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Abstract

In the context of supervised parametric models,

we introduce the concept of e-values. An e-value

is a scalar quantity that represents the proximity of

the sampling distribution of parameter estimates

in a model trained on a subset of features to that

of the model trained on all features (i.e. the full

model). Under general conditions, a rank order-

ing of e-values separates models that contain all

essential features from those that do not.

The e-values are applicable to a wide range of

parametric models. We use data depths and a fast

resampling-based algorithm to implement a fea-

ture selection procedure using e-values, providing

consistency results. For a p-dimensional feature

space, this procedure requires fitting only the full

model and evaluating p+ 1 models, as opposed

to the traditional requirement of fitting and evalu-

ating 2p models. Through experiments across sev-

eral model settings and synthetic and real datasets,

we establish that the e-values method as a promis-

ing general alternative to existing model-specific

methods of feature selection.

1. Introduction

In the era of big data, feature selection in supervised statis-

tical and machine learning (ML) models helps cut through

the noise of superfluous features, provides storage and com-

putational benefits, and gives model intepretability. Model-

based feature selection can be divided into two categories

(Guyon & Elisseeff, 2003): wrapper methods that evalu-

ate models trained on multiple feature sets (Schwarz, 1978;

Shao, 1996), and embedded methods that combine feature

selection and training, often through sparse regularization

(Tibshirani, 1996; Zou, 2006; Zou & Hastie, 2005). Both

categories are extremely well-studied for independent data
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models, but have their own challenges. Navigating an expo-

nentially growing feature space using wrapper methods is

NP-hard (Natarajan, 1995), and case-specific search strate-

gies like k-greedy, branch-and-bound, simulated annealing

are needed. Sparse penalized embedded methods can tackle

high-dimensional data, but have inferential and algorithmic

issues, such as biased Lasso estimates (Zhang & Zhang,

2014) and the use of convex relaxations to compute approx-

imate local solutions (Wang et al., 2013; Zou & Li, 2008).

Feature selection in dependent data models has received

comparatively lesser attention. Existing implementations of

wrapper and embedded methods have been adapted for de-

pendent data scenarios, such as mixed effect models (Meza

& Lahiri, 2005; Nguyen & Jiang, 2014; Peng & Lu, 2012)

and spatial models (Huang et al., 2010; Lee & Ghosh, 2009).

However these suffer from the same issues as their inde-

pendent data counterparts. If anything, the higher computa-

tional overhead for model training makes implementation

of wrapper methods even harder in this situation!

In this paper, we propose the framework of e-values as a

common principle to perform best subset feature selection in

a range of parametric models covering independent and de-

pendent data settings. In essence ours is a wrapper method,

although it is able to determine important features affecting

the response by training a single model: the one with all

features, or the full model. We achieve this by utilizing the

information encoded in the distribution of model param-

eter estimates. Notwithstanding recent efforts (Lai et al.,

2015; Singh et al., 2007), parameter distributions that are

fully data-driven have generally been underutilized in data

science. In our work, e-values score a candidate model to

quantify the similarity between sampling distributions of

parameters in that model and the full model. Sampling dis-

tribution is the distribution of a parameter estimate, based

on the random data samples the estimate is calculated from.

We access sampling distributions using the efficient Gener-

alized Bootstrap technique (Chatterjee & Bose, 2005), and

utilize them using data depths, which are essentially point-

to-distribution inverse distance functions (Tukey, 1975; Zuo,

2003; Zuo & Serfling, 2000), to compute e-values.

How e-values perform feature selection Data depth func-

tions quantify the inlyingness of a point in multivariate space

with respect to a probability distribution or a multivariate
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Figure 1.1. The e-value method. Solid and dotted ellipses represent

Mahalanobis depth contours at some α > 0 for sample sizes

n1, n2;n2 > n1.

point cloud, and have seen diverse applications in the litera-

ture (Jornsten, 2004; Narisetty & Nair, 2016; Rousseeuw &

Hubert, 1998). As an example, consider the Mahalanobis

depth, defined as

D(x, F ) = [1 + (x− µF )
¦Σ−1

F (x− µF )]
−1,

for x ∈ R
p and F a p-dimensional probability distribution

with mean µF and covariance matrix ΣF . When x is close

to µF , D(x, F ) takes a high value close to 1. On the other

hand, as ∥x∥ → ∞, the depth at x approaches 0. Thus,

D(x, F ) quantifies the proximity of x to F . Points with high

depth are situated ’deep inside’ the probability distribution

F , while low depth points sit at the periphery of F .

Given a depth function D we define e-value as the mean

depth of the finite-sample estimate of a parameter ´ for a

candidate modelM, with respect to the sampling distribu-

tion of the full model estimate ˆ́:

e(M) = ED( ˆ́M, [ ˆ́]),

where ˆ́
M is the estimate of ´ assuming modelM, [ ˆ́] is

the sampling distribution of ˆ́, and E(·) denotes expectation.

For large sample size n, the index set Sselect obtained by

Algorithm 1 below elicits all non-zero features in the true

parameter. We use bootstrap to obtain multiple copies of ˆ́

and ˆ́
−j for calculating the e-values in steps 1 and 5.

Algorithm 1 Best subset selection using e-values

1: Obtain full model e-value: e(Mfull) = ED( ˆ́, [ ˆ́]).
2: Set Sselect = ϕ.

3: For j in 1 : p
4: Replace jth index of ˆ́ by 0, name it ˆ́−j .

5: Obtain e(M−j) = ED( ˆ́−j , [ ˆ́]).
6: If e(M−j) < e(Mfull))
7: Set Sselect ← {Sselect, j}.

As an example, consider a linear regression with two fea-

tures, Gaussian errors ϵ ∼ N(0, 1), and the following can-

didate models (Figure 1.1). We denote by Θi the domain of

parameters considered in modelMi; i = 1, . . . , 4.

M1 : Y = X1´1 +X2´2 + ϵ; Θ1 = R
2,

M2 : Y = X1´1 + ϵ; Θ2 = R× {0},
M3 : Y = X2´2 + ϵ; Θ3 = {0} × R,
M4 : Y = ϵ; Θ4 = (0, 0)T .

Let ´0 = (5, 0)T be the true parameter. The full model

sampling distribution, ˆ́ ∼ N (´0, (X
TX)−1), is more con-

centrated around ´0 for higher sample sizes. Thus the depths

at points along the (red) line ´1 = 0, and the origin (red

point), become smaller, and mean depths approach 0 for

M3 and M4. On the other hand, since depth functions

are affine invariant (Zuo & Serfling, 2000), mean depths

calculated over parameter spaces for M1 (blue line) and

M2 (blue surface) remain the same, and do not vanish as

n → ∞. Thus, e-values of the ‘good’ modelsM1,M2—

models the parameter spaces of which contain ´0—separate

from those of the ‘bad’ modelsM3,M4 more and more

as n grows. Algorithm 1 is the result of this separation,

and a rank ordering of the ‘good’ models based on how

parsimonious they are (Theorem 5.1).

2. Related work

Feature selection is a widely studied area in statistics and

ML. The vast amount of literature on this topic includes

classics like the Bayesian Information Criterion (Schwarz,

1978, BIC) or Lasso (Tibshirani, 1996), and recent advances

such as Mixed Integer Optimization (Bertsimas et al., 2016,

MIO). To deal with the increasing scale and complexity of

data in recent applications, newer streams of work have also

materialized—such as nonlinear and model-independent

methods (Song et al., 2012), model averaging (Fragoso

et al., 2018), and dimension reduction techniques (Ma &

Zhu, 2013). We refer the reader to Guyon & Elisseeff (2003)

and the literature review in Bertsimas et al. (2016) for a

broader overview of feature selection methods, and focus

on the three lines of work most related to our formulation.

Shao (1996) first proposed using bootstrap for feature se-

lection, with the squared residual averaged over a large

number of resampled parameter estimates from a m-out-of-

n bootstrap as selection criterion. Leave-One-Covariate-Out

(Lei et al., 2018, LOCO) is based on the idea of sample-

splitting. The full model and leave-one-covariate-out mod-

els are trained using one part of the data, and the rest of

the data are used to calculate the importance of a feature

as median difference in predictive performance between

the full model and a LOCO model. Finally, Barber & Can-

des (2015) introduced the powerful idea of Knockoff filters,

where a ‘knockoff’ version of the original input dataset imi-

tating its correlation structure is constructed. This method

is explicitly able to control False Discovery Rate.
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Our framework of e-values has some similarities with the

above methods, such as the use of bootstrap (similar to

Shao (1996)), feature-specific statistics (similar to LOCO

and Knockoffs), and evaluation at p+ 1 models (similar to

LOCO). However, e-values are also significantly different.

They do not suffer from the high computational burden

of model refitting over multiple bootstrap samples (unlike

Shao (1996)), are not conditional on data splitting (unlike

LOCO), and have a very general theoretical formulation

(unlike Knockoffs). Most importantly, unlike all the three

methods discussed above, e-values require fitting only a

single model, and work for dependent data models.

Previously, VanderWeele & Ding (2017) have used the term

’E-Value’ in the context of sensitivity analysis. However,

our and their definition of e-values are quite different. We

see our e-values as a means to evaluate a feature with ref-

erence to a model. There are some parallels to the well

known p-values used for hypothesis testing, but we see the

e-value as a more general quantity that covers dependent

data situations, as well as general estimation and hypothesis

testing problems. While the current paper is an application

of e-values for feature selection, we plan to build up on the

framework introduced here on other applications, including

group feature selection, hypothesis testing, and multiple

testing problems.

3. Preliminaries

For a positive integer n g 1, Let Zn = {Z1, . . . , Zn} be an

observable array of random variables that are not necessarily

independent. We parametrize Zn using a parameter vector

¹ ∈ Θ ¦ R
p, and energy functions {Èi(¹, Zi) : 1 f i f

n}. We assume that there is a true unknown vector of

parameters ¹0, which is the unique minimizer of Ψn(¹) =
E
∑n

i=1 Èi(¹, Zi).

Models and their characterization Let S∗ =
∪θ∈Θ supp(¹) be the common non-zero support of

all estimable parameters ¹ (denoted by supp(¹)). In this

setup, we associate a model M with two quantities (a)

The set of indices S ¦ S∗ with unknown and estimable

parameter values, and (b) an ordered vector of known

constants C = (Cj : j /∈ S) at indices not in S. Thus

a generic parameter vector for the model M ≡ (S, C),
denoted by ¹m ∈ Θm ¦ Θ =

∏

j Θj , consists of unknown

indices and known constants

¹mj =

{

unknown ¹mj ∈ Θj for j ∈ S,
known Cj ∈ Θj for j /∈ S.

(3.1)

Given the above formulation, we characterize a model.

Definition 3.1. A model M is called adequate if
∑

j /∈S |Cj − ¹0j | = 0. A model that is not adequate, is

called an inadequate model.

By definition the full model is always adequate, as is the

model corresponding to the singleton set containing the true

parameter. Thus the set of adequate models is non-empty

by construction.

Another important notion is the one of nested models.

Definition 3.2. We consider a modelM1 to be nested in

M2, notationally M1 z M2, if S1 ¢ S2 and C2 is a

subvector of C1.

If a model is adequate, then any model it is nested in is also

adequate. In the context of feature selection this obtains

a rank ordering: the most parsimonious adequate model,

with S = supp(´0) and C = 0p−|S|, is nested in all other

adequate models. All models nested within it are inadequate.

Estimators The estimator ¹̂∗ of ¹0 is obtained as a mini-

mizer of the sample analog of Ψn(¹):

¹̂∗ = argmin
θ

Ψn(¹) = argmin
θ

n
∑

i=1

Èi

(

¹, Zi

)

. (3.2)

Under standard regularity conditions on the energy func-

tions, an(¹̂∗ − ¹∗) converges to a p-dimensional Gaussian

distribution as n → ∞, where an ↑ ∞ is a sequence of

positive real numbers (Appendix A).

Remark 3.3. For generic estimation methods based on

likelihood and estimating equations, the above holds with

an ≡ n
1/2, resulting in the standard ‘root-n’ asymptotics.

The estimator in (3.2) corresponds to the full modelM∗,

i.e. the model where all indices in S∗ are estimated. For

any other model M, we simply augment entries of ¹̂∗ at

indices in S with elements ofC elsewhere to obtain a model-

specific coefficient estimate ¹̂m:

¹̂mj =

{

¹̂∗j for j ∈ S,
Cj for j /∈ S.

(3.3)

The logic behind this plug-in estimate is simple: for a can-

didate modelM, a joint distribution of its estimated param-

eters, i.e. [¹̂S ], can actually be obtained from [¹̂∗] by taking

its marginals at indices S .

Depth functions Data depth functions (Zuo & Serfling,

2000) quantify the closeness of a point in multivariate space

to a probability distribution or data cloud. Formally, let G
denote the set of non-degenerate probability measures on

R
p. We consider D : Rp × G → [0,∞) to be a data depth

function if it satisfies the following properties:

(B1) Affine invariance: For any non-singular matrix A ∈
R

p×p, and b ∈ R
p and random variable Y having

distribution G ∈ G, D(x,G) = D(Ax+ b, [AY + b]).
(B2) Lipschitz continuity: For any G ∈ G, there exists ¶ > 0

and ³ ∈ (0, 1), possibly depending on G such that



Feature Selection using e-values

whenever |x−y| < ¶, we have |D(x,G)−D(y,G)| <
|x− y|α.

(B3) Consider random variables Yn ∈ R
p such that

[Yn] ⇝ Y ∈ G. Then D(y, [Yn]) converges uni-

formly to D(y,Y). So that, if Y ∼ Y, then

limn→∞ ED(Yn, [Yn]) = ED(Y,Y) <∞.

(B4) For any G ∈ G, lim∥x∥→∞D(x,G) = 0.

(B5) For any G ∈ G with a point of symmetry µ(G) ∈ R
p,

D(.,G) is maximum at µ(G):

D(µ(G),G) = sup
x∈Rp

D(x,G) <∞.

Depth decreases along any ray between µ(G) to x, i.e.

for t ∈ (0, 1), x ∈ R
p,

D(x,G) < D(µ(G) + t(x− µ(G)),G)

< D(µ(G),G).

Conditions (B1), (B4) and (B5) are integral to the formal

definition of data depth (Zuo & Serfling, 2000), while (B2)

and (B3) implicitly arise for several depth functions (Mosler,

2013). We require only a subset of (B1)-(B5) for the theory

in this paper, but use data depths throughout for simplicity.

4. The e-values framework

The e-value of model M is the mean depth of ¹̂M with

respect to [¹̂]: en(M) = ED(¹̂m, [¹̂∗]).

4.1. Resampling approximation of e-values

Typically, the distributions of either of the random quantities

¹̂m and ¹̂∗, are unknown, and have to be elicited from the

data. Because of the plugin method in (3.3), only [¹̂∗] needs

to be approximated. We do this using Generalized Bootstrap

(Chatterjee & Bose, 2005, GBS). For an exchangeable array

of non-negative random variables independent of the data as

resampling weights: Wr = (Wr1, . . . ,Wrn)
T ∈ R

n, the

GBS estimator ¹̂r∗ is the minimizer of

Ψrn(¹) =

n
∑

i=1

WriÈi

(

¹, Zi

)

. (4.1)

We assume the following conditions on the resampling

weights and their interactions as n→∞:

EWr1 = 1,VWr1 = Ä2n = o(a2n) ↑ ∞,EW
4
r1 <∞,

EWr1Wr2 = O(n−1),EW 2
r1W

2
r2 → 1. (4.2)

Many resampling schemes can be described as GBS, such as

the m-out-of-n bootstrap (Bickel & Sakov, 2008) and scale-

enhanced wild bootstrap (Chatterjee, 2019). Under fairly

weak regularity conditions on the first two derivatives È′
i

and È′′
i of Èi, (an/Än)(¹̂r∗− ¹̂∗) and an(¹̂∗− ¹0) converge

to the same weak limit in probability (See Appendix A).

Instead of repeatedly solving (4.1), we use model quanti-

ties computed while calculating ¹̂∗ to obtain a first-order

approximation of ¹̂r∗.

¹̂r∗ = ¹̂∗ −
Än
an

[

n
∑

i=1

È′′
i (¹̂∗, Zi)

]−1/2 n
∑

i=1

WriÈ
′
i(¹̂∗, Zi)

+Rr, (4.3)

where Er∥Rr∥
2 = oP (1), and Wri = (Wri − 1)/Än. Thus

only Monte Carlo sampling is required to obtain the re-

samples. Being an embarrassingly parallel procedure, this

results in significant computational speed gains.

To estimate en(M) we obtain two independent sets of

weights {Wr; r = 1, . . . , R} and {Wr1 ; r1 = 1, . . . , R1}
for large integers R,R1. We use the first set of resamples

to obtain the distribution [¹̂r∗] to approximate [¹̂∗], and the

second set of resamples to get the plugin estimate ¹̂r1m:

¹̂r1mj =

{

¹̂r1∗j for j ∈ S,
Cj for j /∈ S.

(4.4)

Finally, the resampling estimate of a model e-value is:

ern(M) = Er1D
(

¹̂r1m, [¹̂r∗]
)

, where Er1 is expectation,

conditional on the data, computed using the resampling r1.

4.2. Fast algorithm for best subset selection

For best subset selection, we restrict to the model class

M0 = {M : Cj = 0 ∀ j /∈ S} that only allows zero

constant terms. In this setup our fast selection algorithm

consists of only three stages: (a) fit the full model and

estimate its e-value, (b) replace each covariate by 0 and

compute e-value of all such reduced models, and (c) collect

covariates dropping which causes the e-value to go down.

To fit the full model, we need to determine the estimable

index set S∗. When n > p, the choice is simple: S∗ =
{1, . . . , p}. When p > n, we need to ensure that p′ =

|S∗| < n, so that ¹̂∗ (properly centered and scaled) has a

unique asymptotic distribution. Similar to past works on fea-

ture selection (Lai et al., 2015), we use a feature screening

step before model fitting to achieve this (Section 5).

After obtaining S∗ and ¹̂∗, for each of the p′ + 1 models

under consideration: the full model and all drop-1-feature

models, we follow the recipe in Section 4.1 to get bootstrap

e-values. This gives us all the components for a sample

version of Algorithm 1, which we present as Algorithm 2.
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Algorithm 2 Best subset feature selection using e-values

and GBS

1. Fix resampling standard deviation Än.

2. Obtain GBS samples: T = {¹̂1∗, ..., ¹̂R∗}, and T1 =

{¹̂1∗, ..., ¹̂R1∗} using (4.3).

3. Calculate êrn(M∗) =
1
R1

∑R1

r1=1D(¹̂r1∗, [T ]).

4. Set Ŝ0 = ϕ.

5. for j in 1 : p
6. for r1 in 1 : R1

7. Replace jth index of ¹̂∗r1 by 0 to get ¹̂r1,−j .

8. Calculate êrn(M−j) =
1
R1

∑R1

r1=1D(¹̂r1,−j , [T ]).
9. if êrn(M−j) < êrn(M∗)

10. Set Ŝ0 ← {Ŝ0, j}.

Choice of Än The intermediate rate of divergence for the

bootstrap standard deviation Än: Än → ∞, Än/an → 0,

is a necessary and sufficient condition for the consistency

of GBS (Chatterjee & Bose, 2005), and that of the boot-

strap approximation of population e-values (Theorem 5.4).

We select Än using the following quantity, which we call

Generalized Bootstrap Information Criterion (GBIC):

GBIC(Än) =
n
∑

i=1

Èi

(

¹̂(Ŝ0, Än), Zi

)

+

Än
2

∣

∣

∣
supp(¹̂(Ŝ0, Än))

∣

∣

∣
, (4.5)

where ¹̂(Ŝ0, Än) is the refitted parameter vector using the

index set Ŝ0 selected by running Algorithm 2 with Än. We

repeat this for a range of Än values, and choose the index set

corresponding to the Än that gives the smallest GBIC(Än).
For our synthetic data experiments we take Än = log(n)
and use GBIC, while for one real data example, we use

validation on a test set to select the optimal Än, both with

favorable results.

Detection threshold for finite samples In practice—

especially for smaller sample sizes—due to sampling un-

certainty it may be difficult to ensure that the full model

e-value exactly separates the null and non-null e-values, and

small amounts of false positives or negatives may occur in

the selected feature set Ŝ0. One way to tackle this is by

shifting the detection threshold in Algorithm 2 by a small ¶:

êδrn(M∗) = (1 + ¶)êrn(M∗).

To prioritize true positives or true negatives, ¶ can be set to

be positive or negative respectively. In one of our experi-

ments (Section 6.3), setting ¶ = 0 results in a small amount

of false positives due to a few non-null features having e-

values close to the full model e-value. Setting ¶ to small

positive values gradually eliminates these false positives.

5. Theoretical results

We now investigate theoretical properties of e-values. Our

first result separates inadequate models from adequate mod-

els at the population level, and gives a rank ordering of

adequate models using their population e-values.

Theorem 5.1. Under conditions B1-B5, for a finite se-

quence of adequate models M1 z . . . z Mk and any

inadequate modelsMk+1, . . . ,MK , we have for large n

en(M1) > . . . > en(Mk) > max
j∈{k+1,...K}

en(Mj).

As n → ∞, en(Mi) → ED(Y, [Y ]) < ∞ with Y having

an elliptic distribution if i f K, else en(Mi)→ 0.

We define the data generating model asM0 zM∗ with es-

timable indices S0 = supp(¹0) and constantsC0 = 0p−|S0|.

Then we have the following.

Corollary 5.2. Assume the conditions of Theorem 5.1. Con-

sider the restricted class of candidate models M0 in Sec-

tion 4.2, where all known coefficients are fixed at 0. Then

for large enough n,M0 = argmaxM∈M0
[en(M)].

Thus, when only the models with known parameters set at

0 (the model set M0) are considered, e-value indeed max-

imizes at the true model at the population level. However

there are still 2p possible models. This is where the ad-

vantage of using e-values—their one-step nature—comes

through.

Corollary 5.3. Assume the conditions of Corollary 5.2.

Consider the modelsM−j ∈M0 with S−j = {1, . . . , p} \
{j} for j = 1, . . . , p. Then covariate j is a necessary

component ofM0, i.e.M−j is an inadequate model, if and

only if for large n we have en(M−j) < en(M∗).

Dropping an essential feature from the full model makes

the model inadequate, which has very small e-value for

large enough n, whereas dropping a non-essential feature

increases the e-value (Theorem 5.1). Thus, simply collecting

features dropping which cause a decrease in the e-value

suffices for feature selection.

Following the above results, we establish model selection

consistency of Algorithm 2 at the sample level. This means

that the probability that the one-step procedure is able to se-

lect the true model feature set goes to 1, when the procedure

is repeated for a large number of randomly drawn datasets

from the data-generating distribution.

Theorem 5.4. Consider two sets of generalized bootstrap

estimates of ¹̂∗: T = {¹̂r∗ : r = 1, . . . , R} and T1 =

{¹̂r1∗ : r1 = 1, . . . , R1}. Obtain sample e-values as:

êrn(M) =
1

R1

R1
∑

r1=1

D(¹̂r1m, [T ]), (5.1)
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where [T ] is the empirical distribution of the corresponding

bootstrap samples, and ¹̂r1m are obtained as in Section 4.1.

Consider the feature set Ŝ0 = {êrn(M−j) < êrn(M∗)}.

Then as n,R,R1 → ∞, P2(Ŝ0 = S0) → 1, with P2 as

probability conditional on data and bootstrap samples.

Theorem 5.4 is contingent on the fact that the the true model

M0 is a member of M0, that is S0 ¦ S∗. This is ensured

trivially when n g p. If p > n, M0 is the set of all pos-

sible models on the feature set selected by an appropriate

screening procedure. In high-dimensional linear models, we

use Sure Independent Screening (Fan & Lv, 2008, SIS) for

this purpose. Given that S∗ is selected using SIS, Fan & Lv

(2008) proved that, for constants C > 0 and » that depend

on the minimum signal in ¹0,

P (M0 ∈M0) g 1−O

(

exp[−Cn1−2κ]

log n

)

. (5.2)

For more complex models, model-free filter methods (Koller

& Sahami, 1996; Zhu et al., 2011) can be used to obtain S∗.

For example, under mild conditions on the design matrix,

the method of Zhu et al. (2011) is consistent:

P (|S∗ ∩ S
c
0 | g r) f

(

1−
r

p+ d

)d

, (5.3)

with positive integers r and d: d = p being a good practical

choice (Zhu et al., 2011, Theorem 3). Combining (5.2) or

(5.3) with Corollary 5.4 as needed establishes asymptoti-

cally accurate recovery of S0 through Algorithm 2.

6. Numerical experiments

We implement e-values using a GBS with scaled resam-

ple weights Wri ∼ Gamma(1, 1) − 1, and resample

sizes R = R1 = 1000. We use Mahalanobis depth for

all depth calculations. Mahalanobis depth is much less

computation-intensive than other depth functions (Dycker-

hoff & Mozharovskyi, 2016; Liu & Zuo, 2014), but is not

usually preferred in applications due to its non-robustness.

However, we do not use any robustness properties of data

depth, so are able to use it without any concern. For each

replication for each data setting and method, we compute

performance metrics on test datasets of the same dimensions

as the respective training dataset. All our results are based

on 1000 such replications.

6.1. Feature selection in linear regression

Given a true coefficient vector ´0, we use the model Z ≡
(Y,X), Y = X´0+ ϵ, with ϵ ∼ Nn(0, Ã

2In), and n = 500
and p = 100. We generate the rows of X independently

from Np(0,ΣX), where ΣX follows an equicorrelation

structure having correlation coefficient Ä: (ΣX)ij = Ä|i−j|.

Under this basic setup, we consider the following settings
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Figure 6.1. Performance metrics for n = 500, p = 100: top,

middle and bottom rows indicate simulation settings 1, 2 and 3,

respectively. Competing methods include LASSO and SCAD-

penalized regression, Stepwise regression using BIC and backward

deletion, Knockoff filters (Barber & Candes, 2015), and Mixed

Integer Optimization (Bertsimas et al., 2016, MIO).

to evaluate the effect of different magnitudes of feature

correlation in X , sparsity level in ´0 and error variance Ã.

• Setting 1 (effect of feature correlation): We repeat

the above setup for Ä = 0.1, . . . , 0.9, fixing ´0 =
(1.5, 0.5, 1, 1.5, 1, 0p−5), Ã = 1;

• Setting 2 (effect of sparsity level): We consider ´0 =
(1k, 0p−k), with varying degrees of the sparsity level k =
5, 10, 15, 20, 25. We fix Ä = 0.5, Ã = 1;

• Setting 3 (effect of noise level): We consider different

values of noise level (equivalent to having different signal-

to-noise ratios) by testing for Ã = 0.3, 0.5, . . . , 2.3, fixing

´0 = (15, 0p−5), Ä = 0.5.
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To implement e-values, we repeat Algorithm 2 for Än ∈
{0.2, 0.6, 1, 1.4, 1.8} log(n)

√

log(p), and select the model

having the lowest GBIC(Än).

Figure 6.1 summarizes the comparison results. Across all

three settings, our method consistently produces the most

predictive model, i.e. the model with the lowest prediction

error. It also produces the sparsest model almost always.

Among the competitors, SCAD performs the closest to e-

values in setting 2 for both the metrics. However, SCAD

seems to be more severely affected by high noise level (i.e.

high Ã) or high feature correlation (i.e. high Ä). Lasso and

Step tend to select models with many null variables, and

have higher prediction errors. Performance of the other two

methods (MIO, knockoffs) is middling.

Method e-value Lasso SCAD Step Knockoff MIO

Time 6.3 0.4 0.9 20.1 1.9 127.2

Table 6.1. Mean computation time (in seconds) for all methods.

We present computation times for Setting 1 averaged across

all values of Ä in Table 6.1. All computations were per-

formed on a Windows desktop with an 8-core Intel Core-i7

6700K 4GHz CPU and 16GB RAM. For e-values, using a

smaller number of bootstrap samples or running computa-

tions over bootstrap samples in parallel greatly reduces com-

putation time with little to no loss of performance. However,

we report its computation time over a single core similar to

other methods. Sparse methods like Lasso and SCAD are

much faster as expected. Our method has lower computation

time than Step and MIO, and much better performance.

6.2. High-dimensional linear regression (p > n)

We generate data from the same setup as Section 6.1, but

with n = 100, p = 500. We perform an initial screening

of features using SIS, then apply the e-values and other

methods on this SIS-selected predictor set. Figure 6.2 sum-

marizes the results. In addition to competing methods, we

report metrics corresponding to the original SIS-selected

predictor set as a baseline. Sparsity-wise, e-values produce

the most improvement over the SIS baseline among all meth-

ods, and tracks the true sparsity level closely. Both e-values

and Knockoffs produce sparser estimates as Ä grows higher

(Setting 1). However, unlike the Knockoffs our method

maintains good prediction performance even at high feature

correlation. In general e-values maintain good prediction

performance, although this difference is less obvious than

the low-dimensional case. Note that for k = 25 in setting 2,

SIS screening produces overly sparse feature sets, affecting

prediction errors for all methods.
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Figure 6.2. Performance metrics for n = 100, p = 500.

6.3. Mixed effect model

We use the simulation setup from Peng & Lu (2012):

Y = X´+RU + ϵ, where the data Z ≡ (Y,X,R) consists

of m independent groups of observations with multiple (ni)

dependent observations in each group, R being the within-

group random effects design matrix. We consider 9 fixed

effects and 4 random effects, with the true fixed effect coef-

ficient ´0 = (12, 07) and random effect coefficient U drawn

fromN4(0,∆). The random effect covariance matrix ∆ has

elements (∆)11 = 9, (∆)21 = 4.8, (∆)22 = 4, (∆)31 =
0.6, (∆)32 = (∆)33 = 1, (∆)4j = 0; j = 1, . . . , 4, and

the error variance of ϵ is set at Ã2 = 1. The goal here is to

select covariates of the fixed effect. We use two scenarios

for our study: Setting 1, where the number of groups (m)

considered is 30, and the number of observations in the

ith group, i = 1, . . . ,m, is ni = 5, and Setting 2, where

m = 60, ni = 10. Finally, we generate 100 independent
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Method Setting 1: ni = 5,m = 30 Setting 2: ni = 10,m = 60
FPR FNR Acc MS FPR FNR Acc MS

¶ = 0 9.4 0.0 76 2.33 0.0 0.0 100 2.00

¶ = 0.01 6.7 0.0 82 2.22 0.0 0.0 100 2.00

e-value ¶ = 0.05 1.0 0.0 97 2.03 0.0 0.0 100 2.00

¶ = 0.1 0.3 0.0 99 2.01 0.0 0.0 100 2.00

¶ = 0.15 0.0 0.0 100 2.00 0.0 0.0 100 2.00

BIC 21.5 9.9 49 2.26 1.5 1.9 86 2.10

AIC 17 11.0 46 2.43 1.5 3.3 77 2.20

SCAD (Peng & Lu, 2012) GCV 20.5 6 49 2.30 1.5 3 79 2.18
√

log n/n 21 15.6 33 2.67 1.5 4.1 72 2.26

M-ALASSO (Bondell et al., 2010) - - 73 - - - 83 -

SCAD-P (Fan & Li, 2012) - - 90 - - - 100 -

rPQL (Hui et al., 2017) - - 98 - - - 99 -

Table 6.2. Performance comparison for mixed effect models. We compare e-values with a number of sparse penalized methods: (a) Peng

& Lu (2012) that uses SCAD penalty and different methods of selecting regularization tuning parameters, (b) The adaptive lasso-based

method of Bondell et al. (2010), (c) The SCAD-P method Fan & Li (2012), and (d) regularized Penalized Quasi-Likelihood Hui et al.

(2017, rPQL). For comparison with Peng & Lu (2012), we present mean false positive (FPR) and false negative (FNR) rates, Accuracy

(Acc), and Model Size (MS), i.e. the number of non-zero fixed effects estimated. To compare with other methods we only use Acc, since

they did not report the rest of the metrics.

datasets for each setting. To implement e-values by min-

imizing GBIC(Än), we consider Än ∈ {1, 1.2, . . . , 4.8, 5}.
To tackle small sample issues in Setting 1 (Section 4.2),

we repeat the model selection procedure using the shifted

e-values êδrn(·) for ¶ ∈ {0, 0.01, 0.05, 0.1, 0.15}.

Without shifted thresholds, e-values perform commendably

in both settings. For Setting 2, it reaches the best possi-

ble performance across all metrics. However, we observed

that in a few replications of setting 1, a small number of

null input features had e-values only slightly lower than the

full model e-value, resulting in increased FPR and model

size. We experimented with lowered detection thresholds

to mitigate this. As seen in Table 6.2, increasing ¶ gradu-

ally eliminates the null features, and e-values reach perfect

performance across all metrics for ¶ = 0.15.

7. Real data examples

Indian monsoon data To identify the driving factors be-

hind precipitation during the Indian monsoon season using

e-values, we obtain data on 35 potential covariates (see Ap-

pendix D) from National Climatic Data Center (NCDC) and

National Oceanic and Atmospheric Administration (NOAA)

repositories for 1978–2012. We consider annual medians of

covariates as fixed effects, log yearly rainfall at a weather

station as output feature, and include year-specific random

intercepts. To implement e-values, we use projection depth

(Zuo, 2003) and GBS resample sizes R = R1 = 1000.

We train our model on data from the years 1978-2002,

run e-values best subset selection for tuning parameters

Än ∈ {0.05, 0.1, . . . , 1}. We consider two methods to select

the best refitted model: (a) minimizing GBIC(Än), and (b)

minimizing forecasting errors on samples from 2003–2012.

Figure 7.1a plots the t-statistics for features from the best

refitted models obtained by the above two methods. Mini-

mizing for GBIC and test error selects 32 and 26 covariates,

respectively. The largest contributors are maximum temper-

ature and elevation, which are related to precipitation based

on the Clausius-Clapeyron relation (Li et al., 2017; Single-

ton & Toumi, 2012). All other selected covariates have

documented effects on Indian monsoon (Krishnamurthy &

Kinter III, 2003; Moon et al., 2013). Reduced model fore-

casts obtained from a rolling validation scheme (i.e. i.e. use

data from 1978–2002 for 2003, 1979-2003 for 2004 and so

on) have less bias across testing years (Fig. 7.1b).

Spatio-temporal dependence analysis in fMRI data

This dataset is due to Wakeman & Henson (2015), where

each of the 19 subjects go through 9 runs of consecutive vi-

sual tasks. Blood oxygen level readings are recorded across

time as 3D images made of 64 × 64 × 33 (total 135,168)

voxels. Here we use the data from a single run and task

on subject 1, and aim to estimate dependence patterns of

readings across 210 time points and areas of the brain.

We fit separate regressions at each voxel (Appendix E),

with second order autoregressive terms, neighboring voxel

readings and one-hot encoded visual task categories in the

design matrix. After applying the e-value feature selection,

we compute the F-statistic at each voxel using selected coef-

ficients only, and obtain their p-values. Fig. 7.1c highlights

voxels with p-values < 0.05. Left and right visual cortex

areas show high spatial dependence, with more dependence
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Figure 7.1. (a) Plot of t-statitics for Indian Monsoon data for features selected by at least one of the methods. Dashed lines indicate

standard Gaussian quantiles at tail probabilities 0.025 and 0.975, (b) Full vs. reduced model rolling forecast comparisons, and (c) fMRI

data: smoothed surface obtained from p-values show high spatial dependence in right optic nerve, auditory nerves and auditory cortex (top

left), left visual cortex (bottom right) and cerebellum (lower middle).

on the left side. Signals from the right visual field obtained

by both eyes are processed by the left visual cortex. The lop-

sided dependence pattern suggests that visual signals from

the right side led to a higher degree of processing in our

subject’s brain. We also see activity in the cerebellum, the

role of which in visual perception is well-known (Calhoun

et al., 2010; Kirschen et al., 2010).

8. Conclusion

In this work, we introduced a new paradigm of feature

selection through e-values. The e-values can be particularly

helpful in situations where model training is costly and

potentially distributed across multiple servers (i.e. federated

learning), so that a brute force parallelized approach of

training and evaluating multiple models is not practical or

even possible.

There are three immediate extensions of the framework

presented in this paper. Firstly, grouped e-values are of

interest to leverage prior structural information on the pre-

dictor set. There are no conceptual difficulties in evaluating

overlapping and non-overlapping groups of predictors us-

ing e-values in place of individual predictors. However

technical conditions may be required to ensure a rigorous

implementation. Secondly, our current formulation of e-

values essentially relies upon the number of samples being

more than the effective number of predictors for a unique co-

variance matrix of the parameter estimate to asymptotically

exist. When p > n, using a sure screening method to filter

out unnecessary variables works well empirically. How-

ever this needs theoretical validation. Thirdly, instead of

using mean depth, other functionals of the (empirical) depth

distribution—such as quantiles—can be used as e-values.

Similar to stability selection (Meinshausen & Buhlmann,

2010), it may be possible to use the intersection of predic-

tor sets obtained by using a number of such functionals in

Algorithm 2 as the final selected set of important predictors.

An effective implementation of e-values hinges on the

choice of bootstrap method and tuning parameter Än. To this

end, we see opportunity for enriching the research on em-

pirical process methods in complex overparametrized mod-

els, such as Deep Neural Nets (DNN), which the e-values

framework can build up on. Given the current push for in-

terpretability and trustworthiness of DNN-based decision

making systems, there is potential for tools to be developed

within the general framework of e-values that provide lo-

cal and global explanations of large-scale deployed model

outputs in an efficient manner.
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Appendix

A. Consistency of Generalized Bootstrap

We first state a number of conditions on the energy functions Èi(·, ·), under which we state and prove two results to ensure

consistency of the estimation and bootstrap approximation procedures. In the context of the main paper, the conditions and

results here ensure that the full model parameter estimate ¹̂∗ follows a Gaussian sampling distribution, and Generalized

Bootstrap (GBS) can be used to approximate this sampling distribution.

A.1. Technical conditions

Note that several sets of alternative conditions can be developed (Chatterjee & Bose, 2005; Lahiri, 1992), many of which are

amenable to our results. However, for the sake of brevity and clarity, we only address the case where the energy function

Èi(·, ·) is smooth in the first argument. This case covers a vast number of models routinely considered in statistics and

machine learning.

We often drop the second argument from energy function, thus for example Èi

(

¹
)

≡ Èi

(

¹, Zi

)

, and use the notation È̂ki for

Èki(¹̂∗), for k = 0, 1, 2. Also, for any function h(¹) evaluated at the true parameter value ¹∗, we use the notation h ≡ h(¹∗).
When A and B are square matrices of identical dimensions, the notation B < A implies that the matrix A−B is positive

definite.

In a neighborhood of ¹∗, we assume the functions Èi are thrice continuously differentiable in the first argument, with the

successive derivatives denoted by Èki, k = 0, 1, 2. That is, there exists a ¶ > 0 such that for any ¹ = ¹∗ + t satisfying

∥t∥ < ¶ we have

d

d¹
Èi(¹) := È0i(¹) ∈ R

p,

and for the a-th element of È0i(¹), denoted by È0i(a)(¹), we have

È0i(a)(¹) = È0i(a)(¹∗) + È1i(a)(¹∗)t+ 2−1tTÈ2i(a)(¹∗ + ct)t,

for a = 1, . . . p, and some c ∈ (0, 1) possibly depending on a. We assume that for each n, there is a sequence of Ã-fields

F1 ¢ F2 . . . ¢ Fn such that {
∑j

i=1 È0i(¹∗),Fj} is a martingale.

The spectral decomposition of Γ0n :=
∑n

i=1 EÈ0iÈ
T
0i is given by Γ0n = P0nΛ0nP

T
0n, where P0n ∈ R

p × R
p is an

orthogonal matrix whose columns contain the eigenvectors, and Λ0n is a diagonal matrix containing the eigenvalues of Γ0n.

We assume that Γ0n is positive definite, that is, all the diagonal entries of Λ0n are positive numbers. We assume that there is

a constant ¶0 > 0 such that ¼min(Γ0n) > ¶0 for sufficiently large n.

Let Γ1i(¹∗) be the p× p matrix whose a-th row is EÈ1i(a); we assume this expectation exists. Define Γ1n =
∑n

i=1 Γ1i(¹∗).
We assume that Γ1n is nonsingular for each n. The singular value decomposition of Γ1n is given by Γ1n = P1nΛ1nQ

T
1n,

where P1n, Q1n ∈ R
p × R

p are orthogonal matrices, and Λ1n is a diagonal matrix. We assume that the diagonal entries of

Λ1n are all positive, which implies that in the population, at the true value of the parameter the energy functional Ψn(¹∗)
actually achieves a minimal value. We define Λc

kn for various real numbers c as diagonal matrices where the j-th diagonal

entry of Λkn is raised to the power c, for k = 0, 1. Correspondingly, we define Γc
1n = P1nΛ

c
1nQ

T
1n. We assume that there is

a constant ¶1 > 0 such that ¼max(Γ
T
1nΓ1n) < ¶1 for all sufficiently large n. Define the matrix An = Γ

−1/2
0n Γ1n. We assume

the following conditions:

(C1) The minimum eigenvalue of AT
nAn tends to infinity. That is, there is a sequence an ↑ ∞ as n→∞ such that

¼min

(

Γ1nΓ
−1
0nΓ

T
1n

)

≍ a2n. (C.1)

(C2) There exists a sequence of positive reals {µn} that is bounded away from zero, such that

¼max

(

Γ−1
1nΓ

2
0nΓ

−T
1n

)

= o(µ−2
n ) as n→∞. (C.2)

(C3)

E

∥

∥

∥

∥

∥

A−1
n

(

n
∑

i=1

È1i − Γ1n

)

A−1
n

∥

∥

∥

∥

∥

2

F

= o(pµ−2
n ). (C.3)
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where ∥A∥F denotes the Frobenius norm of matrix A.

(C4) For the symmetric matrix È2i(a)(¹) and for some ¶2 > 0, there exists a symmetric matrix M2i(a) such that

sup
∥θ−θ∗∥<δ2

È2i(a)(¹) < M2i(a),

satisfying

p
∑

a=1

n
∑

i=1

E¼2max

(

M2i(a)

)

= o
(

a6nn
−1pµ−2

n

)

. (C.4)

(C5) For any vector c ∈ R
p with ∥c∥ = 1, we define the random variable Zni = −c

TΓ
−1/2
0n Èi for i = 1, . . . n. We assume

that

n
∑

i=1

Z2
ni

p
→ 1, and E

[

max
i
∥Zni∥

]

→ 0. (C.5)

(C6) Assume that

¼max

(

Γ1nΓ
−1
0nΓ

T
1n

)

≍ a2n. (C.6)

The technical conditions (C1)-(C5) are extremely broad, and allow for different rates of convergence of different parameter

estimators. The additional condition (C6) is a natural condition that, coupled with (C1), ensures identical rate of convergence

an for all the parameter estimators in a model.

Standard regularity conditions on likelihood and estimating functions that have been routinely assumed in the literature

are special cases of the framework above. In such cases, (C1)-(C6) hold with an ≡ n
1/2, resulting in the standard “root-n”

asymptotics.

A.2. Results

We first present the consistency and asymptotic normality of the estimation process in Theorem A.1 below.

Theorem A.1. Assume conditions (C1)-(C5). Then ¹̂∗ is a consistent estimator of ¹∗, and An(¹̂∗ − ¹∗) converges weakly to

the p-dimensional standard Gaussian distribution. Under the additional condition (C6), we have that an(¹̂∗− ¹∗) converges

weakly to a Gaussian distribution in p-dimension.

Proof of Theorem A.1. We consider a generic point ¹ = ¹∗ +A−1
n t. From the Taylor series expansion, we have

È0i(a)(¹) = È0i(a) + È1i(a)A
−1
n t+ 2−1tTA−T

n È2i(a)(¹̃∗)A
−1
n t,

for a = 1, . . . p, and ¹̃∗ = ¹∗ + cA−1
n t for some c ∈ (0, 1).

Recall our convention that for any function h(¹) evaluated at the true parameter value ¹∗, we use the notation h ≡ h(¹∗).
Also define the p-dimensional vector Rn(¹̃∗, t) whose a-th element is given by

Rn(a)(¹̃∗, t) = tTA−T
n

n
∑

i=1

È2i(a)(¹̃∗)A
−1
n t.

Thus we have

p−1/2A−1
n

n
∑

i=1

È0i(¹∗ +A−1
n t) = p−1/2A−1

n

n
∑

i=1

È0i + p−1/2A−1
n

n
∑

i=1

È1iA
−1
n t+ 2−1p−1/2A−1

n Rn(¹̃∗, t)

= p−1/2A−1
n

n
∑

i=1

È0i + p−1/2A−1
n Γ1nA

−1
n t

+ p−1/2A−1
n

(

n
∑

i=1

È1i − Γ1n

)

A−1
n t

+ 2−1p−1/2A−1
n Rn(¹̃∗, t).
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Fix ϵ > 0. We first show that there exists a C0 > 0 such that

P

[

∥

∥p−1/2A−1
n

n
∑

i=1

È0i

∥

∥ > C0

]

< ϵ/2. (A.7)

For this, we compute

p−1
E
∥

∥A−1
n

n
∑

i=1

È0i

∥

∥

2
= p−1

E

n
∑

i,j=1

ÈT
0iA

−T
n A−1

n È0j

= p−1tr

(

A−T
n A−1

n E

n
∑

i=1

È0iÈ
T
0i

)

= p−1tr
(

A−T
n A−1

n Γ0n

)

= O(1)

from assumption (C.2).

Define

Sn(t) = p−1/2A−1
n

(

n
∑

i=1

È0i(¹∗ +A−1
n t)−

n
∑

i=1

È0i

)

− p−1/2Γ−1
1nΓ0nt.

We next show that for any C > 0, for all sufficiently large n, we have

E

[

sup
∥t∥fC

∥

∥Sn(t)
∥

∥

]2

= o(1). (A.8)

This follows from (C.3) and (C.4). Note that

Sn(t) = p−1/2A−1
n

(

n
∑

i=1

È1i − Γ1n

)

A−1
n t+ 2−1p−1/2A−1

n Rn(¹̃n, t).

Thus,

sup
∥t∥fC

∥

∥Sn(t)
∥

∥ f p−1/2 sup
∥t∥fC

∥

∥A−1
n

(

n
∑

i=1

È1i − Γ1n

)

A−1
n t
∥

∥+ 2−1p−1/2 sup
∥t∥fC

∥

∥A−1
n Rn(¹̃∗, t)

∥

∥.

We consider each of these terms separately.

For any matrix M ∈ R
p × R

p, we have

sup
∥t∥fC

∥

∥Mt
∥

∥ = sup
∥t∥fC

[

p
∑

i=1

(

p
∑

j=1

Mijtj
)2
]1/2

f sup
∥t∥fC

[

p
∑

i=1

p
∑

j=1

M2
ij

p
∑

j=1

t2j

]1/2

=
∥

∥M
∥

∥

F
sup

∥t∥fC

∥t∥ = C
∥

∥M
∥

∥

F
.

Using M = A−1
n

(
∑n

i=1 È1i − Γ1n

)

A−1
n and (C.3), we get one part of the result.

For the other term, we similarly have

[

sup
∥t∥fC

∥

∥p−1/2A−1
n Rn(¹̃∗, t)

∥

∥

]2

= p−1 sup
∥t∥fC

∥

∥A−1
n Rn(¹̃∗, t)

∥

∥

2

f p−1¼max

(

A−T
n A−1

n

)

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

2

f p−1¼max

(

A−1
n A−T

n

)

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

2

f p−1a−2
n sup

∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

2
.
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Note that

(

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

)2
= sup

∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

2
.

Now

∥

∥Rn(¹̃∗, t)
∥

∥

2
=

p
∑

a=1

(

R∗n(a)(¹̃∗, t)
)2

=

p
∑

a=1

(

tTA−T
n

n
∑

i=1

È2i(a)(¹̃∗)A
−1
n t
)2

=

p
∑

a=1

n
∑

i,j=1

tTA−T
n È2i(a)(¹̃∗)A

−1
n ttTA−T

n È2j(a)(¹̃∗)A
−1
n t.

Based on this, we have

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

2
= sup

∥t∥fC

p
∑

a=1

n
∑

i,j=1

tTA−T
n È2i(a)(¹̃∗)A

−1
n ttTA−T

n È2∗nj(a)(¹̃∗)A
−1
n t

f sup
∥t∥fC

p
∑

a=1

n
∑

i,j=1

tTA−T
n M2i(a)A

−1
n ttTA−T

n M2j(a)A
−1
n t

f sup
∥t∥fC

∥

∥A−1
n t
∥

∥

4
p
∑

a=1

(

n
∑

i=1

¼max

(

M2i(a)

)

)2

f C4n¼2max

(

A−T
n A−1

n

)

p
∑

a=1

n
∑

i=1

¼2max

(

M2i(a)

)

.

Putting all these together, we have

E

[

sup
∥t∥fC

∥

∥p−1/2A−1
n Rn(¹̃∗, t)

∥

∥

]2

= p−1
E

[

sup
∥t∥fC

A−1
n Rn(¹̃∗, t)

]2

f p−1a−2
n E

[

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

]2

= O
(

p−1a−2
n

)

E

[

sup
∥t∥fC

∥

∥Rn(¹̃∗, t)
∥

∥

]2

= O
(

p−1na−6
n

)

p
∑

a=1

n
∑

i=1

E¼2max

(

M2ni(a)

)

= o(1),

using (C.4).

Since we have defined

Sn(t) = p−1/2A−1
n

(

n
∑

i=1

È0i(¹∗ +A−1
n t)−

n
∑

i=1

È0i

)

− p−1/2Γ−1
1nΓ0nt,

we have

p−1/2A−1
n

n
∑

i=1

È0i(¹∗ + p1/2A−1
n t) = Sn(t) + p−1/2A−1

n

n
∑

i=1

È0i +A−1
n Γ1nA

−1
n t.
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Hence

inf
∥t∥=C

{

p−1/2tTΓ1nA
−1
n

n
∑

i=1

È0i(¹∗ + p1/2A−1
n t)

}

= inf
∥t∥=C

{

tTΓ1nSn(t) + p−1/2tTΓ1nA
−1
n

n
∑

i=1

È0i + tTΓ1nA
−1
n Γ1nA

−1
n t
}

g inf
∥t∥=C

tTΓ1nSn(t) + p−1/2 inf
∥t∥=C

tTΓ1nA
−1
n

n
∑

i=1

È0i + inf
∥t∥=C

tTΓ1nA
−1
n Γ1nA

−1
n t

g −C¶
1/2
1 sup

|t|=C

|Sn(t)| − C¶
1/2
1 p−1/2∥A−1

n

n
∑

i=1

È0i∥+ C2¶0.

The last step above utilizes facts like aT b g −∥a∥∥b∥. Consequently, defining C1 = C¶0/¶
1/2
1 , we have

P

[

inf
∥t∥=C

{

tTΓ1nA
−1
n

n
∑

i=1

È0i(¹∗ + p1/2A−1
n t)

}

< 0
]

f P

[

sup
∥t∥=C

|Sn(t)|+ |A
−1
n

n
∑

i=1

È0i| > C1

]

f P

[

sup
∥t∥=C

∥

∥Sn(t)
∥

∥ > C1/2
]

+ P

[

∥

∥A−1
n

n
∑

i=1

È0i

∥

∥ > C1/2
]

< ϵ,

for all sufficiently large n, using (A.7) and (A.8). This implies that with a probability greater than 1 − ϵ there is a root

Tn of the equations
∑n

i=1 È0i(¹∗ + A−1
n t) in the ball {∥t∥ < C}, for some C > 0 and all sufficiently large n. Defining

¹̂∗ = ¹∗ +A−1
n Tn, we obtain the desired result. Issues like dependence on ϵ and other technical details are handled using

standard arguments, see Chatterjee & Bose (2005) for related arguments.

Since we have sup∥t∥<C ∥Sn(t)∥ = oP (1), and Tn lies in the set ∥t∥ < C, define −Rn = SnTn = oP (1). Consequently

−Rn = SnTn

= p−1/2A−1
n

(

n
∑

i=1

È0i(¹∗ +A−1
n Tn)−

n
∑

i=1

È0i

)

− p−1/2Γ−1
1nΓ0nTn

= p−1/2A−1
n

n
∑

i=1

È0i − p
−1/2Γ−1

1nΓ0nTn.

Thus,

Tn = −Γ−1
0nΓ1nA

−1
n

n
∑

i=1

È0i + p1/2Γ−1
0nΓ1nRn = −Γ

−1/2
0n

n
∑

i=1

Ψ0i + p1/2Γ−1
0nΓ1nRn.

Note that our conditions imply that for any c with ∥c∥ = 1, we have that cTTn has two terms, where

V
(

−cTΓ
−1/2
0n

∑n
i=1 È0i

)

= 1 and

E
[

p1/2cTΓ−1
0nΓ1nRn

]2
= O(1),

using (C.2). Using (C.5) we also have that for any c with ∥c∥ = 1, cTTn converges in distribution toN(0, 1). This completes

the proof.

We now have a parallel result on consistency of the GBS resampling scheme. The essence of this theorem is that under

the same set of conditions, several resampling schemes are consistent resampling procedures to implement the e-values

framework.
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Theorem A.2. Assume conditions (C1)-(C5). Additionally, assume that the resampling weights Wrni are exchangeable

random variables satisfying the conditions (4.2). Define B̂n = µnÄ
−1
n Γ̂

1/2
0n Γ̂−1

1n , where Γ̂0n and Γ̂1n are sample equivalents

of Γ0n and Γ1n, respectively. Conditional on the data, B̂n(¹̂r∗ − ¹̂∗) converges weakly to the p-dimensional standard

Gaussian distribution in probability.

Under the additional condition (C6), defining bn = µnÄ
−1
n an, the distributions of an(¹̂∗ − ¹∗) and bn(¹̂r∗ − ¹̂∗) converge

to the same weak limit in probability.

Proof of Theorem A.2. This proof has steps similar to that of the proof of Theorem A.1, apart from several additional

technicalities. We omit the details.

B. Theoretical proofs

The results in Section 5 hold under more general conditions than in the main paper–specifically, when the asymptotic

distribution of ˆ́
∗ comes from a general class of elliptic distributions, rather than simply being multivariate Gaussian.

Following Fang et al. (1990), the density function of an elliptically distributed random variable E(µ,Σ, g) takes the form:

h(x;µ,Σ) = |Σ|−1/2g((x − µ)TΣ−1(x − µ)) where µ ∈ R
p, Σ ∈ R

p×p is positive semi-definite, and g is a density

function that is non-negative, scalar-valued, continuous and strictly increasing. For the asymptotic distribution of ˆ́
∗, we

assume the following conditions:

(A1) There exist a sequence of positive reals an ↑ ∞, positive-definite (PD) matrix V ∈ R
p×p and density g such that

an(¹̂∗ − ¹0) converges to E(0p, V, g) in distribution, denoted by an(¹̂∗ − ¹0)⇝ E(0p, V, g);
(A2) For almost every dataset Zn, There exist PD matrices Vn ∈ R

p×p such that plimn→∞Vn = V .

These conditions are naturally satisfied for a Gaussian limiting distribution.

B.1. Proofs of main results

Proof of Theorem 5.1. We divide the proof into four parts:

1. ordering of adequate model e-values,

2. convergence of all adequate model e-values to a common limit,

3. convergence of inadequate model e-values to 0,

4. comparison of adequate and inadequate model e-values,

Proof of part 1. Since we are dealing with a finite sequence of nested models, it is enough to prove that en(M1) > en(M2)
for large enough n, when bothM1 andM2 are adequate models andM1 zM2.

Suppose T0 = E(0p, Ip, g). Affine invariance implies invariant to rotational transformations, and since the evaluation

functions we consider decrease along any ray from the origin because of (B5), E(¹,T0) is a monotonocally decreasing

function of ∥¹∥ for any ¹ ∈ R
p. Now consider the modelsM0

1,M
0
2 that have 0 in all indices outside S1 and S2, respectively.

Take some ¹10 ∈ Θ0
1, which is the parameter space corresponding toM0

1, and replace its (zero) entries at indices j ∈ S2 \S1
by some non-zero ¶ ∈ R

p−|S2\S1|. Denote it by ¹1δ . Then we shall have

¹T1δ¹1δ > ¹T10¹10 ⇒ D(¹10,T0) > D(¹1δ,T0) ⇒ Es1D(¹10,T0) > Es1D(¹1δ,T0),

where Es1 denotes the expectation taken over the marginal of the distributional argument T0 at indices S1. Notice now that

by construction ¹1δ ∈ Θ0
2, the parameter space corresponding toM0

2, and since the above holds for all possible ¶, we can

take expectation over indices S2 \ S1 in both sides to obtain Es1D(¹10,T0) > Es2D(¹20,T0), with ¹20 denoting a general

element in Θ20.

Combining (A1) and (A2) we get anV
−1/2
n (¹̂∗ − ¹0) ⇝ T0. Denote Tn = [anV

−1/2
n (¹̂∗ − ¹0)], and choose a positive

ϵ < (Es1D(¹10,T0)− Es2D(¹20,T0))/2. Then, for large enough n we shall have

|D(¹10,Tn)−D(¹10,T0)| < ϵ ⇒ |Es1D(¹10,Tn)− Es1D(¹10,T0)| < ϵ,

following condition (B4). Similarly we have |Es2D(¹20,Tn) − Es2D(¹20,T0)| < ϵ for the same n for which the above

holds. This implies Es1D(¹10,Tn) > Es2D(¹20,Tn).
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Now apply the affine transformation t(¹) = V
1/2
n ¹/an+¹0 to both arguments of the depth function above. This will keep the

depths constant following affine invariance, i.e. D(t(¹10), [¹̂∗]) = D(¹10,Tn) andD(t(¹20), [¹̂∗]) = D(¹20,Tn). Since this

transformation maps Θ0
1 to Θ1, the parameter space corresonding toM1, we get Es1D(t(¹10), [¹̂∗]) > Es2D(t(¹20), [¹̂∗]),

i.e. en(M1) > en(M2).

Proof of part 2. For the full modelM∗, an(¹̂∗ − ¹0)⇝ Ep(0, V, g) by (A1). It follows now from a direct application of

condition (B3) that en(M∗)→ E(Y, [Y ] where Y ∼ E(0p, V, g).

For any other adequate modelM, we use (B1) property of D:

D(¹̂m, [¹̂∗]) = D
(

¹̂m − ¹0,
[

¹̂0 − ¹0
]

)

, (B.1)

and decompose the first argument

¹̂m − ¹0 = (¹̂m − ¹̂∗) + (¹̂∗ − ¹0). (B.2)

We now have

¹̂m = ¹m + a−1
n Tmn,

¹̂∗ = ¹∗ + a−1
n T∗n,

where Tmn is non-degenerate at the indices S , and T∗n ⇝ E(0p, V, g). For the first summand of the right-hand side in (B.2)

we then have

¹̂m − ¹̂∗ = ¹m − ¹0 +Rn, (B.3)

where E∥R2
n∥ = O(a−2

n ), and ¹mj equals ¹0j in indices j ∈ S and Cj elsewhere. SinceM is adequate, ¹m = ¹0. Thus,

substituting the right-hand side in (B.2) we get
∣

∣

∣
D
(

¹̂m − ¹0,
[

¹̂∗ − ¹0
])

−D
(

¹̂∗ − ¹0,
[

¹̂∗ − ¹0
])∣

∣

∣
f ∥Rn∥

α, (B.4)

from Lipschitz continuity of D(·) given in (B2). Part 2 now follows.

Proof of Part 3. Since the depth function D is invariant under location and scale transformations, we have

D(¹̂m, [¹̂∗]) = D
(

an(¹̂m − ¹0),
[

an(¹̂∗ − ¹0)
]

)

. (B.5)

Decomposing the first argument,

an(¹̂m − ¹0) = an(¹̂m − ¹m) + an(¹m − ¹0). (B.6)

SinceM is inadequate,
∑

j /∈S |Cj − ¹0j | > 0, i.e. ¹m and ¹0 are not equal in at least one (fixed) index. Consequently as

n→∞, ∥an(¹m − ¹0)∥ → ∞, thus en(M)→ 0 by condition (B4).

Proof of part 4. For any inadequate modelMj , k < j f K, supposeNj is the integer such that en1
(Mj1) < en1

(M∗) for

all n1 > Nj . Part 3 above ensures that such an integer exists for every inadequate model. Now define N = maxk<jfK Nj .

Thus en1
(M∗) is larger than e-values of all inadequate modelsMj1 for k < j f K.

Proof of Corollary 5.2. By construction,M0 is nested in all other adequate models in M0. Hence Theorem 4.1 implies

en(M0) > en(M
ad) > en(M

inad) for any adequate modelMad and inadequate modelMinad in M0 and large enough

n.

Proof of Corollary 5.3. Consider j ∈ S0. Then ¹0 /∈M−j , henceM−j is inadequate. By choice of n1 from Corollary 4.1,

e-values of all inadequate models are less than that ofM∗, hence en1
(M−j) < en1

(M∗).

On the other hand, suppose there exists a j such that en1
(M−j) f en1

(M∗) but j /∈ S0. Now j /∈ S0 means that

M−j is an adequate model. SinceM−j is nested withinM∗ for any j, and the full model is always adequate, we have

en1
(M−j) > en1

(M∗) by Theorem 4.1: leading to a contradiction and thus completing the proof.
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Proof of Theorem 5.4. Corollary 4.2 implies that

S0 = {j : en(M−j) < en(M∗)}.

Now define S̄0 = {j : ern(M−j) < ern(M∗)}. We also use an approximation result.

Lemma B.1. For any adequate modelM, the following holds for fixed n and an exchangeable array of GB resamples Wr

as in the main paper:

ern = en(M) +Rr, Er|Rr|
2 = oP (1). (B.7)

Using Lemma B.1 forM−j andM∗ we now have

ern(M−j) = en(M−j) +Rrj ,

ern(M∗) = en(M∗) +Rr∗,

such that Er|Rr∗|
2 = oP (1) and Er|Rrj |

2 = oP (1) for all j. Hence P1(S̄0 = S0) → 1 as n → ∞, P1 being probability

conditional on the data. Similarly one can prove that the probability conditional on the bootstrap samples that S̄0 = Ŝ0
holds goes to 1 as R,R1 →∞, completing the proof.

B.2. Proofs of auxiliary results

Proof of Lemma B.1. We decompose the resampled depth function as

D
(

¹̂r1m, [¹̂r∗]
)

= D
(an
Än

(

¹̂r1m − ¹̂∗
)

,

[

an
Än

(

¹̂r∗ − ¹̂∗
)

]

)

= D
(an
Än

(

¹̂r1m − ¹̂m
)

−
an
Än

(

¹̂m − ¹̂∗
)

,

[

an
Än

(

¹̂r∗ − ¹̂∗
)

]

)

.

Conditional on the data, (an/Än)(¹̂r1m−¹̂m) has the same weak limit as an(¹̂m−¹m), and the same holds for (an/Än)(¹̂r1∗−

¹̂∗) and an(¹̂∗ − ¹∗). Now (B.3) and Än →∞ combine to give

an
Än

(

¹̂m − ¹̂∗
) P
→ 0,

as n→∞. Lemma B.1 follows directly now.

C. Details of experiments

Among the competing methods, for stepwise regression there is no tuning. MIO requires specification of a range of desired

sparsity levels and a time limit for the MIO solver to run for each sparsity level in the beginning. We specify the sparsity

range to be {1, 3, . . . , 29} in all settings to cover the sparsity levels across different simulation settings, and the time limit to

be 10 seconds. We select the optimal MIO sparsity level as the one for which the resulting estimate gives the lowest BIC.

We use BIC to select the optimal regularization parameter for Lasso and SCAD as well. The Knockoff filters come in two

flavors: Knockoff and Knockoff+. We found that Knockoff+ hardly selects any features in our settings, so use the Knockoffs

for evaluation, setting its false discovery rate threshold at the default value of 0.1. We shall include these details in the

appendix.

D. Details of Indian Monsoon data

Various studies indicate that our knowledge about the physical drivers of precipitation in India is incomplete; this is in

addition to the known difficulties in modeling precipitation itself (Knutti et al., 2010; Trenberth et al., 2003; Trenberth, 2011;

Wang et al., 2005). For example, (Gosswami, 2005) discovered an upward trend in frequency and magnitude of extreme

rain events, using daily central Indian rainfall data on a 10◦ × 12◦ grid, but a similar study on a 1◦ × 1◦ gridded data by

(Ghosh et al., 2016) suggested that there are both increasing and decreasing trends of extreme rainfall events, depending on

the location. Additionally, (Krishnamurthy et al., 2009) reported increasing trends in exceedances of the 99th percentile
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Figure E.1. (Top) Plot of significant p-values at 95% confidence level at the specified cross-sections; (bottom) a smoothed surface obtained

from the p-values clearly shows high spatial dependence in right optic nerve, auditory nerves, auditory cortex and left visual cortex areas

of daily rainfall; however, there is also a decreasing trend for exceedances of the 90th percentile data in many parts of

India. Significant spatial and temporal variabilities at various scales have also been discovered for Indian Monsoon (Dietz &

Chatterjee, 2014; 2015).

We attempt to identify the driving factors behind precipitation during the Indian monsoon season using our e-value based

feature selection technique. Data is obtained from the repositories of the National Climatic Data Center (NCDC) and

National Oceanic and Atmospheric Administration (NOAA), for the years 1978-2012. We obtained data 35 potential

predictors of the Indian summer precipitation:

(A) Station-specific: (from 36 weather stations across India) Latitude, longitude, elevation, maximum and minimum

temperature, tropospheric temperature difference (∆TT ), Indian Dipole Mode Index (DMI), Niño 3.4 anomaly;

(B) Global:

• u-wind and v-wind at 200, 600 and 850 mb;

• Ten indices of Madden-Julian Oscillations: 20E, 70E, 80E, 100E, 120E, 140E, 160E, 120W, 40W, 10W;

• Teleconnections: North Atlantic Oscillation (NAO), East Atlantic (EA), West Pacific (WP), East Pacific/North Pacific

(EPNP), Pacific/North American (PNA), East Atlantic/Western Russia (EAWR), Scandinavia (SCA), Tropical/Northern

Hemisphere (TNH), Polar/Eurasia (POL);

• Solar Flux;

• Land-Ocean Temperature Anomaly (TA).

These covariates are all based on existing knowledge and conjectures from the actual Physics driving Indian summer

precipitations. The references provided earlier in this section, and multiple references contained therein may be used for

background knowledge on the physical processes related to Indian monsoon rainfall, which after decades of study remains

one of the most challenging problems in climate science.

E. Details of fMRI data implementation

Typically, the brain is divided by a grid into three-dimensional array elements called voxels, and activity is measured at each

voxel. More specifically, a series of three-dimensional images are obtained by measuring Blood Oxygen Level Dependent

(BOLD) signals for a time interval as the subject performs several tasks at specific time points. A single fMRI image

typically consists of voxels in the order of 105, which makes even fitting the simplest of statistical models computationally

intensive when it is repeated for all voxels to generate inference, e.g. investigating the differential activation of brain region

in response to a task.

The dataset we work with comes from a recent study involving 19 test subjects and two types of visual tasks (Wakeman &

Henson, 2015). Each subject went through 9 runs, in which they were showed faces or scrambled faces at specific time

points. In each run 210 images were recorded in 2 second intervals, and each 3D image was of the dimension of 64×64×33,
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which means there were 135,168 voxels. Here we use the data from a single run on subject 1, and perform a voxelwise

analysis to find out the effect of time lags and BOLD responses at neighboring voxels on the BOLD response at a voxel.

Formally we consider separate models at voxel i ∈ {1, 2, ..., V }, with observations across time points t ∈ {1, 2, ..., T}.

Clubbing together the stimuli, drift, neighbor and autoregressive terms into a combined design matrix X̃ =
(x̃(1)T , ..., x̃(T )T )T and coefficient vector ¹i, we can write yi(t) = x̃(t)T ¹i + ϵi(t). We estimate the set of non-zero

coefficients in ¹i using the e-value method. Suppose this set is Ri, and its subsets containing coefficient corresponding to

neighbor and non-neighbor (i.e. stimuli and drift) terms are Si and Ti, respectively. To quantify the effect of neighbors we

now calculate the corresponding F -statistic:

Fi =
(
∑

n∈Si
x̃i,n¹̂i,n)

2

(yi(t)−
∑

n∈Ti
x̃i,n¹̂i,n)2

|n− Ti|

|Si|
,

and obtain its p-value, i.e. P (Fi g F|Si|,|n−Ti|).

Figure E.1 shows plots of the voxels with a significant p-value from the above F -test, with a darker color associated

with lower p-value, as opposed to the smoothed surface in the main paper. Most of the significant terms were due to the

coefficients corresponding to neighboring terms. A very small proportion of voxels had any autoregressive effects selected

(less than 1%), and most of them were in regions of the image that were outside the brain, indicating noise.

In future work, we aim to expand on the encouraging findings and repeat the procedure on other individuals in the study.

An interesting direction here is to include subject-specific random effects and correlate their clinical outcomes (if any) to

observed spatial dependency patterns in their brain.


