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Abstract

For obtaining optimal first-order convergence
guarantees for stochastic optimization, it is nec-
essary to use a recurrent data sampling algorithm
that samples every data point with sufficient fre-
quency. Most commonly used data sampling al-
gorithms (e.g., i.i.d., MCMC, random reshuffling)
are indeed recurrent under mild assumptions. In
this work, we show that for a particular class
of stochastic optimization algorithms, we do not
need any further property (e.g., independence, ex-
ponential mixing, and reshuffling) beyond recur-
rence in data sampling to guarantee optimal rate
of first-order convergence. Namely, using regu-
larized versions of Minimization by Incremental
Surrogate Optimization (MISO), we show that for
non-convex and possibly non-smooth objective
functions with constraints, the expected optimal-
ity gap converges at an optimal rate O(n~'/?)
under general recurrent sampling schemes. Fur-
thermore, the implied constant depends explicitly
on the ‘speed of recurrence’, measured by the ex-
pected amount of time to visit a farthest data point,
either averaged (‘target time”) or supremized (‘hit-
ting time’) over the initial locations. We discuss
applications of our general framework to decen-
tralized optimization and distributed non-negative
matrix factorization.

1. Introduction

In this paper we consider the minimization of a non-convex
weighted finite-sum objective f : R? — R:

0" € argmin {f(e) = Z f”(B)W(v)} (1)
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where ® C RP is a convex, but not necessarily compact
feasible set and O represents the parameters of a model to be
optimized. Here V is a finite index set where one can view
each index v € V representing (a batch of) data that can
be accessed at once. Then f¥(0) is the loss incurred using
parameter 8 with respect to data at v, which is weighted
by 7(v) > 0 when forming the overall objective f in (1).
Without loss of generality, we assume the 7r(v)s sum to one.
When 7(v) = ﬁ the problem (1) becomes the classical
finite sum problem in the optimization literature. Instances
of non-uniform 7 arise when training a model with imbal-
anced data as has been studied in (Steininger et al., 2021;
Wang et al., 2022b; Sow et al., 2024).

We aim to solve this problem by developing an algorithm
which produces iterative parameter updates 8,, given only
access to an arbitrary sequence of data samples (vy,)p>1.
In order to reach a first-order stationary point of (1) for gen-
eral objectives, it is necessary to use a sampling algorithm
that is recurrent, meaning that every data point is sampled
infinitely often with ‘sufficient frequency’. Note that recur-
rence is satisfied by many common sampling schemes such
as i.i.d. (independently and identically distributed) sam-
pling, (irreducible) Markov Chain Monte-Carlo MCMC),
cyclic sampling (Bertsekas, 2011), and random-reshuffling
(Ying et al., 2017). The main question we ask in this work
is the following:

e [s there any class of stochastic optimization algorithms
for which recurrent sampling is enough to obtain opti-
mal first-order convergence guarantee for (1)?

In this paper, we show that for a class of suitable extensions
of stochastic optimization algorithms known as Minimiza-
tion by Incremental Surrogate Optimization (MISO) (Mairal,
2015), no additional property of a data sampling algorithm
(e.g., independence, exponential mixing, reshuffling) other
than recurrence is needed in order to guarantee convergence
to first-order stationary points. Furthermore, we show that
the rate of convergence depends crucially on either the av-
eraged or supremized return time to the farthest data point,
corresponding to the notion of ‘target time’ and ‘hitting
time’ in Markov chain theory, respectively.

With the original MISO algorithm in (Mairal, 2013), even
under the general recurrent data sampling, we are able to
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obtain asymptotically optimal iteration complexity if we can
use strongly convex surrogate functions. However, there
is a significant technical bottleneck in showing asymptotic
convergence to stationary points, which was classically es-
tablished in (Mairal, 2015) in case of the i.i.d. data sam-
pling. We find that using additional regularization helps
with improving the convergence rate and allows us to prove
asymptotic convergence to stationary points under arbitrary
recurrent data sampling. For these reasons, we propose a
slight extention of MISO that we call the Regularized Mini-
mization by Incremental Surrogate Optimization (RMISO),
which takes the following form:

Step 1. Sample v,, according to a recurrent sampling algo-
rithm

Step 2. g~ < Convex majorizing surrogate of f*~ at
0n—1: 9, = gy forv # vy,

Step 3. G, < >,y 9nm(v); Compute

0,, € argmin|g,(0) + ¥(||0 — 0,,—1])|-
0cO

The algorithm maintains a list of majorizing surrogate func-
tions for each data point v. At each step, a new data sample
vy, is drawn according to a recurrent data sampling algo-
rithm. We then find a new majorizing convex surrogate g,
that is tight at the current parameter 6,,_;. All other surro-
gates are unchanged. Then the new parameter 6, is found
by minimizing the empirical mean of the current surrogates
plus a regularization term U(||@ — 8,,_1]|) that penalizes
large values of ||0,, — 6,,_1]|. To handle dependent data,
many algorithms use some form of projection or regular-
ization to achieve this property (Lyu, 2023; Bhandari et al.,
2018; Roy & Balasubramanian, 2023). This allows one to
control the bias introduced by dependent sampling schemes
as well as use the broader class of convex surrogates in-
stead of requiring them to be strongly convex. The original
MISO (Mairal, 2015) is recovered by omitting this regular-
ization term. The particular choice of this term is crucial for
the success of the analysis under the general recurrent data
sampling setting.

Applications of our work include distributed optimization
over networks where ) forms the vertex set of a connected
graph G = (V, £) and each vertex v stores some data. Prior
work (Johansson et al., 2010; 2007; Ram et al., 2009; Lopes
& Sayed, 2007; Mao et al., 2020; Even, 2023; Sun et al.,
2022) studies the performance of various optimization al-
gorithms in this setting assuming the sequence (vy,)p,>1 is
a Markov chain on the graph G. Here 7 is typically taken
to be uniform and it is frequently assumed that the Markov
chain is an MCMC sampling converging to 7, see (Sun et al.,
2022; Johansson et al., 2010; Wang et al., 2022a).

In this setting we find both theoretically and empirically that
convergence of our algorithm can be accelerated by choos-
ing sampling schemes that guarantee a higher frequency of
visits to each v € V. Such schemes may be non-Markovian
or not aperiodic and so not guaranteed to converge to a sta-
tionary distribution. Moreover, our analysis does not require
m to agree with the stationary measure of the sampling pro-
cess if it exists. As remarked in (Even, 2023), this additional
flexibility may be advantageous as it allows one to opt for
more efficient sampling schemes who’s stationary measure
may not agree with the data-weighting-distribution 7. In our
context, these are the schemes which minimize the measures
of recurrence we define in the sequel.

1.1. Contribution

Our algorithms and analysis consider three cases which we
briefly summarize in the following bullet points.

+ We show convergence rates of O(n~'/2) for MISO
with strongly convex surrogates or constant quadratic
proximal regularization, matching the rate shown for
SAG in (Even, 2023). The implied constant depends
on the potentially much smaller ’target time’ rather
than the hitting time.

* The same convergence rates hold for MISO with dy-
namic quadratic proximal regularization where, in-
spired by the dynamic step size used for SAG in (Even,
2023), the regularization parameter is adaptive to the
state of the sampling process. Asymptotic convergence
of stationarity measures in expectation is also proved.

+ Convergence rates of O(n~/?logn) are shown for
MISO with diminishing search radius restriction,
where averaged surrogates are minimized within a di-
minishing radius. We show almost sure convergence
to stationarity for this method.

* We experimentally validate our results for the tasks
of non-negative matrix factorization and logistic re-
gression. We find that our method is robust to data
heterogeneity as it produces stable iterate trajectories
while still maintaining fast convergence (see Sec. 4.2).

1.2. Related Work

MISO (Mairal, 2015) was originally developed to solve fi-
nite sum problems under i.i.d sampling and proceeds by
repeatedly minimizing a surrogate of the empirical loss
function. In (Mairal, 2015) it is shown that for MISO the
expected objective optimality gap E[f(0,,) — f(0")] decays
at rate O(1/n) when the objective function is convex and
exponentially fast when it is strongly convex, just as batch
gradient descent does (Bottou et al., 2018). For non-convex
f itis shown that the iterates produced by MISO converge to
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the set of stationary points of f over a convex constraint set,
but no convergence rate analysis is given. Convergence rates
for non-convex objectives were later provided for uncon-
strained problems in (Qian et al., 2019) where it was shown
that the expected gradient norm E[||V f(6,,)||] decays at
rate O(n~'/2). This rate was matched for the constrained
setting in (Karimi et al., 2022). However, both papers only
consider i.i.d sampling.

(R)MISO may be compared with Stochastic Averaged Gra-
dient (SAG) (Schmidt et al., 2017) as both store the most
recent information computed using the data v and output
new parameter updates 6,, depending on an average of this
information over V. Recently in (Even, 2023), it was shown
that for non-convex objectives SAG produces iterates such
that the expected gradient norm decays at rate O(n~'/2)
under Markovian sampling. In comparison, the expected
gradient norm converges at rate O(n /%) for other stochas-
tic first-order methods such as Stochastic Gradient Descent
(SGD) (Sun et al., 2018; Alacaoglu & Lyu, 2023; Even,
2023; Karimi et al., 2019). Other works devoted to the
study of first order optimization methods under Markovian
sampling include (Beznosikov et al., 2023; Bhandari et al.,
2018; Wang et al., 2022a; Huo et al., 2023; Lyu, 2023).

There has also been a recent focus on proving faster conver-
gence for SGD using without-replacement sampling meth-
ods such as random-reshuffling (Giirbiizbalaban et al., 2021;
Ying et al., 2017). This has been further extended to vari-
ance reduced algorithms (Huang et al., 2021; Malinovsky
et al., 2023; Beznosikov & Takac, 2023) and distributed
optimization (Mishchenko et al., 2022; Horvéth et al., 2022).
New sampling algorithms that aim to improve over random
reshuffling have been suggested in (Rajput et al., 2022; Lu
et al., 2022a; Mohtashami et al., 2022). In particular, in
(Lu et al., 2022b) the authors show that the convergence of
SGD can be accelerated provided a certain concentration
inequality holds and propose leveraging this using a greedy
sample selection strategy.

To obtain our results, we adopt a new analytical approach
which is inspired in part by the analysis of SAG in (Even,
2023). This strategy differs significantly from mixing rate
arguments used in the analysis of stochastic optimization
methods with Markovian data (e.g (Sun et al., 2018; Bhan-
dari et al., 2018; Nagaraj et al., 2020; Lyu et al., 2020; 2022;
Lyu, 2023; Alacaoglu & Lyu, 2023)). We give a short sketch
of our proofs in Section 3.4 and a brief overview of mixing
rate techniques and the challenges of adapting them to the
analysis of MISO in Appendix B. We believe that these
techniques may be of interest in their own right and may
further contribute to analyzing other stochastic optimization
methods with recurrent data sampling.

1.3. Notation

In this paper, we let RP denote the ambient space for the
parameter space ® equipped with the standard inner product
(-, -) and the induced Euclidean norm ||-||. For 8 € R? and
e > 0, we let B.(0) represent the closed Euclidean ball of
radius € centered at 8. We let 1(A) be the indicator function
of an event A which takes value 1 on A and 0 on A°. We
denote Ty, = min,cy w(v). We let a A b = min{a, b}
for real numbers a and b. For a set X’ we let | X'| denote its
cardinality.

2. Preliminary Definitions and Algorithm
Statement

In this section we state the two main algorithms used to
solve (1). To do this we start by defining first-order surrogate
functions and then define a few random variables that will be
important in both implementation and analysis. First-order
surrogates are defined by

Definition 2.1 (First-order surrogates). A convex function
g : RP — R is a first-order surrogate function of f at @ if

(i) g(8") > £(6') holds for all &’ € ©

(ii) the approximation error h := g — f is differentiable
and Vh is L-Lipschitz continuous for some L > 0;
moreover h(0) = 0 and Vh(6) = 0.

We denote by Sp.(f,0) the set of all first order surrogates
of f at @ such that Vh is L-Lipschitz. We further define
Si,u(f,0) to be the set of all surrogates g € Sr(f, ) such
that g is p-strongly convex.

Certain properties of the data sampling process are crucial
in our analysis, especially in proving Lemmas D.1, E.2, and
E.4. Below we define the return time and last passage time.

Definition 2.2 (Return time). For n > 0 and v € V), the
time to return to data v starting from time n is defined as

Tno =nf{j > 1:v,4; =v}. 2)

That is, 7, ,, is the amount of time which one has to wait
after time n for the process to return to v. The return time
may be viewed as a generalization of the return times of a
Markov chain. Indeed, 79, = inf{n > 1: v, = v} agrees
with the classical notion of return time from the Markov
chain literature. This is closely related to the last passage
time defined below.

Definition 2.3 (Last passage time). Forn > 1andv € V
we define the last passage time of v before time n as

k’(n) =sup{j < n:v; =v}. 3)

If the process has not yet visited v, i.e. {j <n:v; =v} =
(), then we set k¥(n) = 1.
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Algorithm 1 Incremental Majorization Minimization with
Dynamic Proximal Regularization

1: Input: Initialize o € O; N > 0;p > 0
2: Option: Regularization € {Dynamic, Constant}
3: Initialize surrogates g5 € Sr,.(f",00).
4 forn =1to N do
sample a data point v,
choose g,» € SL #(f
gn Zvev gn )
if Regularization = Dynamic then

pn 4= p+ maxyey(n — k" (n))
10:  else if Regularization = Constant then
11: Pn < P
12:  endif
13: 0, « argming e [gn(e) +enfo— eHHZ‘]
14: end for
15: output: On

" 0n-1); gn = gn-1 YU # vn

LR

Algorithm 2 Incremental Majorization Minimization with
Diminishing Radius

: Input: Initialize 8o € O; N > 0; (1n)n>1
: Initialize surrogates g5 € Sr.(f?, 0o).

: forn=1to N do

sample a data point v,
choose g, € St.(f*",0
gn Zvev gi{w(v)

6 < argmingconp, (o, _,)In(0)
: end for

: output: Oy

~1); gn = gn_ forall v # vy

I

The last passage time k¥ (n) appears naturally as it is the
last time the surrogate for data point v has been updated
during the execution of either Algorithm 1 or 2. Thus, g; is a
surrogate of f* at 6. (,,)_1 and the corresponding surrogate
error at this point h;, (6 (,)—1) and its gradient are equal
to zero. We will use this fact crucially in the proof of the
key lemma, Lemma D.1.

Our algorithms are stated formally in Algorithms 1 and 2.
In Algorithm 1, the regularization term uses Proximal Reg-
ularization (PR) while Algorithm 2 utilizes a Diminishing
Radius (DR) restriction.

3. Main Results

3.1. Optimality Conditions

We now introduce the optimality conditions used in this
paper and related quantities. Here we denote f to be a
general objective function f : @ — R, but elsewhere f will
refer to the objective function in (1) unless otherwise stated.

For a given function f and 8*,0 € ©, we define its direc-
tional derivative at 0" in the direction @ — 8" as

V6°,0—0%) = lim 1O FUO=67)) = J(0)

a—0t o

“

A necessary first order condition for 8 to be a local mini-
mum of f is to require Vf(0*,0 —0*) > 0 forall @ € ©
(see (Mairal, 2015)). Thus we define the optimality of f at
0" € ©as

0s(07) := sup
0c©,0—-6%|<1

—VF(05,0—6%). (5

Note that Of(0") is non-negative (since we may take
0 = 0") and only positive if there exists some € ©
with Vf(0*,0 — 6*) < 0. Thus we say that 8" € © is
a stationary point of f over © if O7(0*) = 0. If f is dif-
ferentiable and @ is convex, this is equivalent to —V f(0*)
being in the normal cone of © at 8*. If " is in the interior
of © then it implies that |V f(6™)|| = 0.

For iterative algorithms, this stationary point condition may
hardly be satisfied in a finite number of iterations. A prac-
tically important question is how the worst case number
of iterations required to achieve an e-approximate solution
scales with the desired precision . We say that 8% € @ is an
e-approximate stationary point of f over © if O(0") < e.
This notion of e-approximate solution is consistent with the
corresponding notion for unconstrained problems. In fact,
if f is differentiable, and if 8™ is distance at least one away
from the boundary 9@, then it reduces to |V f(0")] < e.
For each ¢ > 0, we then define the worst-case iteration
complexity of an algorithm for solving (1) as

N:(0o) :=inf{n >1:04(6,) < e}, (6)

where (6,,),>0 is a sequence of iterates produced by the
algorithm with initial estimate 8.

3.2. Assumptions

In this subsection, we state our assumptions for establishing
the main results. Throughout this paper, we denote by F,,
the o-algebra generated by the samples v, . .., v, and the
parameters 6, . . ., 8,, produced by Algorithm 1 or 2. With
this definition, (F,,),>1 defines a filtration.

In what follows we will also define some important quanti-
ties in terms of the measure theoretic definition of the L,
norm for random variables:

X |loe = inf{t > 0:P(IX| > ) =0}. (7

This is due to the technical consideration that the condi-
tional expectation E[r,, ,|F,] is random and hence so is
sup,,>1 E[Ty, v|F»]. Our analysis requires this supremum
to be bounded by a non-random constant, while in the fully
general case sup,,~; E[7,,,|F,] may be an unbounded.

We first state our main assumption on the sampling scheme.

Assumption 3.1 (Recurrent data sampling). The sequence
(vn)n>1 of data samples defines a stochastic process
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which satisfies the following property: for each v € V,
sup,,>1 [|E[7n,o|Fnlll o < 00, i.e., the expected return time
conditioned on F,, is uniformly bounded.

Assumption 3.1 states that the data (v,,),,>1 are sampled
in such a way that the expected time between visits to a
particular data point is finite and uniformly bounded. Gen-
eralizing the notion of positive recurrence in Markov chain
theory, we say a sampling algorithm is recurrent if Assump-
tion 3.1 is satisfied. We emphasize that recurrence is the
only requirement we make of the sampling process in order
to prove the convergence rate guarantees in Theorem 3.8
and the asymptotic convergence in Theorem 3.9 (We do
not assume independence or Markovian dependence, etc.).
We include below a list of some commonly used recurrent
sampling algorithms.

1. (i.i.d. sampling) Sampling data i.i.d from a fixed distribu-
tion is the most common assumption in the literature
(Mairal, 2013; 2015; Bottou et al., 2018; Schmidt et al.,
2017; Johnson & Zhang, 2013). Suppose we sample
vy, 1.1.d from some distribution v on V. Then the 7,, ,
are independent geometric random variables taking
values from {1, 2, ..., } with success probability y(v),
$0 E[7,, | Fn] = 1/7(v). In particular, if -y is uniform
E[7y v|Fn] = V| for all n and v.

2. (MCMC) Markov chain Monte Carlo methods (see e.g.
Ch.3 of (Levin & Peres, 2017)) produce a Markov
chain (v,,) on V. If this chain is irreducible then
mMaxy . By [70,,] 1s finite (Levin & Peres, 2017). For
any n, v, and initial distribution v, the Markov property
implies E, [7,, | Fn] = E,, [70,4]. So any irreducible
Markov chain satisfies 3.1.

3. (Cyclic sampling) In cyclic sampling one samples data in
order according to some enumeration until the dataset
is exhausted. This process is then repeated until con-
vergence. The authors of (Lu et al., 2022b) show that
iteration complexity for SGD can be improved from
O(e7*) to O(e~?) using such methods. To see that 3.1
holds in this setting, we simply notice that 7, , < |V
for all n and v.

4. (Reshuffling) Reshuffling is similar to cycling sampling
except that the dataset is randomly permuted at the
beginning of each epoch (Lu et al., 2022b). It was
observed empirically that random reshuffling performs
better that i.i.d sampling in (Bottou, 2012) and fur-
ther studied in (Giirbiizbalaban et al., 2021; Lu et al.,
2022b). The authors of (Lu et al., 2022b) show the
same improvement in iteration complexity for SGD as
for cyclic sampling. In this case, 3.1 is satisfied since
T < 2|V].

In Markov chain theory, the quantity max,, ., E.,[70,,] is
commonly denoted ty;. Adapting this notion, we define

thie 1= 111)1635( Zlgl) ||E[Tn,v‘fn”‘oo ®

for each v when 3.1 holds, for general sampling schemes.

Continuing the connection with Markov chains, we also let

Z E[7n,u|Fnl7(v)

veY

©))

te = sup
n>1

o0

where 7 is as in (1). Note that if v,, is an irreducible Markov
chain then the Markov property implies

= E . 1
to H’lg‘)’{vev w([T0,0]m (V) (10)

This is closely related to the rarget time define by

t8 =" Eylr]r(v) (11)

veV

with the difference being that here 7, = inf{n > 0: v, =
v} is the first hitting time of v rather than the first return
time to v. The random target lemma (Lemma 10.1 in (Levin
& Peres, 2017)) states that if 7 is the stationary distribution
of the Markov chain, then the target time is independent
of the starting state w. In this case, the quantities (10) and
(11) only differ by one. This can be seen by first noting that
Ey[m] = Ey[70,0] if v # w. This leaves only the difference
Ew[70,w]7(w) — Ey[7w]7(w). The second term is equal to
zero and the first equals one since if 7 is the unique station-
ary distribution for the chain, 7(w) = m (Levin &
Peres, 2017).

Figure 1. Lonely graph

For transitive irreducible Markov chains, #p;; and ¢, are com-
parable (Levin & Peres, 2017). However, in other situations
to may be much smaller that ¢p;. For instance, consider the
simple random walk on the graph in Figure 1, which we call
the ‘lonely’ graph, and let 7 be its stationary distribution.
In the lonely graph, |V| — 1 vertices form a clique and the
remaining vertex has degree one. A random walk on this
graph has worst case hitting time tp;; = O(|V]?): its value
is tied to the lonely vertex with degree one which has low
probability of being visited. On the other hand ¢, is only
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O(]V)|) since it only depends on an average hitting time
instead of the worst case. See Example 10.4 in (Levin &
Peres, 2017) for more details.

We again emphasize that in our general setting, we do not
require (v,,) to be a Markov chain nor do we require 7 to
be a stationary measure for the process. The above analysis
serves to motivate the definition given in (9) and provide an
example of where ¢, may be much smaller than ty;.

We next list some assumptions of the functions f*.

Assumption 3.2 (Lower-bounded objective and directional
derivatives). Forallv € V and 6,0’ € ©, the function f"
is bounded below, i.e. infgce f¥(0) > —oo. Moreover, the
directional derivative V f(6,0" — ) exists.

Assumption 3.2 implies that the objective f is bounded
below. For the remainder of this paper we will denote
Ay = go(Bg) — infgce f(0). It is important to note
that if the initial surrogates g§ are in Sr.(f", 8o) (as is the
case in both Algorithms 1 and 2) then go(6o) = f(69) so
Ag = f(0y) — infgce f(O). The regularity assumption in
3.2 was used in (Mairal, 2015) and is necessary in analyzing
our algorithms using our definition of approximate station-
arity. For Algorithm 2 we make the following stronger but
common assumption which is crucial to our analysis:

Assumption 3.3. For each v € V, the function f" is contin-
uously differentiable and V fv is L-Lipschitz continuous.

For simplicity, we assume that if Assumption 3.3 holds
then the Lipschitz constant of f agrees with that of the
corresponding approximation error h".

Finally, Assumption 3.4 states that the radii in Algorithm
2 decrease slowly, but not too slowly. This is analogous to
square summability of step sizes in gradient descent.

Assumption 3.4 (Square-summable and non-summable

radii). The sequence (r,),>1 1S non-increasing,
oo _ o0 2

Zn:l T'n = 00, and En:l n < 0.

3.3. Statement of main results

In this section we state the two main results of this work.
We consider the following three cases corresponding to the
three variants of our main algorithm:

Case 3.5. Assumptions 3.1-3.2 hold. Use Algorithm 1 with
RegularizationSchedule = Constant.

Case 3.6. Assumptions 3.1-3.2 hold. Use Algorithm 1 with
RegularizationSchedule = Dynamic.

Case 3.7. Assumptions 3.1-3.4 hold. Use Algorithm 2.

Notice that in Case 3.5, if one chooses p = 0 and the
surrogates are g7, are in Sy, (f¥,60,—1) for some p > 0,
then Algorithm 1 reduces to the classical MISO algorithm
in (Mairal, 2015).

Our first main result, Theorem 3.8, gives worst case upper-
bounds on the expected rate of convergence to optimality.
For each of the cases 3.5-3.7 we give rates of convergence
for the objective function f.

Theorem 3.8 (Rate of Convergence to Stationarity). Algo-
rithms I and 2 satisfy the following for any N > 1:

(i) Assume Case 3.5. Further assume p = 0 and Algo-
rithm 1 is run with u-strongly convex surrogates. Then

in E[O(0 <Lt@v%
lglllélN [O4( n)]fw (12)

(ii) Assume Case 3.5. If p < Lte < p+ p then

, [2A0Lto

(iii) Assume Case 3.6. If p < Lt < p+ p then
min E[0(6,,)]

1<n<N

< 2\/2A0(Lt® + (2thit + 1) 10g2(4‘v|))
> N ’

(14)

(iv) Assume Case 3.7. Let C = ZN r2. Then

n=1"n"

 in E{Of(0n)]

_ Dot VO + (3”®)CNL. (15)

— N
Zn:l (1 A ’I"n+1)

To our best knowledge, the rates of convergence given in
Theorem 3.8 are entirely new for first-order algorithms with
general recurrent data sampling. In contrast to the conver-
gence result for SAG in (Even, 2023) that depends on the
hitting time tp;;, Algorithm 1 with constant proximal regu-
larization (case 3.5) depends on the possibly much smaller
target time ¢. See Table 1 for a comparison of our results
with other works concerning non-convex optimization with
non-i.i.d data.

We remark that items (i) and (ii) show the potential benefit
of using proximal regularization even if the surrogates are
already strongly convex. For non-convex f, the strong con-
vexity parameter y of any surrogates cannot be larger than
the Lipschitz constant L. However, we are free to choose p.
So an optimal choice of p results in dependence on /Lt
in (ii) instead of the linear dependence in (i). However,
it is not necessary to chose p in the range given in items
(i1) and (iii). We include a more general version of Theo-
rem 3.8, Theorem A.1, in Appendix A which shows that
these convergence rates hold for arbitrary p and p so long
as p + p > 0. Overall, our theory suggests that one can
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improve convergence by using sampling schemes that cover
the dataset most efficiently, i.e. those that minimize ¢ and
thic- See the remarks in Appendix A for more on this topic.

We also remark that Theorem 1 in (Even, 2023) gives a
lower bound in terms of ¢;. While our results depend ¢,
they do not contradict this lower bound. See Appendix A
for more discussion.

Our second result, Theorem 3.9, concerns the asymptotic
behavior of Algorithms 1 and 2.

Theorem 3.9 (Global Convergence). Algorithms I and 2
have the following asymptotic convergence properties:

(i) For Case 3.6, we have lim,,_,
lim, 00 E[Of(6,,)?] = 0.

(ii) For Case 3.7 almost surely every limit point of (0
is stationary for f over ©.

E[O4(0,)] = 0 and

n)nzl

Theorem 3.9 shows that although RMISO with diminishing
radius requires computing a projection at each step and
has higher order dependence on ¢, it enjoys the strongest
asymptotic guarantees. RMISO with dynamic proximal
regularization is somewhere in the middle. It has lower
order dependence on ¢, than the diminishing radius version
but also depends on ty;. However, we are able to show that
both the first and second moments of the optimality gap
converge to zero. In particular, notice that in the familiar
case that ® = RP and f is differentiable (i) implies that
E[|V(6,)[] = 0.

Though Algorithm 1 with constant proximal regularization
is the simplest of our proposed methods and has the best de-
pendence on the constants L and ?,, it appears that stronger
regularization schemes as in cases 3.6 and 3.7 are needed
for obtaining asymptotic convergence guarantees. We refer
the reader to Appendix A as well as remark E.3 in Appendix
E for a more detailed discussion on the technical difficulties
of proving asymptotic convergence for Case 3.5 as well as
proving it in the almost sure sense for Case 3.6.

lim,, s 0

3.4. Sketch of proofs

In this section we provide a short sketch of our analysis in
order to convey the main ideas. Let h,, = Y, oy, hum(v)
be the average surrogate approximation error at step n. The
key step in our analysis (Lemma D.1) is to prove

N N 1/2
> B[l Vhn(8,)]] = O (Zcﬁ) , (16)

n=1 n=1

where ¢, is any non-increasing sequence. For simplicity,
assume that the surrogate functions g; and the objective
functions f are differentiable and we are in the uncon-
strained setting, i.e. ® = RP. If 6,, is a minimizer of g,

then Vg, (0,,) = 0. Therefore ||V, (0
and (16) implies

)l =V (6]

1/2
ch NG <Zc> )

If we take ¢, = 1, we can then conclude that
min; <, <y E[|V£(0,)]]] = O(N~1/2). The addition of
regularization introduces an added complication because we
are no longer directly minimizing g, on the entire feasible
set and so do not have Vg, (0,) = 0. However, as we ar-
gue in Section D, the added regularization is not too strong
asymptotically.

The main idea is to focus in the individual error gradients
because each has the property Vh;, (0 (n)—1) = 0. By Def-
inition 2.1, we then have ||V}, (0,,)|| < L[|0,, — 0o (ny—1

so to show (16) we only need to prove

(Z c )1/2 (18)

The triangle inequality and monotonicity of (¢, ) imply

ch 1165 — Oro(ny—1ll] =

n

cnll0n — O ()1 < Z cil|0; —
i=kv(n)

O;—1ll, (19)

so we can relate the error ||[VhL(6,,)] to the sequence
(/65 — 05—1]|*)n>1. The crucial role played by the reg-
ularization or strong convexity is that we can prove the
following iterate stability: >~ |6, — 6,_1]|* < co a.s.
This idea was also used in (Lyu & Li, 2023; Lyu et al., 2022;
Lyu, 2023).

Under Assumption 3.1 one can expect E[n — k¥(n)] <
M for some M. One can then intuitively view the
expectation of the right hand side of (19) similarly to
S GE[|6; — 6;_1]]]. Summing this from n = 1
to N we conclude that for a positive constant C,

N
> E[IVh; (6
n=1

By Cauchy-Schwartz and the iterate stability ob-
tained through regularization, the right hand side is

o((za)”

in Appendices C, D, and E.

N
)]~ C Z cnB[|05 — 05-1]l]. (20)

> . Full details of our analysis are given

4. Applications and Experiments
4.1. Applications

In this section we give some applications of our general
framework. These include applications to matrix factor-
ization as well as a double averaging version of RMISO
derived by using prox-linear surrogates.
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Table 1. Comparison of iteration complexity for non-convex optimization with non-i.i.d data. The notation O(-) omits logarithmic factors.
Here tmix represents dependence on the mixing time of the Markov chain.

Iteration complexity Memory  Sampling Sampling dependence
AdaGrad (Alacaoglu & Lyu, 2023) O(e™%) o(1) Markovian  O(y/Tmix)
SGD (Sun et al., 2018; Even, 2023) O(e™%) 0(1) Markovian ~ O(y/Tmix)
SGD (Mishchenko et al., 2020; Lu et al., 2022b)  O(e~3) 0o(1) Reshuffling  O(y/|V])
SAG (Even, 2023) 0(e7?) o(|v)) Markovian  O(v/thir)
RMISO Case 3.5 0(e7?) o(|v)) Recurrent  O(\/Ig)
RMISO Case 3.6 0(e7?) o(|v)) Recurrent  O(y/To + thit)
RMISO Case 3.7 O(e7?) o(|V)) Recurrent  O(tg)

4.1.1. DISTRIBUTED MATRIX FACTORIZATION

Before beginning this section we define some additional no-
tation. For a collection of matrices {4, },ey C R™™™ we
let [A,; v € V] be their concatenation along the horizontal
axis. For a set @ C R™ "™ we let ©®¥ = {[A,;v € V] :
A, € © forall v}.

We consider the matrix factorization loss f(W,H) =
1| X — WH|% + of|H||; where X € RP*¢ s a given
data matrix to be factored into the product of dictionary
W € O C RP*" and code H € O C R™*? with
a > 0 being the L, -regularization parameter for /1. Here
Oy and O g are convex constraint sets.

Suppose we have a connected graph G = (V, £) where each
vertex stores a matrix X, € RP*¢, For each v € V define
the loss function

ff(W) = inf

1

| XU - WH|% + of|H 21
g sl 1% +alHl, @
which is the minimum reconstruction error for factorizing
X, using the dictionary W. In this context, the empirical
loss to be minimized is ﬁ > wey fU(W). Note that this
problem is not convex. Indeed, letting X = [X,;v € V]
it is equivalent to finding (W*, H*) € Oy x ©OY mini-
mizing 1| X — WH|% + |/ H||1, which is a constrained
non-convex optimization problem with a bi-convex loss
function.

In order to apply RMISO let W,,_; € Oy be the previous
dictionary and denote

1
H! € argmin - || X, — W, 1 H||% +a|H|; (22)
He®Y 2

if v, = v and otherwise H, = H?_,. Then the function
gL (W) == || X, =W, _1 HY||% + | HY||1 is a majorizing
surrogate of f¥ at W,,_; and belongs to Sy, (f*, W,,_1) for
some L’ > 0 (see Ex. G.5). Then Algorithms 1 and 2 can
be used with these surrogates.

4.1.2. PROX-LINEAR SURROGATES

Suppose each f is differentiable and has L-Lipschitz con-
tinuous gradients. Then the functions

L
9" (0) = f(0") +(Vf(0'),0 —0') + 5110 - o'l (23)
are in Saz, 1,(f¥,0") (see Example G.2) . Further suppose

that 7 is the uniform distribution. Using these surrogates,
the update according to Algorithm 1 is

én71 A ﬁ Z'I}GV ekv(”)_l

Vi1 ﬁ Y vey V(O (ny-1)

7 P L g (24)
077,71 — menfl + menfl

0n < Proj@ én—l — ﬁpn?n_l) .

Compared with MISO (obtained by setting p,, = 0 in (24))
we see that the additional proximal regularization has the
effect of further averaging the iterates, putting additional
weight of Li“pn on the most recent parameter 6,,_1.

4.2. Experiments

4.2.1. DISTRIBUTED NONNEGATIVE MATRIX
FACTORIZATION

In this section we compare the performance of the dis-
tributed matrix factorization version of RMISO from Sec.
4.1.1 against other well known optimization algorithms. We
consider a randomly drawn collection of 5000 images from
the MNIST (Deng, 2012) dataset where each sample X,
represents a subset of images. In all experiments, we set
« = 2= and r = 15. The dictionary W is constrained to be

28
non-negative and rows with euclidean norm at most one.

The set of vertices V is arranged in a cycle graph with
|V| = 55 with each vertex restricted to only contain samples
with the same label. We consider two different sampling
algorithms: the standard random walk where ¢, and tpy
are both O(|V|?), and cyclic where both are O(|V]). Our
theory suggests we should expect better performance for
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cyclic sampling versus the random walk. We compare all
three versions of RMISO: constant proximal regularization
(RMISO-CPR), dynamic proximal regularization (RMISO-
DPR), and diminishing radius (RMISO-DR), with MISO
(Mairal, 2015), the online nonnegative matrix factorization
(ONMF) algorithm of (Mairal et al., 2010), and AdaGrad
(Duchi et al., 2011).

It is not guaranteed that the surrogates g4 (W) := 3| X, —
Wo—1H?||% + «||HY||1 are strongly convex. However,
while running the experiments, we find that the Hessian
of the averaged surrogate is positive definite after only a few
iterations and thus the results for MISO are also supported
by Theorem 3.8 (ii). This phenomenon is also discussed in
Assumption B of (Mairal et al., 2010).

10" — T 10t
—#— RMISO-CPR
RMISO-DR

RMISO-DPR

A\ 0
% N
|

- MISO
—— ONMF
ADAGRAD

—#e— RMISO-CPR
RMISO-DR
RMISO-DPR

- MIsO
—— ONMF
ADAGRAD

\

\
N
-\"\'m'gg- -

“N'A-_i.':‘qﬂ-;;l:‘::’_ﬁ

Recons. Error
Recons. Error

y u y y y (U
0 1000 2000 3000 4000 5000 6000 0
Iterations

10° y y y y y
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Iterations

(a) Random Walk (b) Cyclic

Figure 2. Plot of reconstruction error against interation number for
NMF using two sampling algorithms. Results show the perfor-
mance of algorithms RMISO, MISO (Algorithm 1 with p,, = 0),
ONMF, and AdaGrad in factorizing a collection of MNIST (Deng,
2012) data matrices.

We ran the experiment ten times with ten different random
seeds and plot the average reconstruction error versus itera-
tion number in Figure 2. We see that RMISO outperforms
ONMF and shows competitive performance against Ada-
Grad for both sampling schemes. As expected, there is a
dramatic performance improvement under cyclic sampling
versus the random walk.

4.2.2. LOGISTIC REGRESSION WITH NONCONVEX
REGULARIZATION

We consider logistic regression with the non-convex regular-
ization term R(#) = 0.01- Y%, % where 0 € RP is the
parameter to be optimized. We use the a9a dataset (Becker
& Kohavi, 1996). Here we consider the random walk on
two separate graph topologies: the complete graph and the
‘lonely’ graph as in Figure 1. Both graphs have |V| = 50

and each vertex only stores data with the same label.

We compared eight different optimization algorithms: (1)
the prox-linear version of Algorithm 1 (24) with non-zero
proximal regularization (RMISO-CPR); (2) Algorithm 1

0.80 0.80
—#— RMISO-CPR ~ —— ADAGRAD
RMISO-DPR MCSAG
0.75 7" —fe= RMISO-DR SGD 075 7" —fe= RMISO-DR SGD
MISO —— SGD-HB MISO —— SGD-HB

N

—#— RMISO-CPR  —— ADAGRAD
RMISO-DPR MCSAG

0.70 % 0.70 fT'
0.65 4 1 h\\ﬂ

0.50 | t 0.5 i

st Loss

Test Loss

& 0.604

a 2
-

Te:
——

A - biA
T AMIT A VYT A
v

t y v y 1 0.45 u v v T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Iterations Iterations

(a) Lonely graph (b) Complete graph

Figure 3. Plot of objective loss and standard deviation against the
test dataset for a9a for two graph topologies and various opti-
mization algorithms- RMISO, MISO (Algorithm 1 with p,, = 0),
AdaGrad, MCSAG, SGD, Adam, and SGD-HB

with dynamic proximal regularization; (3) Algorithm 2; (4)
MISO (Algorithm 1 with p, = 0); (5) AdaGrad (Duchi
et al., 2011); (6) Markov Chain SAG (MCSAG) (Even,
2023); (7) SGD with decaying step size; (8) SGD-HB (SGD
with momentum).

We ran each experiment with ten different seeds. The results
plotted in Figure 3 show the average loss against the test
dataset for both graph topologies over these ten runs as well
as a shaded region with boundaries given by the standard
deviation. We see that RMISO-DPR and MCSAG display
poorer performance on the lonely graph as ty; increases
from O(|V|) to O(|V|?). The performance of RMISO-CPR,
RMISO-DR, and MISO are unchanged since each only de-
pends on ¢, with RMISO-DR and MISO performing the
best and only narrowly outperforming RMISO-CPR.

Both SGD-HB and AdaGrad converge quickly in both set-
tings but suffer from unstable trajectories compared to
RMISO and MCSAG. A more stable algorithm may be
advantageous in situations where the value of the objec-
tive function cannot easily be computed. See (Nesterov &
Shikhman, 2015) for an example of such a situation.

5. Conclusion

In this paper we have established convergence and complex-
ity results for our proposed extensions of MISO under the
general assumption of recurrent data sampling. Our results
show that convergence speed depends crucially on the aver-
age or supremized expected time to return to a given data
point. In particular, the constant proximal regularization
version of our algorithm depends only on the averaged tar-
get time, a potentially large improvement over the hitting
time. Both our analysis and numerical experiments display
the benefit of using possibly non-i.i.d or non-Markovian
sampling schemes in order to accelerate convergence.
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A. Further remarks on main results

We include in this section an extended version of Theorem 3.8 including convergence rates for arbitrary regularization

parameters as well as two of its corollaries. The extended version of Theorem 3.8 is below.
Theorem A.1 (Extended Version of Theorem 3.8 in the main text). Algorithms 1 and 2 satisfy the following:

(i) Assume Case 3.5. Then

min E
1<n<N

sup _vf(gn; 0 — en)] <

0€®,]|6-6,, <1

Yo

p Ltg
Vo (ke + )
~ .
In particular, if p is chosen so that p < Lto, < p + p then

2A0Lt
min E sup —Vf(0,,0—-06,)| <2 iakic]
1SnsN - {0€0,(0-0, <1 N
(ii) Assume Case 3.6. Then
Lt

. V2B (Vi + i+ 1) Toga (V) + 22 )
min E sup -Vf(0,,0-0,)| < .

lsnsN- loeo,|6-06,]1<1 VN

If p satisfies the condition p < Ltc, < p+ p then

VI (/Lo + @l + 1) log, (4V]) + /Tt )

min E l sup -Vf(0,,0— 0,1)] < Wi

1<nsN - 19c@,|6-6,<1]

(iii) Assume Case 3.7. Then

. Ao+ 4/ 2ECnA + (3 + t@)ONL

N
Zn:l 1 AN ’I’n+1

min E
1<n<N

)

6€0O,|6-6,]|<1

sup (-V£(6,),0— 0n>]

where Cn = ZN r2

n=1"n"

Next, Corollary A.2 specializes these results to the setting of unconstrained nonconvex optimization.
Corollary A.2. Assume either ® = RP or that there exists ¢ € (0,1] so that dist(0,,,00) > c for all n > 1.

(i) Let (0,,)n>0 be an output of Algorithm 1. Assume case 3.5 or 3.6. Then for any N > 1

 fnin B (IVf(8,)]] =0 (N—l/z) .

(ii) Let (0,,)n>0 be an output of Algorithm 2. Assume case 3.7. Then for any N > 1

1<n<N

N —1
min_ E[|[Vf(8,)]] = O (Zl/\rn>
n=1

Notice that we may take r,, = m in Algorithm 2. Then Corollary A.2 implies
. log N
i E(I950.)) - 0 (227

holds for case 3.7.

Finally, Corollary A.3 states the iteration complexity of Algorithms 1 and 2.
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Corollary A.3 (Iteration Complexity). Algorithms I and 2 have the following worst case iteration complexity:

(i) Let (0,,)n>0 be an output of Algorithm 1. Assume case 3.5 or 3.6. Then N-(0y) = O(e~2).
(ii) Let (8,,)n>0 be an output of Algorithm 2. Assume case 3.7. Then N.(6y) = O(e2(loge—1)?).

Remark A.4 (Comparison with the lower bound of (Even, 2023) Theorem 1). Using our notation, the lower bound given in
Theorem 1 of (Even, 2023) is

2
IVs0x)IP = (LAO (%) ) . @3

Our convergence rates are given in terms of ||V f(6,,)| rather than ||V f(6,,)||?, so in our setting this is

IV£(Ox)] = © (JTAO (iﬁ,)) : (34)

Notice that the rate of convergence in the lower bound is O(N ~!) while our upper bound gives a rate of convergence of
O(N~'/2). Thus, despite the dependence in our results on ¢, they do not contradict this lower bound.

Remark A.5 (Optimal sampling and estimating ¢ and ty;). The dependence of the convergence rates on ts or ty; in
Theorem A.1 suggests one can accelerate convergence by choosing a sampling algorithm with the smallest values of these
constants appropriate for the context. In general, an optimal sampling scheme is problem dependent. The best one can hope
for, in terms of dependence on |V|, is that both constants are O(|V|) which is achieved by i.i.d sampling. However, this
may not be feasible in settings like decentralized optimization where communication can only occur between neighboring
vertices in a graph.

Depending on the graph topology, it is likely that for the standard random walk ¢y and ¢ are much larger than |V|,
especially for sparse graphs. If a cycle containing all nodes in the graph exists, our theory suggests using cyclic sampling
by traversing such a spanning cycle. In this case, both ¢ and ¢ have optimal order O(|V]). If no such cycle exists, a
good way to minimized ¢p; is to find the shortest path in the graph which contains all vertices and then sample the vertices
deterministically in order by walking over this path. This idea holds in a more general setting beyond optimization on
graphs: a good way to minimize tp; is to sample data as efficiently as possible by covering the dataset with the fewest
possible number of repeats.

For many specific instances, these quantities can be estimated analytically. For random walks on graphs, much about the
hitting time and target time is known through classical Markov chain theory (Levin & Peres, 2017). For cyclic sampling and
random reshuffling respectively, one has tp, = |V| and tn;; < 2|V| since each data point is visited exactly once every epoch
and no re-shuffling occurs in the cyclic case. Under cyclic sampling, for fixed n and for each 1 < k < |V] there is a v with

E[7n,0|Fn] = k. So tg is the largest possible value of ) | .\, o,7(v) where o ranges over all permutations of 1,...,[V|.
— -t

In particular, if 7 is uniform, {;, = —5—. For reshuffling with uniform =, {5, is at least this large by considering a time

n at the beginning of an epoch. But it still holds ¢t < 2|V| since to < tp;. If these quantities cannot be easily estimated
analytically, they can be approximated using Monte-Carlo.

Remark A.6 (Comparison with i.i.d sampling). If the sequence (v,,) is formed by sampling vertices uniformly at random
from V then, as previously mentioned, the return times 7, , are i.i.d geometric random variables with parameter ﬁ Then
E[7y v|Fn] = |V| for each n and v so te = |V|. Substituting |V| for ¢, in the optimal bound in Theorem 3.8 (ii) we recover
the result given for MISO in the i.i.d setting in (Karimi et al., 2022) up to a factor of two. This is in-spite of the fact that our
analytical approach is necessarily different to handle general recurrent sampling and shows that our results are tight.

Remark A.7 (Iterate stability and regularization). Here we give some remarks on the use of diminishing radius and proximal
regularization in Algorithms 1 and 2.

The diminishing radius restriction in Algorithm 2 is a ‘hard’ regularization technique. It bakes necessary iterate stability
directly into the problem by enforcing the stronger condition ||6,,—8,,—_1|| < r,. In comparison with proximal regularization,
diminishing radius bounds the one step iterate difference by a deterministic quantity. Moreover, as is argued in the proof of
Theorem 3.9 (ii) and the preceding propositions, sufficiently often the iterate 6,, obtained by minimizing the g,, over the trust
region in fact minimizes g, over the entire feasible set ®. This allows us to prove that limit points of the iterates produces

14
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by Algorithm 2 are stationary even for general recurrent sampling schemes. However, diminishing radius introduces the
drawback of needing to compute a projection at each step of the optimization process.

Compared to diminishing radius, proximal regularization is a form of ‘soft’ regularization. It is less restrictive than
diminishing radius, but only allows us to derive a weaker form of iterate stability: we only have > (|6, — 0,,_1* <
instead of the stronger ||0,, — 6,,_1]|| < 7, which makes some aspects of the analysis slightly more challenging.

As mentioned in Section 3.2, the use of dynamic proximal regularization in Case 3.6 adapts to the sampling process and
increasingly penalizes large values of ||8,, — 0,,—1]| as the amount of time any vertex is left un-visited increases. The
drawback is that we are unable to prove almost sure asymptotic convergence in Theorem 3.9 for Case 3.6 as we are for Case
3.7. If we could show p,||0,, — 0,,_1]| — 0, then asymptotic convergence would follow. However p;, is not bounded and
can take arbitrarily large values, albeit with low probability. But as we show in Lemma E.1, E[p,,] is uniformly bounded,
which allows us to deduce E[p,, [0, — 0,,—1||]] — 0 and leads to the L'-convergence result in Theorem 3.9.

For case 3.5 it is relatively straightforward to show p,||0,, — 6,_1|| — 0 since p,, is constant. In this case, the difficulty
lies in showing ||Vh,,(0,,)|| — 0. We are able to prove this for Case 3.6 however because the use of dynamic proximal
regularization allows us to show that the sequence max,cy(n — k¥ (n))||@ — 0,,_1||? is summable. More detail is given in
the proofs and discussion in subsection E.1.

B. Convergence analysis using mixing times

In this section, we give an overview of the standard pipeline for analyzing stochastic optimization algorithms with Markovian
data and discuss the difficulties of applying these techniques to the analysis of MISO.

The analysis of first order methods such as SGD generally rely on conditionally unbiased gradient estimates. In the context
of solving problem (1), this is to require

E[V o (0n-1)[Fn-1] = V[(0n-1) (35)

where F,, is the filtration of information up to time n. However, in the dependent data setting (35) does not hold which
complicates the analysis significantly. Previous works (e.g (Sun et al., 2018; Bhandari et al., 2018; Nagaraj et al., 2020; Lyu
et al., 2020; 2022; Lyu, 2023; Alacaoglu & Lyu, 2023)) use a “conditioning on the distant past” argument. Specifically, for
SGD, one assumes that (v,,) is a Markov chain on state space ) which mixes exponentially fast to its stationary distribution
7 with parameter A\. One then considers the quantity

E[van(gn—an)u:n—an] (36)

where a,, is a slowly growing sequence satisfying ). -, A%* < oo. By further assuming either uniformly bounded gradients
as in (Sun et al., 2018) or that the conditional expectations E[||V fv=+1(8)|||F,] are uniformly bounded as in (Alacaoglu &
Lyu, 2023), one can show that

IVf(0n—a,) = E[Vf(0n—,)|Fn-a,ll = OX"). (37)
Using Lipschitz continuity of gradients, it is then established that

IVf(6n) = E[V " (00)Fra,lll = OX*") + O(|0r, — On—a,

); (38)

allowing one to control the bias in the stochastic gradient estimate. Conventional analysis may then be used to prove
oo
2 WEL(VF(62), V" (8n))] < o0, (39)
n=1
where 7,, denotes the stepsize at iteration n. Combining this with (38), it can finally be deduced that
o0
Y WElVF(8,)IP] < oo (40)
n=1

for an appropriate stepsize v, which gives the desired convergence rate.
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This technique was further developed to analyze convergence rates of stochastic majorization minimization (SMM) (Mairal,
2013) algorithms under Markovian sampling in (Lyu, 2023). In the context of problem (1), SMM proceeds by minimizing a
recursively defined majorizing surrogate of the empirical loss function. The algorithm is stated concisely as follows:

Sample v,, from the conditional distribution 7 (-|F,,—1)
(SMM) : gn < Strongly convex majorizing surrogate of f¥» 41)
6., € argmingcg (gn(0) := (1 — wn)Gn-1(0) + wngn(0))

where (wy,),>1 is a non-increasing sequence of weights. A crucial step in the analysis of SMM is to show that
anEHgn(en) — fn(82)]] < o0 (42)
n=1

where f,, is the empirical loss function satisfying the recursion f,,(8) := (1 — wy,) fr_1(8) + w, f*(6). To do so, the
problem is reduced to showing that

E [E[fvn (On—an) - f_ln(gn—an”fn—anrr] = O(wn—an) + O(Aa") (43)

(see Proposition 8.1 in (Lyu, 2023)) which is similar to (37). By additionally assuming Lipschitz continuity of the individual
loss functions f7, it is then shown that

E [E[f"" (0n) = fu(00)|Fu-a,]] = Own—a,) + ON"") + O([|61 — 81—a,||) (44)

which may be compared with (38). Finally, (42) is proved by showing

Z wnEHgn(gn) - fn(gn)H < g1 (01) =+ Z wn]E[fvn (On) - fﬂ(en)] (45)
n=1

n=1
and using the bound (44) to conclude that the latter sum is finite.

MISO and its extensions proposed in this paper are similar to SMM in their use of the majorization-minimization principle,
but contain a few key differences. Put shortly, the original implementation of MISO is

Sample v,, from the conditional distribution 7(-|F,,—1)
(MISO) : § gi~ < Convex surrogate of f*~ at8,,_1; g, = g._, for v # v, (46)
e’n € arg IninHG@ (gn(e) = Z’UEV gg’ﬂ'(@))
In contrast with SMM, each surrogate defining g, is given a constant weight. Consequently, the additional control provided

by the decreasing weights (w,,) in SMM is not present, which makes the adaptation of the techniques used in the analysis of
SMM non-trivial.

A key step in the original analysis of MISO given in (Mairal, 2015) is to show
S Elhn(8,)] < . 47)
n=1

This is similar to (42) and shows that the averaged surrogate is an asymptotically accurate approximation of the true objective
at all @,,s. To prove this, one needs to relate the averaged error h,,(6,,) to another quantity proven to be summable through
other means. This is, in abstract, the role that mixing rate analysis plays for SGD and SMM. Using techniques from (Mairal,
2015) one can prove

oo

> E[hy 1 (6,)] < o0 (48)

n=1

If the (v;,) are drawn i.i.d from 7, or more generally if the probability of transitioning between any two vertices is uniformly
bounded below by a positive quantity, then h,,"**(8,,) is a conditionally unbiased estimate of h,,(6,,) up to a constant. Then

(47) follows by conditioning on the most recent information F,.
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To adapt the analysis to a more general setting, one may attempt to use Markov chain mixing to show

|En(0n—an) - ]E[hﬁ"“ (en—an”}—n—an” = O(Xl") (49)

similar to (37) and (43). However, an additional complication arises because the function h,"™" conditional on F,,_,

depends on both the history of data samples vy, and the estimated parameters 8, for n — a,, < k < n. In contrast, f*»
for SGD (in (37)) depends only on the last data sample v,, and f,, for SMM (in (43)) depends only on the histrory of data
samples v, 4, ;- - -, Un. SO, one cannot use the Markov property to isolate the randomness in ;""" (0,,_,. ) due to the
Markov chain transition over the interval [n — a,,, n + 1]. To alleviate this problem, one may attempt to control the difference

|hor (On—a,) = hy" ) (On—a,)] (50)

n—an

but doing so is not straightforward without access to something resembling the weights (w,,) in SMM.

C. Preliminary Lemmas

In this section we state and prove some preliminary lemmas which will be used to prove in the proofs of both Theorem 3.8
and 3.9.

We first introduce some additional notation. Throughout this section as well as the remainder of the paper we let

|

We recall that the L., norm here is taken for the conditional expectation viewed as a random variable. This quantity is a
generalization of the worst case expected cover time from Markov chain theory (Levin & Peres, 2017) and will be important
in the analysis of Algorithm 1 with dynamic proximal regularization.

teoy 1= sSup (@28

n>1 ve

E |max 7, ,
V [o ]

Our first result, Proposition C.1, states that under Assumption 3.1 the return times have finite moments of all orders and
gives an upper-bound on %,y in terms of ;. The first item will is used in Section E to prove asymptotic results while the
second is used in the proof of iteration complexity for Case 3.6.

Proposition C.1 (Recurrence implies finite exponential moments of return time). Let Assumption 3.1 hold and let ty,;; and
teor be as in (8) and (51) respectively.

(i) There exists sq > 0 so that for all 0 < s < sg there is a constant Cy > 0 with

max sup E [e”"’v
veVY n>1

fn] <, < . (52)

Consequently, for each p > 1, max,cy sup,,>1 E[7} | F,] < C < oo for some C > 0.

(ii) We have the following bound on t.,,:

teow < (2t + 1) logs (4]V)). (53)

Proof. Let m be the smallest integer satisfying m > 2¢y;. For any n > 1 and v € V notice that if 7, ,, > km then we must
have Ty, 4 jm,» > m foreach 0 < j < k — 1. Then

k—1 k—1
P(Tpn > km|F,) <P ﬂ {Tntjmuw > m}‘]-'n =K H (Tt jmop > m)‘]-'n . 54
=0 =0
We have
k—1 k—2
E H ]1(7-n+jm,'u > m)’]:n =K E[]I(TnJr(kfl)m,v > m)“Fn+(k71)m} H ]l(Tn+j7rL,v > m)‘fn (55)
=0 =0
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where we have used that {Tn+jm71, > m} is measurable with respect to fn+(k_1)m for each j < k — 2. By Markov’s
inequality and Assumption 3.1

t
E[]I(TrH»(kfl)m,v > m>|]:n+(k71) ] P (Tn+(k 1)m,v > m‘fn+(k 1)m) < % (56)
So
- . k—2
H ]I(Tn+jm,1) Z m)’Fn < E]E H ]1(7_71,+jm,1) Z m) Jrn . (57)
- =0
Proceeding by induction it follows that
thie \
P(7n0 > km|F,) < (‘”) <27k (58)
m
with the second inequality using our choice of m. Now,
oo [ee] o0
E (e |Fol = ) e P, = (| F) < Z HDMP(r,, > km|Fy) < ) estTUmaE, (59)
=1 =0 —0
With n still fixed let 7oy = max,ey T, We have
oo (oo}
E[Tcov|]: ZP Teov = £|-7:n) < Z P(TCOV > k'm|-7: 2th1t + 1 ZP Teov = km|]:n) (60)
r=1 k=0 k=0
since P(7covy > ¢|F7,) is a decreasing function of £ and m < 2ty + 1. By a union bound
P(Teoy > km|Fp) S 1A D P70 > km|F,) < LA V275, (61)
veV
Summing a geometric series we get
oo
D P(reoy = km|F,) <logy [VI+V] Y 27F <log, V] +2. (62)
k=0 k>log, |V|
Combining (60) and (62) shows (ii). O

The next proposition states some general properties of first order surrogate functions.

Proposition C.2 (Properties of Surrogates). Fix0 € ® and f : © — R. Let g € Sr.(f,0) and let @' be a minimizer of g
over ©. Then for all @ € ©
L 5112
n(e)| < <6 ol 63
Proof. This follows from using the classical upperbound for L-smooth functions
_ _ I .
h(0) < h(0) 4+ (Vh(6),0 — 0) + §||9 -0 (64)
(see Lemma F.1) and noting that h (@) and Vh () are both equal to zero according to Definition 2.1. O

Next, we show that the surrogate objective value g,,(6,,) evaluated at 6,, is non-increasing.
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Lemma C.3 (Surrogate Monotonicity). Let (6,,)n>0 be an output of either Algorithm 1 or 2. Then G, (0,,—1) < Gn—1(0n—1)
foralln > 1. Moreover, the sequence (G, (0y,))n>0 is non-increasing. As a consequence, by Assumption 3.2 and Definition
2.1, (Gn(02))n>0 is bounded below with probability one and therefore lim,,_, o0 Gn,(0.,) exists almost surely.

Proof. Since g~ € Sp.(f"",6,_1), Definition 2.1 implies that g*"(6,,—1) = f*"(6,,—1). Then

3(0n1) = Fu-1(Ba1) + [ 927 (B1) = 9171 (B,-) | 7(v2) (65)
= gnfl(anfl) + |:fUn (enfl) - g:in_1(en71)i| 7T<vn) (66)
< gn-1(0n-1) (67)

where the last inequality used g, ; is a majorizing surrogate of f*~.

Suppose now that (6,,),,>0 is an output of Algorithm 1. Then by definition of 6,,,

gn(an) < gn(en) + %Hen - 9n—l||2
S T
= gn(en—l)
S gn—l(en—l)-

If instead (6,,),>1 is an output of Algorithm 2, then we can directly conclude g, (0,,) < g, (6,—1) by definition of 6,,. The
remainder of the proof is identical to the above. O

The next lemma establishes the summability of the sequence h,," " (6,,). This was used in (Mairal, 2015) to prove asymptotic
convergence of MISO under i.i.d. sampling. We use it primarily in the analysis of Algorithm 2.

Lemma C4. Let (8,,),,>0 be an output of either Algorithm 1 or 2. Then almost surely

oo

Z h;jln*—l (on) <

n=1

1

A. (68)

Tmin

Proof. By Definition 2.1, for each n the quantity ;" ** (6,,) is non-negative. Therefore, it suffices to show that the sequence

of partial sums, ZnN:1 hyt'(0,,) is uniformly bounded.

Recall that
gn+1(0n+1) < §n+1(0n> = gn(en) + (g;ﬁ:ll (en) - g’:}1"+1 (gn))ﬂ'(anrl) (69)
= Gn(0n) + (f(0n) — g0 (00)) T (Vnt1). (70)
‘We then have
N N
S (0,) = 3 gir (0) — £ (6,)
n=1 n=1
N
< 771 On - 771 an
<3 oy O(62) = Fuia(60i)
1 N
< — gn(an) — Gn+1 (9n+1)
min =1
1
< Ao
T'min
which is what we needed to show. O
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Proposition C.5. Suppose (0,,)n>0 is an output of Algorithm 2. The for alln > 1,

071, - en—l” S Tn.
Proof. This follows directly from the definition of 8,, in Algorithm 2. O

Lemma C.6 establishes the iterate stability. These results are crucially used to control the surrogate error gradient ||V, (6.,) ||
in Lemma D.1 as well as in the asymptotic analysis of RMISO in Section E.

Lemma C.6 (Finite variation of iterate differences). The following hold almost surely:

(i) For Case 3.7,

D 1160 = 0y * < < oo (71)
n=1 n=1
(ii) In either of the Cases 3.5 or 3.6,
oo n +
Y2 . L1168, — 0,12 < Ag < co. (72)
n=1

Proof. The proof of (i) can be deduced from Proposition C.5 and Assumption 3.4.

Now assume either of the Cases 3.5 or 3.6. Define G, (0) = §,(0) + 5|0 — 0,,_1]|. Then G, is p,, + p strongly convex.
Since 6,, is a minimizer of G, over ® we get

+ _ _
G (8) + P16, = 00| < Go(Bn1) = 3(0-1) < Gu1(B1) (73)
where the last inequality is due to Lemma C.3. So
n + _ _ _
B 100 = 0a]]? < Gue1(8n1) = Gn(61) < Gu1(B-1) = 5u(62): (74)
Hence,
N oo+ 1 N
> HTHGn =0, 1> <D Gn1(0n-1) — Gn(0n) = Go(60) — Gn (On) < Ay. (75)
n=1 n=1
Letting N — oo shows that
oo n +
> 0, — 0P < Ao (76)
n=1
as desired. This shows (ii). ]

The remaining results in this section concern Algorithm 2 and are used both in the convergence rate analysis in Section D as
well as the asymptotic analsyis of Section E. Recall that in this case we are assuming that V f* is L-Lipschitz continuous for
each v € V. Proposition C.7 states that this assumption implies Vg, is differentiable and 2L Lipschitz for each n.

Proposition C.7. Let {0,},cy be a collection of |V| points in ©. Suppose that Assumption 3.3 holds and that g° €
SL(f",8,) for each v. Then

(i) The gradient of the objective function Vf = %"\, V f'w(v) is L-Lipschitz over ©.
(ii) For each v, Vg; is 2L-Lipchitz over ©. In addition, Vg, is 2L-Lipchitz.

Proof. Since 7 is a probability distribution, (i) follows easily from the triangle inequality.

For (ii) note that V(g% — f¥) = VA is L-Lipshitz by Definition 2.1. Then since Vg = VhY + V f? it follows from the
triangle inequality that Vg;, is 2L-Lipschitz. Then recalling that Vg, = 3 _,, Vg7 (v) another application of the triangle
inequality shows that Vg, is 2L-Lipschitz continuous. O
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Proposition C.8. Assume Case 3.7 and let (0,,)n>0 be an output of Algorithm 2. Then

N N
D UVGa(0n-1),00 — 0, 1) < Do+ LY 77 (77)

n=1
almost surley.
Proof. Since Vg, is 2L-Lipschitz continuous by Proposition C.7, by Lemma F.1
|gn(0n) - gn(enfl) - <Vgn(9n71)70n - 0n71>| S L”en - 07171H2~ (78)

Under Algorithm 2 we have §,,(0,,) < gn(0,—1) by the definition of 8,, and g, (0,,—1) < Gn—1(6,,—1) by Lemma C.3.
These observations together with (78) imply

[(VGn(0n-1),00n — 00 1)|| <|3n(0n-1) = §u(00)] + LI|6n — 6,1 (79)
= Gn(0n—1) — Gn(0n) + L[|6), — 0,1 || (80)
< Gn-1(0n-1) = Gn(0n) + L0, — 6,1 |°. (81)
‘We have
N
D Gn-1(0n-1) = Gu(6n) < Ao (82)

almost surely. Therefore

N
> {VGn(On-1), 05 — 0,y |<Zgn 1(00-1) = Gu(82) + L[|0,, — 0,1 (83)
N
<A+ LY (100 — 0n sl (84)
n=1
N
<Ag+LY v, (85)
n=1
where the last line uses |0, — O, 1| < 7. O

The next lemma is a key to establishing iteration complexity of Algorithm 2. A similar lemma was used to analyze block
majorization-minimization with diminishing radius in (Lyu & Li, 2023).

Lemma C.9 (Approximate first order optimality). Let (8,,)n>0 be an output of Algorithm 2 and let b,, = min{1,r,,}. Then

by, sup (~VGn-1(0,-1),0 — 0, 1) < (~VG§(0,-1),0n — 0p_1) + 10 ||[VA 1 (0,_1)|| + 2172, (86)
96@7”0_9n—1“§1

Proof. Fix 0 € © with ||@ — 0,,_1|| < b,,. By definition of 8,, we have §,,(6,,) < g, (0). Subtracting §,,(6,,—1) from both
sides and using Proposition C.7 and Lemma F.1,

<v§n(0n71)70n - 0n71> - L”an - 071*1H2 <g ( ) n( n— 1) (87)
< 9n(0) — Gn(60n-1) (88)
<(VGn(0n-1),0 = 0,_1) + L6 — 6,1 (89)
Notice that
Vgn(anfl) = V§n71<6n71) + [v.g:j{%enfl) - ngn_ﬂan—l)] W(Un) (90)
= Vgn-1(0n-1) + [V (0n-1) = Vg1 (On1] 7(vn) o1
= Vin_1(0n_1) — VA (0r_1)T(vn). 92)
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where the second line used g~ € Sp.(f*",0,_1) and item (ii) of Definition 2.1, and the third line used the definition of
h;® . Therefore, adding and subtracting (Vg,,—1(0,_1),0 — 0,,_1) from the right hand side of (89) we get

<V§n(0n71), 077, - 0n71> S <vgn71(0n71)70 - 0n71> - 71'(1)”)<Vh211(9n,1)7 0 - 0n71> + LHa - anle (93)

+ L||6, — 0,1 (94)
<(VGn-1(0n-1),0 = 0,1) + |V 1 (00110 — 651 ]| + L]0 — 6,1 (95)
+ L6, — 0, 1| (96)
<(VGn-1(0,-1),0 — 0, 1) + 7, || VA [ (0,,1)|| + 2Lr2 o7

where the last line used ||0,, — 6,,_1|| < r, and ||@ — 0,,_1] < b, < 7,. Since the above holds for all @ € © with
|60 — 6,,—1]| < b, we obtain

<Vgn(6n71)7 0n - 0n71> <

. _ _ Un 2
< 96@,H9i%£71||§bn<vgn71(0n71)’ 0—0,_1)+r,||[Vho 1 (60,-1)| +2Lr7. (98)

Finally notice that since b,, < 1, the convexity of ® implies that 8,,_1 + b,,(0 — 0,,_1) € © for any 6 € ©. Thus, if there
exists @ € © with |0 — 0,,_1| < 1 there is ' € © with ||@' — 0,,_1]|| < b,, such that the direction of 8’ — 6,,_; agrees
with that of @ — 6,,_1. Therefore

bn sup <_v§n71(0n71)7 0 — 0n71> = sup <_Vgn71(0n71)7 bn(a - 0n71)> (99)
0€©,10-6,_||<1 0€0,6-6,_1||<1
< sup <_v§n71(0n71)a 0 — 0n71>- (100)

06@,“9—9,1,,1 Hgbn

combining this with (98) we complete the proof. O

D. Convergence Rate Analysis

In this subsection we prove the convergence rate guarantees of Theorem 3.8.

D.1. The key lemma

First we state and prove Lemma D.1 which lies at the heart of our analysis. It allows us to relate the surrogate error gradient
| VA, (6.,,)] to the sequence of parameter differences (||@,, — 6,,_1]|?) which is known to be summable by Lemma C.6. It
is important to note that we only use the recurrence of data sampling Assumption 3.1 and the structure of the algorithm in
the proof.

Lemma D.1 (Key lemma). Let (¢,,)n>1 be a non-increasing sequence of positive numbers. For any of the cases 3.5-3.7 and
anyv eV,

2

N N 1/2 N 1/
E lz cnvﬁn(en)lll < Lty <Zci> E (leen en_12> : (101)
n=1

n=1 n=1

Proof. Fix some v € V. We recall that k¥ (n) is the last time before n that the sampling process visited v and therefore the
last time the surrogate g;, was updated. We then have g, € Sp.(f", 0 (n)—1) so by the definition of first-order surrogates
(Definition 2.1) VA, (6 (,)—1) = 0. Combining this with the Lipschitz continuity of VA, we get

cn|Vhy (00)| = cnl|Vhy (0n) — Vi (0o y—1)|| < Len||0n — 0oyl < L Z cn || — 60i-1]|- (102)
i=kv(n)
Therefore by the triangle inequality,

n

va|‘v;lvt(07z)|| <cpn ZHV}LZ(OTL)HW(U) <L Z Z Cani - Oi—IH W(”)- (103)

veY veV \i=k?(n)
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For an integer n, let p’(n) = inf{j > n : v; = v} be the first time strictly after n that the sampling algorithm visits v.
Denote a A b := min(a, b). We have

n n

N N
S D clloi—0iall |7y => D D cull®i—6iall ] 7(v) (104)

n=1veY \i=kv?(n) veV \n=1i=kv(n)
N NAp¥(i)—1
= S>> cnll®i— 0] | 7(v) (105)
veV \ i=1 n=s
N
<> ( cil|@i — 61 |[(p” (i) — i)) m(v) (106)
veV \i=1
N
=> D el - ai_llln,v> m(v), (107)
veY \i=1

where the third line used that (¢,,) is non-increasing. So we get

N B N
E lz en|[Vha(0,)|| < LE | > (chwn - 0n1||7n,v> W(v)] (108)
n=1 LveyY \n=1
' N
=LE |> cull0n — 0,1 (Z T,L,UW(U)>] (109)
Ln=1 veV
' N
=LE | > cu0n — 0pi]| (Z E[Tn,v|fn}w(v)>] (110)
Ln=1 veY
N
< Ltk [Z cnll6n — 9n_1||] (111)
n=1

N 1/2 N 1/2
< Ltg (Zci) E (leen - 0n1|2> (112)
n=1 n=1

with the second to last line using Assumption 3.1 and the last using Cauchy-Schwartz. O

D.2. The constant proximal regularization case 3.5

In this section we prove Theorem A.1 for Case 3.5.

Proof of Theorem A.1 for case 3.5. We first use the linearity of the limit and the differentiability of the average surrogate
error h,, to get

IVgn(em 0— Hn) - Vf(@n, 0 — Bn)‘ = |<VBn<6n)7 0 — 0n>‘ < ”VBH(Hn)HHB - enH < Hv]}n(en)” (113)

for all @ € © with ||@ — 6,,|| < 1. It the follows from the triangle inequality, taking supremums, and then expectations that

E sup _vf(oru 0 — Bn)
66@7H9_0n”§1

<E[ sup —V§u(0,,0 —0,)| +E[|[Vha(0,)]] - (114)
0€0,]|6-6, (<1

Our goal will be to control the sum of right hand side.

We first address the first term on the right hand side of (114). Recall that in this case we are using constant proximal
regularization, so p,, = p for some p > 0. For any 6 € ©

v.@n(erug_en)"’_p(an_0n7170_0n> 20 (115)
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since @, is a minimizer of g, (0) + 5|0 — 6,,_1||* over ©. Then
_vgn(armg - an) S p<0n - 071—170 - 0n> S pHen - 971—1””0 - On” S PHan - 0n—1|| (1 16)

for any 6 € © with ||@ — 0,,|| < 1. Therefore,

N

E sup —-Vg.(0,,0 —8,)

n—10€0,]|6-06,|<1

N
< pE lleen —0n1|] (117)
n=1

N 1/2
< pV'NE <Z||0n - 0n_1||2> (118)
n=1

where we used the Cauchy-Schwartz inequality in the last line. By Lemma C.6

S v 2A
DI T i Y e 19)
n=1 p+p
N
2NA
Z sup VG (0n,0 — 6,)| < py ] =2 (120)
=10€0,6-6, (<1 p+pu

We now turn to the second term on the right hand side of (114). By Lemma D.1 with ¢,, = 1 and Lemma C.6

almost surely. Thus,

E

ol N 2 INA
E llem(en)l] < VNLtoE (leen —0n12> < p+:Lt@. (121)
n=1 n=1

Now, summing both sides of (114) and using (120) and (121),

N N
Y E sup ~Vf(0,,0-6,)|=E sup ~V£(0,,0—-0,) (122)
—1 |0€9,)6-6,]<1 n_19€0©,]6-6,]<1

p Ltg >

< /2NA + ) (123)
’ <\/p TN =T
This shows

V2 (i + 7ot

min E sup  —Vf(0,,0-6,)| < < P ’”“) . (124)
1<n<N | 9c®,|0-6,|<1 VN

O

D.3. The dynamic proximal regularization case 3.6

In this section we prove Theorem A.1 for Case 3.6. Recall the definition of ., from (51). Before proving the theorem we
introduce a Lemma adapted from (Even, 2023) Lemma A.5. This is used to bound the expected sum of the first N dynamic
regularization parameters p,, in terms of t.oy.

Lemma D.2. Let a,, = max,cy(n — k¥(n)). Then

> Elan] < Nteo. (125)
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Proof. Since a,, < n — 1 we have

N N n—1
D Elan) =Y > Play > ). (126)
n=1 n=1i=1

Let b, = maxycy Tp,,. We note that if a,, > ¢ then thereis v € V withv; # vforalln —i < j <nandso 7,_;, > 7. So
we have the inclusion {a,, > ¢} C {b,—; > i}. Therefore

N n-—1 N N
>N Plan i) = > Plan > i) (127)
n=1i=1 i=1 n=i+1
N N
<D D Bbai>i) (128)
i=1 n=i+1
N—1N-s
= P(bs > t) (129)
s=1 t=1
N—-1 o
< Z Z]P’(bs > t) (130)
s=1 t=1
< NsupE[b,] (131)
n>1
We have
E[bn] =E |:E |:r’51€a§(7—n,v fn:|:| < tcov (132)
so we are done. O]

Proof of Theorem A.1 for Case 3.6. The proof in this case follows the same strategy as Case 3.5, but is slightly more
complicated due to the randomness of the dynamic proximal regularization parameter.

Define §,, := §n—1(0—1) — gn(0,). By optimality of 8,, and Lemma C.3,
30 (02) + 518 = 61> < o1 (81) (133)
$0 (|0, — 01| < V/ 2pn 10,,. Using similar reasoning as in the proof for case 3.5

We have using Cauchy-Schwartz twice,

N N
> B[V pndn] <D (Elpa])(E[6,]) (135)
n=1 n=1
N /2 , N 1/2
< <Z lE[pn]) (Z E[M) (136)

<V N(p+ teov)Ao. (137)

The last inequality here uses p,, = p + max,ecy (n — k¥(n)) and Lemma D.2 as well as Ziv:l On < Ag as. It follows that

N
Z E [ sup *Vgn(env 0 — On)‘| < QN(P + tcov)AO' (138)

n=1 96@7”979nf1”§1
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To handle the gradient error ||Vh,,(8,,)|| we first use Lemma C.6 and p,, > p to conclude

N N
+ o+
>0~ 0l < 0 00— 00 < A (139)

n=1 n=1

almost surely. It then follows from Lemma D.1 that

al al 2 [oNA
> E[|Vha(6,)]] < VNLtGE (Z”en - 0n1|> < ; 0Lt (140)
n=1 n=1

Finally, combining (138) and (140) we get

N

Ltg
E sup —Vf(0,,0-0,)| <V2NAg <\/p—|—t + ) (141)
712::1 0€®,)|6—0,,||<1 ( )] T Vptu
and so we deduce
V 2A0 (\/ P + tcov + Lptfu>
min E sup -Vf6,,06-806,)| < . (142)
I<n<N | 0e®,]0-6,|<1 VN
We complete the proof by substituting the bound for ¢, in Proposition C.1. O
D.4. The diminishing radius case 3.7
Here we prove Theorem A.1 for Case 3.7.
Proof of Theorem A.1 for Case 3.7. Similar to the proof in Case 3.5 we have
E sup _<vf(0’rb)a 0 — 0n>] < E [ sup _<v§n(0n)7 0 — 0n> +E U|v7l’rb(arb)|” (143)
0cO,]|6-06,,||<1 0c®,]|6-06,,||<1
Let b, = r, A 1. Then by Lemma C.9
N
> bnE sup  —(V§n(6,),0 —0,) (144)
n=1 0€06,]6-0, (<1
N N N
Z (=VGn11(0n), 0011 — 601)] + Z 1B [[|[ VA (05) ] + Z 2LT72L+1' (145)
n=1 n=1 n=1

Because h,," ™" is non-negative and has L-Lipschitz continuous gradients || Vhy,* ™ (0,,)|| < /2Lhy" " (0,,) (see Lemma
F.2). Then

N

S run B[R 0,)]] <

n=1

(146)

1/2
2 (ZE [2LhY+1 (0 )}) (147)

(148)
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Here the second line used Cauchy-Schwartz and then Jensen’s inequality to move the square inside the expectation and the
last line used Lemma C.4. From Proposition C.8,

N
ZE ~VGni1(00),0n41 — 0,)] S Ao+ LD 12, (149)
n=1
so from (145)
N N
> bpnE sup —(V§n(6,),0 —0,)| <Ay + 2 3L (150)
ot 0c@,]0-6, <1 o

From Lemma D.1 with ¢,, = 7,41

N 1/2 N 1/2
ZrnHE [V ZE[Z%HHVh >|] (v) < Ltg (ZTZH) E (an—ennF)
n=1

veV n=1 n=1 n=1
(151)
Since ||0,, — 6,,—1]| < 7y, and (r,,) is non-increasing, this bound reduces to
N ) N
> rnaE [[Vhn(0)]] < Lt Y 72 (152)
n=1 =
Combining (150) and (152) with (143) we have
N oI A N N
S b,E sup —(Vf(0,),0 —0,)] < Ao+ 0% 02 4 (3+t@)LZr;i (153)
n= 6€6,[16-6, (<1 Tmin n=1 n=1
)
AO 27€Aozn 1 n+<3+t@)LZn lT
min E sup —(Vf(0,),0—-0,)| < (154)
1<n<N | gc@,)6-6,|<1 (V7 (6n) ) 2521 by
O]

D.5. Proofs of Corollaries

In this section, we prove Corollaries A.2 and A.3.

Proof of corollary A.2. Fix N and let k be the integer recognizing the minimum in (25). If ® = RP then we may choose

0* sothat 0" — 0, = — H@’}EZ’;%H- Thus,
min E[[V/(0,)]) < B[V £(00)]]] = E[(~V(8x),0" — 04 (155)
<E l sup  (—Vf(0:),0 — 0@] =0 (N*W) . (156)
0€0©,(0-6:[<1
If instead ® # RP but the second condition dist(8y, 9®) > c holds, we can take 8 — 6, = — IIVfEOkg\I In doing so we
obtain
1
< = “E[(— *
 nin E[IVS(@u)ll] <E[IVF(u)ll) = [E(=V(6r), 07— 64)] (157)
1
<-E sup  (—Vf(0,),0—0,)| =0 (N*W) . (158)
¢ |o€®,0-6,]<1
This shows (30). The proof of (31) is similar. O]
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Proof of corollary A.3. The convergence rates of Theorem 3.8 are of order O(N~'/2) for Algorithm 1. Then we can prove
(i) by choosing NV large enough so that N~1/2 < ¢.

If we take r,, = m in Algorithm 2 then its corresponding convergence rate in 3.8 is of order O(n~'/2logn). Then (ii)
follows by using the fact that n > e~2(3loge~1)? implies n~1/2?logn < ¢ for sufficiently large ¢. Indeed since 10%/; is
decreasing for sufficiently large x we have

n~Y?logn < ﬁ (2loge™" +2log(3loge™!)) < ¢ (159)
for ¢ sufficiently small. O

E. Asymptotic Analysis

We use this section to prove Theorem 3.9. Recall that by Proposition C.1, there are constants C; and Co
with sup,,>, E[7? |F.] < Ci and sup,>, E[r: ,|F.] < Oy for each v € V. Accordingly, we let pp =
maXycv SUPy,>1 HE[TﬁJ}—n]Hm and p14 = maxyey SuPn21||E[TfZ,v|]:nH|oo~

The first Lemma of this section states that the first and second moments of the dynamic regularization parameter p,, in

Algorithm 1 are uniformly bounded. While p,, only appears in Algorithm 1, the random variable max,cy (n — k¥(n)) is
also present in the analysis of Algorithm 2. Therefore, this Lemma is used in the analysis of both algorithms in this section.

Lemma E.1. Assume 3.1. Then there is a constant C' > 0 such that

sup E[p,] +supE[p?] < C. (160)
n>1 n>1

Proof. Fix v € V. For a positive integer j7 we have

{n—k"(n) 2 j} ={k"(n) <n—j} S {m_j0 = j} (161)
Therefore, we get
E[(n —k"(n))] = Y P(n—k"(n) > j) (162)
j=1
<Y P(Tajw = §) (163)
j=1
00 E 2
< Z [T;L;jﬂ)] (164)
j=1
<pay i’ (165)
j=1
since E[77_; ] < io. Finally,
Elpa] = o+ 8 |max(n = £°0)| £+ 3Bl — KG0)] < pot P 3572 (16
veV j=1
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To bound the second moment we follow the same approach:

E[(n—k"(n))’] =Y P ((n—k"(n))* > j) (167)

j=1

) (A ) (168)
j=1
%) E 4

<3 ol (169)
= 7

<pay it (170)

j=1

The proof is completed by mimicking the last line of the proof bounding the first moment.

E.1. The dynamic proximal regularization case 3.6

Here we prove Theorem 3.9 (i). Our first lemma, Lemma E.2, is similar to D.1 and key to showing that || V., (8,,)| — 0.
The difference is that we must deal with ||6,, — 04 (,,)—1]|? instead of [|6,, — 4. (,)—1]|. In order to relate this to the
sequence of one step iterate differences (||@,, — 8,,_1|*) we need to use the Cauchy-Schwartz inequality which introduces a
dependence on 5 as well as ty;.

Lemma E.2. Let (0,,),>0 be an output of Algorithm 1. Assume case 3.6. Then

o0

> E[hn(0,)] < o0. (171)

n=1

Proof. Since hy,(6,) =Y, ¢y hiy(05)m(v) and V s finite, it is sufficient to show "> E[h%(6,,)] < oo foreachv € V.

Before starting recall that by Lemma C.6, and p,, > p > 0

(oo} N oo 2
P16, — 0,-1] < Ao and D710, — 6,1]f* < “Ag (172)
n=1 2 n=1 P
almost surely. This implies
E > pnll0n = 0nall| +E | 116, — 60 a]?| < oo (173)
n=1

n=1

Fix v € V. For each n we have g;, € S.(f", 04v(n)—1). Then using Proposition C.2, the triangle inequality and Cauchy
Schwartz

L n

115, (8)] < SN0 = Ok guy—all” < S (n = k*(n) +1) _,; )llei — 0. (174)

~

Let B, = (n — k”(n) + 1) Z;;kv(n)nei —0,_1]|>. We claim that E[Y_"7 | B,,] < co. As in Lemma D.1 let p”(n) =
inf{j > n : v; = v} be the next time strictly after time n the sampling algorithm visits v. Exchanging the order of
summation we have

pY(i)—1

E > (n—k"Mn)+1) Y [0:—6:4]*| =E|> [6:—0:i1]> > (n—k"(n)+1) (175)
n=1 i=kv(n) =1 n=t

=E D 16:—6:4[P ) (n—k'(n) + DI(p“(i) >n)| . (176)
i=1 n=t
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The equality {p”(i) > n} = {7,

k¥(n) = k¥ (i) on {p”(i) > n} since there is no visit to v between times ¢ and n. Therefore,

E |3 116: = 0ia Y (0 — k() + D1GY() > n>]
=K lznel - 01‘,1”2 Z(n — /{/’U<Z) + 1)]1(Ti,v >n—1+ 1)
i=1 n=t

where the last line used 6, 6,1 and k" (i) are all measurable with respect to F;. We have

Finally,

This shows E >~

oo

> (n— k() + DP(ri0 > n — i+ 1| F)

:Z(n—i—i—l)P(nﬂ,_n—z—i—H}' (1 — k" (s ZIP’TM_n—i—i—H}'i)

= E[r?,|F] + (i = k" () E[r:,o| 7]
< o A (0 — K (0)) thi-

E > 16: = 0:a]>> (n— k(1) + DP(rs0 > n — i+ 1|}‘i)1
i=1 n=i

< ok Z”el — 01| + tniE Z i— k" (i))[|0; — 91—1”2]
=1 im1
S+ E |16 = 0;4[*| + twiE lz pill @i — 91‘—121 < 00.
i=1 i—1

oo

S E[(8,)] = B ih;(gn)] <Ir|y B

This completes the proof.

We now prove Theorem 3.9 (i).

Proof of Theorem 3.9 (i). Starting as in the proofs of Theorem 3.8

E sup -Vf(6,60-06,| <E sup —Vign(0,,0 —6,)| +E [||V7Ln(0
6€0,]|6-6,,||<1 6€O,||6-6,||<1
Using the same argument as in the proof of Theorem 3.8 for Case 3.6,
0€0,[|6—0,[|<1

30

> n — i+ 1} holds as both are equal to the event {v; # v : ¢ < j < n + 1}. Moreover,

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

B,] < o0. The proof is completed by using Fubini’s Theorem and (174) to conclude

(187)

w)l] (188)

(189)

(190)
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where 6, = Gn—1(01-1) — §n(6,). By Cauchy-Schwartz and Lemma E.1

E[V/20n6n] < V/2E[p,]E[5,] < CV/E[6,] (191)

for some C' > 0 independent of nn. By Jensen’s inequality and Lemma F.2

ElIVAL 01l < VENVAL0.,)]7] < \/2LERn (0] (192)
We have
ZE = E[gn-1(0n-1)] — E[gn(0n)] < Ay < 00 (193)
n=1
so E[§,] — 0asn — oo. Also, \/E[h,,(60,,)] — 0 by Lemma E.2. Therefore

limsup E sup -Vf(0,,0— Hn)l < lim sup <E l sup —Vgn(0,,0 —06,)
n—00 0c®©,0-6,,| <1 n— o0 0€0,]6-6,[<1

+E [||th<0n>|]>
(194)

< lim. (c\/ ] + \/2LE[h, (0 )]) —=0. (195)

We follow a similar approach to show that

2
E ( sup —-Vf(6,,0 - Bn)> — 0. (196)

6€0,(6—-6,[/<1

Notice that the sub-optimality measure supgee jg—g, <1 —Vf(0n, 0 — 6,) is always non-negative, since we can take
6 = 0,,. Then from the inequality

sup  —V[f(0,,0-0,)<  sup  —VGu(0,,0 —0,) + | Vh,(8,)] (197)
0c©,]|6-0,|<1 0c®©,]|6-0,|<1

and Cauchy-Schwartz we get

2 2
E < sup Vf(on,eon)> <2E ( sup Vgn(en,een)> +2E [[| V1, (6,)]%] -
0€®,]6—-6,|<1 0€®,]6-6,|<1

(198)

Mimicking the proof above and using Lemma E. 1

2
E ( sup _Vgn(ena 0 — 9n)> S E[pingn - 0n—1 ||2} S 2E[pn5n] (199)
0€®,]6—6,|<1

< 2VE[p2]E[67]. (200)

< C\/E[82]. (201)

Since > 77, 8, < A we have &,, — 0 almost surely. Therefore, an application of the dominated convergence theorem
shows E[62] — 0. Using Lemmas E.2 and F.2 again to show E[||Vh,,(60,,)||?] — 0 completes the proof.

O

Remark E.3. The proof of Lemma E.2 demonstrates one of the main difficulties in proving asymptotic convergence for
constant proximal regularization. In particular, our techniques require us to show that

oo

E | (i — k" (i))]|0; — 0; 1] | < oo. (202)

i=1
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The term ¢ — k" (¢) appears as the residual when we swap n — k% (i) + 1 for n — ¢ + 1 in order to show
> (= k(@) + DP(ri0 =1 — i+ 1F;) < pp + (i — kY (4)) e
n=i

To avoid this, an idea is to notice that 7; , > n — i+ 1 only if Tpv(y),, > 1 — k¥ (i) + 1 and instead compute

oo

D= K (0) + DB (o0 = 1~ K (0) + 1 Fie).

n=t

The problem here is that k" (i) is not a stopping time so, among other things, the o-algebra Fj.. ;) may not be well defined.
Intuitively, ¢ — k¥ (%) represents a gap in knowledge since we must wait until time ¢ to know the last time v was visited.

The use of dynamic proximal regularization bakes (202) into the algorithm. Lemmas E.1 and C.6 suggests that it may be
true with constant proximal regularization: if (i — k”(n)) and ||@; — 6;_1||*> were independent then

B>~ k()18 = 0, | = D Eli — k(IE]I6: — 61

< CZE[H& — 01'_1“2] < 00.

i=1
However, k" (i), 6;, and 8;_; are all determined by the behavior of the sampling process so we do not have this independence.

We will see in the next subsection that diminishing radius overcomes this issue by bounding the difference ||@; — 6;_1||? by
a deterministic quantity.

E.2. The diminishing radius case 3.7

Here we prove Theorem 3.9 (ii). Lemma E.4 is an analogue of Lemma E.2 for the diminishing radius case. The remaining
argument is similar to that used in (Lyu & Li, 2023) and (Lyu, 2023) to analyze block majorization-minimization and SMM
with diminishing radius respectively.

Lemma E4. Ler (0,,),>0 be an output of Algorithm 2. Assume Case 3.7. Then almost surely
> () < o (203)
n=1

Proof. The strategy here is nearly the same as in Lemma E.2 except that we use ||0,, — 0,,—1]| < 7.

Again, it is sufficient to show >~ | h? (6,,) < oo almost surely for each v € V. Fixing v we have g € Sp(f", O (n)—1).
Then Proposition C.2, the triangle inequality, and Cauchy-Schwartz give us

n

L L
|1 (02)] < 1100 = Opony-a[I* < 5 (n = k¥ (n) +1) > 16i -6 (204)
i=kv(n)
L v - 2
< §(n—k (n)—i—l);ri. (205)

Let B, = (n — k%(n) + 1) Z?:k,v(n) 2. We mimic the proof of Lemma E.2 with 72 in place of ||@; — 8;_1||? to conclude

fj B, i pw?} : (206)
n=1 i=1

The first term on the right hand side is finite by Assumption 3.4. Moreover, by Lemma E.1 and Fubini’s Theorem

ipﬂ“?] = iE[pi]r? < Cir? < 00. (207)
i=1 i=1 i=1

E

oo
< p2 Z 2+t
i=1

E
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Hence,
B|S h6.| < ZE|S B, (208)
n=1 / 2 n=1
It then follows that >~ | k" (6,,) is finite almost surely.
O
Proposition E.5. Assume Case 3.7. Suppose there exists a sequence (ny),>1 such that almost surely either
On - gn
ZH 1 — Ony || = or liminf <V9nk+1(9nk)7 k+1k>’ =0. (209)
k—oo ||0nk+1 - 0nkH

Then there exists a further subsequence (my)g>1 of (Ng)k>1 such that 0 := limy_, o0 0.y, exists almost surely and 0, is
a stationary point of f over ©.

Proof. By Proposition C.8,

D 101 = Ol ‘<V§nk+1(0nk),0 e >‘ <oo as. (210)
k=1 ” ng+1 = nk”

Therefore, the former condition implies the latter almost surely. So, it suffices to show the the latter condition implies the
assertion. Assume the latter condition in (209) and let (my,)>1 be a subsequence of (ny);>1, satisfying

(7] 1—6
lim | Vo, +1(0m, ), 7ot ) =0, !
J [ (om0 2= )| -

Since ||0m,,+1 — Om,. || < T, , it follows that

0mk 1 amk _ amk - amk
[Gmsss = Ol ‘<ngk+1(9mk), “>‘ =0. (212)

lim
Hemk-i-l - 0mk||

k—o0 ka-‘rl

where b,, = min{1,7,}. If 6 is not a stationary point of f over ©, then we may find 8* € © with || — 0| < 1 and
€ > 0 so that

<Vf(900)70* - Hoo> < —e<0. (213)

On the other hand by the triangle inequality and Cauchy-Schwartz

‘<vg77lk (gmk)7 0* - 077lk> - <vf(000)v 0* - 000>‘ (214)
= |<v;§mk (amk> - Vf(emk)70* - 0mk> + <Vf(0mk> - Vf(GOO)’a* - 9mk> + <vf(000)7000 - Bmk>| (215)

Since (0., )k>1 converges, supy [|0* — 0,,, || < M for some M < co. Furthermore,

iHVB 0,)|* <2L i 17)
n=1 n=1

by Lemmas E.4 and F.2 s0 ||[Vh,, (0,m,)] — 0 almost surely as k& — oc. This, together with continuity of V f and
0,,, — 0, shows that right hand side above tends to zero as & — oco. Then we can choose K sufficiently large so that

<V§mk (Omk); 0* - emk> S *5 (218)
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for k > K. Recall that ||@,, — 0,,_1|| < r,, and 7, = o(1). Applying Lemma C.9 we get

||0n - 0n71|| < _ an - anfl >
———(Vgn(0p-1), ———
by g ( 1) Hen - 9n—1||
< 1 qg — Un .
< 9667”01{15”_1‘&1 <Vgn,1(0n,1)7 0 0n71> + ||th_1(0n,1)H + Lr,. (219)

It then follows that for sufficiently large k&

S el ACSUNS e 220
S ohfgmk <1 (VI (0m,), 0 = O ) + IV e (O )| + L, (221)
< (VG (0m,), 0" = O} + Vs (O, )| + 7, (222)
< =2+ IV O+ Tomy (223)

Recall Lemma C.4 which shows
> hir(,) < oo (224)
n=1

almost surely. Therefore, since k%" is non-negative, \/hy," ' (6,,) — 0 almost surely as n — oo. Moreover, by Lemma F.2,

VA (0,)| < /2Lhy"+*(6,,). So letting k — oo shows

: Hakarl B omk ” < — 0., +1 — 0., €
limsup —2——"~ ( Vgm, (0. gy < = (225)
koo bimy+1 G (Brmscr1) 10m 41— Oy, |l 2

contradicting (212). O]

Recall that under Algorithm 2, the one step parameter difference ||@,, — 8,,—1]| is at most r,,. For each n > 1 we say that 6,
is a long point if ||0,, — 0,,_1|| < r,, and a short point if ||0,, — 6,,_1|| = r,,. The next proposition shows that if 6,, is a
long point, then 8,, is obtained by directly minimizing g, over the full parameter space @. It is here the we crucially use the
convexity of g, from Definition 2.1.

Proposition E.6. For n > 1, suppose that 8, € argmingcgnp
0,, € argming.g §n(0).

(6,_1) 9n(0) and that ||0,, — 0,,_1| < 7. Then

n

Proof. By Definition 2.1, g, is convex. Thus, it suffices to verify the first order stationarity condition

' g -0,)>
elg(f;)(Vgn(Bn),G 6,)>0 (226)

to conclude @, € argming.g gn(@). To this end, assume the conclusion is false. Then there is 8 € © with
(Vgn(0,),0" — 6,) < 0. Moreover, as 0,, is obtained by minimizing g, over ® N B, (6,,_1) we must have

—0,-1|| > rn. AS We are assumin n— 0h_1| < 7y, there 1s a € , so that n — 0n-1|| = ar,. No-
0 — 0 A ing |6, — 0 here i 0,1) so that |0, — @ N
tice that
[|0° = 6,] > 1|6" — 01| — |0n — Opn_1]| > (1 — a)ry,. (227)
Hence if we set a = ”(é:f“);”‘u then a € (0,1). So, the convexity of © implies that 0 :=a(6*— 0,)+86,, € ©. Furthermore,
10 —60,_1]| < al|0* —0,]| + 160 — On1] = (1 —a)ry +ary, =1, (228)
and
(V3. (6,),0 — 6,) = a(V5,(0,),0" —8,) <0. (229)
This contradicts 6, € argmingceonp, (s, ,)In(6) and completes the proof. O

34



Stochastic Optimization with Arbitrary Recurrent Data Sampling

Proposition E.7. Assume the Case 3.7. If (0, )x>1 is a sequence consisting of long points such that 0, := limy_, 6.,
exist almost surely, then 0, is a stationary point of f over ©.

Proof. By the assumption that 8,,, is a long point and Proposition E.6 we have 6,,, € arg mingcg gn, (8). Therefore, for
any 0 € ©,

(Vgn,(0n,),0 —0,,) > 0. (230)
We then notice that
(V£(0,,),0 —0,,) =(V3n,(0,,),0 —6,,) — (Vh, (0,,),0 —6,,). (231)
By Lemmas F.2 and E4, ||Vhy, (0,,,)]|? < 2Lhy, (6,,) — 0 almost surely as k — co. Therefore, by taking limits we get
(Vf(0x),0 —00) > 0. (232)
Since this holds for all 8 € ©,

sup (~Vf(B),0 — Os) <0 (233)
0€0,]|6-6 <1

which means that 8, is a stationary point of f over ©. O

Proposition E.8. Suppose there exists a sub-sequence (0, )i>1 such that limy,_,, 0, = O exists almost surely and
that 0, is not a stationary point of | over ©. Then there is € > 0 such that the e-neighborhood B.(0,) has the following
properties:

(a) B:(0) does not contain any stationary points of | over ©.

(b) There are infinitely many n for which 0., is outside of B.(0 ).

Proof. We first show that there exists € > 0 so that B.(0,) does not contain any long points. Suppose for contradiction
that for each e > 0, there is a long point in B (0, ). Then one may construct a sequence of long points converging to 8 .
But then by Proposition E.7, 0, is a stationary point for f over ®, a contradiction.

Next we show that there exists € so that B.(0,) satisfies (a). In fact, suppose not. Then we can find a sequence of stationary
points (0 1) >1 converging to 6. But then by continuity of V f,

<vf(000)7 0 — 000> = klim <Vf(9k,oo)a 0 — 9k,oo> 2 0 (234)

for any 6 € ©. Then 6 is a stationary point of f over ®, contradicting our assumptions.

Now let & > 0 be such that B, (6.) does not contain any long points and satisfies (a). We will show that B, /5(6) satisfies
(b) and thus B, 5 (0 ) satisfies both (a) and (b) as desired. Aiming for a contradiction, suppose there are only finitely
many n for which 6, is outside B, /2(0). Then there exists N so that 8,, € B, /3(0) for all n > N. Then 6, is a short
point for each n > N so ||@,, — 0,,_1|| = 7, for all n > N. This, in turn, implies that >~ , |0, — 6,,_1|| = . By
Proposition E.5, there exists a subsequence (8., ),>1 such that 0’ =limy_, 0, exists and is stationary for f. But since
0’ € B.(0.,), this contradicts (a). The proof is complete. O

We now prove Theorem 3.9 (ii).

Proof of Theorem 3.9 (ii). Suppose for contradiction that there exists a non-stationary limit point 8, of (6,,)n>0. By
Proposition E.8, there is ¢ > 0 so that B, (6 ) satisfies the conditions (a) and (b). Choose NV large enough so that r,, < §
for n, > N. We call an integer interval I := [¢,{') a crossing if 0, € B./3(0c), 0r ¢ Bac/3(0), and no proper subset of
T satisfies both of these conditions. By definition, two distinct crossings have empty intersection. Fix a crossing I = [¢, ¢').
It follows by the triangle inequality,

-1
D N18ni1 = 0.l > (160 — 64]| > 2/3. (235)

n=>~{
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Note that since 6 is a limit point of (6,,),>0, we have 8,, € B, /3(6 ) infinitely often. In addition, by condition (b) of
Proposition E.8, 6,, also exits B.(0) infinitely often. Therefore, there must be infinitely many crossings. Let ny, be the
k-th smallest integer that appears in some crossing, noting importantly that ,,, € By, /3 for k > 1. Then ny — oo as
k — oo and by (235),

Z||0"k+1 —0,,|| > (# ofcrossings)g = oo0. (236)

Then by Proposition E.5, there is a further subsequence (6., )x>1 0f (0, )x>1 so that 8. = limy_, o 6, exists and
is stationary. However, since ,,, € Ba./3(0) the stationary point 87 is in B.(6). This contradicts property (a) of
Proposition E.8 which shows the assertion. O

E.3. Details for numerical experiments

E.3.1. DISTRIBUTED NONNEGATIVE MATRIX FACTORIZATION
The MNIST samples X, at each node were formed by concatenating a collection of images {X;}¥_, C Risws along the

horizontal axis so that X, € RiSX%k, We selected 5000 images from the full dataset at random and divided them into
groups based on class label. New nodes were formed by adding batches of 100 images from each group until fewer than 100
images remained. Then a final node was added for the remaining images.

We include here a list of hyperparamters used for the NMF experiments.

For AdaGrad we used constant step size parameter 17 = 0.5. For both RMISO-DPR and RMISO-CPR we set p = 2500 for
the random walk and p = 50 for cyclic sampling. For the diminishing radius version RMISO-DR we set r,, = flog(n e

Figure 4 displays the results of these experiments vs compute time.

10! Al 10!

~d— RMISO-CPR  -ll= MISO ~#e— RMISO-CPR  -fll- MISO
RMISO-DR —— ONMF RMISO-DR —— ONMF
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Recons. Error
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0 2 4 6 8 10 0 2 4 6 8 10

Elapsed Time (s) Elapsed Time (s)

(a) Random Walk (b) Cyclic

Figure 4. Plot of reconstruction error against compute time for NMF using two sampling algorithms. Results show the performance of
algorithms RMISO, MISO (Algorithm 1 with p,, = 0), ONMEF, and AdaGrad in factorizing a collection of MNIST (Deng, 2012) data
matrices.

E.3.2. LOGISTIC REGRESSION WITH NONCONVEX REGULARIZATION

The hyperparameters for the logistic regression experiments were chosen as follows. For MCSAG and RMISO/MISO we
took L = 2/5. The random walk on the complete graph has ty; = O(|V|) while ty; = O(|V|?) for the lonely graph but
te = O(]V|) for both. Accordingly for MCSAG we set the hitting time parameter in the step size tni; = 50 for the complete
graph and t; = 2500 for the lonely graph. For RMISO we set p = 50 for both the constant proximal regularization
version and the dynamic proximal regularization version. We ran SGD with a decaying step size of the form o, = %
where o = 0.1 and v = 0.5. For SGD-HB and AdaGrad we used step sizes & = 0.05 and SGD-HB momentum parameter
8 =0.9.

36



Stochastic Optimization with Arbitrary Recurrent Data Sampling

Figure 5 shows the results of our experiments plotted vs compute time.
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Figure 5. Plot of objective loss and standard deviation vs compute time for a9a for two graph topologies and various optimization
algorithms- RMISO, MISO (Algorithm 1 with p,, = 0), AdaGrad, MCSAG, SGD, Adam, and SGD-HB

F. Auxiliary Lemmas

Lemma F.1. Let f : R? — R be a continuously differentiable function with L-Lipschitz continuous gradient. Then for all
0,6’ cRP,

7(6) ~ 1(6) ~ (V5(6).6' ~0)] < 50— 0" @37)

Proof. This is a classical lemma. See (Nesterov, 2003) Lemma 1.2.3. O]

Lemma F.2. Let f : R? — [0, 00) be a continuously differentiable function with L-Lipschitz continuous gradient. Then for
all @ € R?, it holds ||V f(0)]|?> < 2Lf(6).

Proof. Fix 6 € RP. By Lemma F.1 we have

s / L /
it 10 < ut {160)+ (9706 ~0)+ £1o' 01} @39)
It is easy to compute that
. / Lo 2| _ 1 2
it {7(0)+ (V10,6 -0+ 116~ 01} = 1(6) - 5 IVO)1E (239)
Therefore
IVF(O)II3 < 2L(f(6) — inf f(6")) < 2Lf(6) (240)
since infg/cpr f(0') > 0. O

G. Examples of Surrogate Functions

Example G.1 (Proximal surrogates for L-smooth functions). Suppose f is continuously differentiable with L-Lipschitz
continuous gradients. Then f is L-weakly convex, meaning 8 — f(6) + %||0||2 is convex (see (Lyu, 2023) Lemma C.2).
For each v > L, the following function belongs to Sy, (f, 0):

qg: 0Hf(0)+§||970*||2 (241)
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Indeed, g > f, g(0%) = f(0"), Vh(0") = 0, and Vh is (L + p) Lipschitz. Minimizing the above function over © is
equivalent to applying a proximal mapping of f where the resulting estimate is denoted prox / p(O*) (see (Parikh & Boyd,
2014; Davis & Drusvyatskiy, 2019)).

Example G.2 (Prox-linear surrogates). If f is L-smooth, then the following quadratic function g belongs to Sor,( f, 0™):
L
9:0— f(67)+(Vf(0),0 -0+ 06" (242)
Indeed, g(0") = f(6%), Vg(0™) = V f(0™). Moreover,
IVh(8) — V()| = |V f(8") = V[(6) + L(6 — 0)|| < 2L||6 — &' (243)

since f is L-smooth.

Example G.3 (Prox-linear surrogates). Suppose f = f1 + fo where f; is differentiable with L-Lipschitz gradient and f5 is
convex over ©. Then the following function g belongs to Sar (f, 6%):

950 [1(07)+ (VA(07),0 -6+ 510~ 0"+ £2(6). (244)

Minimizing g over ® amounts to performing a proximal gradient step (Beck & Teboulle, 2009; Nesterov, 2013).

Example G.4 (DC programming surrogates). Suppose f = f1 + fo where f7 is convex and f5 is concave and differentiable
with Lo-Lipschitz gradient over ®. One can also write f = f; — (— f2) which is the difference of convex (DC) functions f;
and — f5. Then the following function g belongs to Sar(f, 0):

9:0 = f1(0) + f2(07) + (Vf2(67),0 — 07). (245)

Such surrogates are important in DC programming (Horst & Thoai, 1999).

Example G.5 (Variational Surrogates). Let f : R? x R? — R be a two-block multi-convex function and let ®; C RP and
®; C RY be two convex sets. Define a function f, : inf gce, f(0, H). Then for each 8* € O, the following function

g:0— f(0,H*), H* € argmin f(0™, H) (246)
He®,

is convex over @1 and satisfies g > f and g(0*) = f(0"). Further, assume that

(i) 6 — f(0, H) is differentiable for all H € ©3 and @ — Vg f(0, H) is L'-Lipschitz for all H € ©Og;
(i) H — Vo f(0, H) is L-Lipschitz for all 8 € Oy;
Then g belongs to Sz (f«,0) for some L” > 0. When f is jointly convex, then f, is also convex and we can choose
L'’ = L.
H. Matrix factorization algorithms

Here we formally state the non-negative matrix factorization algorithms derived in Section 4.1.1. They may be compared to
the celebrated online nonnegative matrix factorization algorithm in (Mairal et al., 2010) which is a special case of SMM.

With surrogates g, (W) as defined in Section 4.1.1, one can show that minimizing the averaged surrogate g, (W) =
ﬁ > vey 94 (W) is equivalent to minimizing

tr(WA,WT) — 2te(WB,,), (247)
with A,, and B,,, defined recursively as
1 v v
An = An—l + M |:H11’Zn (H;ZR)T - Hnil(anl)T} (248)
1
Bui= Buoa 4y [ X — i X (249)
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With this, we state the full algorithms below.

Algorithm 3 Distributed Matrix Factorization with Proximal Regularization

Input: (X"),cy (Data matrices in R? *d): Wy € O (initial dictionary); N (number of iterations); p > 0 (regularization parameter)
Option: Regularization € {Dynamic, Constant}
Compute initial codes Hj € argming cey 1| XY — WoH||% + o|H||1 foreachv € V
forn =1to N do

sample an index vy,

update H;, € argming gy Xy = Woo1H||% + || H||1; Hy, = Hy)_y forv # vy,

An = Ay + 1y [H (Hm) " = Hy (Hm )T

By = Bno1 + wy [Hi" (X )" — Hym (X))

if Regularization = Dynamic then

pn < p+ maxyev(n — k"(n))

else
Pn S p
end if
update dictionary Wy, :
Wy, € argmin [tr(WAnWT) —2u(WB,) + p—nHW - Wn,1\|%] (250)
WeBw 2

end for
output: 0

Algorithm 4 Distributed Matrix Factorization with Diminishing Radius

Input: (X"),ev (Data matrices in R? *d). Wo € Oy (initial dictionary); N (number of iterations); (rn)n>1 (diminishing radius
search constraints)
Compute initial codes Hg' € argminy ey 1| XY — WoH||% + o|H||1 foreachv € V

forn =1to N do
sample an index vy,
update [, € argming gy Xy = Wa1 H||% + || H
An = Ay 4y [Hir (Hym) " = Hy (H )T
B = Bnoy 4wy [Hin (X)) T = Hy (X)) ]
update dictionary W, :

1; Hy = HY_, forv # v,

W, € arg min [tr(WAnWT) - 2tr(WBn)] (251)
WeBwNBr, (Wn_1)

end for
output: O n
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