensitivity to

various system parameters.

We show that incorporating multi-modal data and data-

awareness into the model selection process can produce higher

accuracy inferences while respecting the requested SLO.

II. PRELIMINARIES

A. Motivating Applications

Patient Care. In the healthcare domain, edge analytics can

aid patient monitoring and assistive technologies (in-home

or in a healthcare facility). Video data can be utilized

for activity recognition of elderly individuals to ensure

their safety and well-being [2]. In the United States alone,

over 30% of individuals over the age of 65 fall annually,

which can be an emergency situation and contribute to

permanent disability [19]. Patients may also have wearable

sensors that capture data regarding their movements or

general well-being [20]. By automatically detecting falls,

abnormal movements or emergency situations, analytics

systems can trigger timely alerts or interventions. Moreover,

they can support rehabilitation programs by tracking and

analyzing patient movements and gait, providing objective

feedback. Available data modalities in the patient care

domain may include RGB video frames [2], audio signals,

and time series data generated by wearable sensors such as

accelerometers [20], [21].

Smart City. Edge analytics plays a crucial role in smart city

initiatives [22], enabling traffic management, waste manage-

ment, public safety, and urban planning by analyzing data

from various sensors and cameras. In the surveillance domain,

video analytics plays a vital role in enhancing security and

public safety [8]. By automatically identifying specific actions

or abnormal behaviors, surveillance systems can alert security

personnel to potential threats, thus enabling proactive response

and crime prevention. Surveillance also encapsulates other

aspects of monitoring to capture the dynamics of differ-

ent application domains including retail, transportation, and

service industries. Transportation hubs can benefit from the

localization of passengers or nearby users to ensure they are

operating effectively [23]. Multi-modal smart city applications

also exist for individuals with Autism Spectrum Disorder

(ASD) or those who are blind & visually impaired (BVI).

For example, solutions have been developed that combine

localization data from mobile applications and low-energy

sensors to assist users with indoor and outdoor navigation [24].

Available data modalities in the smart city setting may

include RGB video frames [8], audio signals, and localization

data based on Bluetooth beacons [6], [24] or WiFi signals [3],

[23]. Time series data is also prevalent and can be generated

by devices such as motion sensors, smart phones [23], and

temperature or air quality sensors [25].

B. Problem Characterization

There are many challenges associated with developing low-

latency, multi-modal edge analytics systems, including:

• Compute Intensive Workloads: Video frames are often pro-

cessed by deep neural networks, which are resource inten-

sive [26]. Some systems also perform continuous learning,

which increases the computational demand [27], [1]. Large

language models may be deployed at the edge in the coming

years, which have been shown to perform increasingly better

as the number of parameters increases [28].

• Data Volume: As the number of smart devices grows, the

total volume of generated data also necessarily increases.

One estimate suggests there will be 75 billion connected

devices by the year 2025 [29].

• Heterogeneous Edge Resources: Edge computing must con-

tend with heterogeneous compute and network resources,

which are often restrictive when compared to the resources

and elasticity associated with cloud deployments [2].

• Low Latency Responses: Edge systems provide low-latency

analytics, since they reduce dependencies on the WAN for

communication. Furthermore, our motivating applications

both involve user safety, which is critical to identify and

remediate in real-time [30], [22].

• WAN Scarcity: Some edge systems leverage the cloud to

perform inference or model retraining. These systems must

contend with heterogeneous WAN links [14], which may

constrain the amount of data that can be uploaded.
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• Privacy Constraints: Applications that offload data to the

cloud must consider how local privacy restrictions affect

system operations. Video recordings used for analytics may

contain personal and private user information, leading to

serious privacy concerns on how this data is handled.

Prior works address some of these challenges; however, the

presence of multi-modal data presents additional challenges

and opportunities to increase the efficiency of edge systems.

The possibilities are illustrated by considering the modeling

options available to us.

Single-Modality Models. Existing inference serving systems

provide access to single-modality models, i.e. models that

take a single type of data as input. This includes models for

image processing, time series data, graphs, etc. For example,

suppose we are given an inference request to measure human

occupancy (e.g. how many people are present in a given

room). Existing systems rely on fixed protocols for generating

an inference, which may include running video frames

through an object detection pipeline (e.g. with a Yolo model).

Multi-Modal Models. Researchers have also designed models

that operate on multiple data modalities simultaneously [31].

These models draw inspiration from the human brain and

its ability to use multiple sensory inputs and contextual

information to perform object recognition. For example, the

MuMu [32] inference model can concatenate both time series

data and RGB video pixels, which is then processed with

a single deep neural network to produce a result. These

techniques tend to be more computationally intensive, but

have the potential to produce higher accuracy results.

Problem Statement. Our setting is a standalone edge system

which processes a set of data streams dj ∈ D which span

multiple modalities. We assume we are given a set of models

mi ∈ M, each of which operates on a subset of the available

streams. The system provides model-less inference serving,

where users issue inference requests to the system, but do not

provide a model to execute. The system is required to select

an appropriate model to serve each inference request. Each

request has an associated target latency (which is our SLO).

Our objective is to develop efficient model selection strategies,

which maximize the inference accuracy while responding

within the provided target latency. More formally, our model

selection objective is given by:

m̂ = argmax
mi∈M

E[Accuracy(mi) | D] (1)

s.t. E[�(mi)] ≤ T (2)

where �(mi) approximates the latency for executing model

mi, given the current system state and T is the target latency

(SLO) for a given request. We focus on the human action

recognition task, which captures aspects of both of our mo-

tivating applications (patient care and smart cities). We first

conduct an exploratory analysis to obtain insights into multi-

modal inference and motivate our proposed approach.

III. CHARACTERIZING MULTI-MODAL INFERENCE

Inference serving for multi-modal applications presents sev-

eral interesting trade-offs. For example, given the task of

human action recognition, it is possible to classify human

actions using a video stream; however, it is also possible

to obtain high accuracy using exclusively accelerometer data

generated by a smart watch [33]. Furthermore, it may be

useful to combine both data modalities and perform inference

using a multi-modal model, which has the potential to produce

the highest accuracy inferences. Given the variety of options,

we need to explore the trade-offs between these models to

understand how they may be leveraged in an inference serving

system.

We briefly evaluate a variety of single-modality models

for time series sensor data and RGB video data, along with

one multi-modal fusion model. The task is to classify human

action using one (or more) of these data modalities. We

examine how these models compare in terms of resource

usage and inference accuracy using the MMAct [33] dataset.

The target class labels can be found in table I. We use

X3D [34] for the video modality and MiniRocket [35] for

the multivariate time series data generated by the sensors.

The video-only models are the X3D-S, X3D-M, and X3D-L

variants, which offer various compute/accuracy trade-offs.

As a reference point, the X3D-M variant has 3.9M trainable

parameters. All tunable hyperparameters were set to the same

values in the original paper implementation. The MiniRocket

model for time series data is a recently developed method

that uses random convolutional kernels to transform the

input time series data and trains a linear classifier on this

transformed data. For a multi-modal fusion model, we adopt

the architecture proposed by Choi, et al. [31], which performs

feature extraction from each modality and fuses the results.

Resource Usage. Figure 2 shows the performance

characteristics of the X3D family of video models, the

MiniRocket time series model, and the fusion model. We

observe that the MiniRocket time series model is substantially

less resource intensive (for both compute and memory)

compared to the X3D family of video models. For example,

at batch size 8, MiniRocket is 7x faster for inference

compared to X3D-M and requires 22x less GPU memory.

Within the X3D family, we also observe noticeable differences

in performance between the small and large models. For the

fusion model, we observe that the load time and inference

time is roughly comparable to the X3D-M model; however,

the GPU memory usage can be much higher since it requires

multiple data modalities to reside in GPU memory. This

diversity in performance suggests that modeling choices

in a multi-modal setting can greatly affect resource usage

and throughput. Additional work is required to ensure these

differences are considered during model selection.

Inference Accuracy. We now examine the differences in infer-

ence accuracy across models. We trained each of the following
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Labels (0-9) carrying kicking talking on phone entering exiting loitering pulling using phone talking throwing
Labels (10-19) looking

around
carrying
(heavy)

carrying (light) transferring
object

checking
time

setting
down

closing
door

sitting down standing
up

opening
door

Labels (20-29) picking up running pocket in pocket out crouching falling standing jumping using PC waving
Labels (30-34) sitting pushing pointing drinking

TABLE I: Target labels for MMAct Human Action Recognition Classification
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Fig. 2: Performance Characteristics for Single-Modality Models

(a) MiniRocket (b) X3D-M

Fig. 3: Confusion Matrices for MiniRocket and X3D-M

models on the MMAct [33] dataset. First, we consider the

average F1 score that we obtained for each model on the

human action recognition task (table II). We observe notice-

Model Modality F1 Score
MiniRocket [35] Time-Series 0.61

X3D-S [34] RGB Frames 0.64
X3D-M [34] RGB Frames 0.65
X3D-L [34] RGB Frames 0.68
Fusion [31] Time-Series + RGB 0.72

TABLE II: Average F1 score across various models.

able differences in average F1 score across models. However,

examining the average misses a key property: model accuracy
varies substantially based on target class label. For example,

there are target classes where the time series MiniRocket

model is extremely accurate, and other classes where it per-

forms poorly. Figure 3 shows partial confusion matrices for

MiniRocket and X3D-M. We observe that X3D-M struggles

to classify target label 4 (”exiting”) while MiniRocket does

not have this issue. Conversely, MiniRocket does a poor job

with label 6 (”pulling”), while X3D-M is quite accurate. Table

III highlights the target classes with the largest differences in

F1 score between MiniRocket and X3D-M.

While it is possible to compare MiniRocket and X3D based

purely on average accuracy, that misses the fact that these

Action Label Better Model Absolute Difference in F1 Score
Kicking X3D-M 0.37

Talking on Phone X3D-M 0.23
Entering Room MiniRocket 0.31

Loitering MiniRocket 0.28

TABLE III: Labels with the largest difference in accuracy

between the X3D-M video model and the time series model.

models can be complimentary, depending on the data. This

motivates model selection strategies that leverage properties of

the underlying data to maximize inference accuracy. Existing

strategies make decisions based on average accuracy, which is

inefficient in the multi-modal case. The performance of each

model heavily depends on the target class. For these reasons,

data sources need to be considered when making inference

serving decisions. Selecting the right data source for the task

is crucial for maximizing accuracy.

IV. DAISY: DATA-AWARE MULTI-MODAL SELECTION

We have shown that inference accuracy for each model

depends heavily on the underlying data and target label. Given

this characteristic, we now propose data-aware mechanisms for

dynamically selecting an appropriate modality and inference

model for each inference request.

A. High-Level Design

In our proposed system (figure 4), data is streamed to the

edge, where recent data is kept in memory and stale data

is either offloaded or persisted to disk. Our system has two

main components for handling inference requests: a data-aware

model selector (section IV-B) and a multi-modal SLO-Aware

model selector (section IV-C). When a request arrives, our

system first attempts to make model selection decisions based

on the data. If the data-aware selector is unable to satisfy

the request, then we defer to the multi-modal SLO-Aware

approach to select and execute a model. As part of the model

selection, the state of the system is incorporated (through

our latency function �) in order to estimate the expected
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Fig. 4: Holistic view of the edge inference serving system.

latency. Selecting an implementation of � is a complimentary

research direction, which often involves offline profiling. Our

system measures several standard sources of latency, including

inference latency, GPU load time, GPU memory contention,

and work queue length.

B. Data-Aware Model Selection

Our key insight is that models that span multiple data
modalities often provide complimentary benefits. For example,

although we observe cheaper time series models have lower

average accuracy compared to video models, the time series
model excels at a certain proportion of the target classes.
To effectively leverage the cheaper models, we require

a mechanism to determine in which cases the cheaper

models suffice. Toward this end, we propose executing a

lightweight model, which performs model selection based on

the properties of the data. We consider two approaches: (1)

specialized model training and (2) using an existing model

with a threshold.

1) Specialized Model Training: We first consider training a

specialized model exclusively for the task of model selection.

This approach takes the available data as input, and performs

a classification task, where each class represents a model

which could be used for inference.

Analysis. For the specialized model approach, the additional

delay incurred for model selection is the expected inference

latency of the specialized model. More formally, for a given

request R, the expected latency for the request is given by:

E[�(R)] = E[�(msp)] + E[�(m̂)] (3)

where �(msp) is the inference latency for the specialized

model and m̂ is the model selected to service the request.

Therefore, this scheduling mechanism always incurs a

fixed overhead for model selection, which depends on the

complexity of the specialized model.

2) Threshold (an existing) Model: Specialized models

require each application to manually train one or more

models offline for this very specialized use case and incur

an overhead for each inference request. To avoid these

costs, we consider another approach for dynamic model

selection. We propose speculatively executing the lowest

latency model available (mlow ∈ M) and use that output

directly if the model confidence is sufficiently high, i.e. if

the class probability of the target label exceeds a specified

threshold. For example, if we specify a threshold of τ = 0.5,

we can examine the class probabilities from mlow and if any

of them exceed 0.5, we can just use the output from mlow

directly, and avoid executing any other models. If none of the

class probabilities exceed the threshold τ , then we defer to a

multi-modal SLO-Aware approach (section IV-C).

Analysis. When applying a threshold to the lowest-latency

model (mlow) for model selection, we obtain the following

expression for the expected latency of request R:

E[�(R)] = E[�(mlow)] + (1− θ) E[�(m̂)] (4)

where θ is is the proportion of queries that can be answered

accurately by mlow and m̂ is the model selected by the SLO-

Aware approach if the threshold was not met.

As previously discussed, the threshold model approach has

the added benefit of being able to simply use the time series

model output directly if the confidence is high enough. How-

ever, if the confidence is low, we require the execution of two

models. This ensures higher accuracy, but raises the following

question: under what conditions does this strategy provide an
expected request latency less than that of a standard SLO-
Aware approach? We are interested in cases where the latency

is less than or equal to the expected inference latency for the

best model choice m̂. Using equation 4, we can derive the

following requirement:

E[�(mlow)] + (1− θ) E[�(m̂)] ≤ E[�(m̂)] (5)

E[�(mlow)] ≤ θ E[�(m̂)] (6)

This result suggests the threshold model must have at least

one of the following properties:

• Its expected inference latency relative to the other avail-

able models must be low

• The proportion of queries that the threshold model can

answer accurately (θ) must be high.

In our previous experiments, we observed that the inference

latency for the MiniRocket model was substantially lower

than all other models, which makes it a good candidate for a

threshold model, given these criteria.

Selecting a Threshold. This approach requires a specified

threshold (τ ). Many existing applications (e.g. public safety)

may already have requirements for model confidence, which

can be used directly. If the application does not specify a

hard requirement, users should select the threshold which

maximizes inference accuracy, i.e. by solving:

τ = argmax
t∈(0,1)

E[Accuracy(mlow, t)] (7)

In practice, τ can be found using out-of-sample data and a

grid search. If the highest accuracy selection of τ results in

higher latencies than a baseline approach, this indicates that
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the threshold model is not accurate enough to use for model

selection (i.e. that θ is low in equation 4). In our experiments,

we found that a threshold of τ = 0.5 maximized accuracy

with the MiniRocket model and it could answer a sufficiently

large number of queries with comparable accuracy to the X3D

models (θ = 0.42). Furthermore, we observed that setting τ =
0.5 yielded a threshold model with 87% accuracy1.

In our system, we prefer the threshold model over the

specialized model. In practice, this avoids requiring the user

to train a specialized model for the system. Furthermore,

threshold models have the ability to reuse the output for

inference, potentially avoiding any additional model execution.

C. SLO-Aware Multi-Modal Selection

If the data-aware approach fails to produce an inference or

assign a model, we default to an SLO-Aware approach for

model selection. This approach proceeds in two steps:

1) When a request arrives, we filter the available models

to find a subset which can satisfy the SLO. This may

require the system to estimate execution latency for each

model based on the number of outstanding requests and

any potential resource contention.

2) Select the model which has the highest average accuracy

within the filtered subset.

This approach incorporates scheduling decisions directly in the

model selection process. Determining which models can meet

the SLO necessarily requires knowledge of where the model

will be executed and any delays incurred prior to processing.

Since the edge is constrained, the number of possible executors

is typically small, so a brute force approach suffices [15], [36].

To apply this strategy to the multi-modal setting, we require

a mechanism for jointly selecting a data source in addition

to a model. We propose performing filtering and selection

across paired instances of data sources and models (figure 5).

The candidates can be generated by computing the Cartesian

product of the set of models and the (power) set of input

modalities. The filtering step can then consider all generated

pairs to see which ones meet the requested SLO. At first

glance, this seems much less efficient, since the filtering step

is now linear in | D | × | M | rather than | M |. The

key insight is that the actual feasible set of data source/model
pairs will be sparse, in the sense that many of the data/model
combinations will be spurious. In certain cases, the same

model structure can be used across multiple modalities, but

image data, for example, requires a specific set of models

for inference (time series models are not applicable in any

meaningful way). The number of model / data combinations

that need to be considered is still approximately linear in the

number of models; therefore, the time required to estimate

inference latency remains unaffected. The full DAISY model

selection algorithm is outlined in algorithm 1.

Algorithm 1: DAISY Threshold Model Selection

Input: Request R, Set of Models M, mlow, Threshold τ ,
Input Data D

// Data-Aware Model Selection
class probs ← infer(mlow , D)
if max(class probs) > τ then

R.label ← label corresponding to max(class probs)
R.complete ← True
return

end

// SLO-Aware Model Selection
candidates ← subset of M that attains R.target latency
if candidates �= ∅ then

m̂ ← argmaxmi∈M E[Accuracy(mi)]
// Use mhat for inference

else
// No time to execute a different model
R.label ← label corresponding to max(class probs)

end

Accelerometer

RGB Video

MiniRocket

X3D-{S,M,L}

Fusion
GPU 2

GPU 1

Fig. 5: Data sources and models can be combined and sched-

uled for inference as a single unit.

V. EVALUATION

A. Methodology

Dataset and Queries For this evaluation, we use the MMAct

dataset [33], which consists of video, acceleration, gyroscope

and orientation information. The environment used is an

indoor room, with various everyday objects placed in view.

RGB video frames are the first modality, and are collected

from four cameras around the room. Each participant also

generates signals from an accelerometer on their hand, along

with an accelerometer and a gyroscope in a smartwatch.The

specific sampling rates and dimensions for each modality are

shown in Table IV.

Mode Sampling Rate Dimensionality

Video 30 frames / sec 1920 x 1080, RGB

Accelerometer (x2) 100Hz 3-axis

Gyroscope 50Hz 3-axis

Orientation 50Hz 3-axis

TABLE IV: Data Modes in MMAct

1The false positive and false negative rates were 0.09 and 0.02 respectively.
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Fig. 6: Comparison of model selection strategies across a variety of performance metrics.
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Fig. 7: Comparison of model selection strategies across a variety of arrivals per second (following a Poisson process).

There are a total of 35 action classes that must be

distinguished. The dataset is also divided into four scenes,

with each scene having multiple sessions consisting of a

participant performing various actions.

Testbed. Our experiments are conducted on a system with

an Intel i5 CPU, 32 GiB of main memory, and an NVIDIA

RTX 3060 graphics card, which has 12 GiB of memory.

Video and time series data are read out of separate files that

correspond to the same user in the same physical environment.

Baselines and Metrics. We compare the following model

selection techniques:

• Single-Modality (Video Only): Existing systems, which use

only a single modality to serve inference requests (e.g.

RGB video frames). These systems (e.g. LayerCake [15]

and InFaaS [37]) filter DNN video models and choose the

best available model which satisfies the SLO.

• Multi-Modal SLO-Aware: Our proposed modifications to

the single-modality technique which can use multiple data

modalities to satisfy a request and dynamically selects

both a data source and a model. This includes using the

Mini-Rocket time series model and fusion model to make

inferences traditionally only offered by video models.

• DAISY: Our proposed system, which leverages data-

awareness (with a threshold model) in addition to multi-

modal SLO-Awareness when necessary.

• Oracle: An oracle which picks the optimal inference model

with no overhead.

We evaluate each technique across multiple dimensions,

including inference accuracy, SLO attainment, and resource

usage. Unless otherwise specified, the default arrival rate is

10 requests per second, following a Poisson process. We

examine other arrival rates in the sensitivity analysis.

B. Inference Accuracy

Figure 6a shows the average accuracy obtained by each

method across a variety of target latencies. We observe that

both of our multi-modal techniques obtain higher accuracy

than the Single-Modality baseline, between 2-6%. This im-

provement is attributable to the data-awareness mechanism

and the ability to leverage higher accuracy fusion models

when the target latency is high. We also observe that both of

our approaches are comparable to the Oracle when the target

latency is sufficiently high. In this case, all of our multi-modal

approaches can afford to execute the high-accuracy fusion

model for almost every request.

C. SLO-Attainment

Our objective of maximizing accuracy was also constrained,

since the user may specify a target latency (SLO) associated

with each request. Figure 6b shows the percent SLO attainment

for each method across a variety of arrival rates. We observe

that the Single-Modality baseline misses the SLO with very

high frequency for target latencies less than 100ms. The multi-

modal approaches do not have this problem, since they have

a very low-latency time series model, which can be used for

inference when the target latencies are low.

D. Compute cost

We now consider how each model selection strategy affects

the overall computational cost to service a set of requests.
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Fig. 8: Dynamic Arrival Rates

This includes the CPU/GPU time required for model selection

and the time to perform inference with any additional models.

Figure 6c shows the resulting compute times associated with

various target latencies. We observe that the mutli-modal ap-

proaches achieve higher accuracy and higher SLO attainment

while using less compute resources. This is due to the time

series models providing accurate inferences for a subset of

requests with very low latency.

E. Sensitivity Analysis

Arrival Rates In practice, inference serving systems will

need to support different workloads and query frequencies.

We now examine how our system performs across different

arrival rates, with a fixed SLO of 50 milliseconds. Figure 7a

shows the average accuracy obtained by each method across

a variety of arrival rates. We observe that both data agnostic

methods achieve similar accuracy (with a slight improvement

for the multi-modal approach). DAISY improves over both

of these techniques, with an increase in accuracy between 1-

5%. This improvement is attributable to the data-awareness

mechanism, which attempts to exploit the accuracy differences

across different models and target labels.

Figure 7b shows the percent SLO attainment for each

method across a variety of arrival rates. We observe that

both of our proposed methods improve substantially over the

baseline Single-Modality approach, a 20% improvement for

the multi-modal SLO-Aware approach and 29% for DAISY.

Our approaches are able to leverage cheaper time series models

when the arrival rate becomes high, which accounts for the

difference in SLO-Attainment.

Figure 7c shows the resulting compute times associated with

various arrival rates. We observe that DAISY uses substan-

tially less compute resources compared to the data-agnostic

approaches. This is due to its ability to use the threshold model

output directly for inference. We also observe that for a given

technique, compute times are largely consistent across arrival

rates. This is expected, since for each experiment, the system

processes a fixed number of requests.

We now examine how dynamically changing arrival rates

affect accuracy and SLO attainment. We initially fix the

arrival rate at 10 requests per second, then we introduce a

spike in requests (100 requests per second) for a duration of

20 seconds before returning to the original rate. Figures 8a

and 8b show the results for this experiment. For accuracy,

we see that both the Single-Modality baseline and DAISY

experience reduced accuracy during the request spike. This is
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Fig. 9: Optimal DAISY Selection
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Fig. 10: CPU Threshold Model

expected, as both systems attempt to execute faster models

to meet demand. For SLO attainment, we observe that the

Single-Modality baseline is severely impacted, attaining

between 40-60% of the SLOs. With a few minor exceptions,

the DAISY approach maintains very high SLO attainment,

even during the higher arrival period.

Threshold Model Performance. We now compare our sys-

tem’s performance against a hypothetical instantiation of

DAISY, which does not incur any false positives or negatives

in the threshold model (Optimal DAISY). Figure 9 shows the

results for both accuracy and SLO attainment. We observe that

the optimal DAISY model achieves slightly higher accuracy

and SLO-attainment, due to its ability to make perfect deci-

sions about model execution.

Our existing experiments assume we are able to leverage

GPU resources when executing our threshold model to

perform dynamic model selection for DAISY. However, it is

possible that certain edge deployments are limited by GPU

memory, which must be reserved for the inference tasks

themselves. For this reason, we consider the performance

of executing the DAISY model selection on CPU rather

than GPU. Figure 10 shows the impact of CPU execution

on accuracy and latency. We observe that executing model

selection on CPU rather than GPU results in similar

performance, with a very slight decrease in SLO attainment

and accuracy. This technique still outperforms the Single-

Modality approach, so it may be viable to execute model

selection on the CPU if required.

Threshold vs Specialized Model. We now compare our two

data-aware model selection strategies. We trained a specialized
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Fig. 11: Comparison of a specialized and threshold model.
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Fig. 12: Single-Model Baselines

model (a slightly altered MiniRocket model) and compared it

against the pre-trained MiniRocket model with a threshold.

The objective was a binary classification problem, to deter-

mine whether to use mlow for inference or to defer to a

more complex video model that could meet the latency SLO.

Figure 11 shows a comparison between the two modeling

options, where the red line represents the performance of the

specialized model. For very high threshold values, a video

model is executed for almost every request, which results in

higher latency values. When the threshold is too low, the time

series model is frequently used, even if it is not optimal.

However, we observe that a properly configured threshold

model can outperform a specially-trained model, both in terms

of accuracy and overall inference latency (which includes the

execution time of a secondary video model, if required). We

conclude, based on theoretical and empirical findings, that the

threshold model is the most appropriate in this setting.

F. Single-Model Baselines

Finally, we consider a system which selects a single model

and uses it exclusively for inference. This removes any over-

head for model selection and ensures the selected model

remains in GPU memory at all times. Figure 12 shows

the trade-offs with this approach. The larger models offer

consistently higher accuracy, but have low SLO attainment

and the lightweight time series model offers lower accuracy

but high SLO attainment. DAISY leverages data-awareness to

navigate this space: providing accuracy slightly higher than

the X3D-M video model with an SLO-attainment closer to

the time series model.

G. Discussion

Edge-cloud offloading was excluded from this analysis since

some jurisdictions may require video data (especially patient

data) to be processed locally to preserve privacy. However,

our framework could easily be augmented to provide that

support in less-restrictive environments. Privacy-preserving

transformations could also be applied to images (e.g. blurring

faces) at the edge site prior to offloading data to the cloud. This

would require additional analysis to ensure the transformations

do not degrade downstream inference accuracy.

VI. RELATED WORK

A. Inference Serving in the Cloud

The InFaaS system introduced the notion of model-less in-

ference serving, where inference requests arrive and the server

is responsible for dynamically selecting a model to service the

request [37]. The MArk system uses predictive autoscaling

and serverless functions to provide consistent performance

across various workloads [38]. The Clipper system performs

model selection and uses dynamic batching to reduce inference

latency [39]. Many of these cloud inference serving systems

rely on homogeneous hardware and resource elasticity, both

of which are unavailable at the edge. Furthermore, offloading

data to the cloud may be infeasible due to constrained WAN

links or data sovereignty / privacy requirements.

B. Video Analytics at the Edge

Other related works deal directly with challenges presented

by video analytics and deep learning. Video analytics pipelines

have many possible configurations, which can affect perfor-

mance. Chameleon attempts to dynamically identify optimal

configurations for each stream to improve efficiency [40].

It uses the heuristic that video cameras in close proximity

may be spatially dependent, and will benefit from the same

configuration. Ekya performs continuous learning and infer-

ence over multiple video streams at a single edge [1]. It

proposes a novel scheduling algorithm that navigates the trade-

off between inference accuracy and the potential accuracy

improvement associated with retraining. Another method for

reducing DNN computation at the edge is to transfer a subset

of the video frames to the cloud for inference [14], [16],

[17], [15]. VideoEdge maximizes query accuracy by iden-

tifying the best pipeline configuration across an edge-cloud

hierarchy [17]. LayerCake is another system that balances

the trade-off between edge and cloud inference [15]. Given

a latency target, it seeks to maximize accuracy by scheduling

the best available model that meets the SLA. While all of

these approaches directly address the computational burden

associated with video analytics, they focus exclusively on a

single modality (RGB video frames) when multiple modalities

are available. A few existing works consider dynamic model

selection for a single modality at the edge [41], [42], [43]. A

common strategy is to leverage edge-cloud offloading when

the edge resources are insufficient for the workload [43], [15].

Offloading user data to the cloud may not always be feasible;

however, these complimentary approaches can be integrated
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into our model selection framework, since we only require an

expected latency to perform model selection.

C. Edge Streaming Systems

Several systems have been architected to handle stream

processing at the edge [44], [45], [46]. The EdgeWise system

improved stream processing for the edge by redesigning the

scheduler and allocating an appropriate number of worker

threads based on the target hardware platform [44]. Another

edge system builds data-awareness into their stream process-

ing, which supports hundreds of parallel streams and data-

driven decisions across multi-modal data [45]. These tech-

niques, while effective, fail to directly address the computation

bottlenecks associated with video streams and deep learning.

VII. CONCLUSION

Modern edge applications have access to data that spans

multiple modalities. These diverse data can utilize a broader

set of models to improve accuracy and reduce latency. We

proposed DAISY, which consists of mechanisms for dynam-

ically selecting an appropriate inference model based on the

available data and the target SLO. We observed up to a 5%

improvement in inference accuracy and a 60% improvement

in SLO attainment using these approaches.
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