
Distributed Experimental Design Networks
Yuanyuan Li,1 Lili Su,1 Carlee Joe-Wong,2 Edmund Yeh,1 and Stratis Ioannidis1

1Northeastern University, 2Carnegie Mellon University,
Email: yuanyuanli@ece.neu.edu, l.su@northeastern.edu, cjoewong@andrew.cmu.edu, {eyeh, ioannidis}@ece.neu.edu

Abstract—As edge computing capabilities increase, model
learning deployments in diverse edge environments have emerged.
In experimental design networks, introduced recently, network
routing and rate allocation are designed to aid the transfer
of data from sensors to heterogeneous learners. We design
efficient experimental design network algorithms that are (a)
distributed and (b) use multicast transmissions. This setting
poses significant challenges as classic decentralization approaches
often operate on (strictly) concave objectives under differentiable
constraints. In contrast, the problem we study here has a non-
convex, continuous DR-submodular objective, while multicast
transmissions naturally result in non-differentiable constraints.
From a technical standpoint, we propose a distributed Frank-
Wolfe and a distributed projected gradient ascent algorithm that,
coupled with a relaxation of non-differentiable constraints, yield
allocations within a 1 − 1/e factor from the optimal. Numeri-
cal evaluations show that our proposed algorithms outperform
competitors with respect to model learning quality.

Index Terms—Experimental Design, DR-submodularity,
Bayesian linear regression, Distributed algorithm.

I. INTRODUCTION

We study experimental design networks, as introduced by
Liu at al. [1]. In these networks, illustrated in Fig. 1, learners
and data sources are dispersed across different locations in
a network. Learners receive streams of data collected from
the sources, and subsequently use them to train models. We
are interested in rate allocation strategies that maximize the
quality of model training at the learners, subject to network
constraints. This problem is of practical significance. For
instance, in a smart city [2], [3], various sensors capture, e.g.,
image, temperature, humidity, traffic, and seismic measure-
ments, which can help forecast transportation traffic, the spread
of disease, pollution levels, the weather, etc. Distinct, dispersed
public service entities, e.g., a transportation authority, an en-
ergy company, the fire department, etc., may perform different
training and prediction tasks on these data streams.

Even though the resulting optimization of rate allocations is
non-convex, Liu et al. [1] provide a polynomial-time (1−1/e)-
approximation algorithm, exploiting a useful property of the
learning objective, namely, continuous DR-submodularity [4],
[5]. Though [1] lays a solid foundation for studying this
problem, the algorithm proposed suffers from several limi-
tations. First, it is centralized, and requires a full view of
network congestion conditions, demand, and learner utilities.
This significantly reduces scalability when the number of
sources and learners are large. In addition, it uses unicast
transmissions between sources and learners. In practice, this
significantly under-utilizes network resources when learner
interests in data streams overlap.

acoustic

seismic

radar

video

learner

source
�

Fig. 1: An experimental design network [1]. Sources (yellow)
generate streams of data from diverse sensors, e.g., cameras, micro-
phones, seismic sensors, etc. Learners (blue) train distinct models
over (possibly overlapping) received data. We wish to allocate band-
width to data traffic in a manner that maximizes the social welfare,
i.e., the aggregate quality of models across learners.

In this paper, we aim to design efficient algorithms that are
(a) distributed and (b) use multicast transmission. Achieving
this goal is far from trivial. First, classic decentralization
approaches, such as, primal-dual algorithms [6]–[8], often op-
erate on (strictly) concave objectives. In contrast, the problem
we study here has a non-concave, continuous DR-submodular
objective. Second, multicast transmissions naturally result in
non-differentiable constraints (see [7], [9], but also Eqs. (4)
and (6) in Sec. III). This further hinders standard decentral-
ization techniques. Our contributions are as follows:

• We incorporate multicast transmissions to experimental
design networks. This is more realistic when learning
jointly from common sensors, and yields a significantly
higher throughput in comparison to unicast transmissions.

• We prove that, assuming Poisson data streams in steady
state and Bayesian linear regression as a learning task,
as in [1], our experimental design objective remains
continuous DR-submodular.

• We construct both centralized and distributed algorithms
within a 1 − 1/e factor from the optimal in this setting.
For the latter, we make use of a primal dual technique
that addresses both the non-differentiability of constituent
multicast constraints, as well as the lack of strict convex-
ity exhibited by our problem.

• We conduct extensive simulations over both synthetic and
backbone network topologies. Our proposed algorithms
outperform all competitors w.r.t. the quality of model
estimation, and our distributed algorithms perform closely
to their centralized versions.

From a technical standpoint, we couple the Frank-Wolfe

algorithm by Bian et al. [4], also used by Liu et al. [1],
with a nested distributed step; the latter deals with the non-
differentiability of multicast constraints through an lp relax-
ation of the max norm. We also implement two additional
extensions sketched out by Liu et al. [1]: we consider (a)
Gaussian data sources, that are (b) subject to heterogeneous
noise. We incorporate both in our mathematical formulation
and theoretically and experimentally characterize performance
under these extensions. Gaussianity requires revisiting how
gradient estimation is performed, compared to Liu et al., as
well as devising new estimation bounds.

The remainder of this paper is organized as follows. Sec. II
provides a literature review. We introduce our distributed
model in Sec. III. Sec. IV describes our analysis of the problem
and proposed centralized algorithm, while Sec. V describes
our distributed algorithm. We propose additional distributed
algorithms in Sec. VI. We present numerical experiments in
Sec. VII, and conclude in Sec. VIII.

II. RELATED WORK

Experimental Design. As discussed by Liu et al. [1], experi-
mental design is classic under a single user with an experiment
budget constraint [10], [11], while the so-called D-Optimality
criterion is a popular objective [12]–[16]. Liu et al. [1] are
the first to extend this objective to the context of experimental
design networks. As discussed in the introduction, we deviate
from Liu et al. by proposing a decentralized algorithm and
considering multicast transmissions; both are practically im-
portant and come with technical challenges. Liu et al. make
additional restrictive assumptions, including, e.g., that data
samples come from a finite set and that labeling noise is
homogeneous across sources, but mention that their analysis
could be extended to amend these assumptions. We implement
this extension by considering Gaussian sources and noise
heteroskedasticity, and proving gradient estimation bounds
using appropriate Chernoff inequalities (see, e.g., Lem. 1).
Submodular Maximization. Submodularity is traditionally
explored within the context of set functions [17], but can also
be extended to functions over the integer lattice [5] and the
continuous domain [4]. Maximizing a monotone submodular
function subject to a matroid constraint is classic. Krause and
Golovin [18] show that the greedy algorithm achieves a 1/2
approximation ratio. Calinescu et al. [17] propose a continuous
greedy algorithm improving the ratio to 1− 1/e that applies a
Frank-Wolfe (FW) [19] variant to the multilinear extension of
the submodular objective. With the help of auxiliary potential
functions, Bian et al. [4] show that the same FW variant can be
used to maximize continuous DR-submodular functions within
a 1 − 1/e ratio. The centralized algorithm by Liu et al. [1],
and ours, are applications of the FW variant [4]; in both cases,
recovering their guarantees requires devising novel gradient
estimators and bounding their estimation accuracy. We also
depart by considering a distributed version of this algorithm,
where each node accesses only neighborhood knowledge.
Convergence of Primal-Dual Algorithms. Nedić and
Ozdaglar [20] propose a subgradient algorithm for generating

approximate saddle-point solutions for a convex-concave func-
tion. Assuming Slater’s condition and bounded Lagrangian
gradients, they provide bounds on the primal objective func-
tion. Alghunaim and Sayed [21] prove linear convergence
for primal-dual gradient methods. The methods apply to aug-
mented Lagrangian formulations, whose primal objective is
smooth and strongly convex under equality constraints (ours
are inequality constraints). Lyapunov equations are usually
employed for a continuous version of the primal-dual gradient
algorithm [7]; this requires objectives to be strictly concave.
Feijer and Paganini [22] prove the stability of primal–dual gra-
dient dynamics with concave objectives through Krasovskii’s
method and the LaSalle invariance principle. We follow [22]
to ensure convergence of our decentralized algorithm.
Distributed Algorithms. Distributed algorithms for the max-
imization of strictly concave objectives under separable con-
straints are classic (see, e.g., [6], [7], [9], [23]). Our objective
is continuous DR-submodular; thus, these methods do not
directly extend to our setting. Tychogiorgos et al. [24] pro-
vide the theoretical foundations for distributed dual algorithm
solution of non-convex problems. Mokhtari et al. [25] pro-
pose a partially decentralized continuous greedy algorithm for
DR-submodular maximization subject to down-closed convex
constraints and prove a 1 − 1/e guarantee. However, the
conditional gradient update step they propose requires global
information and remains centralized. Our analysis requires
combining above techniques, with the (centralized) Frank-
Wolfe variant by Bian et al. [4], which yields a 1 − 1/e
approximation guarantee. Doing so requires dealing with both
the lack of strict convexity of the constituent problem, as well
as the non-differentiability of multicast constraints.

III. PROBLEM FORMULATION

Our model, and its exposition below, follows closely Liu
et al. [1]: for consistency, we use the same notation and
terminology. We depart in multiple ways. First and foremost,
we (a) seek a distributed algorithm determining the rate
allocation, which requires knowledge only from itself and
its neighbourhoods, while the centralized algorithm requires
global information, and (b) we extend the analysis from
unicast to multicast, allowing sharing of the same traffic across
learners, thereby increasing throughput. Several potential ex-
tensions drafted by Liu et al. [1] are implemented: we (c)
generate features from Gaussian sources instead of a finite set,
changing subscripts of variables from feature x to source s,
(d) adopt source instead of hop-by-hop routing, which changes
the optimized random variables, leading to a general directed
graph instead of a DAG (directed acyclic graph), and (f)
incorporate heterogeneous noise over source s and types t
instead of homogeneous constant noise.
Network. We model the system as a multi-hop network with
a topology represented by a directed graph G(V, E), where V
is the set of nodes and E ⊂ V×V is the set of links. Each link
e = (u, v) ∈ E has a link capacity µe ≥ 0. Sources S ⊂ V
generate data streams, while learners L ⊂ V reside at sinks.

Data Sources. Each data source s ∈ S generates a sequence of
labeled pairs (x, y) ∈ Rd×R of type t according to a Poisson
process of rate λs,t ≥ 0, corresponding to measurements or
experiments the source conducts (each pair is a new measure-
ment). Intuitively, features x correspond to covariates in an
experiment (e.g., pixel values in an image, etc.), label types
t ∈ T correspond to possible measurements (e.g., temperature,
radiation level, etc.), and labels y correspond to the actual
measurement value collected (e.g., 23◦C).

The generated data follows a linear regression model [26],
[27], i.e., for every type t ∈ T from source s ∈ S , there
exists a βt ∈ Rd such that y = x⊤βt + ϵs,t where ϵs,t ∈
R are i.i.d. zero mean normal noise variables with variance
σ2
s,t > 0. Departing from Liu et al. [1], but also from classic

experimental design [10], where s samples feature vectors x ∈
Rd from a finite set, we assume that they are sampled from a
Gaussian distribution N(0,Σs). Again in contrast to [1], we
allow for heterogeneous (also known as heteroskedastic) noise
levels σs,t across both sources and experiment types.
Learners and Bayesian Linear Regression. Each learner
ℓ ∈ L wishes to learn a model βtℓ for some type tℓ ∈ T , via
Bayesian linear regression. In particular, each ℓ has a Gaussian
prior N(βℓ

0,Σ
ℓ
0) on the model βtℓ it wishes to estimate.

We assume that the system operates for a data acquisition
time period T . Let nℓ

s ∈ N be the cumulative number of
pairs (x, y) from source s collected by learner ℓ during this
period, and nℓ = [nℓ

s]s∈S the vector of arrivals at learner
ℓ from all sources. We denote by xℓ

s,i, yℓs,i the i-th feature
and label generated from source s to reach learner ℓ, and
Xℓ = [[xℓ

s,i]
nℓ
s

i=1]s∈S , yℓ = [[yℓs,i]
nℓ
s

i=1]s∈S the feature matrix
and label vector, respectively, received at learner ℓ up to time
T . Then, maximum a posterior (MAP) estimation [1], [27] at
learner ℓ amounts to:

β̂
ℓ

MAP = ((Xℓ)⊤(Σ̃
ℓ
)−1Xℓ + (Σℓ

0)
−1)−1·

((Xℓ)⊤(Σ̃
ℓ
)−1yℓ + (Σℓ

0)
−1βℓ

0),
(1)

where Σ̃
ℓ
= Rnℓ×nℓ

is a diagonal noise covariance matrix,
containing corresponding source noise covariances σ2

s,tℓ in its
diagonal. The quality of this estimator is determined by the
error covariance [27], i.e., the d× d matrix:

cov(β̂
ℓ

MAP − βtℓ) =
(
(Xℓ)⊤(Σ̃

ℓ
)−1Xℓ + (Σℓ

0)
−1

)−1
. (2)

The covariance summarizes the estimator quality in all di-
rections in Rd: directions x ∈ Rd of high variance (e.g.,
eigenvectors in which eigenvalues of cov(β̂

ℓ

MAP−βtℓ
) are high)

are directions in which the prediction ŷ = x⊤β̂
ℓ

MAP will have
the highest prediction error.
Network Constraints. Data pairs (x, y) ∈ Rd × R of type
t ∈ T generated by sources are transmitted over paths in the
network and eventually delivered to learners. Furthermore, we
consider the multirate multicast transmission [7], which saves
network resources compared to unicast. That is, we assume
that each source s has a set of paths Ps,t over which data pairs
of type t are routed: each path p ∈ Ps,t links to a different

learner. Note that |Ps,t|, the size of Ps,t, equals the number of
learners with type t. We denote the virtual rate [7], with which
data pairs of type t from source s are transmitted through path
p ∈ Ps,t, as λp

s,t ≥ 0. Let PTOT =
∑

s∈S,t∈T |Ps,t| be the
total number of paths. We refer to the vector

λ = [λp
s,t]s∈S,t∈T ,p∈Ps,t ∈ R+,

PTOT (3)

as the global rates allocation. To satisfy multicast link capacity
constraints, for each link e ∈ E , we must have∑

s∈S,t∈T
max

p∈Ps,t:e∈p
λp
s,t ≤ µe. (4)

Note that only data pairs of the same type generated and same
source can be multicast together. For learner l, we denote by

λℓ
s = λp

s,tℓ
(5)

the incoming traffic rate of type tℓ at ℓ ∈ L from source s ∈ S .
Note that p ∈ Ps,tℓ and ℓ is the last node of p. At source s,
for each t ∈ T , we have the constraints:

max
p∈Ps,t

λp
s,t ≤ λs,t. (6)

Note that the left hand sides of both constraints in (4) and (6)
are non-differentiable. We adopt the following assumption on
the network substrate (Asm. 1 in [1]):

Assumption 1. For λ ∈ D, the system is stable and, in steady
state, pairs (x, y) ∈ Rd×R of type tℓ arrive at learner ℓ ∈ L
according to |S| independent Poisson processes with rate λℓ

s.

As discussed in [1], this is satisfied if, e.g., the network is
a Kelly network [28] where Burke’s theorem holds [27].
D-Optimal Design Objective. The so-called D-optimal design
objective [10] for learner ℓ is given by:

Gℓ(Xℓ,nℓ) = log det(cov(β̂
ℓ

MAP − βtℓ)), (7)

where the covariance is given by Eq. (2). As the latter
summarises the expected prediction error in all directions,
minimizing the log det (i.e., the sum of logs of eigenvalues
of the covariance) imposes an overall bound on this error.
Aggregate Expected Utility Optimization. Under Asm. 1,
the arrivals of pertinent data pairs at learner ℓ from source s
form a Poisson process with rate λℓ

s. The PMF of arrivals is:

P[nℓ = n] =
∏
s∈S

(λℓ
sT)

nℓ
se−λℓ

sT

nℓ
s!

, (8)

for all n = [ns]s∈S ∈ N|S| and ℓ ∈ L. Then, the PDF
(probability distribution function) of features is:

f(Xℓ = X) =
∏
s∈S

nℓ
s∏

i=1

1

(2π)
d
2

√
|Σs|

e−
1
2x

⊤
s,iΣ

−1
s xs,i , (9)

for all X = [[xs,i]
ns
i=1]s∈S ∈ R

∑
s ns and ℓ ∈ L. We define

the utility at learner ℓ ∈ L as its expected D-optimal design
objective, namely:

U ℓ(λℓ) = Enℓ

[
EXℓ [Gℓ(Xℓ,nℓ)|nℓ]

]
=

∑
n∈N|S|

P[nℓ = n]

∫
X∈R

∑
s ns

Gℓ(X,n)f(Xℓ = X)dX,

where λℓ = [λℓ
s]s∈S , and D-optimal design objective Gℓ is

given by Eq. (7). We wish to solve the following problem:

Maximize: U(λ) =
∑
ℓ∈L

(U ℓ(λℓ)− U ℓ(0)), (10a)

s.t. λ ∈ D, (10b)

where U ℓ(0) is a lower bound1 for U ℓ(λℓ) and feasible set
D is defined by constraints (3)-(6). Note that the feasible set
is a down-closed convex set [4]. However, this problem is not
convex, as the objective is non-concave.

IV. CENTRALIZED ALGORITHM

In this section, we propose a centralized polynomial-time
algorithm with a new gradient estimation, as required by the
presence of Gaussian sources, to solve Prob. (10). By estab-
lishing submodularity, we achieve an optimality guarantee of
1− 1/e.

A. DR-submodularity

To solve this non-convex problem, we utilize a key property
here: diminishing-returns submodularity, defined as follows:

Definition 1 (DR-Submodularity [4], [5]). A function f :
Np → R is called diminishing-returns (DR) submodular iff
for all x,y ∈ Np such that x ≤ y and all k ∈ N,

f(x+ kej)− f(x) ≥ f(y + kej)− f(y), (11)

for all j = 1, . . . , p, where ej is the j-th standard basis vector.
Moreover, if Eq. (11) holds for a real valued function f :
Rp

+ → R for all x,y ∈ Rp s.t. x ≤ y and all k ∈ R+, the
function is called continuous DR-submodular.

The following theorem establishes that objective (10a) is a
continuous DR-submodular function.

Theorem 1. Objective U(λ) is (a) monotone-increasing and
(b) continuous DR-submodular with respect to λ. Moreover,
the partial derivative of U is:

∂U

∂λp
s,t

=
∞∑

n=0

∆ℓ
s(λ

ℓ, n) ·P[nℓ
s = n] · T, (12)

where type t = tℓ, learner ℓ is the last node of path p, the
distribution P is Poisson described by Eq. (8), with parameters
governed by λℓ

sT , and

∆ℓ
s(λ

ℓ, n) = Enℓ

[
EXℓ [Gℓ(Xℓ,nℓ)|nℓ]|nℓ

s = n+ 1
]

−Enℓ

[
EXℓ [G(Xℓ,nℓ)|nℓ]|nℓ

s = n
]
.

(13)

1This is added to ensure the non-negativity of the objective, which is needed
to state guarantees in terms of an approximation ratio (c.f. Thm. 2) [1].

Algorithm 1: Frank-Wolfe Variant
Input: U : D → R+, D, stepsize δ ∈ (0, 1].

1 λ0 = 0, η = 0, k = 0
2 while η < 1 do
3 find direction v(k), s.t.

v(k) = argmaxv∈D⟨v, ̂∇U(λ(k))⟩
4 γk = min{δ, 1− η}
5 λ(k + 1) = λ(k) + γkv(k), η = η + γk, k = k + 1

6 return λ(K)

The proof is in our technical report [29]. Obj. (10a) contains
two layers of expectations and a different D-optimal design ob-
jective from [1]. This is a consequence of the Gaussianity and
heterogeneity of sources. In turn, this also requires a different
argument in establishing the continuous DR-submodularity.

B. Algorithm Overview

We follow the Frank-Wolfe variant for monotone continuous
DR-submodular function maximization by Bian et al. [4] and
Liu et al. [1], but deviate in estimating the gradients of
objective U . The proposed algorithm is summarized in Alg. 1.
Frank-Wolfe Variant. Starting from λ(0) = 0, FW iterates:

v(k) = argmax
v∈D

⟨v, ̂∇U(λ(k))⟩, (14a)

λ(k + 1) = λ(k) + γv(k), (14b)

where ∇̂U(·) is an estimator of the gradient ∇U , and γ is an
appropriate stepsize. We will further discuss how to estimate
the gradient in Sec. IV-C. This algorithm achieves a 1 − 1

e
approximation guarantee, characterized by:

Theorem 2. Let λMAX = maxλ∈D ∥λ∥1. Then, for any
0 < ϵ0, ϵ1 < 1, there exists K = O(ϵ0

PTOT(|S|−1)ϵ1), n′ =

O(λMAXT+ln 1
ϵ1
), N1 = N2 = Ω(

√
ln PTOTK

ϵ0
· (n′ + 1)TK),

s.t., the FW variant algorithm terminates in K iterations, and
uses n′ terms in the sum, N1 samples for n, and N2 samples
for X in estimator (17). Thus, with probability greater than
1− ϵ0, the output solution λ(K) ∈ D of Alg. 1 satisfies:

U(λ(K)) ≥ (1− eϵ1−1)max
λ∈D

U(λ)− ϵ2, (15)

where ϵ2 determined by ϵ0, ϵ1 and net-
work parameters: ϵ2 = (T 2PTOTλ

2
MAX +

2λMAX)
1
K maxℓ∈L,s∈S log

(
1 +

λMAX(Σℓ
0)c

2
s

σ2
s,t

)
> 0,

cs = 4
√
λMAX(Σs)

√
d + 2

√
λMAX(Σs)

√
log 1

δ , and

δ = O
(

ϵ0
PTOTK|S|n′

)
.

The proof is in our technical report [29]. Our algorithm is
based on the Frank-Wolfe variant from Bian et al. [4]. Similar
to Thm. 2 in [1], our guarantee involves gradient estimation
through truncating and sampling, due to Poisson arrivals (see
Asm. 1). However, incorporating Gaussian sources, we need
to also sample from the Gaussian distribution to ensure a

polynomial-time estimator. This requires combining a sub-
Gaussian norm bound [30] with the aforementioned truncating
and sampling techniques.

C. Gradient Estimation

We describe here how to produce an unbiased, polynomial-
time estimator of our gradient ∇̂U , which is accessed by
Eq. (14a). There are three challenges in computing the true
gradient (12): (a) the outer sum involves infinite summation
over nℓ

s ∈ N; (b) the outer expectation involves an exponential
sum in |S| − 1; and (c) the inner expectation involves an
exponential sum in ∥nℓ∥. The last arises from Gaussian
sources, which differs from gradient estimation in [1]; this
requires the use of a different bound (see Lem. xxx in our
technical report [29]), as well as a decoupling argument (as
features and arrivals are jointly distributed).

To address these challenges, we (a) truncate the infinite
summation while maintaining the quality of estimation through
a Poisson tail bound:

HEADp
s,t(n

′) =
n′∑

n=0

∆ℓ
s(λ

ℓ, n) ·P[nℓ
s = n] · T, (16)

where t = tℓ, l is the last node of p, ∆ℓ
s(λ

ℓ, n) is defined
in Eq. (13), and n′ is the truncating parameter. We then (b)
sample nℓ (N1 samples) according to the Poisson distribution,
parameterized by λℓT ; and (c) sample Xℓ (N2 samples)
according to the Gaussian distribution. When n′ ≥ λℓ

sT , we
estimate the gradient by polynomial-time sampling:

∂̂U

∂λp
s,t

=
n′∑

n=0

̂∆ℓ
s(λ

ℓ, n) ·P[nℓ
s = n] · T, (17)

where ̂∆ℓ
s(λ

ℓ, n) =
1

N1N2

N1∑
j=1

N2∑
k=1

(Gℓ(Xℓ,j,k,nℓ,j |nℓ,j
s =n+1)

−Gℓ(Xℓ,j,k,nℓ,j |nℓ,j
s =n)),

nj |nℓ,j
s =n indicates vector nj with nℓ,j

s = n, and N1, N2 are
sampling parameters. At each iteration, we generate N1 sam-
ples nℓ,j , j = 1, . . . , N1 of the random vector nℓ according
to the Poisson distribution in Eq. (8), parameterized by the
current solution vector λℓT . Having a sample nℓ,j , we could
sample N2 samples Xℓ,j,k, k = 1, . . . , N2 of random matrix
Xℓ,j = [[xℓ

s,i]
nℓ,j
s

i=1]s∈S according to the Gaussian distribution
in Eq. (9). We bound the distance between the estimated and
true gradient as follows:

Lemma 1. For any δ ∈ (0, 1), and n′ ≥ λℓ
sT ,

−γ max
ℓ∈L,s∈S

log(1 +
λMAX(Σ

ℓ
0)c

2
s

σ2
s,t

) ≤ ∂U

∂λp
s,t

− ∂̂U

∂λp
s,t

≤

γ max
ℓ∈L,s∈S

log(1 +
λMAX(Σ

ℓ
0)c

2
s

σ2
s,t

) +P[nℓ
s ≥ n′ + 1]

∂U

∂λp
s,t

,

with probability greater than 1 − 2 · e−γ2N1N2/2T
2(n′+1) −

|S|n′δ − (|S| − 1)δps,t, where λMAX(Σ
ℓ
0) is the maximum

eigenvalue of matrix Σℓ
0.

The proof is in our technical report [29]. Combining this
estimated gradient in Eq. (17) with classic Frank-Wolfe variant
[4], we propose Alg. (14) and establish Thm. 2.

V. DISTRIBUTED ALGORITHM

Implementing Alg. (14) in our distributed learning network
is hard, as it requires the full knowledge of the network.
We thus present our distributed algorithm for solving Prob.
(10). The algorithm performs a primal dual gradient algorithm
over a modified Lagrangian to effectively find direction v,
defined in Eq. (14a), in a distributed fashion. The linearity
of Eq. (14a) ensures convergence, while Thm. 2 ensures the
aggregate utility attained in steady state is within an 1 − 1

e
factor from the optimal.

A. Algorithm Overview

Solving Prob. (10) in a distributed fashion requires decen-
tralizing Eqs. (14a) and (14b). Decentralizing the latter is easy,
as Eq. (14b) can be executed across sources via:

λp
s,t(k + 1) = λp

s,t(k) + γvps,t(k), (18)

across all s ∈ S , and for all t ∈ T , p ∈ Ps,t. We thus turn
our attention to decentralizing Eq. (14a).

Eq. (14a) is a linear program. Standard primal-dual dis-
tributed algorithms (see, e.g., [7], [9]) typically require strictly
concave objectives, as they otherwise would yield to harmonic
oscillations and not converge to an optimal point [22] in lin-
ear programs. An additional challenge arises from the mul-
ticast constraints in Eqs. (4) and (6): the max function is
non-differentiable. The maximum could be replaced by a set
of multiple inequality constraints, but this approach does not
scale well, introducing a new dual variable per additional con-
straint.

To address the first challenge, we follow Feijer and Pa-
ganini [22] and replace constraints of the form u ≤ 0 with
ϕ(u) ≤ 0, where ϕ(u) = eu − 1. In order to obtain a scalable
differentiable Lagrangian, we use the approach in [7], [9]: we
replace the multicast constraints (4) and (6) by

∑
s∈S,t∈T

 ∑
p∈Ps,t:e∈p

(vps,t)
θ

 1
θ

≤ µe, (19)

for each link e ∈ E , and ∑
p∈Ps,t:e∈p

(vps,t)
θ

 1
θ

≤ λs,t, (20)

for each source s ∈ S and each type t ∈ T . Note that this
is tantamount to approximating ∥ · ∥∞ with ∥ · ∥θ. Combining
these two approaches together, the Lagrangian for the modified
problem is:

L(v, q, r,u) = ⟨v, ∇̂U(λ)⟩ −
∑
e∈E

qe(e
ge(v) − 1)−

∑
s∈S,t∈T

rs,t(e
gs,t(v)− 1)−

∑
s∈S,t∈T

∑
p∈Ps,t

up
s,t(e

gp
s,t(v) − 1),

where

ge(v) =
∑

s∈S,t∈T

 ∑
p∈Ps,t:e∈p

(vps,t)
θ

 1
θ

− µe,

gs,t(v) =
∑

p∈Ps,t

 ∑
p∈Ps,t:e∈p

(vps,t)
θ

 1
θ

− λs,t,

gps,t(v) = −vps,t,

and q = [qe]e∈E , r = [rs,t]s∈S,t∈T , and u = [up
s,t]s∈S,t∈T ,p∈Ps,t

are non-negative dual variables. Intuitively, L penalizes the
infeasibility of network constraints.

We apply a primal dual gradient algorithm over this mod-
ified Lagrangian to decentralize Eq. (14a). In particular, at
iteration τ + 1, the primal variables are adjusted via gradient
ascent:

vps,t(τ + 1) = vps,t(τ) +mp
s,t∇vp

s,t
L(τ), (21)

and the dual variables are adjusted via gradient descent:

qe(τ + 1) = qe(τ)− ke(∇qeL(τ))
+
qe(τ)

, (22a)

rs,t(τ + 1) = rs,t(τ)− hs,t(∇rs,tL(τ))qe(τ))
+
rs,t(τ)

, (22b)

up
s,t(τ + 1) = up

s,t(τ)− wp
s,t(∇up

s,t
L(τ))qe(τ))

+
up
s,t(τ)

, (22c)

for each edge e ∈ E , source s ∈ S , type t ∈ T , and path
p ∈ Ps,t, where ke > 0, hs,t > 0, wp

s,t > 0, and mp
s,t >

0 are stepsize for qe, rs,t, up
s,t and vps,t, respectively, and

(y)+x =

{
y, x > 0,

max(y, 0), x ≤ 0.
These operations can indeed

be distributed across the network, as we describe in Sec. V-B.
The following theorem states the convergence of this modified
primal dual gradient algorithm, according to Thm. 11 in [22]:

Theorem 3. The trajectories of the modified primal–dual gra-
dient algorithm (Eqs. (21) and (22)), with constant stepsize,
converge to v∗

θ . The v∗
θ is an optimum of Prob. (14a) over Dθ,

where Dθ is D with (4) replaced by (19).

For v∗ be the optimum of Eq. (14a), limθ→∞ v∗
θ → v∗, as

Dθ → D. Thus, our distributed algorithm preserves a 1 − 1
e

approximation factor from the optimal objective value as stated
in Thm. 2, for large enough θ.

B. Distributed FW Implementation Details

We conclude by giving the full implementation details of
the distributed FW algorithm and, in particular, the primal
dual steps, describing the state maintained by every node,
the messages exchanged, and the constituent state adaptations.
Starting from λ(0) = 0, the algorithm iterates over:

1) Each source node s ∈ S finds direction vps,t(k) for all t ∈
T and p ∈ Ps,t by the primal dual gradient algorithm.

2) Each source node s updates λp
s,t(k + 1) using vps,t(k)

for all t ∈ T , and p ∈ Ps,t by executing Eq. (18).
We describe the first step in more detail, summarized in

Alg. 2. Every edge e ∈ E maintains (a) Lagrange multiplier

Algorithm 2: Distributed Frank-Wolfe Variant
Input: U : D → R+, D, stepsize δ ∈ (0, 1].

1 λ0 = 0, η = 0, k = 0
2 foreach source s ∈ S do
3 while η < 1 do
4 find direction vps,t(k) by Alg. 3
5 γk = min{δ, 1− η}
6 λp

s,t(k + 1) = λp
s,t(k) + γvps,t(k), η = η + γk,

k = k + 1

7 return λ(K)

Algorithm 3: Primal Dual Gradient Algorithm
Input: Rates λ.
Output: Directions v.

1 Initialize direction v(0) = 0, dual variables
q(0), r(0),u(0) = 0.

2 foreach learner ℓ ∈ L do

3 Send control messages carrying ̂∇λp
s,t
U(λℓ)

calculated by Eq. (17) downstream over p.
4 for τ = 1, 2, ... do
5 foreach source s ∈ S do
6 Generate features carrying vps,t upstream.

7 foreach edge e ∈ E do
8 Calculate ves,t using fetched vps,t by Eq. (I.2).

9 foreach learner ℓ ∈ L do
10 Send control messages downstream and collect

qe and ves,t from traversed edges.

11 foreach edge e ∈ E do
12 Update qe using calculated ves,t by Eq. (I.3).

13 foreach source s ∈ S do
14 Update rs,t using maintained vps,t by Eq. (I.4).
15 Update up

s,t using maintained vps,t by Eq. (I.5).

16 Update vps,t using received ̂∇λp
s,t
U(λℓ), qe,

ves,t, and maintained vps,t by Eq. (I.1).

17 return vps,t from each source s

qe, and (b) auxiliary variable ves,t for all s ∈ S , t ∈ T . Every
source s ∈ S maintains (a) direction vps,t and (b) Lagrange
multipliers up

s,t, for all t ∈ T , p ∈ Ps,t, and rs,t, for all t ∈ T .
The algorithm initializes all above variables by 0. Given the

rates λℓ, each learner estimates the gradient ̂∇λp
s,t
U(λℓ) by

Eq. (17). Control messages carrying ̂∇λp
s,t
U(λℓ) are generated

and propagated over the path p in the reverse direction to
sources. Note that this algorithm is a synchronous algorithm
where information needs to be exchanged within a specified
intervals. Thus, the algorithm proceeds as follows during iter-
ation τ + 1.

1) When feature x is generated from source s ∈ S , it is
propagated over the path p to learner carrying direction

vps,t(τ + 1) = vps,t(τ) +mp
s,t

(
∇λ

p
s,t

U(λ)−
∑

e∈p qe(τ)· e
∑

s′∈S,t′∈T (ve
s′,t′ (τ))

1
θ −µe

(ves,t(τ))
1−θ
θ (vps,t(τ))

θ−1− (I.1)

rs,te

(∑
p∈Ps,t

(v
p
s,t(τ))

θ
) 1

θ −λs,t
(∑

p∈Ps,t
(vps,t(τ))

θ
) 1−θ

θ
(vps,t(τ))

θ−1 + up
s,t exp(−vps,t(τ))

)
.

ves,t(τ) =
∑

p∈Ps,t:e∈p(v
p
s,t(τ))

θ . (I.2)

qe(τ + 1) = qe(τ) + ke
(
e
∑

s∈S,t∈T (ve
s,t(τ))

1
θ−µe

−1
)+
qe(τ)

. (I.3)

rs,t(τ + 1) = rs,t(τ) + hs,t

(
e

(∑
p∈Ps,t

(v
p
s,t(τ))

θ
) 1

θ −λs,t − 1

)+

rs,t(τ)

. (I.4)

up
s,t(τ + 1) = up

s,t(τ) + wp
s,t

(
e
−v

p
s,t(τ))− 1

)+
u
p
s,t(τ)

. (I.5)

TABLE I: Expanding primal and dual steps in Eqs. (21) and (22), so that we can execute FW algorithm distributively.

vps,t. Every time it traverses an edge e ∈ E , edge e
fetches vps,t.

2) After fetching all vps,t, each edge e ∈ E calculates the
auxiliary variables ves,t(τ) for all s ∈ S and t ∈ T by
executing (I.2).

3) Learner ℓ ∈ L generates a control message, sent over
path p in the reverse direction until reaching the source.
When traversing edge e ∈ E , the control message col-
lects qe and ves,t. The source obtains these qe and ves,t.

4) After receiving all control messages, the edge e ∈ E
updates the Lagrangian multiplier qe(τ + 1) using cal-
culated ves,t by executing (I.3).

5) Upon obtaining ̂∇λp
s,t
U(λℓ), qe and ves,t, the source up-

dates the Lagrangian multiplier rs,t(τ + 1) by execut-
ing Eq. (I.4), for all t ∈ T , updates up

s,t(τ + 1) by
executing Eq. (I.5), for all t ∈ T , p ∈ Ps,t, and updates

the direction vps,t(τ +1) using the received ̂∇λp
s,t
U(λℓ)

qe, ves,t by executing Eq. (I.1), for all t ∈ T , p ∈ Ps,t.
This implementation is indeed in a decentralized form: the up-
dates happening on sources and edges require only the knowl-
edge of entities linked to them.

VI. PROJECTED GRADIENT ASCENT

We can also solve Prob. (10) by projected gradient ascent
(PGA) [31]. Decentralization reduces then to a primal-dual
algorithm [7], [22] over a strictly convex objective, which is
easier than the FW variant we studied; however, PGA comes
with a worse approximation guarantee. We briefly outline this
below. Starting from λ(0) = 0, PGA iterates over:

v(k) = λ(k) + γ ̂∇U(λ(k)) (23a)
λ(k + 1) = ΠD(v(k)) (23b)

where ∇̂U(·) is an estimator of the gradient ∇U , γ is the
stepsize, and ΠD(x) = argminy∈D(y−x)2 is the orthogonal
projection. Our gradient estimator in Sec. IV-C would again

be used here to compute ∇̂U(λk). Note that, to achieve the
same quality of gradient estimator, PGA usually takes a longer
time compared to the FW algorithm. This comes from larger
λℓ
s(k), thus, larger truncating parameter n′, during the iteration

k (see also Sec. VII-A for how we set algorithm parameters).
Furthermore, PGA comes with a worse approximation guar-
antee compared to the FW algorithm, namely, 1/2 instead of

TABLE II: Graph Topologies and Experiment Parameters

Graph |V | |E| µe |L| |S| |T | UDFW UDPGA

synthetic topologies
ER 100 1042 5-10 5 10 3 351.8 357.3
BT 341 680 5-10 5 10 3 163.3 180.6
HC 128 896 5-10 5 10 3 320.4 343.7
star 100 198 5-10 5 10 3 187.1 206.0
grid 100 360 5-10 5 10 3 213.6 236.9
SW 100 491 5-10 5 10 3 269.5 328.4

real backbone networks
GEANT 22 66 5-8 3 3 2 116.4 117.4

Abilene 9 26 5-8 3 3 2 141.3 139.6
Dtelekom 68 546 5-8 3 3 2 125.1 142.3

1−1/e ≈ 0.63; this would follow by combining the guarantee
in [31] with the gradient estimation bounds in Sec. IV-C.
Similar to distributed FW, we can easily decentralize Eq. (23a).
Eq. (23b) has a strictly convex objective, so we can directly de-
centralize it through a standard primal-dual algorithm with ap-
proximated multicast link capacity constraints, as in Eq. (19).
Convergence then is directly implied by Thm. 5 in [22].

VII. NUMERICAL EVALUATION

A. Experimental Setup

Topologies. We perform experiments over five synthetic graphs,
namely, Erdős-Rényi (ER), balanced tree (BT), hypercube (HC),
grid 2d (grid), and small-world (SW) [32], and three back-
bone network topologies: Deutsche Telekom (DT), GEANT,
and Abilene [33]. The graph parameters of different topolo-
gies are shown in Tab. II.
Network Parameter Settings. For each network, we uni-
formly at random (u.a.r.) select |L| learners and |S| data sources.
Each edge e ∈ E has a link capacity µe and types T as
indicated in Tab. II. Sources generate feature vectors with
dimension d = 100 within data acquisition time T = 1.
Each source s generates the data (x, y) of type t label with
rate λs,t, uniformly distributed over [5,8]. Features x from
source s are generated following a zero mean Gaussian distri-
bution, whose covariance is generated as follows. First, we
separate features into two classes: well-known and poorly-
known. Then, we set the corresponding Gaussian covariance
(i.e., the diagonal elements in Σs) to low (uniformly from
0 to 0.01) and high (uniformly from 10 to 20) values, for
well-known and poorly-known features, respectively. Source

s labels y of type t using ground-truth models, as discussed
below, with Gaussian noise, whose variance σs,t is chosen
u.a.r. (uniformly at random) from 0.5 to 1. For each source,
the paths set consists of the shortest paths between the source
and every learner in L. Each learner has a target model βtℓ ,
which is sampled from a prior normal distribution as follows.
Similarly to sources, we separate features into interested and
indifferent. Then, we set the corresponding prior covariance
(i.e., the diagonal elements in Σℓ

0) to low (uniformly from
0 to 0.01) and high (uniformly from 1 to 2) values, and set
the corresponding prior mean to 1 and 0, for interested and
indifferent features, respectively.
Algorithms. We implement our algorithm and several com-
petitors. First, there are four centralized algorithms:

• MaxTP: This maximizes the aggregate incoming traffic
rates (throughput) of learners, i.e.:

max
λ∈D

: UMaxTP(λ) =
∑
ℓ∈L

∑
s∈S

λℓ
s. (24)

• MaxFair: This maximizes the aggregate α-fair utili-
ties [7] of the incoming traffic at learners, i.e.:

max
λ∈D

: UMaxFair(λ) =
∑
ℓ∈L

(
∑
s∈S

λℓ
s)

1−α/(1− α). (25)

We set α = 2.
• FW: This is Alg. (14), as proposed in Sec. IV.
• PGA: This is the algorithm we proposed in Sec. VI.

We also implement their corresponding distributed versions:
DMaxTP, DMaxFair, DFW (algorithm in Sec. V-B), and DPGA
(see Sec. VI). The objectives of MaxTP Eq. (24) and MaxFair
Eq. (25) are linear and strictly concave, respectively. The mod-
ified primal dual gradient algorithm, used in DFW, and basic
primal dual gradient algorithm, used in DPGA, directly apply
to DMaxTP and DMaxFair, respectively.
Algorithm Parameter Settings. We run FW/DFW and PGA/DPGA
for K = 50 iterations, i.e. stepsize γ = 0.02, with respect to
the outer iteration. In each iteration, we estimate the gradient
according to Eq. (17) with sampling parameters N1 = 50,
N2 = 50, and truncating parameters n′ = max{⌈2maxℓ,s λ

ℓ
sT ⌉,

10}, where λℓ
s is given by the current solution. We run the

inner primal-dual gradient algorithm for 1000 iterations and
set parameter θ = 10 when approximating the max function
via Eqs. (19) and (20). We compare the performance metrics
(Aggregate utility and Infeasibility, defined in Sec. VII-B),
between centralized and distributed versions of each algorithm
under different stepsizes, and we choose the best stepsize
for distributed primal-dual algorithms. We further discuss the
impact of the stepsizes in Sec. VII-C.

B. Performance Metrics

To evaluate the performance of the algorithms, we use the
Aggregate Utility, defined in Eq. (10a) as one metric. Note that
as the aggregate utility involves a summation with infinite sup-
port, we thus need to resort to sampling to estimate it; we set
N1 = 100 and N2 = 100. Also, we define an Estimation Error
to measure the model learning/estimation quality. Formally,

geant abilene dtelekom ER HC SW grid BT star

102

6 × 101

2 × 102

3 × 102

Ag
gr

eg
at

e
Ut

ilit
y

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

(a) Aggregate Utility

geant abilene dtelekom ER HC SW grid BT star

10−4

10−2

In
fe
as
ib
ilit

y

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

(b) Infeasibility

geant abilene dtelekom ER HC SW grid BT star
5 × 10−1

6 × 10−1

7 × 10−1

Es
tim

at
io

n
Er

ro
r

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

(c) Estimation Error

Fig. 2: Aggregate utility, infeasibility and estimation error across
networks. DFW and DPGA perform very well in terms of maximizing
the utility and minimizing the estimation error in all networks. The
aggregate utilities of DFW and DPGA are also listed in Tab. II. Fur-
thermore, their performances are close to their centralized versions:
FW and PGA, with an acceptable infeasibility ∼ 0.1.

10−3 10−2

Stepsize

50

100

150

200

250

300

Ag
gr

eg
at

e
Ut

ilit
y

10−3 10−2

Stepsize

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150

In
fe

as
ib

ilit
y

10−3 10−2

Stepsize

0.55

0.60

0.65

0.70

0.75

Es
tim

at
io

n
Er

ro
r

DFW DPGA DMaxTP DMaxFair

Fig. 3: Stepsize effect on primal dual gradient algorithms over
topology ER. Larger stepsizes lead to better performance, and DFW
and DPGA are always the best in terms of both utility and estimation
error. However, stepsizes above 0.03 lead to numerical instability.

it is defined as: 1
|L|

∑
ℓ∈L

∥β̂ℓ
MAP−βℓ∥
∥βℓ∥ , following the equation

of MAP estimation Eq. (1). We average over 2500 realiza-
tions of the number of data arrived at the learner {nℓ}ℓ∈L
and features {Xℓ}ℓ∈L , and 20 realizations of ground-truth
models {βℓ}ℓ∈L. Finally, we define an Infeasibility to measure
the feasibility of solutions, as primal dual gradient algorithm
used in distributed algorithms does not guarantee feasibility.
It averages the total violations of constraints (3)-(6) over the
number of constraints.

C. Results

Different Topologies. We first compare the proposed algo-
rithms with several baselines in terms of aggregate utility,
infeasibility and estimation error over several network topolo-
gies, shown in Fig. 2. Our proposed algorithms dramatically

3 5 7 9 11
λs, t

60

80

100

120

Ag
gr

eg
at

e
Ut

ilit
y

3 5 7 9 11
λs, t

0.00

0.01

0.02

0.03

0.04

0.05

In
fe

as
ib

ilit
y

3 5 7 9 11
λs, t

0.70

0.72

0.74

0.76

Es
tim

at
io

n
Er

ro
r

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

(a) Varying source rate

2 3 4 5 6
|S|

75

100

125

150

175

200

Ag
gr

eg
at

e
Ut

ilit
y

2 3 4 5 6
|S|

0.000

0.025

0.050

0.075

0.100

0.125

In
fe

as
ib

ilit
y

2 3 4 5 6
|S|

0.625

0.650

0.675

0.700

0.725

0.750

Es
tim

at
io

n
Er

ro
r

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

(b) Varying source set size

Fig. 4: Varying source rates and source set size over GEANT. When
increasing source rates and source set sizes, learners receive more
data. This leads to higher aggregate utility, and lower estimation
error. Our algorithms, DFW and DPGA, stay close to their centralized
versions (FW and PGA) and outperform competitors in both metrics,
with a small change in feasibility.

3 5 7 9 11
|L|

200

400

600

800

Ag
gr

eg
at

e
Ut

ilit
y

3 5 7 9 11
|L|

0.00

0.05

0.10

0.15

0.20

In
fe

as
ib

ilit
y

3 5 7 9 11
|L|

0.550

0.575

0.600

0.625

0.650

0.675

Es
tim

at
io

n
Er

ro
r

DFW FW DPGA PGA DMaxTP MaxTP DMaxFair MaxFair

Fig. 5: Varying learner set size over topology SW. The aggregate
utility increases, while the estimation error remains essentially un-
changed, as the number of learners increases. DFW and DPGA again
stay close to their centralized versions and outperform competitors.

outperform all competitors, and our distributed algorithms per-
form closed to their corresponding centralized algorithms (c.f.
Thm. 3). All of the distributed algorithms have a low in-
feasibility, which is less than 0.1. Such violations over the
constraints are expected by primal-dual gradient algorithms,
since they employ soft constraints.
Effect of Stepsizes. We study the effect of the stepsizes in the
primal dual gradient algorithms used in the distributed algo-
rithms DFW, DPGA, DMaxTP and DMaxFair over ER, shown
in Fig. 3. When the algorithms are stable, larger stepsizes
achieve better performance w.r.t. both aggregate utility and
estimation error, while worse performance with respect to in-
feasibility. However, if the stepsize is too large, the algorithms
do not converge and become numerically unstable. It is crucial
to choose an appropriate stepsize for better performance, while
maintaining convergence. In all convergent cases, DFW and
DPGA outperform competitors.
Varying Source Rates and Source Set Size. Next, we eval-
uate how algorithm performance is affected by varying the

(common) source rates λs,t over topology GEANT. As shown
in Fig. 4a, when source rates increase, the aggregate utility
first increases very fast and then tapers off. Higher source rates
indicate more data received at the learners, hence the greater
utility. However, due to DR-submodularity, the marginal gain
decreases as the number of sources increases. Furthermore,
under limited bandwidth, if link capacities saturate, there will
be no further utility increase. The same interpretation applies
to the estimation error. We observe similarly changing patterns
when varying the source set size |S| over topology GEANT,
shown in Fig. 4b, since more sources also indicates learners
receive more data. However, the curve changes are not as
smooth as those for increasing the source rates. This is because
varying source sets also changes the available paths, corre-
sponding link bandwidth utilization, indexes of well-known
features, etc. Overall, we observe that our algorithms, DFW
and DPGA, stay close to their centralized versions (FW and
PGA) and outperform competitors in both metrics, with a small
change in feasibility.
Varying Learner Set Size. Finally, we evaluate the effect
of the learner set size |L| over topology SW. Fig. 5 shows
that as the number of learners increases so does the aggre-
gate utility, while the estimation errors essentially remain the
same. With multicast transmissions, increasing the number of
learners barely affects the amount of data received by each
learner. Thus, the aggregate utility increases as expected, while
the average utility per learner (the aggregate utility divided by
the number of learners) and, consequently, the estimation error
hardly change, when more learners are in the network. Again,
our algorithms, DFW and DPGA, stay close to their centralized
versions (FW and PGA) and outperform competitors.

VIII. CONCLUSION

We generalize the experimental design networks by consid-
ering Gaussian sources and multicast transmissions. A poly-
time distributed algorithm with 1 − 1/e approximation guar-
antee is proposed to facilitate heterogeneous model learning
across networks. One limitation of our distributed algorithm
is its synchronization. It is natural to extend the model to
an asynchronous setting, which better resembles the reality of
large networks. One possible solution is that sources and links
compute outdated gradients [6]. Another interesting direction
is to estimate gradients through shadow prices [34], [35], in-
stead of sampling. Furthermore, how a model trained by one
learner benefits other training tasks in experimental design
networks is also a worthwhile topic to study. The authors have
provided public access to their code and data.2

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the
National Science Foundation (grants 1718355, 2106891,
2107062, and 2112471).

2https://github.com/neu-spiral/DistributedNetworkLearning

https://github.com/neu-spiral/DistributedNetworkLearning

REFERENCES

[1] Y. Liu, Y. Li, L. Su, E. Yeh, and S. Ioannidis, “Experimental design net-
works: A paradigm for serving heterogeneous learners under networking
constraints,” in IEEE INFOCOM 2022. IEEE, 2022, pp. 210–219.

[2] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities
using big data and machine learning: Approaches and challenges,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[3] V. Albino, U. Berardi, and R. M. Dangelico, “Smart cities: Definitions,
dimensions, performance, and initiatives,” Journal of urban technology,
vol. 22, no. 1, pp. 3–21, 2015.

[4] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause, “Guaranteed
non-convex optimization: Submodular maximization over continuous
domains,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
111–120.

[5] T. Soma and Y. Yoshida, “A generalization of submodular cover via the
diminishing return property on the integer lattice,” Advances in neural
information processing systems, vol. 28, 2015.

[6] S. H. Low and D. E. Lapsley, “Optimization flow control. i. basic
algorithm and convergence,” IEEE/ACM Transactions on networking,
vol. 7, no. 6, pp. 861–874, 1999.

[7] R. Srikant and T. Başar, The mathematics of Internet congestion control.
Springer, 2004.

[8] D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: A decentralized approach based on
network coding,” in Proceedings IEEE 24th Annual Joint Conference of
the IEEE Computer and Communications Societies., vol. 3. IEEE,
2005, pp. 1607–1617.

[9] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” IEEE Transactions on information theory, vol. 52, no. 6, pp.
2608–2623, 2006.

[10] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge university press, 2004.

[11] F. Pukelsheim, Optimal design of experiments. Society for Industrial
and Applied Mathematics, 2006.

[12] T. Horel, S. Ioannidis, and S. Muthukrishnan, “Budget feasible mech-
anisms for experimental design,” in Latin American Symposium on
Theoretical Informatics. Springer, 2014, pp. 719–730.

[13] Y. Guo, J. Dy, D. Erdogmus, J. Kalpathy-Cramer, S. Ostmo, J. P.
Campbell, M. F. Chiang, and S. Ioannidis, “Accelerated experimental
design for pairwise comparisons,” in SDM. SIAM, 2019, pp. 432–440.

[14] N. Gast, S. Ioannidis, P. Loiseau, and B. Roussillon, “Linear regression
from strategic data sources,” ACM Transactions on Economics and
Computation (TEAC), vol. 8, no. 2, pp. 1–24, 2020.

[15] Y. Guo, P. Tian, J. Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. F.
Chiang, D. Erdogmus, J. G. Dy, and S. Ioannidis, “Experimental design
under the bradley-terry model.” in IJCAI, 2018, pp. 2198–2204.

[16] X. Huan and Y. M. Marzouk, “Simulation-based optimal bayesian
experimental design for nonlinear systems,” Journal of Computational
Physics, vol. 232, no. 1, pp. 288–317, 2013.

[17] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[18] A. Krause and D. Golovin, “Submodular function maximization.” 2014.
[19] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,

1999.
[20] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point

problems,” Journal of optimization theory and applications, vol. 142,
no. 1, pp. 205–228, 2009.

[21] S. A. Alghunaim and A. H. Sayed, “Linear convergence of primal–dual
gradient methods and their performance in distributed optimization,”
Automatica, vol. 117, p. 109003, 2020.

[22] D. Feijer and F. Paganini, “Stability of primal–dual gradient dynamics
and applications to network optimization,” Automatica, vol. 46, no. 12,
pp. 1974–1981, 2010.

[23] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation:
numerical methods. Athena Scientific, 2015.

[24] G. Tychogiorgos, A. Gkelias, and K. K. Leung, “A non-convex dis-
tributed optimization framework and its application to wireless ad-hoc
networks,” IEEE Transactions on Wireless Communications, vol. 12,
no. 9, pp. 4286–4296, 2013.

[25] A. Mokhtari, H. Hassani, and A. Karbasi, “Decentralized submodular
maximization: Bridging discrete and continuous settings,” in Interna-
tional conference on machine learning. PMLR, 2018, pp. 3616–3625.

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[27] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge University Press, 2013.

[28] F. P. Kelly, Reversibility and stochastic networks. Cambridge University
Press, 2011.

[29] Y. Li, L. Su, C. Joe-Wong, E. Yeh, and S. Ioannidis, “Technical
report for distributed experimental design networks,” 2024. [Online].
Available: https://arxiv.org/abs/2401.04996

[30] A. Rinaldo, “Sub-gaussian vectors and bound for the their
norm.” 2019. [Online]. Available: https://www.stat.cmu.edu/∼arinaldo/
Teaching/36709/S19/Scribed Lectures/Feb21 Shenghao.pdf

[31] H. Hassani, M. Soltanolkotabi, and A. Karbasi, “Gradient methods for
submodular maximization,” in NeurIPS, 2017, pp. 5843–5853.

[32] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in STOC, 2000.

[33] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[34] S. Ioannidis, A. Chaintreau, and L. Massoulié, “Optimal and scalable
distribution of content updates over a mobile social network,” in IEEE
INFOCOM 2009. IEEE, 2009, pp. 1422–1430.

[35] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, vol. 49, no. 3, pp. 237–252,
1998.

https://arxiv.org/abs/2401.04996
https://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
https://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf

	Introduction
	Related Work
	Problem Formulation
	Centralized Algorithm
	DR-submodularity
	Algorithm Overview
	Gradient Estimation

	Distributed Algorithm
	Algorithm Overview
	Distributed FW Implementation Details

	Projected Gradient Ascent
	Numerical Evaluation
	Experimental Setup
	Performance Metrics
	Results

	Conclusion
	References

