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Abstract

Supervised matrix factorization (SMF) is a clas-
sical machine learning method that seeks low-
dimensional feature extraction and classification
tasks at the same time. Training an SMF model
involves solving a non-convex and factor-wise
constrained optimization problem with at least
three blocks of parameters. Due to the high non-
convexity and constraints, theoretical understand-
ing of the optimization landscape of SMF has
been limited. In this paper, we provide an ex-
tensive local landscape analysis for SMF and de-
rive several theoretical and practical applications.
Analyzing diagonal blocks of the Hessian natu-
rally leads to a block coordinate descent (BCD)
algorithm with adaptive step sizes. We provide
global convergence and iteration complexity guar-
antees for this algorithm. Full Hessian analysis
gives minimum L2-regularization to guarantee
local strong convexity and robustness of param-
eters. We establish a local estimation guarantee
under a statistical SMF model. We also propose a
novel GPU-friendly neural implementation of the
BCD algorithm and validate our theoretical find-
ings through numerical experiments. Our work
contributes to a deeper understanding of SMF op-
timization, offering insights into the optimization
landscape and providing practical solutions to en-
hance its performance.

1. Introduction
In classical classification models, the standard approach
uses observed high-dimensional raw features as the input.
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In many cases, these features may include vast amounts
of irrelevant or redundant information, posing challenges
for generalization and interpretability. To address this, the
integration of interpretable dimension reduction techniques
prior to classification becomes important.

Matrix factorization (MF) is a classical unsupervised fea-
ture extraction framework that learns latent structures in
complex datasets. It is regularly applied in the analysis
of text and images (Elad & Aharon, 2006; Mairal et al.,
2007; Peyré, 2009). In particular, nonnegative matrix fac-
torization (NMF) (Lee & Seung, 2000) stands out as one
of the most widely used modern MF tools, aiming to ap-
proximately factorize a data matrix into the product of two
nonnegative matrices. Nonnegativity is crucial for enabling
interpretable ”parts-based learning” (Lee & Seung, 1999) of
high-dimensional objects. This feature has led NMF finding
applications in various domains, including text analysis for
topic modeling, image reconstruction, bioinformatics, and
the extraction of latent motifs from networks (Sitek et al.,
2002; Berry & Browne, 2005; Berry et al., 2007; Chen et al.,
2011; Taslaman & Nilsson, 2012; Boutchko et al., 2015;
Ren et al., 2018; Lyu et al., 2024).

Supervised matrix factorization (SMF) is a popular clas-
sical machine learning method that aims to perform low-
dimensional feature extraction and classification tasks si-
multaneously. Given that matrix factorization and classifi-
cation are not inherently aligned objectives, SMF involves
a necessary trade-off when aiming to achieve both goals
simultaneously. As its name implies, SMF integrates a clas-
sification model and MF into a single optimization problem.
While it has been applied to various problem domains (Zhao
et al., 2015; Yankelevsky & Elad, 2017; Li et al., 2019), our
current understanding of its optimization landscape and the
behavior of widely used iterative optimization algorithms
remains limited.

At its core, training SMF requires solving a non-convex
constrained optimization problem involving three or four
blocks of parameters. Even the optimization landscape
of NMF, a two-block constrained bi-convex problem, is
not completely understood (Panageas et al., 2020; Bjorck
et al., 2021) to date. This lack of thorough understanding
makes the optimization landscape of SMF challenging to
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unravel. The goal of this paper is to establish a theoretical
and algorithmic foundation for SMF, providing researchers
with a reliable and rigorous background.

1.1. Contributions

We establish the following novel contributions in this work:

• Local Landscape Analysis: We provide a local land-
scape analysis of the general SMF optimization prob-
lem. We explicitly compute the (4× 4) block structure
of the corresponding Hessian matrix and determine
the minimum L2-regularization on each parameter for
local strong convexity. (Theorems 4.3 and C.6)

• BCD Algorithm and Convergence Guarantee: We
derive a block coordinate descent (BCD) algorithm
for SMF and establish its convergence guarantees by
obtaining bounds on the eigenvalues of the diagonal
blocks in the Hessian matrix. Additionally, we demon-
strate that the algorithm achieves an ε-stationary point
of the objective within O(ε−1(log ε−1)2) iterations
(Theorem 4.4).

• Local Consistency and Estimation Guarantee: We
show the existence of a local minimizer of an L2-
regularized landscape near a stationary point of SMF.
Under a statistical SMF model, we demonstrate that
at least one matrix factor can be locally consistently
estimated with high probability (Theorem 4.5).

• Neural Network Implementation: We provide a com-
pact neural network implementation of the proposed
BCD algorithm for SMF that enables GPU acceleration.
(Figure 2).

1.2. Related works

Recently, Lee et al. (Lee et al., 2023) found a method to
reformulate SMF problems as low-rank matrix estimation
by employing a ‘double-lifting’ idea in the parameter space.
When the lifted problem is well-conditioned, they demon-
strated that low-rank projected gradient descent (LPGD)
can find a global optimum for the original problem at an
exponential rate. However, their approach faces limitations
in handling constraints on individual factor matrices, such as
enforcing the nonnegativity of factors. It is because one can-
not find an optimal nonnegative matrix decomposition from
singular value decomposition (SVD). To address this limita-
tion, we take a different approach by directly analyzing the
local (constrained) landscape of SMF and investigating the
robustness of local optima under L2-regularization.

The SMF training problem in (3) is a non-convex and po-
tentially constrained optimization problem, often featuring
non-unique minimizers. Since it is difficult to solve exactly,
approximate procedures such as BCD (see, e.g., (Wright,
2015)) are often used. These approaches utilize the fact that

the objective function in (3) is convex in each of the four
(matrix) variables. Such an algorithm iteratively optimizes
one block while fixing the others (see (Mairal et al., 2008;
Austin et al., 2018; Leuschner et al., 2019; Ritchie et al.,
2020)). However, existing literature on the convergence
analysis or statistical estimation bounds for such algorithms
remains somewhat limited. Referring to established con-
vergence results for BCD methods (Grippo & Sciandrone,
2000; Xu & Yin, 2013), one can, at best, guarantee asymp-
totic convergence to the stationary points. Alternatively,
polynomial convergence toward Nash equilibria or the ob-
jective (3) is achievable, contingent upon careful verification
of the assumptions underpinning these general findings. Our
derivation and analysis of Algorithm 1 and 2 are based on
the framework of block projected gradient descent viewed
as block majorization-minimization (Lyu & Li, 2023).

One of our main results of non-asymptotic consistency for
constrained and regularized maximum likelihood estimation
(MLE) (Theorem D.1) plays a crucial role in establishing
the local consistency of SMF in the general case (Theorem
4.5). This result draws inspiration from the work on local
consistency guarantees for non-concave penalized MLE in
(Fan & Li, 2001).

Various SMF-type models have been proposed in the past
two decades. Following (Lee et al., 2023), we divide them
into two categories depending on whether the extracted low-
dimensional feature or the feature extraction mechanism
itself is supervised. We refer to them as feature-based and
filter-based SMF, respectively. Feature-based SMF mod-
els include the one by Mairal et al. (Mairal et al., 2008;
2011) as well as the more recent model of convolutional
matrix factorization by (Kim et al., 2016). Filter-based SMF
models have been studied more recently in the literature
on SMF, particularly in studies on supervised nonnegative
matrix factorization (Austin et al., 2018; Leuschner et al.,
2019) and supervised principal component analysis (PCA)
(Ritchie et al., 2020).

2. Preliminaries
2.1. Notations

In this paper, we use the notation Rp to represent the am-
bient space for data, equipped with standard inner project
⟨·, ·⟩, inducing the Euclidean norm ∥·∥. We refer to the set
{0, 1, . . . , κ} as the space of class labels, containing κ+ 1
classes. For a convex subset Θ in an Euclidean space, we
denote ΠΘ the projection operator onto Θ.

For a matrix A = (aij) ∈ Rm×n, the expressions A[i, :]
and A[:, j] refer to the ith row and the jth column of
A for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, respec-
tively. For each integer n ≥ 1, In denotes the n × n
identity matrix. We denote its Frobenius, operator (2-),
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Figure 1. (a) Overall scheme of Supervised Matrix Factorization (specifically, SMF-W with rank r = 2). The columns of W serve as
‘composite variables’ or ‘filters’, whose association with the labels is given by the regression coefficients in β. Taking convolution of
the raw data matrix W with W gives a supervised dimension reduction, as illustrated in b for a 35, 982-dimensional gene microarray
sequence data for breast cancer patients. Similar dimension reduction results obtained by (c) principal component analysis along with
logistic regression and (d) logistic regression to select the two most highly associated raw variables show less clear separation.

and supremum norm by ∥A∥2F :=
∑

i,j a
2
ij , ∥A∥2 :=

supx∈Rn, ∥x∥=1 ∥Ax∥, ∥A∥∞ := maxi,j |aij |, respec-
tively. For square symmetric matrices A,B ∈ Rn×n,
A ⪯ B indicates that vTAv ≤ vTBv holds for all unit
vectors v ∈ Rn. If 0 < α− < α+, then we write A ≍ α±B
to denote α−B ⪯ A ⪯ α+B. The horizontal concatenation
of two matrices A and B is denoted by [A,B] when their
dimensions match.

2.2. Model formulation

Here we give a mathematical formulation of the SMF prob-
lem. For the simplicity of presentation, here we focus on
the case of binary labels. We provide full details on general
multi-label cases and score functions for the classifier in Ap-
pendix B. Consider the following problem setting: we have
a set of n observations (yi,xi,x

′
i) for i = 1, . . . , n where

yi ∈ {0, 1} represents an observed binary label, xi ∈ Rp

denotes a high-dimensional feature, and x′
i ∈ Rq is a low-

dimensional auxiliary feature for the i-th individual (p≫ q).
To predict yi, a low-dimensional representation of xi in
dimension r ≪ p for some suitable r may be utilized,
combined with x′

i. This implies that the observed xi is
approximated by a linear transformation of the basis vec-
tors w1, . . . ,wr ∈ Rp using a suitable code hi. Let W =
[w1, . . . ,wr] ∈ Rp×r be referred to as the (latent) factor
matrix, and H = [h1, . . . ,hn] ∈ Rr×n as its code matrix.
In a more compact form, X = [x1, . . . ,xn] ≈WH, known
as reconstruction. In practical terms, we can determine r as
the approximate rank of the data matrix X.

Now, we present our probabilistic modeling assumption.
Consider fixed parameters W ∈ Rp×r, hi ∈ Rr, β ∈ Rr,
and γ ∈ Rq . Suppose yi is a realization of a random variable

whose conditional distribution is defined as

P (yi = 1 |xi,x
′
i) =

exp(ai)

1 + exp(ai)
, (1)

where ai ∈ R is the activation for yi. The activation is de-
fined in two ways, depending on whether we use a ‘feature-
based’ model (SMF-H) or a ‘filter-based’ model (SMF-W):

ai =

{
βTWTxi + γTx′

i for SMF-W
βThi + γTx′

i for SMF-H.
(2)

Here, (β,γ) are logistic regression coefficients associated
with input features (hi,x

′
i) or (WTxi,x

′
i), respectively. In

equation (2), the code hi or the ’filtered feature’ WTxi is
the low-dimensional representation of xi. Notable differ-
ences between SMF-H and SMF-W arise when predicting
the unknown label of a test point (Lee et al., 2023).

Let Z := (W,H,β,γ) be our block parameters of interest.
In order to estimate Z from observed data (xi,x

′
i, yi) for

i = 1, . . . , n, we consider the following multi-objective
non-convex constrained optimization problem:

min
W∈C1,H∈C2
β∈C3,Γ∈C4

f(Z) := ξ∥X−WH∥2F +
n∑

i=1

ℓ(yi, ai) (3)

where ℓ(yi, ai) = log(1 + exp(ai))− yiai.

Here Cj for j = 1, . . . , 4 represent convex constraint sets
of each block parameter, X = [x1, . . . ,xn] ∈ Rp×n, ai is
as in (2), and the last term in (3) is the classification loss
defined as the negative log-likelihood. Note that the four
block parameters are individually assumed to be constrained
in (3). A tuning parameter ξ controls the trade-off between
the dual objectives of classification and matrix factorization.
The stated problem is inherently non-convex, involving four
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block parameters that may come with additional constraints
such as bounded norm. This formulation encompasses sev-
eral classical models as special cases. Specifically, when
ξ ≫ 1, it transforms into the classical matrix factorization
with constraints (Lee & Seung, 1999; 2000).

3. Methods
3.1. Sketch of idea for Constrained Matrix Factorization

We illustrate our approach to analyzing SMF by demon-
strating it for the simpler setting of constrained MF without
supervision, which amounts to minimizing the bi-convex
objective (W,H) 7→ ∥X−WH∥2F under factor-wise con-
straints on W and H. Its Hessian is given by

vec(W)T vec(H)T[ ]
vec(W) HHT ⊗ Ip A12

vec(H) AT
12 In ⊗WTW

, (4)

where A12 = [(H⊗W) + Ir ⊗ (WH−X)]C(r,n) with
commutation matrix C(r,n) ∈ {0, 1}rn×rn (See Appendix
A for a formal definition). Denoting the diagonal blocks as
A11 and A22, we have

λmin(HHT )Ipr ⪯ A11 ⪯ λmax(HHT )Ipr (5)

λmin(W
TW)Inr ⪯ A22 ⪯ λmax(W

TW)Inr.

We first leverage the upper bounds in (5) to derive a BCD
algorithm with adaptive step size as well as its iteration
complexity for achieving an ε-stationary point. Namely,
from (5), it follows that the marginal loss restricted to W
or H has Lipschitz continuous gradients with parameters
λmax(HHT ) and λmax(W

TW), respectively. So we can
naturally derive the following BCD algorithm (ε > 0 fixed)

W← Π

(
W − 1

λmax(HHT ) + ε
(WH−X)HT

)
, (6)

H← Π′
(
H− 1

λmax(WWT ) + ε
WT (WH−X)

)
with Π,Π′ being suitable projection operators. Using
the recent complexity analysis of block majorization-
minimization algorithms in (Lyu & Li, 2023), we can obtain
iteration complexity of the BCD algorithm (6) for MF.

Next, when X can be approximated by a low-rank factor-
ization X ≈W⋆H⋆ with the true factors W⋆ and H⋆, it
is desirable to introduce regularization to the objective to
ensure that the new objective is locally strongly convex and
can be minimized near (W⋆,H⋆) for efficient and robust
parameter estimation. While L2-regularization naturally
improves local convexity, it may significantly perturb the
local landscape. Therefore, applying the least amount of L2-
regularization is ideal to minimize this perturbation. While

it may be challenging to ‘curve-up’ the landscape to main-
tain minimization at (W⋆,H⋆), we can preserve at least
one of the factors, either W⋆ or H⋆, at the new minimizer.

We establish these claims by a local landscape analysis. In
the ‘large-sample regime’ (n ≫ p), we find that regular-
ization is required only for H. This results in a new local
landscape that is strongly convex near (W⋆,H⋆) and is min-
imized at (W⋆,H

′) for some H′. The distance between H′

and H⋆ is minimized when the added L2-regularization term
for H is the smallest. Similarly, in the ‘high-dimensional
regime’ (p ≫ n), regularization is only necessary for W
and obtain a new local landscape that is strongly convex
near (W⋆,H⋆) and minized at (W′,H⋆) for some W′.

To illustrate the key idea, first recall that block-diagonal
dominance is a well-established sufficient condition to en-
sure that a block matrix is positive definite, as outlined in
(Feingold & Varga, 1962). Let λ1 and λ2 denote the L2-
regularization parameters for W and H respectively. In our
context, this condition can be expressed as follows:

λmin(H⋆H
T
⋆ ) + λ1 − ∥A12∥2 > 0, (7)

λmin(W
T
⋆ W⋆) + λ2 − ∥A12∥2 > 0. (8)

For simplicity, assume typical orders for the eigenvalues of
the matrices in the Hessian (4):

λmin(H⋆H
T
⋆ ) = Θ(rn), λmin(W

T
⋆ W⋆) = Θ(rp),

∥A12∥2 = Θ(r
√
pn).

Now consider the large-sample setting (n ≫ p). The W-
block already has block-diagonal dominance λmin(A11)−
∥A12∥2 = Θ(rn) − Θ(r

√
pn) > 0 but the H-block does

not: λmin(A22)−∥A21∥2 = Θ(rp)−Θ(r
√
pn) < 0. This

allows us to set λ1 = 0 (i.e., no L2-regularization for W
needed), while we may use λ2 = Θ(r

√
pn). Consequently,

the L2-regularized objective ∥X−WH∥2F + λ2

2 ∥H∥
2
F is ρ-

strongly convex at (W⋆,H⋆) with ρ = λ2−Θ(r
√
pn). By

Taylor expansion, one can show that it is locally minimized
at (W⋆,H

′), where ∥H′ − H⋆∥F ≤ 3λ2∥H⋆∥F

λ2−Θ(r
√
pn) when

∥H⋆∥F is sufficiently small.

Conversely, in the high-dimensional setting (p≫ n), we can
set λ2 = 0 and λ1 = Θ(r

√
pn). Then the L2-regularized

objective ∥X−WH∥2F + λ1

2 ∥W∥
2
F is ρ-strongly convex

near (W⋆,H⋆) with ρ = λ1−Θ(r
√
pn). It is locally mini-

mized at (W′,H⋆), where ∥W′ −W⋆∥F ≤ 3λ1∥W⋆∥F

λ1−Θ(r
√
pn) .

While our analysis for SMF follows a similar logical frame-
work as illustrated here for MF, the full analysis is substan-
tially more challenging due to the Hessian’s representation
as a 4 × 4 block matrix, involving intricate interactions
among the four block parameters W,H,β and Γ.
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3.2. BCD algorithm for SMF

We consider both filter- and feature-based SMF models in
(3), allowing for convex constraints on each of the variables
W,H,β, and Γ. A key scenario of interest involves in-
corporating nonnegativity constraints on both W and H,
resulting in the SMF model (3) that combines NMF with
logistic regression in two different ways. For simplicity, we
only give a full statement of the BCD algorithm for SMF-
W. The corresponding algorithm for SMF-H is given in
Algorithm 2 in Appendix.

Algorithm 1 BCD algorithm for SMF-W
1: Input: X ∈ Rp×n (Data); Xaux ∈ Rq×n (Auxiliary

covariate); Ylabel ∈ {0, . . . , κ}1×n (Label);
2: Constraints: Convex subsets C1 ⊆ Rp×r, C2 ⊆ Rr×n,
C3 ⊆ Rr×κ, C4 ⊆ Rq×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (num-
ber of iterations); (ηk;i)k≥1,1≤i≤4 (step-sizes)

4: Initialize W ∈ C1, H ∈ C2, β ∈ C3, Γ ∈ C4
5: For k = 1, 2, . . . , T do: (▷ For α+ see B.1 and B.1)
6: (Update W)
7: Update activation a1, . . . , an and K
8: ∇Wf(Z)← XKTβT + 2ξ(WH−X)HT

9: Choose η−1
k,1 > L1 := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22

10: W← ΠC1
(W − ηk;1∇Wf(Z))

11: (Update H)
12: ∇Hf(Z)← 2ξWT (WH−X)
13: Choose η−1

k,2 > L2 := 2ξ∥W∥22
14: H← ΠC2

(H− ηk;2∇Hf(Z))

15: (Update β)
16: Update activation a1, . . . , an and K
17: ∇βf(Z)←WTXKT

18: Choose η−1
k,3 > L3 := α+∥W∥22 · ∥X∥22

19: β ← ΠC3
(β − ηk;3∇βf(Z))

20: (Update Γ)
21: Update activation a1, . . . , an and K
22: ∇Γf(Z)← XauxK

T

23: Choose η−1
k,4 > L4 := α+∥Xaux∥22

24: Γ← ΠC4 (Γ− ηk;4∇Γf(Z))
25: End for
26: Output: Z = (W,H,β,Γ)

Our algorithm, outlined in Algorithm 1, iteratively per-
forms BCD on the four blocks with an adaptively chosen
step-size. For its statement, note that κ takes any inte-
ger value above 1, with κ = 1 for binary labels. Denote
K := [ḣ(y1, a1), . . . , ḣ(yn, an)] ∈ R1×n where

∇aℓ(y, a) =: ḣ(y, a) =
exp(a)

(1 + exp(a))2
∈ R.

This matrix appears in the gradient of the SMF objective f .

In most of the experiments in this paper, we choose the con-
vex constraint sets to be C1 = {W ∈ Rp×r

≥0 | ∥W∥F ≤
1}, C2 = {H ∈ Rr×n

≥0 | ∥H∥F ≤ C1}, C3 = {β ∈
Rr×κ | ∥β∥F ≤ C2}, and C4 = {Γ ∈ Rq×κ | ∥Γ∥F ≤ C3},
where C1, C2, C3 > 0 are fixed constants.

Here are some remarks on the computational complexity
of the algorithms. In Algorithm 1, the per-iteration cost
is proportional to the cost of computing gradients for each
block variable in the objective (e.g., W,H,β,Γ), which
is O((pr + q)n) for both SMF-W and SMF-H. While
they have the same asymptotic order, computing gradients
for SMF-W are constant factors more expensive than that
for SMF-H, which can be seen by comparing the gradi-
ent formulas. Namely, SMF-W computes the additional
XKTβT for the gradient of W, and the gradient of β uses
more expensive matrix multiplication WTXKT of com-
plexity O(rpnκ). In contrast, SMF-H employs HKT for
its gradient or smaller order O(rnκ), independent of p.

Using BCD instead of full gradient descent (GD) allows
for larger step sizes, which has the potential for fast con-
vergence. Namely, the allowed step size for each block in
Algorithm 1 is determined by the reciprocal of the largest
eigenvalue of the diagonal blocks of the Hessian (59) (see
Theorem 4.3). In contrast, with GD, the step size is lim-
ited to the reciprocal of the largest eigenvalue of the entire
Hessian, which may be considerably smaller.

3.3. Neural implementation of SMF-W for GPU
acceleration

Synchronized

MSE

Classifier

Reconstructor

KL

TrainingNeural SCMF-
Backprop

Synchronization

Figure 2. The SMF-W implementation involves two coupled two-
layer neural networks: reconstructor and classifier. These networks
share the first layer weight W. The training process consists of
repeating backpropagation in each network and subsequently syn-
chronizing their first-layer weights through their convex combina-
tion. This configuration allows for extremely fast training on GPU.
n data points are the columns of X = [x1, . . . ,xn] ∈ Rp×n and
ei is the ith standard basis vector in Rp.

While our BCD algorithm for SMF is derived from a careful
local landscape analysis with rigorous theoretical guarantee,
we provide a neural network architecture (see Figure. 2)
that approximately implements our BCD algorithm in order
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to bring the advantage of a modern GPU computation to the
practitioners in the ML community.

Reconstructor network: The reconstructor network operates
as a two-layer neural network with weights W ∈ Rp×r

and H ∈ Rr×n with identity activation to expedite matrix
factorization. Each input vector ei for this network is the
ith standard basis vector in Rp. Each p-dimensional input
is transformed into an r-dimensional vector WT ei, which
is then transformed to an n-dimensional vector HTWT ei.
The target output is the ith row of the data matrix, X[i, :]T ∈
Rn. Using mean-squared error (MSE) loss for this network,
the overall loss is for this network is exactly 1

n∥X−WH∥2F .

Classifier network: The classifier network serves for both
dimension reduction and classification within a neural net-
work framework. Each input vector xi = X[i, :]T has
p dimensions, where i ranges from 1 to n. The network
uses weight matrices W ∈ Rp×r for dimension reduction
and β ∈ Rr to compress each p-dimensional input xi to
an r-dimensional vector WTxi. The second layer with
weight β ∈ Rr×κ and sigmoid activation σ yields the pre-
dicted probability distribution σ(βTWTxi) for the output
yi ∈ {0, 1, . . . , κ}. For this layer we use the cross-entropy
loss for back-propagation.

Synchronizing the first-layer weight: The novel feature
of our neural implementation of SMF is that we syn-
chronize the the first-layer weight W after every step of
back-propagation. Note that given the current first-layer
weight W, back-propagation within the reconstructor and
the classifier networks updates W separately to two ver-
sions W′ and W′′, respectively. The synchronization
step takes a convex combination of these two versions as
W← 1

1+ξW
′ + ξ

1+ξW
′′, which agrees with updating W

by a gradient descent with∇Wf(W,H,β) for f the SMF-
W loss in (3). We can then replace W with max{O,W}
to ensure nonnegativity.

4. Statement of results
4.1. Assumptions

We introduce two minor assumptions below.

Assumption 4.1. (Constraint sets) The constraint sets
C1, . . . , C4 in (3) are closed, convex, and compact.

Assumption 4.2. (Bounded activation) The activation a ∈
Rκ defined in (2) assumes bounded norm, i.e., ∥a∥ ≤ M
for some constant M ∈ (0,∞). (c.f. Note that κ = 1 in the
main text but we discuss the multi-label case κ ≥ 1 in the
appendix, see Sec. B.)

Assumption 4.1 allows one to constrain each factor within a
compact and convex set. A typical choice would be bounded
nonnegative orthant, which entails supervised nonnegative
matrix factorization models (Austin et al., 2018; Leuschner
et al., 2019). It does not, however, entail supervised PCA

models (Ritchie et al., 2020) or low-rank matrix constraints
as the Grassmannian constraint is non-convex.

Assumption 4.2 imposes a constraint on the norm of the
activation a, as the input for the classification model in
(3) is bounded. This is standard in the literature (see, e.g.,
(Negahban & Wainwright, 2011; Yaskov, 2016; Lecué &
Mendelson, 2017; Lee et al., 2023)) to uniformly bound
the eigenvalues of the Hessian of the multinomial logistic
regression model.

Under Assumption 4.2, we introduce the following con-
stants:

γmax := 1 +
eM

1 + eM + (κ− 1)e−M
≤ 2 (9)

α− :=
e−M

1 + e−M + (κ− 1)eM

α+ :=
eM

(
1 + 2(κ− 1)eM

)
(1 + eM + (κ− 1)e−M )2

≤ 1/4.

These constants will appear in uniform bounds on the first
and the second derivatives of the log likelihood ℓ(y, a) and
the first derivative of the predictive probability distribution
(see (Böhning, 1992)).

4.2. How does the local landscape look like?

In Theorem 4.3, we provide a local landscape result for
SMF-W. A key step is to compute the Hessian of the
objective f in (3), which turns out to take the following
4× 4 block form:

vec(W)T vec(H)T vec(β)T vec(Γ)T vec(W) A11 A12 A13 O
vec(H) A21 A22 O O
vec(β) A31 O A33 A34

vec(Γ) O O A43 A44

(10)

The exact formulas for each block entry are given in Lemma
C.2. For our analysis, we consider the following L2-
regularized objective F (Z) defined by

f(Z) +
λ1

2
∥W∥2F +

λ2

2
∥H∥2F +

λ3

2
∥β∥2F +

λ4

2
∥Γ∥2F (11)

Also denote

Λ1 := λmin(HHT )− ∥W∥2∥H∥2 − ∥WH−X∥2, (12)

Λ2 := λmin(W
TW)− ∥W∥2∥H∥2 − ∥WH−X∥2.

Theorem 4.3 (Local landscape of SMF-W). Let f(Z) de-
note the objective of SMF-W in (3). Suppose Assumptions
4.1 and 4.2 hold. Then the followings hold:

(i) A11 ≍ α±(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip),

A22 = 2ξ(In ⊗WTW),

A33 ≍ α±(Iκ ⊗WTXXTW),

A44 ≍ α±(Iκ ⊗XauxX
T
aux).
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(ii) F is ρ-strongly convex at Z = (W,H,β,Γ) for ρ =
min1≤i≤4(λi − λ∗

i ) where

λ∗
1 := γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22

− 2ξΛ1 − α−λmin(ββ
T )λmin(XXT ),

λ∗
2 := −2ξΛ2,

λ∗
3 := γmax

√
κn∥X∥2 ++α+∥β∥2∥W∥2∥X∥22

+ α+∥Xaux∥2∥WTX∥2 − α−λmin(W
TXXTW),

λ∗
4 := α+∥Xaux∥2∥WTX∥2 − α−λmin(XauxX

T
aux).

(iii) Suppose Z⋆ = [W⋆,H⋆,β⋆,Γ⋆] is a stationary point
of f over Θ. If Λ1 > 0, ξ ≫ 1, and λ1 = 0, then
F is locally minimized at (W⋆, θ

′) with the following
perturbation bound:

∥θ′ − θ⋆∥F ≤
3max1≤i≤4(λi)

min1≤i≤4(λi − λi⋆)
∥θ⋆∥F , (13)

where θ′ := (H′,β′,Γ′), θ⋆ := (H⋆,β⋆,Γ⋆) and
∥θ⋆∥F is assumed to be sufficiently small.

If Λ2 > 0, then by taking λ2 = 0 and denoting
θ′ := (W′,β′,Γ′) and θ⋆ := (W⋆,β⋆,Γ⋆), when-
ever ∥θ⋆∥F is sufficiently small, F is locally minimized
at (H⋆, θ

′) with the same perturbation bound in (13).

The interpretation of Theorem 4.3 (iii) aligns with our ear-
lier discussion on the simpler MF case. Specifically, in
the high-dimensional regime (p ≫ n), it is likely that
Λ2 = Ω(rp)−O(r

√
pn) = Ω(rp) > 0. Consequently, we

can introduce suitable L2-regularization only to W,β,Γ
so that the regularized landscape attains local minimization
at the stationary point H with the other stationary factors
perturbed. This implies that H⋆ can be locally robustly esti-
mated in this scenario. In the large-sample regime (n≫ p),
it is likely that Λ1 = Ω(rn)−O(r

√
pn) = Ω(rn) > 0. By

choosing a sufficiently large tuning parameter ξ such that
λ1⋆ ≤ 0, we can use suitable L2-regularization to H,β,Γ.
It ensures that the regularized landscape is locally mini-
mized at the stationary point W⋆ with the other stationary
factors perturbed. Consequently, W⋆ can be locally and
robustly estimated in this scenario.

In Theorem C.6, we provide a similar local landscape result
for SMF-H. One notable difference is that, for SMF-W,
we require a large weight ξ on the matrix factorization loss
in the large-sample regime, whereas, it should be used in
the high-dimensional regime for SMF-H.

Next, in Theorem 4.4 below, we establish the convergence of
Algorithm 1 and 2 to the stationary points of the SMF objec-
tive f in (3). Furthermore, these algorithms converge to an
‘ε-stationary point’ solution within Õ(ε−1) iterations. More
precisely, consider the problem of minimizing a function
f : Rp → R over a convex set Θ ⊂ Rp. A θ∗ ∈ Θ is a sta-
tionary point of f over Θ if infθ∈Θ ⟨∇f(θ∗), θ−θ∗⟩ ≥ 0.

This is equivalent to stating that −∇f(θ∗) is in the normal
cone of Θ at θ∗. Every local minimum of f over Θ is a
stationary point. Relaxing this notion, for each ε ≥ 0, we
define θ∗ ∈ Θ to be an ε-stationary point of f over Θ if

Gap(θ⋆) := sup
θ∈Θ, ∥θ−θ∗∥≤1

⟨−∇f(θ∗), θ − θ∗⟩ ≤ ε. (14)

Theorem 4.4 (Convergence rate of BCD). Suppose Assump-
tions 4.1 and 4.2 hold. Let Zt = (Wt,Ht,βt, Γt), t ≥ 1
denote the sequence of estimated parameters from Algo-
rithm 1 or 2. Then for every initial estimate Z0 and choice
of parameters ξ, the followings hold:

(i) min
1≤t≤T

Gap(Zt) = O(T−1/2 log T ). (15)

(ii) For each ε > 0, an ε-stationary point is achieved within
iteration O(ε−1(log ε−1)2).

(iii) Further assume that the step sizes ηk,i are uniformly
upper bounded. Then Zt converges to the set of sta-
tionary points of f over Θ.

Proofs of Theorems 4.3 and 4.4 are in Appendices C.

4.3. How close is an MLE to the true parameter?

We can extend Theorem 4.3 to provide a local estimation
guarantee for generative SMF models that we introduce
below. Fix parameters W⋆ ∈ Rp×r, H⋆ ∈ Rr×n, β⋆ ∈
Rr×κ, Γ⋆ ∈ Rq×κ, and λ⋆ ∈ Rq×1. Suppose the data,
auxiliary covariate, and label triples (xi,x

′
i, yi) are drawn

independently (not necessarily identically distributed) ac-
cording to the following generative model:

xi ∼ N
(
W⋆H⋆[:, i], σ

2Ip
)
, x′

i ∼ N(λ⋆, (σ
′)2Iq),

yi |xi,x
′
i ∼ Bernoulli

(
exp(ai)

1 + exp(ai)

)
(16)

where ai := (β⋆)
T (W⋆)

Txi + (Γ⋆)
Txi.

For consistent estimation, we further assume that the mean
r-dimensional representation H⋆[:, i] of the ith data column
xi is an 1/

√
n-perturbation of a ‘true mean vector’ h⋆ ∈ Rr:

∥H⋆[:, i] − h⋆∥F ≤ c/
√
n for some constant c > 0. (c.f.

When κ ≥ 1, the conditional distribution of yi in (16) is
taken to be the multinomial distribution with probability of
label c being proportional to h(ai[c]) with h general score
function. See Appendix B.)

We assume (xi,x
′
i, yi) for i = 1, . . . , n are independent,

and also xi and x′
i are independent for each 1 ≤ i ≤ n.

We refer to the above as the generative SMF-W model.
Assuming that σ and σ′ are known, our goal is to es-
timate the true factors W⋆, h⋆, β⋆,Γ⋆, and λ⋆ from
an observed sample (xi,x

′
i, yi), i = 1, . . . , n of size n,

where n is large and fixed. We consider the maximum
likelihood estimation framework with L2-regularization

7
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of the parameters. Namely, denote Z := (W,h,β,Γ),
X := [x1, . . . ,xn], and Xaux := [x′

1, . . . ,x
′
n]. Then the

negative log-likelihood of observing the given data with an
additional L2-regularization is (up to a constant), letting F
is as in (11),

L(Z,λ) := F (Z) +
1

2(σ′)2

n∑
i=1

∥x′
i − λ∥2. (17)

The added L2-regularizer in F can be understood by using a
Gaussian prior for the parameters and interpreting the above
as the negative logarithm of the posterior distribution.

Let L̄(Z,λ) := E [L(Z,λ)] denote the expected regular-
ized negative log-likelihood function. In classical local con-
sistency theory of MLE (e.g., (Fan & Li, 2001)), it is crucial
that L̄ with zero L2-regularization is strongly convex at the
true parameter. Equivalently, this means that Fisher infor-
mation, which is the Hessian∇2L̄ of the expected negative
log-likelihood function (with no L2-regularizer) evaluated
at the true parameter, is positive definite. However, this is
not the case for the generative SMF-W model in (16) (e.g.,
the model parameter in (16) is not identifiable), unless we
add suitable L2 regularization. Our key observation in The-
orem 4.3 was that, in the large-sample or high-dimensional
setting, such L2-regularization is unnecessary for W or H,
respectively. We extend this to the statistical setting to ob-
tain local consistency of the MLEs. The following result
can be regarded as a high-probability (1/

√
n)-perturbation

of the local landscape result in Theorem 4.3.

Theorem 4.5. (Regularized local consistency) Consider the
generative SMF-W model (16). Assume that Assumptions
4.1 and 4.2 hold. Suppose ρ := min1≤i≤4(λi − λi⋆) > 0.

Suppose Λ1 > 0, λ1 = 0, and σ ≪ 1 (resp., Λ2 > 0 and
λ2=0). Fix ε > 0. Then there exists a constant C > 0 such
that with probability at least 1− ε, L in (17) is minimized
locally at some (Ŵ, θ̂, λ̂) (resp., (Ĥ, θ̂, λ̂)) with

∥Ŵ −W⋆∥ ≤ C/
√
n (resp., ∥Ĥ−H⋆∥ ≤ C/

√
n) (18)

∥λ̂− λ⋆∥ ≤ C/
√
n

∥θ̂ − θ⋆∥F ≤ Cn−1/2

(
1 +

3max{λ2, λ3, λ4}
ρ

∥θ⋆∥F
)
,

where θ′ := (H′,β′,Γ′), θ⋆ := (H⋆,β⋆,Γ⋆) (resp., θ′ :=
(W′,β′,Γ′), θ⋆ := (W⋆,β⋆,Γ⋆)) and ∥θ⋆∥F is assumed
to be sufficiently small.

Recall that in the generative SMF-W model (16), the Fisher
information is a 5×5 block matrix with the first 4×4 block
sub-matrix being the Hessian of the SMF objective f in
(3) which is not positive definite. Hence the classical local
consistency theory of MLE is not applicable. Our proof of
Theorem 4.5 relies on Theorem 4.3, along with a substantial
non-asymptotic generalization of such theory, which we
establish Theorem D.1 in Section D. To prove this result,

we use uniform McDirmid’s inequality (Lemma D.2) and
Berry-Esseen theorem for independent but non-identically
distributed random variables (Thoerem D.3). See Appendix
D for details.

5. Simulation and Applications
In Figure 3, we provide numerical verification of Theorem
4.4. The first dataset is generated from the MNIST database
(LeCun & Cortes, 2010) (p = 282 = 784, q = 0, n = 500,
κ = 1) for digit detection, and the second dataset is a text
dataset named ‘Employment Scam Aegean Dataset’ (Labo-
ratory of Information and Communication Systems, 2016)
(p = 2840, q = 72, n = 17880, κ = 1) for fake job posting
prediction. Details about these datasets are in Section G.
We used Algorithms 1 and 2 with r = 20 for both datasets.
We see sublinear convergence of both algorithms for various
instances as stated in Theorem 4.4. Notably, algorithms for
SMF-H (resp., SMF-W) converge faster for large (resp.,
small) ξ. This is consistent with the implications of Theo-
rems 4.3 and C.6. Also, our neural implementation (Figure
2) enjoys significant GPU acceleration, especially for large
datasets.

Figure 3. Plots of training loss vs. elapsed time at different ξ
values for fitting SMF-W using Algorithm 1 (BCD), the neural
implementation in Figure 2 (Neural), and low-rank projected gradi-
ent descent (LPGD) in (Lee et al., 2023). Shaded regions indicate
one standard deviation across 10 runs.

In Figure 4, we evaluate the performance of different meth-
ods on the bi-objective tasks of SMF through a Pareto plot of
F-score/Accuracy vs. relative reconstruction error. The base-
line methods include logistic regression (LR) on raw data
and NMF followed by logistic regression (MF-LR). Addi-
tionally, low-rank projected gradient descent algorithms for
SMF (LPGD) in (Lee et al., 2023) are used. Increasing the
tuning parameter ξ in the various SMF models seems to in-
terpolate between two extremes of LR and MF-LR. Notably,
SMF-W shows the best overall performance achieving both
objectives.
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Figure 4. Pareto plots of relative reconstruction error vs. classifica-
tion accuracy/F-score for different models.

Methods Pancreatic Breast

SMF-W (BCD) 0.869 (0.02) 0.924 (0.01)
SMF-H (BCD) 0.823 (0.06) 0.880 (0.02)
SMF-W (Neural) 0.854 (0.04) 0.881 (0.02)
SMF-W (LPGD) 0.869 (0.02) 0.894 (0.02)
SMF-H (LPGD) 0.885 (0.07) 0.875 (0.01)
PCA-LR 0.747 (0.13) 0.454 (0.27)
CNN 0.769 (0.07) 0.854 (0.06)
FFNN 0.816 (0.04) 0.890 (0.02)
Naive Bayes 0.815 (0.07) 0.810 (0.02)
SVM 0.746 (0.09) 0.866 (0.02)
Random Forest 0.815 (0.06) 0.844 (0.02)

Table 1. Cancer classification results using microarray data.

Lastly in Figure 5, we demonstrate supervised topic model-
ing with auxiliary covariates using SMF-W under nonneg-
ative constraints. We compare SMF with the classic topic
modeling approaches Latent Dirichlet allocation (LDA),
NMF, and a recent deep learning-based approach, neural
topic model with Gaussian Softmax distribution (GSM)
(Miao et al., 2017).

Unsupervised topics mostly related to the true job postings,
representing 95% of the dataset. Hence, applying unsuper-
vised topic modeling methods is expected to learn topics
that are mostly describing the true jobs postings, neglect-
ing possible topics related to the scarce fake job postings.
Indeed, our experiment shows that while traditional topic
modeling methods successfully identify topics that describe
the majority of job posting data, these topics may not be
effective for classifying fake and true job postings. In con-
trast, our SMF with nonnegative constraints successfully
”tilts” the topics to faithfully represent the 5% fake job post-
ings. This is why our method achieves the best classification
performance in terms of the F-score.

Next, we apply the proposed methods to two datasets from
the Curated Microarray Database (CuMiDa) (Feltes et al.,
2019). CuMiDa provides well-preprocessed microarray data
for various cancer types for various machine-learning ap-
proaches. One consists of 54,676 gene expressions from 51

Figure 5. Topics in the job postings data learned by (a) SMF-W
with ξ = 1, (b) latent Dirichlet allocation, (c) NMF, and (d) a neu-
ral topic model (GSM) in Miao et al. (2017). Without supervision,
the learned topics are highly skewed toward the true job postings
consisting of 95% of the data and lead to poor classification.

subjects with binary labels indicating pancreatic cancer; An-
other we use has 35,982 gene expressions from 289 subjects
with binary labels indicating breast cancer. The primary
purpose of the analysis is to classify cancer patients solely
based on their gene expression.

6. Conclusion and Limitations
This study contributes to the advancement of SMF, a classi-
cal machine learning method designed for simultaneous low-
dimensional feature extraction and classification. Despite
facing non-convex optimization challenges, we propose a
BCD algorithm with adaptive step size, ensuring global
convergence and providing iteration complexity guarantees.
Minimum L2-regularization enhances local strong convex-
ity, and we explore parameter robustness within a statistical
SMF model. Our GPU-friendly neural BCD implementa-
tion bridges theoretical insights with practical applicability,
validated through numerical experiments for effectiveness.
Our contributions enhance the understanding and applica-
tion of SMF, addressing non-convexity and constraints in
machine learning optimization.
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Supplementary Material

A. Preliminaries
This section covers key notations and fundamental concepts of linear algebra and matrix calculus.

If A = (aij) is an m×n matrix and B is a p× q matrix, then the Kronecker product A⊗B is the mp×nq matrix such that

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Recall that we have

(A⊗B)T = AT ⊗BT .

If A′ is an m× n′ matrix and B′ is a p′ × q matrix, we define the m× (n+ n′) horizontally stacked matrix as [A,A′] and
the the (p+ p′)× n vertically stacked matrix as [B∥B′] := [BT , (B′)T ]T . Then by properties of the Kronecker product,
we have

[A,A′]⊗B = [A⊗B,A′ ⊗B], A⊗ [B∥B′] = [A⊗B ∥A⊗B′]. (19)

For each m× n matrix A = [a1, . . . , an], we define its vectorization as vec(A) = [aT1 , . . . , a
T
n ]

T ∈ Rmn.

The commutation matrix C(a,b) is the ab× ab matrix such that

C(a,b) vec(A) = vec(AT ),

for any a × b matrix A. For each pair of integers a, b ≥ 1, there is a unique matrix C(a,b) ∈ {0, 1}ab×ab. Recall the
following properties of the commutation matrix:

• (C(a,b))T = C(b,a).

• (C(a,b))TC(a,b) = Iab, that is, C(a,b) is positive semi-definite.

•C(a,1) = Ia = C1,a.

•C(p,m)(A⊗B) = (B ⊗A)C(q,n) for every m× n matrix A and p× q matrix B (20)
. • (A⊗B)(C ⊗D) = (AC)⊗ (BD) for any matrices with compatible sizes for the products AC and BD. (21)

Furthermore, for any matrices A ∈ Ra×b, B ∈ Rb×c, and C ∈ Rc×d, the vectorizing product of matrices is given by

vec(AB) = (Ic ⊗A) vec(B) = (BT ⊗ Ia) vec(A), (22)

vec(ABC) = (CT ⊗A) vec(B) = (Id ⊗AB) vec(C) = (CTBT ⊗ Ia) vec(A). (23)

Next, for differentiable functions f : Ra×1 → Rb×1 and g : Rb×1 → Rc×1, the Jacobian Jf can be represented as

Jf (x) =
(
∇xf(x)

T
)T

∇x

(
g(f(x))T

)
= ∇x

(
f(x)T

)
∇f(x)

(
g(f(x))T

)
, (24)

where the second equality holds by chain rule Jg◦f (x) = Jg(f(x))Jf (x). And for any a× b matrix A, we have

∇vec(A) vec(A)
T = Iab,

∇vec(A) vec(A
T )T = ∇vec(A) vec(A)TC(b,a) = C(b,a).
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B. Model formulation for general multi-label setting
Consider the following problem setting: we have a set of n observations (yi,xi,x

′
i) for i = 1, . . . , n where yi ∈

{0, 1, . . . , κ} represents an observed label, xi ∈ Rp denotes a high-dimensional feature, and x′
i ∈ Rq is a low-dimensional

auxiliary feature for the i-th individual (p ≫ q). To predict yi, a low-dimensional representation of xi in dimension
r ≪ p for some suitable r may be utilized, combined with x′

i. This implies that the observed xi is approximated by a
linear transformation of the basis vectors w1, . . . ,wr ∈ Rp using a suitable code hi. Let W = [w1, . . . ,wr] ∈ Rp×r

be referred to as the (latent) factor matrix, and H = [h1, . . . ,hn] ∈ Rr×n as its code matrix. In a more compact form,
X = [x1, . . . ,xn] ≈WH, known as reconstruction. In practical terms, we can determine r as the approximate rank of the
data matrix X.

Now, we present our probabilistic modeling assumption. Consider fixed parameters W ∈ Rp×r, hi ∈ Rr, β ∈ Rr×κ, and
γ ∈ Rq×κ. Let h : R → [0,∞) be a score function. Suppose yi is a realization of a random variable whose conditional
distribution is defined as

[P (yi = 0 |xi,x
′
i) , . . . ,P (yi = κ |xi,x

′
i)] := C[1, h(ai,1), . . . , h(ai,κ)], (25)

where C is the normalization constant and ai = (ai,1, . . . , ai,κ) ∈ Rκ is the activation for yi. For multinomial logistic
regression, we have

[P (yi = 0 |xi,x
′
i) , . . . ,P (yi = κ |xi,x

′
i)] =

1

1 +
∑κ

c=1 exp(ai,c)
[1, exp(ai,1), . . . , exp(ai,κ)],

where the score function h(·) = exp(·).

The activation is defined in two ways, depending on whether we use a ‘feature-based’ model (SMF-H) or a ‘filter-based’
model (SMF-W):

ai =

{
βTWTxi + γTx′

i for SMF-W
βThi + γTx′

i for SMF-H
∈ Rκ. (26)

Here, (β,γ) are multinomial logistic regression coefficients associated with input features (hi,x
′
i) or (WTxi,x

′
i), respec-

tively. In equation (26), the code hi or the ’filtered feature’ WTxi is the low-dimensional representation of xi.

Let Z := (W,H,β,γ) be our block parameters of interest. In order to estimate Z from observed data (xi,x
′
i, yi) for

i = 1, . . . , n, we consider the following multi-objective non-convex constrained optimization problem:

min
W∈C1,H∈C2
β∈C3,Γ∈C4

f(Z) :=
n∑

i=1

ℓ(yi,ai) + ξ∥X−WH∥2F , (27)

where Cj for j = 1, . . . , 4 represents convex constraint sets of each block parameter, X = [x1, . . . ,xn] ∈ Rp×n, ai is as in
(26), and ℓ(·) is the classification loss defined as the negative log-likelihood:

ℓ(y,a) = log

(
1 +

κ∑
c=1

h(ac)

)
−

κ∑
c=1

1{y=c} log h(ac).

Note that the four block parameters are individually assumed to be constrained in (27). A tuning parameter ξ controls the
trade-off between the dual objectives of classification and matrix factorization.

With the choice of general score function h in (25), we impose the following assumption on uniform bounds on the first and
the second derivatives observed information and the first derivative of the predictive probability distribution (see (Böhning,
1992)).
Assumption B.1. (Bounded stiffness and eigenvalues of observed information) The score function h : R→ [0,∞) is twice
continuously differentiable. Further, let observed information Ḧ(y,a) := ∇a∇aT ℓ(y,a) for y and a. Then, for the constant
M > 0 in Assumption 4.2, there are constants γmax, α

−, α+ > 0 s.t. γmax := sup∥a∥≤M max1≤s≤n ∥∇aℓ(ys,a)∥∞

α− := inf
∥a∥≤M

min
1≤s≤n

λmin(Ḧ(ys,a)), (28)

α+ := sup
∥a∥≤M

max
1≤s≤n

λmax(Ḧ(ys,a)). (29)

13
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Under Assumption 4.2 and the multinomial logistic regression model h(·) = exp(·), the quantities γmax and α± in B.1 can
be bounded as in (9) in the main text.
Remark B.2 (Multinomial Logistic Classifier). Let ℓ denote the negative log-likelihood function in (3), where we take
the multinomial logistic model with the score function h(·) = exp(·). In this case Assumption B.1 is easily satisfied.
To see this, denote (ḣ1, . . . , ḣκ) := ∇aℓ(y,a) and Ḧ(y,a) := ∇a∇aT ℓ(y,a). Then in this special case, we have
ḣj(y,a) = gj(a) − 1(y = j) and Ḧ(y,a)i,j = gi(a) (1(i = j)− gj(a)) (See (167) and (169) in Appendix). Under
Assumption 4.2, according to Lemma F.1, we can take γmax = 1 + eM

1+eM+(κ−1)e−M ≤ 2, α− = e−M

1+e−M+(κ−1)eM
, and

α+ =
eM(1+2(κ−1)eM)

(1+eM+(κ−1)e−M )2
. For binary classification, α+ ≤ 1/4.

C. Local landscape analysis for SMF
In this section, we prove Theorem 4.3 as well as Theorem 4.4 for the general multi-label setting we introduced in Section B.

Throughout this section, we denote Z = [W,H,β,Γ] for the combined SMF parameters. The activation as for the sth
sample (see (2)) is given by

as :=

{
βTWTxs + ΓTx′

s for SMF-W
βThs + ΓTx′

s for SMF-H
.

Then the objective function in (3) in the general setting then can be written as

f(Z) =
n∑

s=1

ℓ(ys,as) + ξ∥X−WH∥2F (30)

=
n∑

s=1

(
log

κ∑
c=0

h(as[c])−
κ∑

c=0

1{ys=c} log h(as[c])

)
+ ξ∥X−WH∥2F , (31)

where as[i] ∈ R denotes the ith component of as ∈ Rκ and h(a[0]) = 1. Recall the functions ḣ and Ḧ introduced in
Assumption B.1. An easy computation shows

∇aℓ(y,a) =: ḣ(y,a) = (ḣ1, . . . , ḣκ) ∈ Rκ, ∇a∇aT ℓ(y,a) = Ḧ(y,a) =: (ḧij) ∈ Rκ×κ, (32)

where

ḣj = ḣj(y,a) :=

(
h′(aj)

1 +
∑κ

c=1 h(ac)
− 1(y = j)

h′(aj)

h(aj)

)
, (33)

ḧij :=

(
h′′(aj)1(i = j)

1 +
∑κ

c=1 h(ac)
− h′(ai)h

′(aj)

(1 +
∑κ

c=1 h(ac))
2

)
− 1(y = i = j)

(
h′′(aj)

h(aj)
− (h′(aj))

2

(h(aj))
2

)
. (34)

For the forthcoming computations, define matrices

K := [ḣ(y1,a1), . . . , ḣ(yn,an)] ∈ Rκ×n, M := diag
(
Ḧ(y1,a1), . . . , Ḧ(yn,an)

)
∈ Rκn×κn. (35)

C.1. Proof for SMF-W

In this section, we prove Theorem 4.4 for SMF-W. An analogous argument for SMF-H will be provided in the next section.

Proposition C.1. Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Let as := βTWTxs +
ΓTx′

s for s = 1, . . . , n. Then
∇vec(W) ℓ(ys,as) = C(r,p)(xs ⊗ β) ḣ(ys,as),

∇vec(β) ℓ(ys,as) = C(κ,r)(WTxs ⊗ Iκ) ḣ(ys,as),

∇vec(Γ) ℓ(ys,as) = C(k,q)(x′
s ⊗ Iκ) ḣ(ys,as),


∇vec(W) vec(K)T = (β ⊗X)C(κ,n)M,

∇vec(β) vec(K)T = (Iκ ⊗WTX)C(κ,n) M,

∇vec(Γ) vec(K)T = (Iκ ⊗Xaux)C
(κ,n) M.

(36)
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Proof. We first show 
∇vec(W)a

T
s = C(r,p)(xs ⊗ β),

∇vec(H)a
T
s = O,

∇vec(β)a
T
s = C(κ,r)(WTxs ⊗ Iκ),

∇vec(Γ)a
T
s = C(k,q)(x′

s ⊗ Iκ).

(37)

∇vec(H)a
T
s = O is clear. For differentiating as by vec(W), observe that by using (22), we can write

as = vec(as) = vec
(
βTWTxs + ΓTx′

s

)
= (xT

s ⊗ βT ) vec(WT ) + vec(ΓTx′
s).

Noting that vec(WT )T = (C(p,r) vec(W))T = vec(W)TC(r,p),

∇vec(W)a
T
s = ∇vec(W) vec(W

T )T (xs ⊗ β)

= ∇vec(W) vec(W)TC(r,p)(xs ⊗ β)

= C(r,p)(xs ⊗ β).

For differentiating as by vec(β), writing as = (xT
s W ⊗ Iκ) vec(β

T ) + vec(ΓTx′
s), we get

∇vec(β)a
T
s = ∇vec(β) vec(β

T )T (WTxs ⊗ Iκ)

= ∇vec(β) vec(β)
TC(κ,r)(WTxs ⊗ Iκ)

= C(κ,r)(WTxs ⊗ Iκ).

For differentiating as by vec(Γ), writing as = vec(βTWTxs) + ((x′
s)

T ⊗ Iκ) vec(Γ
T ), we get

∇vec(Γ)a
T
s = ∇vec(Γ) vec(Γ

T )T (x′
s ⊗ In)

= ∇vec(Γ) vec(Γ)
TC(k,q)(x′

s ⊗ Iκ)

= C(k,q)(x′
s ⊗ Iκ).

This verifies (37). Then by using the chain rule (24), we get

∇vec(W)ℓ(ys,as) = ∇vec(W)a
T
s ∇as

ℓ(ys,as) = C(r,p)(xs ⊗ β) ḣ(ys,as).

Other gradients∇vec(β) ℓ(ys,as) and ∇vec(Γ) ℓ(ys,as) also follow from (37) and the chain rule.

Next, we compute the gradients of vec(K)T in (36). First, using (37), the chain rule (24), and (32),

∇vec(W) ḣ(ys,as)
T = ∇vec(W)a

T
s ∇as

ḣ(ys,as)
T = C(r,p)(xs ⊗ β)Ḧ(ys,as),

∇vec(β) ḣ(ys,as)
T = ∇vec(β)a

T
s ∇as ḣ(ys,as)

T = C(κ,r)(WTxs ⊗ Iκ)Ḧ(ys,as),

∇vec(Γ) ḣ(ys,as)
T = ∇vec(Γ)a

T
s ∇as

ḣ(ys,as)
T = C(κ,q)(x′

s ⊗ Iκ)Ḧ(ys,as).

Now since vec(K)T = [ḣ(y1,a1)
T , . . . , ḣ(yn,an)

T ] and vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), it follows
that

∇vec(W) vec(K)T
(a)
=
[
C(r,p)(x1 ⊗ β)Ḧ(y1,a1), . . . ,C

(r,p)(xn ⊗ β)Ḧ(yn,an)
]

(b)
= C(r,p) [x1 ⊗ β, . . . ,xn ⊗ β] diag

(
Ḧ(y1,a1), . . . , Ḧ(yn,an)

)
(c)
= C(r,p)(X⊗ β)M

(d)
= (β ⊗X)C(κ,n)M,

where (a) follows from (37) and the chain rule, (b) is an algebra, (c) follows from (19), and (d) follows from (20). The other
gradients∇vec(β) vec(K)T and ∇vec(Γ) vec(K)T follow from similar computations.
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Lemma C.2 (Derivatives of the SMF-W objective). Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption
B.1 holds. Recall ḣ and Ḧ defined in (33). Then the gradients of f(Z) are given by

∇W f(Z) = XKTβT + 2ξ(WH−X)HT , (38)

∇H f(Z) = 2ξWT (WH−X), (39)

∇β f(Z) = WTXKT , (40)

∇Γ f(Z) = XauxK
T . (41)

The block-diagonal terms in the Hessian are given by

∇vec(W)∇vec(W)T f(Z) = (β ⊗X)C(κ,n)MC(n,κ)(β ⊗X)T + 2ξ(HHT ⊗ Ip), (42)

∇vec(H)∇vec(H)T f(Z) = 2ξ(In ⊗WTW), (43)

∇vec(β)∇vec(β)T f(Z) = (Iκ ⊗WTX)C(κ,n)MC(n,κ)(Iκ ⊗WTX)T , (44)

∇vec(Γ)∇vec(Γ)T f(Z) = (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T . (45)

The block-off-diagonal terms in the Hessian are given by

∇vec(H)∇vec(W)T f(Z) = 2ξ
[
(HT ⊗WT ) +C(n,r)(Ir ⊗ (WH−X))T

]
, (46)

∇vec(β)∇vec(W)T f(Z) = C(κ,r)(Ir ⊗XKT )T + (Iκ ⊗WTX)C(κ,n)MC(n,κ)(β ⊗X)T , (47)

∇vec(Γ)∇vec(W)T f(Z) = ∇vec(β)∇vec(H)T f(Z) = ∇vec(Γ)∇vec(H)T f(Z) = O, (48)

∇vec(Γ)∇vec(β)T f(Z) = (Ir ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗WTX)T . (49)

Proof. For convenience, recall that W ∈ Rp×r, β ∈ Rr×κ, H ∈ Rr×n, and Γ ∈ Rq×κ.

Computation of the first-order derivatives.

We first compute the following gradient:

∇vec(W)

n∑
s=1

ℓ(ys,as)
(a)
= C(r,p)

n∑
s=1

(xs ⊗ β) ḣ(ys,as) (50)

= C(r,p) [x1 ⊗ β, . . . ,xn ⊗ β]

 ḣ(y1,a1)...
ḣ(yn,an)

 (51)

(b)
= C(r,p)(X⊗ β) vec(K) (52)
(c)
= (β ⊗X)C(κ,n) vec(K) (53)
(d)
= (β ⊗X) vec(KT ), (54)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the
commutation matrices. Then by using (22), we deduce

∇Wf(Z) = XKTβT + 2ξ(WH−X)HT . (55)
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Next, we compute∇vec(β)f(Z). By using similar computations as before, we get

∇vec(β)

n∑
s=1

ℓ(ys,as) = C(κ,r)
n∑

s=1

(WTxs ⊗ Iκ) ḣ(ys,as)

= C(κ,r)
[
WTx1 ⊗ Iκ, . . . ,W

Txn ⊗ Iκ
]  ḣ(y1,a1)...

ḣ(yn,an)


= C(κ,r)(WTX⊗ Iκ) vec(K)

= (Iκ ⊗WTX)C(κ,n) vec(K)

= (Iκ ⊗WTX) vec(KT ).

From this and (22), we deduce

∇βf(Z) = WTXKT . (56)

We move on to compute∇vec(Γ)f(Z). This yields

∇vec(Γ)

n∑
s=1

ℓ(ys,as) = C(k,q)
n∑

s=1

(x′
s ⊗ Iκ) ḣ(ys,as)

= C(κ,q)(Xaux ⊗ Iκ) vec(K)

= (Iκ ⊗Xaux)C
(κ,n) vec(K)

= (Iκ ⊗Xaux) vec(K
T )

From this and (22), we deduce

∇Γf(Z) = XauxK
T . (57)

The last derivative∇H f(Z) = 2ξWT (WH−X) is easy.

Computation of the second-order derivatives.

By vectorizing (55), we get

∇vec(W)f(Z) = vec
(
XKTβT

)
+ 2ξ vec(WHHT )− 2ξ vec(XHT )

= (β ⊗X) vec(KT ) + 2ξ(HHT ⊗ Ip) vec(W)− 2ξ vec(XHT ). (58)

Then using Proposition C.1 with (58) and noting that vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), we get

∇vec(W)∇vec(W)T f(Z)

= ∇vec(W)

(
vec(K)TC(n,κ)(β ⊗X)T + 2ξ vec(W)T (HHT ⊗ Ip)

T − 2ξ vec(XHT )T
)

= (β ⊗X)C(κ,n)MC(n,κ)(β ⊗X)T + 2ξ(HHT ⊗ Ip).

Similarly, we can compute

∇vec(β)∇vec(β)T f(Z)

= ∇vec(β) vec(W
TXKT )T

= ∇vec(β) vec(K
T )T (Iκ ⊗WTX)T

= ∇vec(β) vec(K)TC(n,κ)(Iκ ⊗WTX)T

= (Iκ ⊗WTX)C(κ,n)MC(n,κ)(Iκ ⊗WTX)T .
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Also, note that

∇vec(Γ)∇vec(Γ)T f(Z) = ∇vec(Γ) vec(XauxK
T )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗Xaux)
T

= (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T .

Similarly, we get

∇vec(H)∇vec(H)T f(Z) = ∇vec(H)

(
2ξ vec(WTWH)T − 2ξ vec(WTX)T

)
= 2ξ∇vec(H) vec(H)T (In ⊗WTW)

= 2ξ(In ⊗WTW).

Next, we compute the off-diagonal block terms in the Hessian of f . Recall that from (22), we have

vec(XKTβT ) = (Ir ⊗XKT ) vec(βT ) = (β ⊗X) vec(KT ).

Then using the product rule, we get

∇vec(β)∇vec(W)T f(Z) = ∇vec(β) vec(XKTβT )T

=
(
∇vec(β) vec(β

T )T
)
(Ir ⊗XKT )T +

(
∇vec(β) vec(K

T )T
)
(β ⊗X)T

= C(κ,r)(Ir ⊗XKT )T + (Iκ ⊗WTX)C(κ,n)MC(n,κ)(β ⊗X)T .

Second, note that∇vec(Γ)∇vec(W)T f(Z) = O. Third, for the forthcoming computation, note that from (22),

vec(HHT ) = (Ir ⊗H) vec(HT ) = (H⊗ Ir) vec(H).

So by the product rule,

∇vec(H) vec(HHT )T =
(
∇vec(H) vec(H

T )T
)
(Ir ⊗H)T +

(
∇vec(H) vec(H)T

)
(H⊗ Ir)

T

= C(n,r)(Ir ⊗HT ) + (HT ⊗ Ir).

Now observe that

∇vec(H)∇vec(W)T f(Z) = 2ξ∇vec(H)

[
vec(WHHT )− vec(XHT )

]T
= 2ξ∇vec(H)

[
vec(HHT )T (Ir ⊗W)T − vec(HT )T (Ir ⊗X)T

]
= 2ξ

(
∇vec(H) vec(HHT )T

)
(Ir ⊗W)T −

(
∇vec(H) vec(H

T )T
)
(Ir ⊗X)T

= 2ξ
[(

C(n,r)(Ir ⊗HT ) + (HT ⊗ Ir)
)
(Ir ⊗W)T −C(n,r)(Ir ⊗X)T

]
= 2ξ

[
C(n,r)(Ir ⊗HTWT ) + (HT ⊗WT )−C(n,r)(Ir ⊗X)T

]
= 2ξ

[
C(n,r)(Ir ⊗ (WH−X))T + (HT ⊗WT )

]
.

Fourth, observe that

∇vec(Γ)∇vec(β)T f(Z) = ∇vec(Γ) vec(W
TXKT )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗WTX)T

= (Iκ ⊗Xaux)C
(κ,n) MC(n,κ)(Iκ ⊗WTX)T .

The remaining zero-second derivatives are easy to see.

For two matrices A,B of the same size, we write A ⪰ B if A−B is positive semi-definite. The partial ordering ⪰ is called
the Loewner ordering.
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Lemma C.3. Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Recall ḣ and Ḧ defined in
(33). Then the following hold:

(i) Write the Hessian∇2f(Z) as the 4× 4 block matrix (Aij)1≤i,j≤4. Then

α−(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip) ⪯ A11 ⪯ α+(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip)

A22 = 2ξ(In ⊗WTW),

α−(Iκ ⊗WTXXTW) ⪯ A33 ⪯ α+(Iκ ⊗WTXXTW),

α−(Iκ ⊗XauxX
T
aux) ⪯ A44 ⪯ α+(Iκ ⊗XauxX

T
aux).

(ii) The function f(Z) = f(W,H,β,Γ) restricted to each block coordinate has Lipschitz-continuous gradients with
Lipschitz constants LW, LH, Lβ, LΓ given by

LW := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22,
LH := 2ξ∥W∥22,
Lβ := α+∥W∥22 · ∥X∥22,
LΓ := α+∥Xaux∥22.

(iii) The Hessian of the L2-regularized objective f(Z) + λW

2 ∥W∥
2
F + λH

2 ∥H∥
2
F +

λβ

2 ∥β∥
2
F + λΓ

2 ∥Γ∥
2
F is positive definite

if

λW > 2ξ
(
∥H∥2 ∥W∥2 + ∥WH−X∥2 − λmin(HHT )

)
+ γmax

√
κn∥X∥2

+ α+∥β∥2∥W∥2∥X∥22 − α−λmin(ββ
T )λmin(XXT )

λH > 2ξ
(
∥H∥2 ∥W∥2 + ∥WH−X∥2 − λmin(W

TW)
)
,

λβ > γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22 + α+∥Xaux∥2∥XTW∥2 − α−λmin(W

TXXTW),

λΓ > α+∥Xaux∥2∥XTW∥2 − α−λmin(XauxX
T
aux)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by
Assumption B.1:

0 < α− ≤ λmin(M) ≤ λmax(M) ≤ α+.

Since the commutation matrices are orthogonal and satisfies C(a,b)C(b,a) = Iab, it follows that

α−Iκn ⪯ C(κ,n)MC(n,κ) ⪯ α+Iκn.

Then the first Loewner ordering for A11 = ∇vec(W)∇vec(W)T f(Z) follows from Lemma C.2. The other Loewner orderings
can be shown similarly. This shows (i).

(ii) follows immediately from (i), ∥A ⊗ B∥2 = ∥A∥2 · ∥B∥2, and the fact that the Lipschitz constant for the gradient
is upper-bounded by the largest eigenvalue of the corresponding block Hessian, which are the diagonal blocks Aii for
i = 1, . . . , 4.

For (iii), note that if L2-regularization coefficients are large enough so that the following condition is satisfied

λmin(Aii) + λi >
∑
j ̸=i

∥Aij∥2 ∀1 ≤ i ≤ 4,

where λ1 = λW, λ2 = λH, λ3 = λβ, and λ4 = λΓ, then the L2-regularized Hessian of the objective f is block diagonally
dominant and is positive definite (see (Feingold & Varga, 1962)). The L2-regularized Hessian takes the following 4× 4
block form:

vec(W)T vecHT vec(β)T vec(Γ)T vec(W) A11 + λWIrp A12 A13 O
vec(H) A21 A22 + λHIrn O O
vec(β) A31 O A33 + λβIrκ A34

vec(Γ) O O A43 A44 + λΓIqκ

(59)
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Thus it suffices to take

λW > ∥A12∥2 + ∥A13∥2 − λmin(A11),

λH > ∥A12∥2 − λmin(A22),

λβ > ∥A13∥2 + ∥A34∥2 − λmin(A33),

λΓ > ∥A34∥2 − λmin(A44).

Using Lemma C.2 and Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

∥A12∥2 ≤ 2ξ (∥WH∥2 + ∥WH−X∥2) ,
∥A13∥2 ≤ ∥XKT ∥2 + α+∥β∥2∥W∥2∥X∥22

≤ γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22

A14 = A23 = A24 = O,

∥A34∥2 ≤ α+∥XauxX
TWT ∥2,

where we have used ∥1a∥2 =
√
a, ∥A⊗B∥2 = ∥A∥2 · ∥B∥2, and ∥KT ∥2 ≤

√
κn∥K∥max =

√
κnγmax. Furthermore, we

can also get lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows.

Lemma C.4 (First-order approximation of functions with Lipschitz gradient). Let f : Ω(⊆ Rp)→ R be differentiable and
∇f be L-Lipschitz continuous on Ω. Then for each θ, θ′ ∈ Ω,∣∣f(θ′)− f(θ)−∇f(θ)T (θ′ − θ)

∣∣ ≤ L

2
∥θ − θ′∥2.

Proof. This is a classical lemma. See Lemma 1.2.3 in (Nesterov, 1998).

A simple but important lemma we use in our local landscape analysis is the following. It will be used in the proof of
Theorems 4.3, C.6, and 4.5.

Lemma C.5 (L2-perturbation of local landscape). Let x 7→ f(x) be three-times continuously differentiable function
for x ∈ Rp. Suppose x⋆ is a stationary point of f over a convex set Θ ⊆ Rp. Suppose for constants λ ≥ 0, ρ > 0,
F (x) := f(x) + λ

2 ∥x∥
2 is ρ-strongly convex at x⋆. Let M = M(d) denote the supremum of the absolute values of all

third-order partial derivatives of f over all x with ∥x− x⋆∥ ≤ d. Then as long as ∥x⋆∥ and d are sufficiently small, there
exists a local minimizer of F at some x′ with ∥x′ − x⋆∥ ≤ d.

More precisely, we have

inf
x∈Θ, ∥x−x⋆∥=d

F (x)− F (x⋆) > 0 (60)

provided d and ∥x⋆∥ are sufficiently small so that

3ρ

4
> M(d)d and

ρ

8
d ≥ λ∥x⋆∥.

In particular, (60) holds if d = 4λ∥x⋆∥
ρ and ∥x⋆∥ is sufficiently small so that 3ρ

2 > M(d)d holds.

Proof. Since x⋆ is a stationary point of f over Θ, we have

⟨∇F (x⋆), x− x⋆⟩ ≥ ⟨λx⋆, x− x⋆⟩ ≥ −λ∥x⋆∥ · ∥x− x⋆∥.

By Taylor’s theorem, whenever ∥x− x⋆∥ = d,

F (x)− F (x⋆) ≥ −λ∥x⋆∥ · ∥x− x⋆∥+
1

2
(x− x⋆)

T [∇x∇xTF (x)]x=x⋆
(x− x⋆)−

M(d)

6
∥x− x⋆∥3

≥ d

(
−λ∥x⋆∥+

ρd

4
− M(d)

6
d2
)

︸ ︷︷ ︸
=:I

+
ρ

4
d2.
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Note that I ≥ 0 if

ρ

8
d ≥ λ∥x⋆∥ and

ρd

8
>

M(d)d2

3
.

The above condition is held by the hypothesis. This shows (60), as desired.

Now we are ready to derive Theorem 4.3 as well as Theorem 4.4 for SMF-W.

Proof of Theorem 4.3 for SMF-W. Parts (i) and (ii) are re-statements Lemma C.3. Part (iii) follows from Lemmas C.3 and
C.5.

Proof of Theorem 4.4 for SMF-W. Here we prove the statement for SMF-W. Recall that Algorithm 1 is a block projected
gradient descent with adaptive step sizes. This algorithm is well-known to be a special instance of a more general class of
algorithms called block majorization-minimization (BMM) with prox-linear surrogates (Lyu & Li, 2023). For instance, for
updating Wk−1 to Wk given Sk−1 := (Hk−1,βk−1,Γk−1), we consider the following prox-linear surrogate

g
(1)
k (W) := f(W,Sk−1) + ⟨∇Wf(Wk−1,Sk−1), W −Wk−1⟩+

1

2ηk;1
∥W −Wk−1∥2F .

Note that g
(1)
k (Wk−1) = f(Wk−1,Sk−1). By Lemma C.3, the marginal objective function W 7→ f

(1)
k (W) :=

f(W,Sk−1) has LW-Lipschitz continuous gradient where LW := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22. Hence by Lemma
C.4, g(1)k (W) ≥ f

(1)
k (W) for all W ∈ C1 (i.e., g(1)k is a majorizing surrogate of f (1)

k over C1) provided η−1
k;1 > LW. Indeed

we choose η−1
k;1 > LW in Algorithm 1. Furthermore, the marorization gap g

(1)
k − f

(1)
k is quadratically lower-bounded:

g
(1)
k (W)− f

(1)
k (W) ≥

η−1
k;1 − LW

2
∥W −Wk−1∥2F for all W ∈ C1. (61)

Furthermore, one can easily verify that

argmin
W∈C1

g
(1)
k (W) = ΠC1

(
Wk−1 −

1

ηk;1
∇Wf(W,Sk−1)

)
.

Hence we recover the projected gradient descent step for computing Wk in Algorithm 1 as minimizing the majorizing
surrogate g

(1)
k of f (1)

k over the constraint set C1. For other blocks, one can construct majorizing prox-linear surrogates g(i)k

of marginal loss functions f (i)
k for i = 2, 3, 4, defined similarly.

Asymptotic convergence to stationary points and iteration complexity of the BMM for smooth non-convex objective with
convex constraints is recently established in Theorem 2.1 in (Lyu & Li, 2023). For the iteration complexity result, the
hypotheses we need to verify are

(A1) The constraint sets C1, C2, C3, and C4 are closed and convex;

(A2) The objective f : Θ → R is continuously differentiable, lower-bounded on Θ, and has L-Lipschitz continuous
gradient over Θ for some L > 0. Furthermore, the sub-level sets {θ ∈ Θ | f(θ) ≤ a} for a ∈ R are compact;

(A3) The majorizaiton gaps h
(i)
k := g

(i)
k − f

(i)
k for k ≥ 1 and i = 1, 2, 3, 4 are quadratically lower-bounded and has

Lh-Lipscthiz continuous gradient over the constraint sets for some constant Lh > 0.

Indeed, (A1) and (A2) follow from 4.1 (especially with the compactness of the constraint sets) and Lemma C.2. The first part
of (A3) follows from (61). For its second part, let Lg denote the supremum of the Lipschitz constants Li for i = 1, . . . , 4

over all parameters in Θ. Since Θ is compact by 4.1, Lg <∞. Then η−1
k,i < Lg for all k ≥ 1 and i = 1, . . . , 4, ∇g(i)k s are

Lg-Lipschtiz continuous. Recall that ∇f (i)
k is L-Lipschitz continuous by (A2). Hence ∇h(i)

k s are (Lg + Lf )-Lipschitz
continuous. Now the above three properties with Theorem 2.1 in (Lyu & Li, 2023) are enough to imply the iteration
complexity results in Theorem 4.4 (i)-(ii).

Lastly, asymptotic convergence of the iterates to the stationary points in (Lyu & Li, 2023) requires the following further
assumption:
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(A4) The majorizing surrogates g(i)k for k ≥ 1 and i = 1, 2, 3, 4 are ρ-strongly convex for some constant ρ > 0.

Since g
(i)
k is η−1

k,i -strongly convex and since we assume the step-sizes ηk,i are uniformly upper bounded in Theorem 4.4(iii),
we can choose ρ to be the reciprocal of such uniform upper bound on ηk,is. This finishes the proof.

C.2. Proof for SMF-H

The following result stated in Theorem C.6 is the counterpart of the local landscape result (Theorem 4.3) for SMF-H, which
we prove in this section. We also establish Theorem 4.4 for SMF-H. The structure of the argument is identical to that for
SMF-W we provided in the previous section.

Theorem C.6 (Local landscape of SMF-H). Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption B.1
holds. Then the following hold:

(i) A11 = 2ξ(Ip ⊗HHT )

A22 ≍ α±(In ⊗ ββT ) + 2ξ(In ⊗WTW),

A33 ≍ α±(Iκ ⊗HHT ),

A44 ≍ α±(Iκ ⊗XauxX
T
aux).

(ii) F is ρ-strongly convex at Z⋆ = (W⋆,H⋆,β⋆,Γ⋆) for ρ = min1≤i≤4(λi − λi⋆) where

λ1⋆ := −2ξΛ1,

λ2⋆ := γmax

√
κn+ α+∥β⋆∥2 (∥H⋆∥2+∥Xaux∥2)

− 2ξΛ2 − α−λmin(β⋆β
T
⋆ ),

λ3⋆ := γmax

√
κn+ α+∥β⋆∥2 (∥H⋆∥2+∥Xaux∥2)

− α−λmin(β⋆β
T
⋆ )

λ4⋆ := α+∥Xaux∥2 (∥β⋆∥2+∥H⋆∥2)− α−λmin(XauxX
T
aux).

(iii) Suppose Λ1 > 0. Denote θ′ := (H′,β′,Γ′) and θ⋆ := (H⋆,β⋆,Γ⋆). If ∥θ⋆∥F is sufficiently small, then F is minimized
locally at (W⋆, θ

′) with

∥θ′ − θ⋆∥F ≤
3max1≤i≤4(λi)

min1≤i≤4(λi − λi⋆)
∥θ⋆∥F . (62)

If Λ2 > 0 and ξ ≫ 1, then for θ′ := (W′,β′,Γ′) and θ⋆ := (W⋆,β⋆,Γ⋆), if ∥θ⋆∥F is sufficiently small, then F is
minimized locally at (θ′,H⋆) with (62).

For each s = 1, . . . , n, let es denote the sth standard basis vector in Rn.

Proposition C.7. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumptions 4.1, 4.2, and B.1 hold. Let
as := βTH[:, s] + ΓTx′

s for s = 1, . . . , n. Then
∇vec(H) ℓ(ys,as) = (es ⊗ β) ḣ(ys,as),

∇vec(β) ℓ(ys,as) = C(κ,r)(H[:, s]⊗ Iκ) ḣ(ys,as),

∇vec(Γ) ℓ(ys,as) = C(κ,q)(x′
s ⊗ Iκ) ḣ(ys,as),


∇vec(H) vec(K)T = (In ⊗ β)M,

∇vec(β) vec(K)T = (Iκ ⊗H)C(κ,n) M,

∇vec(Γ) vec(K)T = (Iκ ⊗Xaux)C
(κ,n) M.

(63)

Proof. We first show 
∇vec(H)a

T
s = es ⊗ β,

∇vec(β)a
T
s = C(κ,r)(H[:, s]⊗ Iκ),

∇vec(Γ)a
T
s = C(κ,q)(x′

s ⊗ Iκ).

(64)
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For differentiating as by vec(H), observe that by using (22), we can write

as = vec(as) = βTH[:, s] + vec
(
ΓTx′

s

)
= (xT

s ⊗ βT ) vec(WT ) + vec(ΓTx′
s).

Noting that vec(WT )T = (C(p,r) vec(W))T = vec(W)TC(r,p),

∇vec(H)a
T
s = ∇vec(H)H[:, s]Tβ = es ⊗ β.

For differentiating as by vec(β), writing as = (H[:, s]T ⊗ Iκ) vec(β
T ) + vec(ΓTx′

s), we get

∇vec(β)a
T
s = ∇vec(β) vec(β

T )T (H[:, s]⊗ Iκ)

= ∇vec(β) vec(β
T )C(κ,r)(H[:, s]⊗ Iκ)

= C(κ,r)(H[:, s]⊗ Iκ).

For differentiating as by vec(Γ), writing as = vec(βTH[:, s]) + ((x′
s)

T ⊗ Iκ) vec(Γ
T ), we get

∇vec(Γ)a
T
s = ∇vec(Γ) vec(Γ

T )T (x′
s ⊗ In)

= ∇vec(Γ) vec(Γ)
TC(κ,q)(x′

s ⊗ Iκ)

= C(κ,q)(x′
s ⊗ Iκ).

This verifies (64). Then by using the chain rule (24), we get

∇vec(H)ℓ(ys,as) = ∇vec(H)a
T
s ∇asℓ(ys,as) = (es ⊗ β) ḣ(ys,as).

The other gradients∇vec(β) ℓ(ys,as) and∇vec(Γ) ℓ(ys,as) also follows from (64) and the chain rule.

Next, we compute the gradients of vec(K)T in (63). First, using (64), the chain rule (24), and (32),

∇vec(H) ḣ(ys,as)
T = ∇vec(W)a

T
s ∇as ḣ(ys,as)

T = (es ⊗ β)Ḧ(ys,as), (65)

∇vec(β) ḣ(ys,as)
T = ∇vec(β)a

T
s ∇as

ḣ(ys,as)
T = C(κ,r)(H[:, s]⊗ Iκ)Ḧ(ys,as), (66)

∇vec(Γ) ḣ(ys,as)
T = ∇vec(Γ)a

T
s ∇as ḣ(ys,as)

T = C(κ,q)(x′
s ⊗ Iκ)Ḧ(ys,as). (67)

Now since vec(K)T = [ḣ(y1,a1)
T , . . . , ḣ(yn,an)

T ] and vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), it follows
that

∇vec(H) vec(K)T
(a)
=
[
(e1 ⊗ β)Ḧ(y1,a1), . . . , (en ⊗ β)Ḧ(yn,an)

]
(68)

(b)
= [e1 ⊗ β, . . . , en ⊗ β] diag

(
Ḧ(y1,a1), . . . , Ḧ(yn,an)

)
(69)

(c)
= (In ⊗ β)M, (70)

where (a) follows from (64) and the chain rule, (b) is an algebra, (c) follows from (19), The other gradients∇vec(β) vec(K)T

and ∇vec(Γ) vec(K)T follow from similar computations.

Lemma C.8 (Derivatives of the SMF-H objective). Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption
B.1 holds. Recall ḣ and Ḧ defined in (33). Then the gradients of f(Z) are given by

∇W f(Z) = 2ξ(WH−X)HT , (71)

∇H f(Z) = βK+ 2ξWT (WH−X), (72)

∇β f(Z) = HKT (73)

∇Γ f(Z) = XauxK
T . (74)
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The block-diagonal terms in the Hessian are given by

∇vec(W)∇vec(W)T f(Z) = 2ξ(Ip ⊗HHT ), (75)

∇vec(H)∇vec(H)T f(Z) = (In ⊗ β)M(In ⊗ β)T + 2ξ(In ⊗WTW), (76)

∇vec(β)∇vec(β)T f(Z) = (Iκ ⊗H)C(κ,n)MC(n,κ)(Iκ ⊗H)T , (77)

∇vec(Γ)∇vec(Γ)T f(Z) = (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T . (78)

The block-off-diagonal terms in the Hessian are given by

∇vec(H)∇vec(W)T f(Z) = 2ξC(n,r)
[
(HT ⊗WT ) + Ir ⊗ (WH−X)T

]
(79)

∇vec(β)∇vec(W)T f(Z) = ∇vec(Γ)∇vec(W)T f(Z) = O, (80)

∇vec(β)∇vec(H)T f(Z) = (K⊗ Ir) + (Iκ ⊗H)C(κ,n) M(In ⊗ β)T , (81)

∇vec(Γ)∇vec(H)T f(Z) = (Iκ ⊗Xaux)C
(κ,n) M(In ⊗ β)T , (82)

∇vec(Γ)∇vec(β)T f(Z) = (Iκ ⊗Xaux)C
(κ,n) M(Iκ ⊗H). (83)

Proof. For convenience, recall that W ∈ Rp×r, β ∈ Rr×κ, H ∈ Rr×n, and Γ ∈ Rq×κ.

Computation of the first-order derivatives.

We first compute the following gradient:

∇vec(H)

n∑
s=1

ℓ(ys,as)
(a)
=

n∑
s=1

(es ⊗ β) ḣ(ys,as) (84)

= [e1 ⊗ β, . . . , en ⊗ β]

 ḣ(y1,a1)...
ḣ(yn,an)

 (85)

(b)
= (In ⊗ β) vec(K), (86)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the
commutation matrices. Then by using (22), we deduce

∇Hf(Z) = βK+ 2ξWT (WH−X). (87)

Next, we compute∇vec(β)f(Z). By using similar computations as before, we get

∇vec(β)

n∑
s=1

ℓ(ys,as) = C(κ,r)
n∑

s=1

(H[:, s]⊗ Iκ) ḣ(ys,as)

= C(r,p) [H[:, 1]⊗ Iκ, . . . ,H[:, n]⊗ Iκ]

 ḣ(y1,a1)...
ḣ(yn,an)


= C(r,p)(H⊗ Iκ) vec(K)

= (Iκ ⊗H)C(κ,n) vec(K)

= (Iκ ⊗H) vec(KT ).

From this and (22), we deduce

∇βf(Z) = HKT . (88)

That ∇vec(Γ)f(Z) = XauxK
T as in the proof of Lemma C.2. The last derivative∇W f(Z) = 2ξ(WH−X)HT is easy.
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Computation of the second-order derivatives.

By vectorizing∇Hf(Z) in (71), we get

∇vec(H)f(Z) = vec(βK) + 2ξ vec(WTWH)− vec(WTX)

= (In ⊗ β) vec(K) + 2ξ(In ⊗WTW) vec(H)− vec(WTX).

Then using Proposition C.1 with (89), we get

∇vec(H)∇vec(H)T f(Z)

= ∇vec(H)

(
vec(K)T (In ⊗ β)T + 2ξ vec(H)T (In ⊗WTW)T

)
= (In ⊗ β)M(In ⊗ β)T + 2ξ(In ⊗WTW).

Similarly, we can compute

∇vec(β)∇vec(β)T f(Z)

= ∇vec(β) vec(HK)T

= ∇vec(β) vec(K
T )T (Iκ ⊗H)T

= ∇vec(β) vec(K)TC(n,κ)(Iκ ⊗H)T

= (Iκ ⊗H)C(κ,n)MC(n,κ)(Iκ ⊗H)T .

Also, note that

∇vec(Γ)∇vec(Γ)T f(Z) = ∇vec(Γ) vec(XauxK
T )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗Xaux)
T

= (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T .

Similarly, we get

∇vec(W)∇vec(W)T f(Z) = ∇vec(W)

(
2ξ vec(WHHT )T − 2ξ vec(XHT )T

)
= 2ξ∇vec(H) vec(H)T (Ip ⊗HHT )

= 2ξ(Ip ⊗HHT ).

Next, we compute the off-diagonal block terms in the Hessian of f . Recall that from (84) and (22), we have

vec(βK) = (In ⊗ β) vec(K) = (KT ⊗ Ir) vec(β).

Then using the product rule, we get

∇vec(β)∇vec(H)T f(Z) = ∇vec(β) vec(βK)T

=
(
∇vec(β) vec(β)

T
)
(KT ⊗ Ir)

T +
(
∇vec(β) vec(K)T

)
(In ⊗ β)T

= (K⊗ Ir) + (Iκ ⊗H)C(κ,n) M(In ⊗ β)T .

Second, note that

∇vec(Γ)∇vec(H)T f(Z) = ∇vec(Γ) vec(βK)T

= ∇vec(Γ) vec(K)T (In ⊗ β)T

= (Iκ ⊗Xaux)C
(κ,n) M(In ⊗ β)T .

Second, note that∇vec(Γ)∇vec(H)T f(Z) = O. Third, by the same computation as in the proof of Lemma C.2,

∇vec(H)∇vec(W)T f(Z) = 2ξ∇vec(H)

[
vec(WHHT )− vec(XHT )

]T
= 2ξC(n,r)

[(
(HT ⊗WT ) + (Ir ⊗HTWT )

)
− (Ir ⊗X)T

]
.
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Fourth, observe that (In ⊗ β) vec(K)

∇vec(Γ)∇vec(β)T f(Z) = ∇vec(Γ) vec(HK)T

= ∇vec(Γ) vec(K)T (Iκ ⊗H)T

= (Iκ ⊗Xaux)C
(κ,n) M(Iκ ⊗H).

The remaining zero-second derivatives are easy to see.

Lemma C.9. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption B.1 holds. Recall ḣ and Ḧ defined in
(33). Then the following hold:

(i) Write the Hessian∇2f(Z) as the 4× 4 block matrix (Aij)1≤i,j≤4. Then

A11 = 2ξ(Ip ⊗HHT ) (89)

α−(In ⊗ ββT ) + 2ξ(In ⊗WTW) ⪯ A22 ⪯ α+(In ⊗ ββT ) + 2ξ(In ⊗WTW) (90)

α−(Iκ ⊗HHT ) ⪯ A33 ⪯ α+(Iκ ⊗HHT ), (91)

α−(Iκ ⊗XauxX
T
aux) ⪯ A44 ⪯ α+(Iκ ⊗XauxX

T
aux). (92)

(ii) The function f(Z) = f(W,H,β,Γ) restricted to each block coordinate has Lipschitz-continuous gradients with
Lipschitz constants LW, LH, Lβ, LΓ given by

LW := 2ξ∥H∥22, (93)

LH := α+∥β∥22 + 2ξ∥W∥22, (94)

Lβ := α+∥H∥22, (95)

LΓ := α+∥Xaux∥22. (96)

(iii) The Hessian of the L2-regularized objective f(Z) + λW

2 ∥W∥
2
F + λH

2 ∥H∥
2
F +

λβ

2 ∥β∥
2
F + λΓ

2 ∥Γ∥
2
F is positive definite

if

λW > 2ξ
(
∥H∥2 · ∥W∥2 + ∥WH−X∥2 − λmin(HHT )

)
(97)

λH > 2ξ
(
∥H∥2 · ∥W∥2 + ∥WH−X∥2 − λmin(W

TW)
)
+ γmax

√
κn (98)

+ α+∥β∥2 (∥H∥2 + ∥Xaux∥2)− α−λmin(ββ
T ), (99)

λβ > γmax

√
κn+ α+∥β∥2 (∥H∥2 + ∥Xaux∥2)− α−λmin(HHT ), (100)

λΓ > α+∥Xaux∥2 (∥β∥2 + ∥H∥2)− α−λmin(XauxX
T
aux). (101)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by
Assumption B.1:

0 < α− ≤ λmin(M) ≤ λmax(M) ≤ α+. (102)

Since the commutation matrices are orthogonal and satisfies C(a,b)C(b,a) = Iab, it follows that

α−Iκn ⪯ C(κ,n)MC(n,κ) ⪯ α+Iκn. (103)

Then the first Loewner ordering for A11 = ∇vec(W)∇vec(W)T f(Z) follows from Lemma C.2. The other Loewner orderings
can be shown similarly. This shows (i).

(ii) follows immediately from (i) and the fact that the Lipschitz constant for the gradient is upper-bounded by the largest
eigenvalue of the corresponding block Hessian, which are the diagonal blocks Aii for i = 1, . . . , 4.

For (iii), note that if L2-regularization coefficients are large enough so that the following condition is satisfied

λmin(Aii) + λi >
∑
j ̸=i

∥Aij∥2 ∀1 ≤ i ≤ 4, (104)
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where λ1 = λW, λ2 = λH, λ3 = λβ, and λ4 = λΓ, then the L2-regularized Hessian of the objective f is block diagonally
dominant and is positive definite (see (Feingold & Varga, 1962)). The L2-regularized Hessian takes the following 4× 4
block form:

vec(W)T vecHT vec(β)T vec(Γ)T vec(W) A11 + λWIrp A12 O O
vec(H) A21 A22 + λHIrn A23 A24

vec(β) O A32 A33 + λβIrκ A34

vec(Γ) O A42 A43 A44 + λΓIqκ

(105)

Thus it suffices to take

λW > ∥A12∥2 − λmin(A11), (106)
λH > ∥A12∥2 + ∥A23∥2 + ∥A24∥2 − λmin(A22), (107)
λβ > ∥A23∥2 + ∥A34∥2 − λmin(A33), (108)
λΓ > ∥A34∥2 + ∥A24∥2 − λmin(A44). (109)

Using Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

∥A12∥2 ≤ 2ξ (∥H∥2 · ∥W∥2 + ∥WH−X∥2) (110)

∥A23∥2 ≤ γmax

√
κn+ α+∥H∥2 · ∥β∥2, (111)

∥A24∥2 ≤ α+∥Xaux∥2 · ∥β∥2, (112)

∥A34∥2 ≤ α+∥Xaux∥2 · ∥H∥2. (113)

We can also obtain lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows.

We now prove Theorems C.6 and 4.4 for SMF-H.

Proof of Theorems C.6 and 4.4 for SMF-H. Theorem C.6 follows from Lemmas C.9 and C.5.

The proof of Theorem 4.4 for SMF-H again amounts to verify the hypothesis of Theorem 2.1 in (Lyu & Li, 2023) for the
block projected gradient descent algorithm in Algorithm 1 as a BMM with suitable prox-linear surrogates. The argument is
identical to that for SMF-W we provided in the previous section, together with the corresponding lemmas establishing
gradient and Hessian computations for SMF-H (Lemmas C.8 and C.9).

D. Proof of Theorem 4.5: A non-asymptotic local consistency of MLE
In this section, we provide a general result on the non-asymptotic local consistency of MLE in a general setting, where the
data samples are assumed to be independent but may not be identically distributed, and the unknown true parameter used for
a generative model may lie on the boundary of the parameter space and the Fisher information at the true parameter is not
necessarily positive definite. The result we present (Theorem D.1) in this section is general and could be of independent
interest. From this general result and Theorem 4.3 we can deduce Theorem 4.5.

Fix a sample size n ≥ 1. Suppose πθ is a probability distribution on Rd parameterized by θ ∈ Θ ⊆ Rp. If an n-tuple
X = [x1, . . . ,xn] of vectors in Rd is observed under the product distribution πθ := πθ1 ⊗ · · · ⊗ πθn , θ = (θ1, . . . , θn),
then the regularized negative log-likelihood of observing X under πθ is

L(X ; θ) :=
n∑

i=1

(L0(xi; θi) +R(θi)) , L0(x; θ) := − log πθ(x), (114)

where R(θi) is a suitable choice of regularizer for parameter θi. Denote R(θ) :=
∑n

i=1 R(θi). We denote

L0(X ; θ) :=
n∑

i=1

L0(x; θi). (115)
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Now suppose there is true and unknown parameter θ⋆ = (θ1⋆, . . . , θn⋆) such that we have independent samples x1, . . . ,xn

jointly from πθ⋆ . Let θ̂n denote a (possibly non-unique) minimizer of the above function over the n-fold product parameter
space Θn. This is a minimizer of the random loss function L over the product constraint set Θn, which we call the
constrained and regularized maximum likelihood estimator (MLE) of θ⋆. Note that here we consider a general constrained
MLE problem in three aspects: (1) The distribution of n data samples are parameterized separately by θ1, . . . , θn; (2) The
constraint set Θn may be a proper convex subset of Rp×n and θ⋆ could be at the boundary of Θn; (3) The loss function L in
(114) may be non-convex and may have multiple local minima.

In this general setting, we would like to provide a high-probability guarantee that there exists a local minimizer of (114)
that is close to the true parameter θ⋆. In the special case where we impose θ1 = · · · = θn and θ⋆ is assumed to be in
the interior of Θn, this type of result is provided by the classical local consistency theory of MLE (Fan & Li, 2001) in an
asymptotic setting where the sample size n tends to infinity. Below in Theorem D.1, we generalize such a classical result in
the non-asymptotic, constrained, and regularized setting. For its proof, we combine a classical approach in (Fan & Li, 2001)
with concentration inequalities, namely, a classical Berry-Esseen bound for deviations from standard normal distribution for
independent but non-identically distributed random variables and a uniform McDirmid bound (Lemma D.2). The former is
used to control the linear term in the second-order Taylor expansion of the log-likelihood function, and the latter is used to
control the second-order term. By using an ε-net argument, the latter concentration inequality can be extended to a setting
where the random variables are parameterized within a compact set.

Theorem D.1 (Non-asymptotic local consistency of constrained and regularized MLE). Consider the constrained and
regularized MLE problem (114) with unknown parameters θ1⋆, . . . , θn⋆ from a convex subset Θ ⊆ Rp. Fix a convex set
Θ ⊆ Θn. Assume the following holds:

(a0) (Parameter consistency) Suppose that there exists θ⋆ ∈ Θ and a constant c > 0 such that

max
1≤i≤n

∥θ⋆ − θi⋆∥ ≤ c/
√
n. (116)

(a1) (Smoothness) For each realization of the data X = [x1, . . . ,xn] ∈ Rp×n, the function θ 7→ L(X ; θ) is three-
times continuously differentiable and R(θ) is differentiable. Furthermore, denote Yi := ∇θL0(xi; θi⋆) ∈ Rp,

Y i := Yi − E[Yi], and Wi :=
〈
Y i,

θ⋆−θi⋆
c/

√
n

〉
. Suppose there are constants D1, d1 ∈ (0,∞) such that

max
1≤i≤n

E[∥Y i∥3] < D1, max
1≤i≤n

E
[
W 3

i

]
< D1, min

1≤i≤n
min

1≤k≤p
Var(Yi(k)) > d1, min

1≤i≤n
Var(Wi) > d1. (117)

(a2) (First-order optimality) The true parameter θ⋆ := (θ1⋆, . . . , θn⋆) is a stationary point of the expected negative
log-likelihood function L0(θ) := Eθ⋆

[L0(X;θ)] over Θ:

⟨∇θ L0(θ), θ − θ⋆⟩ ≥ 0 ∀θ ∈ Θ. (118)

(a3) (Approximate second-order optimality) Let L̄(θ) := L0(θ) + R(θ) denote the expected regularized negative log
likelihood function. Then the regularized ‘joint Fisher information’ ∇2L̄(θ) is positive definite at θ = θ⋆ with
minimum eigenvalue ρ > 0.

Fix a constant C > 0 and let D = n−1/2
(
C + 4∥∇R(θ⋆)∥

ρ

)
. Let M = M(D) > 0 denote the supremum of the absolute

values of all third-order partial derivatives of L over all θ with ∥θ− θ⋆∥ ≤ D. Suppose ∥∇R(θ⋆)∥ is small enough so that

√
nD ≤ 3ρ

4M(D)
. (119)

Then there are constants c1, c2, c3 > 0 such that

P

 inf
θ∈Θ

∥θ−θ⋆∥=D

L(X ; θ, . . . , θ)− L(X ; θ⋆) > 0

 ≥ 1− c1 exp

(
−C2ρ2

64

)
− c2√

n
−O(exp(−c3n)). (120)

That is, with high probability explicitly depending on C, ρ, p, and n, there exists a local maximizer of θ 7→ L(X ; θ, . . . , θ)
in Θ within distance D from θ⋆.
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We can easily deduce Theorem 4.5 from Theorem D.1.

Proof of Theorem 4.5. This is a straightforward application of the general result we just established in Theorem D.1 and
the local landscape result in Theorem 4.3. Details are omitted.

We devote the rest of this section to proving Theorem D.1.

Lemma D.2 (A uniform McDirmid’s inequality). Let X1, . . . , Xn be independent random vectors in Rd from a joint
distribution π. Fix a compact parameter space Θ ⊆ Rp and fθ : Rd → [−M,M ] is a bounded functional for each θ ∈ Θ
such that

∥fθ − fθ′∥∞ ≤ L∥θ − θ′∥, ∀θ,θ′ ∈ Θ (121)

for some constant L > 0. Further assume that E[fθ(Xk)] = 0 for all θ ∈ Θ and k = 1, . . . , n. Then there exists constants
K,M > 0 such that for each n ≥ 0, and η > 0,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

k=1

fθ(Xk)

∣∣∣∣∣ ≥ η

)
≤ K

(
2L diam(Θ)

η

)p

exp

(
− η2n

2M2

)
. (122)

Proof. Recall that Θ ⊆ Rp is compact, so it can be covered by a finite number of L2-balls of any given radius ε > 0.
Denote by Uε such an open cover using the least number of balls of radius ε > 0. Let N(ε) = |Uε| denote the smallest
number of such balls to cover Θ. Moreover, let diam(Θ) be the diameter of Θ, which is finite since Θ is compact. Then
Θ is contained in a p-dimensional box of side length diam(Θ). Thus there exists a constant K > 0, depending only on
diam(Θ) and d, for which

N(ε) ≤ K

(
diam(Θ)

ε

)p

. (123)

Next, fix η > 0, θ ∈ Θ, and ε > 0. Let θ1, · · · ,θN(ε) be the centers of balls in the open cover Uε. Then there exists
1 ≤ j ≤ N(ε) such that ∥θ − θj∥ < ε. By the hypothesis, fθ depends on θ uniformly continuously with respect to the
supremum norm. Hence there exists δ = δ(ε) > 0 such that

∥fθ − fθj∥∞ ≤ Lε. (124)

Denote Hn(θ) := n−1
∑n

k=1 fθ(Xk). Then it follows that, almost surely,

|Hn(θ)−Hn(θj)| ≤ Lε. (125)

Furthermore, by the hypothesis, ∥fθ∥∞ is uniformly bounded by M > 0. It follows that for each θ ∈ Θ, Hn(θ) changes
its value at most by M when one of X1, . . . , Xn is replaced arbitrarily. Therefore by the standard McDirmid’s inequality
(see, Theorem 2.9.1. in (Vershynin, 2018)) and a union bound, with choosing ε = η/(2L), we have

P (|Hn(θ)| ≥ η) ≤
N(η/2L)∑

j=1

P (|Hn(θj)| ≥ η/2) ≤ K

(
2L diam(Θ)

η

)p

exp

(
− nη2

2M2

)
. (126)

The above holds for all n ≥ 1, η > 0, and θ ∈ Θ.

Next, we recall the classical Berry-Esseen theorem for the rate of convergence of normal approximation for the sum of
independent but not necessarily identically distributed random variables due to Feller.

Theorem D.3 (Berry-Esseen, Feller ’68 (Feller, 1968)). Let X1, X2, . . . , Xn be independent and not necessarily identically
distributed random variables with zero means and finite variances. Define W =

∑n
i=1 Xi and assume that Var(W ) = 1.

Let F be the distribution function of W and Φ be the standard normal distribution function. Then

∥F − Φ∥∞ ≤ 6

(
n∑

i=1

E[X2
i 1(|Xi| > 1)] +

n∑
i=1

E[X3
i 1(|Xi| ≤ 1)]

)
. (127)
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Now we prove Theorem D.1. The proof is essentially handling an additional probabilistic perturbation in the proof of
Lemma C.5.

Proof of Theorem D.1. Suppose an n-tuple X = [x1, . . . ,xn] of vectors xs in Rd is observed under the product distribution
πθ1⋆ ⊗ · · · ⊗ πθn⋆

. Denote θ⋆ = (θ1⋆, . . . , θn⋆). Also by the hypothesis, L0 is twice continuously differentiable, so
E[∇L0] = ∇E[L0] and E[∇2L0] = ∇2E[L0] by the dominated convergence theorem.

Fix θ = (θ1, . . . , θn) ∈ Θ such that ∥θi − θ⋆∥ = D for all i = 1, . . . , n. Then from (116), for all i = 1, . . . , n,

D − c√
n
≤ ∥θi − θi⋆∥ ≤ D +

c√
n
. (128)

We introduce two random variables that we will bound to be small by using some concentration inequalities:

Tn(θ) :=
1√
nD
⟨∇θL0(X;θ⋆)− E [∇θL0(X;θ⋆)] , θ − θ⋆⟩ , (129)

Sn(θ) :=
1

n∥θ − θ⋆∥2
(θ − θ⋆)

T (∇θ∇θTL(X ; θ⋆)−∇θ∇θT (E [L(X ; θ⋆)])) (θ − θ0). (130)

Since θ 7→ L(X; θ) is assumed to be three times continuously differentiable, the quantity M in the assertion is well-defined
and is finite. Then using a Taylor expansion, we may write

L(X ; θ)− L(X ; θ⋆) ≥ ⟨∇θL(X;θ⋆), θ − θ⋆⟩+
1

2
(θ − θ⋆)

T∇θ∇θTL(X ; θ⋆)(θ − θ⋆) (131)

−
n∑

i=1

M(∥θ − θi⋆∥)
6

∥θ − θi⋆∥3. (132)

We will lower bound the first two terms on the right-hand side above. Note that

⟨∇θL(X;θ⋆), θ − θ⋆⟩ = [⟨∇θL0(X;θ⋆), θ − θ⋆⟩ − E [⟨∇θL0(X;θ⋆), θ − θ⋆⟩]] (133)
+ ⟨∇θE[L0(X;θ⋆)], θ − θ⋆⟩+ ⟨∇R(θ⋆), θ − θ⋆⟩ (134)

(a)

≥ ⟨∇θL0(X;θ⋆), θ − θ⋆⟩ − E [⟨∇θL0(X;θ⋆), θ − θ⋆⟩]− ∥∇R(θ⋆)∥ ∥θ − θ⋆∥ (135)
(b)
= −
√
nDTn(θ)− ∥∇R(θ⋆)∥ ∥θ − θ⋆∥, (136)

where for (a) we use the fact that θ⋆ is a stationary point of E[L0(X;θ)] over Θ and Cauchy-Schwarz inequality; for (b) we
used the definition of Tn(θ).

Next, we turn our attention to the second-order term in the Taylor expansion (131). Recall that from the hypothesis,

E [∇θ∇θTL(X ; θ⋆)] = ∇θ∇θT (E [L(X ; θ⋆)]) ⪰ ρIpn, (137)

where ρ > 0 is a constant. It follows that

(θ − θ⋆)
T∇θ∇θTL(X ; θ⋆)(θ − θ⋆) (138)

≥ (θ − θ⋆)
T [∇θ∇θTL(X ; θ⋆)−∇θ∇θT (E [L(X ; θ⋆)])] (θ − θ⋆) + ρ∥θ − θ⋆∥2 (139)

≥ ∥θ − θ⋆∥2 (Sn(θ) + ρ) . (140)

Combining the above inequalities with noting that ∥θ − θ⋆∥2 = nD2, we obtain

L(X ; θ)− L(X ; θ⋆)

∥θ − θ⋆∥2
≥ 1

∥θ − θ⋆∥

(
−∥∇R(θ⋆)∥+

ρ

4

√
nD − M(D)

6
nD2

)
︸ ︷︷ ︸

=:I1

(141)

+

(
1

2
(Sn(θ) +

ρ

2
)− 1√

nD
Tn(θ)

)
︸ ︷︷ ︸

=:I2

. (142)
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Note that I1 ≥ 0 if

ρ

8

√
nD ≥ ∥∇R(θ⋆)∥ and

ρ

8

√
nD ≥ M(D)

6
nD2. (143)

The former condition holds by the choice of D, and the latter condition holds by the hypothesis. Thus I1 ≥ 0.

We now take infimum over all θ = (θ, . . . , θ) ∈ Θn such that ∥θ − θ⋆∥ = D. In the proof of Lemma C.5, we have seen
that the infimum of I1 defined above is positive under the hypothesis. Hence it suffices to show that the random variable I2
defined above is positive with high probability. To this end, write

inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

I2 ≥

 inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

−Tn(θ)√
nD


︸ ︷︷ ︸

=:A

+

 inf
θ∈Θ

∥θ−θ⋆∥=D

(
Sn(θ, . . . , θ) +

ρ

2

)
︸ ︷︷ ︸

=:B

. (144)

Then the last expression in (144) is at least ρ/8 if A ≥ −ρ/8 and B ≥ ρ/4. Thus

P

 inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

L(X ; θ)− L(X ; θ⋆)

∥θ − θ⋆∥2
≥ ρ/8

 ≥ P(A ≥ −ρ/8) + P(B ≥ ρ/4)− 1. (145)

By the hypothesis, D = O(1) so it is uniformly bounded. Then by the uniform McDirmid’s inequality in Lemma D.2, there
exists constants C ′, C ′′ > 0 such that

P(B < ρ/4) ≤ P

 inf
θ∈Θ

∥θ−θ⋆∥=D

Sn(θ, . . . , θ) < −ρ/4

 ≤ DpC ′ exp(−C ′′n). (146)

Next, we will show the following inequalities: For K = 6D1/d
3/2
1 ,

P(A < −ρ/8)
(c)

≤ P

 inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥
√
nDρ

8

 (d)

≤ (p+ 1)

(
P
(
Z ≥ p−1/2

(√
nDρ

8

))
+

K√
n

)
(147)

(e)

≤ (p+ 1)

(
exp

(
−nD2ρ2

64

)
+

K√
n

)
(148)

(f)

≤ (p+ 1)

(
exp

(
−C2ρ2

64

)
+

K√
n

)
, (149)

where Z ∼ N(0, 1) is an independent standard normal random variable. Then the assertion will follow by combining (144),
(145), (146), and (149). Note that (c) in (149) follows from the definition of A in (144). Also, note that (e) is a simple

consequence of the standard Gaussian tail bound P(N(0, 1) > x) ≤ e−x2/2

x
√
2π

and that
√
nD ≥ C. (f) follows from the choice

of D which yields nD2 ≥ C2.

It remains to verify (d) in (149). To this end, define p× n matrix Q by letting its ith column Q[:, i] be

Q[:, i] :=
n∑

i=1

∇θL0(xi; θi⋆)− E [∇θL0(xi; θi⋆)] = Yi, (150)

where Yi is defined in the assertion. Note that Q has independent mean zero columns and they do not depend on any specific
choice of the running parameter θ. Then we can write

Tn(θ, . . . , θ) =
1√
n

n∑
i=1

〈
Q[:, i],

θ − θi⋆
D

〉
(151)

=

〈
1√
n

n∑
i=1

Q[:, i],
θ − θ⋆
D

〉
+

1√
n

c/
√
n

D

n∑
i=1

〈
Q[:, i],

θ⋆ − θi⋆
c/
√
n

〉
︸ ︷︷ ︸

=Wi

. (152)
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It is important to note that the random variables Wi do not depend on the specific parameter choice θ, while the first term
in the last expression above does. Such dependence on θ can be removed by using Cauchy-Schwarz inequality. Namely,
denote Qk•

n := n−1/2
∑n

i=1 Q[k, i] for k = 1, . . . , p. Also noting that c/
√
n ≤ D, we deduce

Tn(θ, . . . , θ) ≤

∥∥∥∥∥ 1√
n

n∑
i=1

Q[:, i]

∥∥∥∥∥+ 1√
n

n∑
i=1

Wi︸ ︷︷ ︸
=:Zn

(153)

=
√
p

p∑
k=1

∣∣Qk•
n

∣∣+ Zn. (154)

Note that for each k = 1, . . . , p, Q[k, i] for i = 1, . . . , n are independent and mean zero random variables with uniformly
bounded variances. Likewise, Xi for i = 1, . . . , n are independent and mean zero random variables with uniformly bounded
variances. Hence by union bound,

P

 inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥ t

 ≤ [ p∑
k=1

P
(
Qk•

n ≥
t

2
√
p

)]
+ P

(
Zn ≥

t

2
√
p

)
. (155)

Then by the Berry-Esseen Theorem (Theorem D.3) and the hypothesis,

sup
z∈R

∣∣P (Qk•
n ≤ z

)
− P (Z ≤ z)

∣∣ ≤ 6
∑n

i=1 E[∥Yi∥3]
(
∑n

i=1 Var(Yi(k)))
3/2
≤ 6D1

d
3/2
1

√
n

for k = 1, . . . , p (156)

sup
z∈R
|P (Zn ≤ z)− P (Z ≤ z)| ≤

6
∑n

i=1 E[|Wi|3]
(
∑n

i=1 Var(Wi))
3/2
≤ 6D1

d
3/2
1

√
n
. (157)

Combining with (155) and denoting K = 6D1/d
3/2
1 , we obtain

P

 inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥ t

 ≤ (p+ 1)

(
P
(
Z ≥ t

2
√
p

)
+

K√
n

)
, (158)

Thus (d) in (149) follows.

E. BCD algorithm for SMF
In the main text, we introduce the BCD algorithm for SMF-W. When κ > 1, the algorithm can be easily extended to the
multi-label setting. Here, K is defined as real-valued κ× n matrix such that

K := [ḣ(y1,a1), . . . , ḣ(yn,an)] ∈ Rκ×n

where each ḣ(y,a) denotes

∇aℓ(y,a) =: ḣ(y,a) = (ḣ1, . . . , ḣκ) ∈ Rκ, ḣj :=
h′(aj)

1 +
∑κ

c=1 h(ac)
− 1(y = j)h′(aj)

h(aj)
, (159)

with a proper score function h(·) in (25).

Below we state the BCD algorithm with adaptive step sizes for SMF-H. The structure of the algorithm is identical to
Algorithm 1 for SMF-W.
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Algorithm 2 BCD algorithm for SMF-H
1: Input: X ∈ Rp×n (Data); Xaux ∈ Rq×n (Auxiliary covariate); Ylabel ∈ {0, . . . , κ}1×n (Label);
2: Constraints: Convex subsets C1 ⊆ Rp×r, C2 ⊆ Rr×n, C3 ⊆ Rr×κ, C4 ⊆ Rq×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (number of iterations); (ηk;i)k≥1,1≤i≤4 (step-sizes)
4: Initialize W ∈ C1, H ∈ C2, β ∈ C3, Γ ∈ C4
5: For k = 1, 2, . . . , T do: (▷ For α+ see Assumption B.1.)
6: (Update W)
7: ∇Wf(Z)← 2ξ(WH−X)HT

8: Choose η−1
k,1 > L1 := 2ξ∥H∥22

9: W← ΠC1 (W − ηk;1∇Wf(Z))

10: (Update H)
11: Update activation a1, . . . , an and K
12: ∇Hf(Z)← βK+ 2ξWT (WH−X)
13: Choose η−1

k,2 > L2 := α+∥β∥2 + 2ξ∥W∥22
14: H← ΠC2 (H− ηk;2∇Hf(Z))

15: (Update β)
16: Update activation a1, . . . , an and K
17: ∇βf(Z)← XKT

18: Choose η−1
k,3 > L3 := α+∥H∥22

19: H← ΠC3 (β − ηk;3∇βf(Z))

20: (Update Γ)
21: Update activation a1, . . . , an and K
22: ∇Γf(Z)← XauxK

T

23: Choose η−1
k,4 > L4 := α+∥Xaux∥22

24: Γ← ΠC4 (Γ− ηk;4∇Γf(Z))
25: End for
26: Output: Z = (W,H,β,Γ)

F. Generalized multinomial logistic regression
In this section, we provide some background on a generalized multinomial logistic regression and record some useful
computations. (See (Böhning, 1992) for backgrounds on multinomial logistic regression.) Without loss of generality, we can
assume that the κ+1 classes are the integers in {0, 1, . . . , κ}. Say we have training examples (ϕ(x1), y1), . . . , (ϕ(xn), yn),
where

• x1, . . . ,xn: Input data (e.g., collection of all medical records of each patient)

• ϕ1 := ϕ(x1), . . . ,ϕn := ϕ(xn) ∈ Rp : Features (e.g., some useful information for each patient)

• y1, . . . , yn ∈ {0, 1, . . . , κ}: κ+ 1 class labels (e.g., digits from 0 to 9).

The basic idea of multinomial logistic regression is to model the output y as a discrete random variable Y with probability
mass function p = [p0, p1, . . . , pκ] that depends on the observed feature ϕ(x), score function h : R→ R (strictly increasing,
twice differentiable, and h(0) = 1), and a matrix parameter W = [w1, . . . ,wκ] ∈ Rp×κ through the following relation:

p0 =
1

1 +
∑κ

c=1 h(⟨ϕ(x),wc⟩)
, pj =

h(⟨ϕ(x),wj⟩)
1 +

∑κ
c=1 h(⟨ϕ(x),wc⟩)

, for j = 1, . . . , κ. (160)

That is, given the feature vector ϕ(x), the probability pi of x having label i is proportional to h evaluated at the ‘linear
activation’ ⟨ϕ(x),wi⟩ with the base category of class 0. Note that using h(x) = exp(x), the above multiclass classification
model reduces to the classical multinomial logistic regression. In this case, the corresponding predictive probability
distribution p is called the softmax distribution with activation a = [a1, . . . , aκ] with ai = ⟨ϕ(x),wi⟩ for i = 1, . . . , κ.
Notice that this model has parameter vectors w1, . . . ,wκ ∈ Rp, one for each of the κ nonzero class labels.
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Next, we derive the maximum log-likelihood formulation for finding optimal parameter W for the given training set
(ϕi, yi)i=1,...,n. For each 1 ≤ i ≤ n, define the predictive probability mass function pi = [pi0, pi1, . . . , piκ] using (160)
with ϕ(x) replaced by ϕi. We introduce the following matrix notations

Y :=

1(y1 = 1) · · · 1(y1 = κ)
...

...
1(yn = 1) · · · 1(yn = κ)


∈ {0, 1}n×κ

,
P :=

p11 · · · p1κ
...

...
pn1 · · · pnκ


∈ [0, 1]n×κ

(161)

Φ :=

 ↑ ↑
ϕ(x1) · · · ϕ(xn)
↓ ↓


∈ Rp×n

,
W :=

 ↑ ↑
w1 · · · wκ

↓ ↓

 .

∈ Rp×κ

(162)

Note that the sth row of Y is a zero vector if and only if ys = 0. Similarly, since ps0 = 1 − (ps1 + · · · + psκ), the
corresponding row of P determines its predictive probability distribution. Then the joint likelihood function of observing
labels (y1, . . . , yn) given input data (x1, . . . ,xn) under the above probabilistic model is

L(y1, . . . , yn ; W) = P(Y1 = y1, . . . , Yn = yn ; W) =
n∏

s=1

κ∏
j=0

(psj)
1(ys=j). (163)

Denote w0 = 0. Then since h(0) = 1 by definition, we can conveniently write

psj =
h(⟨ϕs,wj⟩)∑κ
c=0 h(⟨ϕs,wc⟩)

for s = 1, . . . , n and j = 0, 1, . . . , κ. (164)

Now we can derive the negative log-likelihood ℓ(Φ,W) := −
∑n

s=1

∑κ
j=0 1(ys = j) log psj in a matrix form as follows:

ℓ(Φ,W) =
n∑

s=1

log

(
1 +

κ∑
c=1

h(⟨ϕ(xs),wc⟩)

)
−

n∑
s=1

κ∑
j=0

1(ys = j) log h (⟨ϕ(xs),wj⟩) (165)

=

(
n∑

s=1

log

(
1 +

κ∑
c=1

h(⟨ϕ(xs),wc⟩)

))
− tr

(
YTh(ΦTW)

)
, (166)

where tr(·) denotes the trace operator. Then the maximum likelihood estimates Ŵ is defined as the minimizer of the above
loss function in W while fixing the feature matrix Φ.

Both the maps W 7→ ℓ(Φ,W) and Φ 7→ ℓ(Φ,W) are convex and we can compute their gradients as well as the Hessian
explicitly as follows. For each y ∈ {0, 1, . . . κ}, ϕ ∈ Rp, and W ∈ Rp×κ, define vector and matrix functions

ḣ(y,ϕ,W) := (ḣ1, . . . , ḣκ)
T ∈ Rκ×1, ḣj :=

h′(⟨ϕ,wj⟩)
1 +

∑κ
c=1 h(⟨ϕ,wc⟩)

− 1(y = j)
h′(⟨ϕ,wj⟩)
h(⟨ϕ,wj⟩)

(167)

Ḧ(y,ϕ,W) :=
(
Ḧij

)
i,j
∈ Rκ×κ, (168)

Ḧij =
h′′(⟨ϕ,wj⟩)1(i=j)
1+

∑κ
c=1 h(⟨ϕ,wc⟩) −

h′(⟨ϕ,wi⟩)h′(⟨ϕ,wj⟩)
(1+

∑κ
c=1 h(⟨ϕ,wc⟩))

2 − 1(y = i = j)

(
h′′(⟨ϕ,wj⟩)
h(⟨ϕ,wj⟩) −

(h′(⟨ϕ,wj⟩))
2

(h(⟨ϕ,wj⟩))2

)
. (169)

For each W = [w1, . . . ,wκ] ∈ Rp×κ, let Wvec := [wT
1 , . . . ,w

T
κ ]

T ∈ Rpκ denote its vectorization. Note that

Ey

[
ḣ(y,ϕ,W)

]
= 0. (170)
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A straightforward computation also shows

∇vec(W)ℓ(Φ,W) =
n∑

s=1

ḣ(ys,ϕs,W)⊗ ϕs, (171)

H := ∇vec(W)∇vec(W)T ℓ(Φ,W) =
n∑

s=1

Ḧ(ys,ϕs,W)⊗ ϕsϕ
T
s , (172)

where ⊗ above denotes the Kronecker product. Recall that the eigenvalues of A ⊗ B, where A and B are two
square matrices, are given by λiµj , where λi and µj run over all eigenvalues of A and B, respectively. Also, for
two square matrices A,B of the same size, write A ⪯ B if vTAv ≤ vTBv for all unit vectors v. Then denoting
λ+ := max1≤s≤n λmax(Ḧ(ys,ϕs,W)),

H ⪯ λ+
n∑

s=1

I⊗ ϕsϕ
T
s = λ+I⊗ΦΦT . (173)

Similarly, λ−I⊗ΦΦT ⪯ H, where λ− denotes the minimum over all λmin(Ḧ(ys,ϕs,W)). Hence we can deduce

λ−λmin

(
ΦΦT

)
≤ λmin(H) ≤ λmax(H) ≤ λ+λmax

(
ΦΦT

)
. (174)

There are some particular cases worth noting. First, suppose binary classification case, κ = 1. Then the Hessian H above
reduces to

H =
n∑

s=1

Ḧ11(ys,ϕs,W)ϕsϕ
T
s . (175)

Second, let h(x) = exp(x) and consider the multinomial logistic regression case. Then h = h′ = h′′ so the above yields
the following concise matrix expression

∇W ℓ(Φ,W) = Φ(P−Y) ∈ Rp×κ, ∇Φ ℓ(Φ,W) = W(P−Y)T ∈ Rp×n, (176)

H =
n∑

s=1


ps1(1− ps1) −ps1ps2 . . . −ps1psκ
−ps2ps1 ps2(1− ps2) . . . −ps2psκ

...
...

. . .
...

−psκps1 −psκps2 . . . psκ(1− psκ)

⊗ ϕsϕ
T
s . (177)

Note that H in this case does not depend on ys for s = 1, . . . , n. The bounds on the eigenvalues depend on the range of
linear activation ⟨ϕi,wj⟩ may take. For instance, if we restrict the norms of the input feature vector ϕi and parameter wj ,
then we can find a suitable positive uniform lower bound on the eigenvalues of H.

Lemma F.1 (Lemma B.1 in (Lee et al., 2023)). Suppose h(·) = exp(·). Then

λmin

(
Ḧ(ϕs,W)

)
≥ min

1≤i≤κ

exp(⟨ϕs,wi⟩)
(1 +

∑κ
c=1 exp(⟨ϕs,wc⟩))

2 , (178)

λmax

(
Ḧ(ϕs,W)

)
≤ max

1≤i≤κ

exp(⟨ϕs,wi⟩)
(1 +

∑κ
c=1 exp(⟨ϕs,wc⟩))

2

(
1 + 2

κ∑
c=2

exp(⟨ϕs,wc⟩)

)
. (179)

F.1. Additional Figures

G. Experimental details
All numerical experiments were performed on a workstation with Xeon Gold 6248R @ 3.00GHz CPU, 512GM of RAM,
and two RTX A6000 GPUs.
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Figure 6. (a,b) Plots of training loss for Algorithms 1 and 2 vs. elapsed time at different ξ values. (c) Comparison of convergence speed
between BCD and its neural implementation ran on GPU at ξ = 0.1, with shaded regions indicating one standard deviation across 10
runs.

G.1. Experiments on semi-synthetic MNIST dataset

We follow the experimental setting in (Lee et al., 2023) for the semi-synthetic MNIST dataset. For the reader’s convenience,
we give details here. Denote p = 282 = 784, n = 500, r = 2, and κ = 1. First, we randomly select 10 images each from
digits ’2’ and ’5’. Vectorizing each image as a column in p = 784 dimension, we obtain a true factor matrix for features
Wtrue,X ∈ Rp×r. Similarly, we randomly sample 10 images of each from digits ’4’ and ’7’ and obtain the true factor matrix
of labels Wtrue,Y ∈ Rp×r. Next, we sample a code matrix Htrue ∈ Rr×n whose entries are i.i.d. with the uniform distribution
U([0, 1]). Then the ‘pre-feature’ matrix X0 ∈ Rp×n of vectorized synthetic images is generated by Wtrue,XHtrue. The
feature matrix Xdata ∈ Rp×n is then generated by adding an independent Gaussian noise εj ∼ N(0, σ2Ip) to the jth column
of X0 for j = 1, . . . , n, with σ = 0.5. We generate the binary label matrix Y = [y1, . . . , yn] ∈ {0, 1}1×n (recall κ = 1) as

follows: Each entry yi is an independent Bernoulli variable with probability pi =
(
1 + exp (−βT

true,YWT
true,YXdata[:, i])

)−1

,
where βtrue,Y = [1,−1]. No auxiliary features were used for the semi-synthetic dataset (i.e., q = 0).

G.2. Experiments on the Job postings dataset

Next, we provide detailed information about the dataset used in our study (Laboratory of Information and Communication
Systems, 2016). The dataset consists of 17,880 job postings, encompassing 15 variables that include binary values,
categorical variables, and textual information in the form of job descriptions. Within the dataset, 17,014 postings (95.1%)
are classified as genuine job postings, while 866 postings (4.84%) are identified as fraudulent. This highlights a considerable
class imbalance, with a significantly larger number of genuine postings compared to fraudulent ones. In our analysis, we
designated fake job postings as positive examples and true job postings as negative examples.

In our experiments, we represented each job posting as a p = 2480 dimensional word frequency vector derived from its job
description. This vector was augmented with q = 72 auxiliary features, encompassing binary and categorical variables.
These features include indicators specifying whether a job posting includes a company logo or if the advertised job is located
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in the United States. To compute the word frequency vectors, we represented the job description variable as a term/document
frequency matrix, applying Term Frequency-Inverse Document Frequency (TF-IDF) normalization (Pedregosa et al., 2011).
This normalization method assigns lower importance to common words appearing in all documents and considers words
specific to particular documents as more significant. In our analysis, we focused on the 2,480 most frequent words for
further investigation. Due to the high imbalance, the accuracy of classification can be trivially high (e.g., by classifying
everything to be negative), and hence achieving a high F-score is of importance.
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