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Abstract

Performative prediction, as introduced by Per-
domo et al., is a framework for studying social
prediction in which the data distribution itself
changes in response to the deployment of a model.
Existing work in this field usually hinges on three
assumptions that are easily violated in practice:
that the performative risk is convex over the de-
ployed model, that the mapping from the model
to the data distribution is known to the model
designer in advance, and the first-order informa-
tion of the performative risk is available. In this
paper, we initiate the study of performative predic-
tion problems that do not require these assump-
tions. Specifically, we develop a reparameteri-
zation framework that reparametrizes the perfor-
mative prediction objective as a function of the
induced data distribution. We then develop a two-
level zeroth-order optimization procedure, where
the first level performs iterative optimization on
the distribution parameter space, and the second
level learns the model that induces a particular
target distribution at each iteration. Under mild
conditions, this reparameterization allows us to
transform the non-convex objective into a convex
one and achieve provable regret guarantees. In
particular, we provide a regret bound that is sub-
linear in the total number of performative samples
taken and is only polynomial in the dimension of
the model parameter.
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1. Introduction
Performative prediction, as introduced by Perdomo et al.,
provides a framework for studying prediction and risk min-
imization when the data distribution itself changes in re-
sponse to the deployment of a model. Such phenomena,
usually referred to as ”performativity,” are prevalent in vari-
ous social prediction contexts, including education, recom-
mendation systems, and criminal prediction, among others
(Perdomo et al., 2020; Chen et al., 2023; Hardt et al., 2016;
Dong et al., 2018; Kleinberg & Raghavan, 2020). For in-
stance, consider a college admission process that places
significant importance on standardized test scores. This
process can incentivize students to invest more effort in
test preparation, ultimately leading to a pool of applicants
with much higher test scores than initially expected. This
phenomenon is also prevalent in real-world applications,
particularly in large-scale online recommendation systems,
where the high frequency of updates to the recommendation
algorithm can reshape users’ future behavior. For example,
video platforms such as TikTok, Netflix, and YouTube pro-
vide personalized recommendations that can influence users’
future preferences and lead to shifts in the user-advertiser in-
teraction patterns, thereby creating a dynamic and evolving
data distribution.

More formally, consider the standard empirical risk min-
imization (ERM) problem defined by a loss function ℓ, a
model parameter space Θ ⊂ RdΘ where dΘ ∈ Z>0, an
instance space Z = X × Y , and a fixed data distribution
D over Z. The task is to find a model that minimizes the
empirical risk defined as: ER(θ,D) := Ez∼D[ℓ(z; θ)]. Per-
formative prediction extends this learning task by positing
that the data distribution D is not fixed but is instead a func-
tion of the model parameter θ ∈ Θ. Here, we refer to D(·)
as a distribution map, and D(θ) as the data distribution in-
duced by the model θ. The objective is then to minimize the
performative risk, defined as

PR(θ,D(θ)) := Ez∼D(θ)[ℓ(z; θ)] .

Intuitively, the performative prediction risk evaluates the
performance of the model θ on the resulting distribution
D(θ) via the loss function ℓ. When it is clear from the
context, we also use PR(θ) to shorthand the performative
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risk.

Optimizing the performative risk is generally challenging.
In standard ERM, a convex loss function ℓ implies a convex
empirical risk. However, as Perdomo et al. (2020) observed,
the performative risk PR(·) may be non-convex even when
the loss ℓ itself is convex. For this reason, earlier works
(Perdomo et al., 2020; Mendler-Dünner et al., 2020; Drusvy-
atskiy & Xiao, 2020; Brown et al., 2022) then focus on
computing a performative stable solution instead, which
is easier to achieve using standard optimization tools like
repeated risk minimization. A performative stable model is
loss-minimizing on the data distribution it induces, though
other models may incur smaller losses on their respective
induced distributions. However, as recent works (Miller
et al., 2021; Izzo et al., 2021) point out, such stable solu-
tions may be highly suboptimal and, worse yet, may not
exist in certain settings.

One major challenge in performative risk minimization is
the unknown distribution map between the model parameter
θ and the distribution D(θ) without making any structural
assumption. For example, one can hardly anticipate the
click-through rate of an ad without putting out the ad first. In
the language of performative prediction, only by deploying
a model θ can the learner observe data samples that are i.i.d
realized from the induced data distributionD(θ). Due to this
inherent uncertainty aboutD(θ), it is impossible to compute
the gradient of PR(θ) w.r.t θ, not to mention finding a model
with the lowest performative risk offline. Instead, the learner
must interact with the environment and deploy models θ
to explore the induced distributions D(θ), which involves
deploying “imperfect” models on decision subjects.

In this paper, we propose to measure the loss incurred by
deploying a sequence of models θ1, . . . , θTtotal by evaluat-
ing the following regret measured with respect to the total
number of samples deployed during the process:

RN (A,PR) =
Ttotal∑
τ=1

nτ∑
i=1

ℓ(z(i)τ ; θτ )−N · PR(θOPT) (1)

where N :=
∑Ttotal

τ=1 nτ denotes the total number of observed
data samples throughout the process, A corresponds to the
particular algorithm, and PR represents the objective func-
tion. This regret measures the suboptimality of the deployed
sequence of models relative to a performative optimum
θOPT ∈ argminθ PR(θ) in terms of how much loss they
incur on the population with N decision subjects.

In contrast to earlier studies that primarily assess the final
model’s performance based on optimality rather than the
cumulative loss incurred throughout the process, we argue
that this constitutes a more practical evaluation metric in
predictive scenarios involving multiple rounds of human
feedback. In particular, since the process of finding the

optimal performative model involves deploying sub-optimal
models on human agents in the process, it is more appropri-
ate to define regret on the total number of agents that are
subjected to the “imperfect” algorithmic system rather than
only caring about whether the final model is optimal. We
believe this provides a unique evaluation metric suitable for
performative prediction.

Later in Section 4.3, we compare our proposed regret def-
inition with the standard regret measured in Ttotal in more
detail and show that our algorithm is, in fact, also sublinear
in the total deployment steps Ttotal. This, combined with the
fact that sublinear regret implies model convergence (Propo-
sition 1), also means that our algorithm can guarantee to
output a model arbitrarily close to the performative optimal
model θOPT.

1.1. Our Contributions

Our main contributions are a two-level zeroth order opti-
mization algorithm that achieves a sublinear regret bound
measured using the total number of samples and a novel
reparametrization framework attempting to tackle a particu-
lar non-convex performative prediction problem.

Reparametrization Framework. Departing from previ-
ous work, we allow PR(θ) to be non-convex in the model
parameter θ, but suppose it is convex in the data distribution
parameter ϕ ≡ φ(θ). Informally, under mild conditions, we
show that non-convex PR(θ) can be reparameterized as a
new (convex) function PR†(ϕ) over the induced data dis-
tribution parameter ϕ. We discuss detailed parametrization
procedure in Section 3.

Zeroth-Order Optimization Algorithm with Performa-
tivity. Given the parametrization framework proposed
above, we propose a two-level zeroth-order optimization
procedure, which, to our knowledge, is novel in performa-
tive prediction. We believe our method enjoys the following
benefits:

• No Requirement for Gradient Information Unlike the
traditional gradient-based optimization procedure, our
method does not require the explicit calculation of gradi-
ents that may be complex or unavailable.

• Black-Box Models Our method can still be effective
when dealing with models or systems that are treated as
black boxes, where the internal mechanisms are not well
understood (such as complicated economic systems) since
it doesn’t require knowledge of the underlying model
structure.

• Robustness to Noise In many real-world applications,
objective function evaluations may be noisy or subject to
uncertainty, such as modeling consumer behavior. Our
method can handle noisy evaluations and make decisions
that are robust to noise.
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Our main results can be summarized as follows:

Theorem 1 (Informal). There exists an algorithm that, un-
der appropriate conditions, incurs regret Õ((dΘ + dΦ) ·
N

1/6
KL · N5/6)1 after N performative samples2 with prob-

ability at least 1 − p, where NKL depends on the sample
efficiency of an off-the-shelf estimator for KL divergence,
and dΘ and dΦ denote the dimension of the model and dis-
tribution parameter space, respectively.

The NKL term in our regret depends on the sample efficiency
of the estimator for KL divergence. The detailed discussion
is provided in Section 4.2.

1.2. Related Work

Our work most closely relates to performative prediction
and zeroth-order optimization. Due to page limit, we in-
clude additional related work in Appendix G, including de-
tailed comparisons of our work to three closely related jobs
(Jagadeesan et al., 2022; Miller et al., 2021; Maheshwari
et al., 2022), and more recent developments of performative
prediction.

Performative Prediction. Performative Prediction, first
explored in Perdomo et al. (2020), has recently received
many follow-up works, including but not limited to Miller
et al. (2021); Izzo et al. (2021); Drusvyatskiy & Xiao (2020);
Mendler-Dünner et al. (2020); Brown et al. (2022); Ja-
gadeesan et al. (2022); Dong & Ratliff (2021); Cutler et al.
(2021) and Piliouras & Yu (2022). These works mostly
focus on the performative stability and the performative
optimality, including developing an algorithmic procedure
that converges to performatively stable or optimal points.
Similar to this line of research (Dong & Ratliff, 2021; Ja-
gadeesan et al., 2022; Izzo et al., 2021; Miller et al., 2021),
our work also focuses on performative optimality.

Zeroth-Order Optimization. Our algorithms and tech-
niques are based on the line of work on zeroth-order op-
timization (also known as bandit optimization) initiated
by Flaxman et al. (2005), which studies how to optimize
an unknown convex function f using only function value
query access to f . Agarwal et al. (2010) and Shamir (2017)
later extend the technique that allows multiple points query
and show that two points suffice to guarantee that the re-
gret bounds that closely resemble the regret bounds for the
full information case. The reparameterization approach
proposed in our paper mirrors the intuition behind the al-
gorithms proposed for learning from revealed feedback or
preferences (see, e.g., Roth et al. (2016); Zadimoghaddam &
Roth (2012); Dong et al. (2018)), which consider a Stackel-

1Õ(·) suppresses polylogarithmic factors in N and the failure
probability 1/p.

2Samples that the learner deploys along the way of finding the
performative optimal model.

berg game involving a utility-maximizing learner and strate-
gic agent. Our work, focusing on performative prediction
with an environment response exogenously characterized
by a distribution map D(·), differs from theirs in problem
consideration.

1.3. Key Notations

Let dΘ ∈ Z>0 denote the dimension of the model parameter
θ, and let DΘ := sup{∥θ − θ′∥, ∀θ, θ′ ∈ Θ} denote the
diameter of the model parameter space Θ. The data distri-
bution D(θ) has a parametric continuously differentiable
density p(z;φ(θ)) where φ(θ) denote the distribution pa-
rameter for D(θ). We use φ(·) to denote the distribution
parameter mapping while ϕ to denote a given distribution pa-
rameter. Let dΦ ∈ Z>0 denote the dimension of the model
parameter ϕ, and let DΦ := sup{∥ϕ − ϕ′∥ |, ∀ϕ, ϕ′ ∈ Φ}
denote the diameter of the model parameter space Φ. When
it is clear from the content, we use φ(θ) to represent D(θ)
the distribution θ induces. Let ϑ∗(ϕ) denote the optimal
model parameter that induces a specific target distribution
parameter ϕ – in case of having multiple model parameters
that potentially induce the same distribution parameter ϕ,
ϑ∗(ϕ) is the one that achieves the minimum performative
prediction risk.

1.4. Structure of the Paper

The rest of the paper is organized as follows: In Section 2,
we introduce the problem formulation and provide a warm-
up setting when PR(θ) is convex over the model parameter
θ. Using this simple setting, we introduce the zeroth-order
optimization technique we use, which will serve as the build-
ing block to solve for a more complicated setting (i.e., when
PR(θ) is not convex over θ). We also present a fundamen-
tal fact in convex optimization that sublinear regret implies
model convergence (Proposition 1), which unifies the goal of
regret minimization and model optimality in our setting. In
Section 3, we provide an overview of our proposed solution.
In Section 4.1, we describe the outer algorithm, and Sec-
tion 4.2 describes the inner algorithm called LearnModel,
which is used to solve a subroutine problem using black-
box oracle. Section 4.3 contains the overall regret analysis.
Lastly, in Section 5, we discuss the limitations and poten-
tial future work. All omitted proofs can be found in the
Appendix.

2. Preliminaries
We begin by formally defining our problem.

2.1. Problem Formulation

The objective of performative prediction is to minimize the
performative risk defined as PR(θ) := Ez∼D(θ)[ℓ(z; θ)] .

3



Performative Prediction with Bandit Feedback: Learning through Reparameterization

A model θOPT ∈ Θ is said to be performatively optimal
if PR(θOPT) = minθ∈Θ PR(θ). To find the performatively
optimal model, one usually needs to have the full knowl-
edge of the underlying distribution map D : Θ → Φ. In
this work, we consider a more practical scenario where the
distribution mapD is not known in advance, and to learn the
performatively optimal model, the learner has to adaptively
deploy models to gradually learn the underlying distribution
map.

Formally, we consider the following repeated interaction
between the learner and the environment consisting of de-
cision subjects where we can only query through samples.
The interaction proceeds for Ttotal steps, at each time step
τ = 1, . . . , Ttotal: (1) the learner deploys a model θτ ∈ Θ;
(2) the learner observes nτ data samples {z(i)τ }i∈[nτ ] where

each z
(i)
τ

iid∼ D(θτ ); (3) the learner incurs empirical loss
ℓ(z

(i)
τ ; θτ ) for each sample.

The goal of the learner is to design an online model de-
ployment policy A such that it minimizes her cumulative
empirical risk over all observed data samples:

RN (A,PR) =
Ttotal∑
τ=1

nτ∑
i=1

ℓ(z(i)τ ; θτ )−N · PR(θOPT) (2)

where N :=
∑Ttotal

τ=1 nτ denotes the total number of observed
data samples throughout the process. The reason we intro-
duce Ttotal instead of N directly is that each step (τ ) of our
algorithm performs different tasks, where we would impose
different requirements of samples to be collected. This shall
become clear later when we present our algorithm in the
following sections.

2.2. Warmup Setting: When PR(θ) is Convex in θ

In this section, we analyze a simple scenario when we as-
sume that the performative risk PR(θ) is convex over the
model parameter θ. The technique we use to solve this sim-
ple case will be the building block to solve the later more
challenging problem where PR(θ) is not convex over the
model parameter θ.

Recall that when the learner deploys a model θ, she observes
a set of data samples which are i.i.d drawn from the under-
lying data distribution D(θ). This enables us to compute an
unbiased estimate P̃R(θ) for the performative risk PR(θ) of
the deployed model θ:

P̃R(θ) =
1

nτ

nτ∑
i=1

ℓ(z(i)τ ; θ), and E[P̃R(θ)] = PR(θ), ∀θ ∈ Θ

where the expectation is over the randomness of the ob-
served samples. Since PR(θ) is convex over the model
parameter θ, one can use an off-the-shelf zeroth-order con-

vex optimization technique (Agarwal et al., 2010) to solve
this problem and get the following regret guarantee:

Lemma 1. When PR(θ) is convex, L-Lipschitz w.r.t. the de-
ployed model parameter θ, there exists an algorithm (Algo-
rithm 3) achieving RN (A3,PR) = O(

√
dΘN log 1

p ) with
probability at least 1 − p, where N is the total number of
samples deployed during the process.

We defer the proof and the details of Algorithm 3 to Ap-
pendix B. In particular, Algorithm 3 deploys two models
at each time step, in doing so, one can show that the regret
bounds closely resemble bounds for the full information
case where the learner knows the distribution map D(·).
The proof of the above result builds on the main result of
Agarwal et al. (2010), and also incorporates an improved
analysis of the gradient estimate due to Shamir (2017).

2.3. Useful Fact: Sublinear Regret Implies Convergence
in Model Optimality

A folklore fact in online and zeroth-order optimization is
that if a function f is convex and we wish to converge
to an approximately optimal point, it suffices to show a
query algorithm that achieves o(n) regret after n queries. In
particular, we have the following proposition:

Proposition 1 (Sublinear Regret Implies Convergence). Let
f : X → R be convex, and let A be an algorithm for
minimizing f whose regret after n queries is sublinear in
n, i.e. Rn(A, f) = o(n). Then we can compute an ϵ-
suboptimal point for f inRn(A, f)/ϵ queries of f .

This proposition establishes a strong link between achieving
sublinear regret and the convergence toward an optimal
model. It implies that if our proposed algorithm attains a
sublinear regret as defined in Equation 1, this automatically
suggests that we can obtain an almost optimal model, which
is exceptionally close to the truly optimal model, denoted
as θOPT. This closeness is achieved simply by averaging the
models θ1, . . . , θTtotal throughout the deployment process.
This helps us unify the goal of regret minimization and
finding the optimal model.

3. Optimizing PR via Reparameterization: An
Overview of Our Solution

When PR(θ) is not convex over the model parameter θ, the
zeroth-order convex optimization technique used in Sec-
tion 2.2 is not directly applicable. Instead, we leverage
the structure of PR(θ) and reparameterize it as a function
of the induced data distribution D(θ). In particular, we
consider the setting where the data distribution D(θ) has a
parametric continuously differentiable density p(z;φ(θ)),
and the functional form p(z;ϕ) is known to the learner but
the distribution parameter ϕ remains unknown. Under mild
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conditions, we show that the performative risk PR(θ) can
be reformulated as a function of the induced distribution
distribution parameter ϕ ≡ φ(θ), namely,

PR(θ) = PR†(φ(θ)) ≡ PR(ϑ∗(ϕ)) , (3)

and PR†(ϕ) is convex over the distribution parameter ϕ (See
more details in Section 4.1).

Here we provide two real-life settings to justify our model:

Example 1. (Biased coin flip). Consider the task of pre-
dicting the outcome of a biased coin flip similar to Perdomo
et al. (2020), where the bias of the coin depends on a fea-
ture X and the assigned score fθ(X). In particular, define
D(θ) in the following way: X is a 1-dimensional feature
supported on [0, 1] and Y ∼ Bernoulli(φ(θ)). Assume that
the class of predictors consists of linear models of the form
fθ(x) = θx and that the objective is to minimize the squared
loss: ℓ(x, y; θ) = (y − fθ(x))

2. When the probability of the
coin landing on heads φ(θ) = θ2, we can verify that PR(θ)
is convex in φ(θ), not in θ (by similar argument provided
below in Example 3).

Example 2. (Expected revenue of goods). Let θ ∈ Rd

denote a vector of prices for various goods the distributor
sets. A vector z denotes a customer’s demand for each
good. The distributor’s goal is to maximize the expected
revenue PR(θ) = Ez∼D(θ)

[
θ⊤z

]
. In other words, the loss

function is ℓ(z; θ) = −θ⊤z. When D(θ) = N(φ(θ),Σ2)
with φ(θ) =

√
θ and a fixed Σ2, we can verify that PR(θ)

is not convex in θ but is convex in φ(θ) =
√
θ.

With this reparameterization, one can operate on the space of
distribution parameters and hopefully apply the zeroth-order
convex optimization technique. However, one notable chal-
lenge is in zeroth-order convex optimization, the learner is
usually assumed to have direct query access to the unknown
convex function f . Namely, when querying point x, the
learner is able to immediately obtain the information about
the (noisy) value f(x). In our setting, such direct access is,
unfortunately, not available since the mapping φ(·) is not
known to the learner. Indeed, the learner can only deploy a
model θ to observe the empirical performative risk P̃R(θ)
which is evaluated over the observed data samples drawn
from the induced data distribution D(θ). Hence, to evalu-
ate the value PR†(ϕ) on a target data distribution with the
parameter ϕ, we use another algorithm called LearnModel
as a subroutine to find a model θ̄ such that φ(θ̄) ≈ ϕ (See
Section 4.2).

Summary of our proposed procedure. Intuitively, the
outer loop optimizes the objective function PR in the dis-
tribution parameter space ϕ ∈ Φ iteratively and tries to
find the optimal data parameter ϕ∗, while the inner loop
(LearnModel) tries to find a model parameter to induce the

particular data parameter that the outer loop is currently it-
erating on.3 A graph illustration of our algorithm procedure
in given in Figure 1.

Figure 1. Illustration of our procedure (Algorithm 1). Each big
block represents one iteration of the outer algorithm, which con-
sists of three sub-steps: Step 1, the learner first computes the two
target distribution ϕ+

t and ϕ−
t (corresponds to the white section),

Step 2, the learner uses LearnModel to learn the corresponding
model θ̂+t and θ̂−t that can best approximately induce ϕ+

t and
ϕ−
t (corresponds to the grey section) correspondingly. Step 3, the

learner deploys θ̂+t and θ̂−t and perform a gradient update and get
ϕt+1. Each deployment of LearnModel requires a total number
of S steps. Thus, the total number of steps involved in the whole
procedure is Ttotal = T × S.

3.1. Examples of PR Being Convex in ϕ not in θ

We first provide three examples in which our condition (PR
loss is convex in the induced distribution parameter φθ :=
ϕ(θ), but non-convex in the model parameter θ) holds. See
more examples and derivation details in Appendix C.

Example 3. (Bernoulli distribution) Consider the fol-
lowing one-dimension linear model with the squared loss
ℓ(θ; (x, y)) = −(θx − y)2. Assuming a model θ ∈
Θ = [0, 1] induces a Bernoulli distribution over the la-
bels with the distribution parameter φ(θ) := θ2, i.e.,
y ∼ Bern(φ(θ)). Then its PR loss is convex in its data
parameter φθ but not convex in its model parameter θ.

Notice that the example provided can be generalized to any
distribution map ϕ(θ) that satisfies φ(θ) = θα for any α >
1, and any ℓβ loss for even β value. In addition, Example 1
can also be any generalized monotone polynomial function
φ(θ).

3One may wonder how to find the optimal ϑ∗(ϕ) when there
are two model parameters θ and θ′ that realize the same ϕ (i.e.,
φ(θ) = φ (θ′) and PR (θ′) ≥ PR(θ)). Recall that the objective
function for LearnModel is to find any model θ that leads to the
particular target data parameter ϕ such that φ(θ) = ϕ. It is quite
possible that multiple models can induce the same target data
parameter; however, since the goal is to find any one of them,
having multiple model parameters won’t be an issue – in fact, it
can only help speed up the process
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Example 4 (Gaussian distribution). For a random variable
x following a one-dimensional Gaussian distribution with
fixed variance, i.e., D(θ) = N(φ(θ), σ2), and let the loss
as ℓ(x; θ) = (θx)2, then we have PR(θ) = θ2(σ2 +φ(θ)2).
With φ(θ) =

√
θ, we verify that PR(θ) is not convex in

the model parameter θ but is convex in the distribution
parameter φ(θ) =

√
θ.

Example 5 (Uniform distribution). Fix a random variable x.
Let y follow a uniform distribution with parameter φ(θ), e.g.,
y ∼ Uniform[0, φ(θ)], and with the loss being ℓ(θ;x, y) =
−(θx − y)2, we have PR(θ) = θ2x2 − θxφ(θ) + 1

3φ(θ)
2.

Setting φ(θ) = θ2, we verify that it’s convex in the dis-
tribution parameter φ(θ) but not in the model parameter
θ.

Remark 1. Earlier work (Miller et al., 2021) posits
the “mixture dominance assumption”, under which the
performative prediction risk turns out to be convex in
the model parameter θ. In particular, the assumption
requires that for any triple θ, θ′, θ0 ∈ Θ, the fol-
lowing condition holds: Ez∼D(αθ+(1−α)θ′)[ℓ(θ0; z)] ≤
Ez∼αD(θ)+(1−α)D(θ′)[ℓ(θ0; z)]. The primary distinction be-
tween our condition and theirs is that our condition only
needs to be valid for each individual data parameter. This
is in contrast to Miller et al.’s condition, which must be
met for any combination of θ, θ′, and θ0 ∈ Θ. We believe
our approach has greater versatility and is more likely to be
fulfilled in various scenarios 4.

4. Our Algorithm and its Performance
Guarantee

In this section, we provide the details of our proposed algo-
rithm, and also the associated performance analysis.

4.1. The Outer Algorithm: A Reparameterization
Approach

As we mentioned, in this work, we study the scenario where
PR(θ) is not convex over the model parameter. The high-
level idea is that we can reparameterize the performative
risk PR(θ) as a function PR†(ϕ) over the data distribution
parameter ϕ. In particular, we first reformulate the learner’s
loss function so that it can be expressed as a function only
in the induced data distribution. For each data distribution
ϕ ∈ Φ, assume the set of learner’s actions (deployed model
parameters) that induce ϕ is Θ∗(ϕ) = {θ ∈ Θ|φ(θ) = ϕ}
Among all of the learner’s actions that induce ϕ, the optimal
one that achieves the minimal PR loss across the whole
population is:

ϑ∗(ϕ) = argmin
θ∈Θ∗(ϕ)

PR(θ)

4We can also verify that Example 3 does not satisfy the mixture
dominance assumption.

where ties are broken arbitrarily. Now we can rewrite
learner’s objective function as a function of ϕ

PR†(ϕ) = PR(ϑ∗(ϕ)) (4)

To make the problem tractable, we consider following
generic class of PR†(·) that is convex and Lipchitz con-
tinuous.

Assumption 1. PR†(ϕ) is convex and L†-Lipschitz over the
data distribution parameter ϕ ∈ Φ.

With reparameterizing PR(θ) as a function PR†(ϕ) over
the induced data distribution parameter ϕ, we now wish to
minimize a bounded, L†-Lipschitz function PR†(·) : Φ→
R, where Φ ⊂ RdΦ has bounded diameter DΦ, by operating
on the distribution parameter space Φ.

Instead of having immediate query access in zeroth-order
convex optimization algorithm, in our setting, we cannot
directly evaluate the (noisy) value PR†(ϕ) for a particular
data distribution parameter, but may query the following
oracles:

• A noisy function oracle EstimatePR, which takes θ ∈ Θ

as input and returns an unbiased estimate P̃R such that
E[P̃R(θ)] = PR(θ). This noisy oracle can be imple-
mented by simply making a prediction and observing the
loss as defined in Section 2.2 5.

• A noisy reparameterization oracle
LearnModel(ϕ, ϵLM, pLM), which takes ϕ ∈ Φ,
ϵLM, pLM > 0 as input and returns θ ∈ Θ such that
Pr(∥φ(θ) − ϕ∥ ≥ ϵLM) ≤ pLM. We will specify
LearnModel in Section 4.2.

Algorithm 1 achieves this task. Specifically, it returns both
θ̄ ∈ Θ and ϕ̄ ∈ Φ such that with probability at least 1− p,
|PR(θ̄)−PR(θOPT)| ≤ ϵ and |PR†(ϕ̄)−PR†(φ(θOPT))| ≤ ϵ.

For analysis purpose, we also define regret in T , the total
number of steps MinimizePR has to go through in order to
get an ϵ-suboptimal model parameter w.r.t the PR objective
function:

RT (MinimizePR,PR)

=
T∑

t=1

[
EstimatePR(θ̂+t ) + EstimatePR(θ̂−t )− 2PR(θOPT)

]
We demonstrate the following regret bound for this algo-
rithm:
Theorem 2 (High-probability regret bound for Algorithm 1
in T ). When Algorithm 1 is called with arguments ϵLM and

5The sample required for each round of estimate EstimatePR is
O(1); this is because EstimatePR itself is an unbiased estimator,
so even with one sample, in expectation, the estimation will be
unbiased.
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Algorithm 1 Bandit algorithm for minimizing an indirectly
convex function with noisy oracles

function EstimatePR(θ) ▷ Unbiased estimate of PR(θ)
Deploy θ, observe sample z ∼ D(θ)
return ℓ(z; θ)

function MinimizePR(LearnModel : Φ → Θ;
ϵ, p, ϵLM, pLM > 0)

T ← dΦ

(ϵ−
√

ϵLMdΦ)2
, δ ←

√
ϵLMdΦ, η ← 1/

√
dΦT

y1 ← 0
for t← 1, . . . , T do

ut ← sample from Unif(S)
ϕ+
t ← ϕt + δut, ϕ−

t ← ϕt − δut

θ̂+t ← LearnModel(ϕ+
t , ϵLM, pLM)

θ̂−t ← LearnModel(ϕ−
t , ϵLM, pLM) ▷

θ̂+t such that PR(θ̂+t ) ≈ PR†(ϕ+
t ), similarly, θ̂−t such that

PR(θ̂−t ) ≈ PR†(ϕ−
t )

P̃R(θ̂+t )← EstimatePR(θ̂+t )

P̃R(θ̂−t )← EstimatePR(θ̂−t ) ▷ Approximations of
PR(θ̂+t ), PR(θ̂

−
t )

g̃t ← dΦ
2δ

(
P̃R(θ̂+t )− P̃R(θ̂−t )

)
· ut ▷ Approximation

of∇ϕPR
†(ϕt)

ϕt+1 ← Π(1−δ)Φ(ϕt − ηg̃t) ▷ Take gradient step and
project

ϕ̄← 1
T

∑T
t=1 ϕt

θ̄ ← LearnModel(ϕ̄, ϵLM, pLM)
return θ̄, ϕ̄

pLM, we have for every p > 0 that

RT (MinimizePR,PR) = O

(√
dΦT +

√
ϵLMdΦ · T +

√
T log

1

p

)

with probability at least 1− p− 2TpLM.

The above Theorem 2 requires that the output of
LearnModel is ϵLM-close to the target distribution parameter
ϕ with probability at least 1− pLM. Later in Section 4.2, we
show how we achieve this by developing an zeroth-order
convex optimization algorithm with the objective of mini-
mizing the KL divergence of two distributions.

4.2. Inner Algorithm: Inducing a Target Distribution
Using LearnModel

In this section, we show how to solve the sub-problem
LearnModel mentioned in Algorithm 1: given a target dis-
tribution with the parameter ϕ ∈ Φ, find a model θ ∈ Θ
whose corresponding distribution parameter φ(θ) is close
to ϕ.

Objective function for LearnModel. To this end, we con-
sider minimizing the KL divergence between ϕ and φ(θ):

6

KL(ϕ||φ(θ)) :=
∫
z

p(z;ϕ) log
p(z;ϕ)

p(z;φ(θ))
dz (5)

where p(z;ϕ) denotes the pdf for the target distribution ϕ,
and p(z;φ(θ)) denotes the pdf for the distribution induced
by deploying θ.

In general, KL(ϕ||φ(θ)) measures how much a distribu-
tion with the parameter φ(θ) is away from the target dis-
tribution with the parameter ϕ: if the two distributions
ϕ1, ϕ2 ∈ Φ satisfy ϕ1 = ϕ2, then KL(ϕ1||ϕ2) = 0, oth-
erwise KL(ϕ1||ϕ2) > 0. Intuitively, the lower the value
KL(ϕ1||ϕ2) is, the better we have matched the target dis-
tribution with our approximate distribution induced by the
chosen model. However, KL(ϕ||·) is generally not convex
nor Lipschitz. Hence, to make the problem tractable, we
will make several assumptions. We view these assumptions
as comparatively mild, and provide examples shortly after
stating the assumptions we need.
Assumption 2. The function KL(ϕ||φ(·)), the data distri-
bution D(θ), and its parameter mapping φ(·) satisfies the
following properties.

2a. KL(ϕ||φ(·)) is convex in the model parameter θ ∈ Θ;

2b. The data distribution D(θ) with the parameter φ(θ) is
(ℓ2,K)-Lipschitz continuous in the model parameter
θ ∈ Θ with constant K(z), ∀z ∈ Z 7;

2c. Let D1,D2 be two data distributions with the parame-
ter ϕ1, ϕ2 ∈ Φ, and dTV(D1,D2) be the total variation
distance. Then ∥ϕ1 − ϕ2∥ ≤ LTV · dTV(D1,D2) for
some constant LTV > 0.

Here, we provide examples to demonstrate that the above
assumptions are comparatively mild. The following is an
example showing the convexity of KL(ϕ||φ(·)).
Example 1. Consider the density function p(z;φ(θ))
of the data distribution D(θ) satisfying p(z;φ(θ)) =
Unif(exp(cφ(θ))) for some constant c > 0 and for any
convex function φ(θ), then KL(ϕ||φ(·)) is convex over θ.

In the above Assumption 2b, we assume a family of distribu-
tion called the (ℓ2,K)-Lipschitz continuous. This Lipschitz
continuity over the parametrization of probability distribu-
tions allows us to have the following Lipschitz condition of
the function KL(ϕ||φ(·)) over the model parameter θ:

6For notation simplicity, here, we use KL(ϕ1||ϕ2) to repre-
sent KL(D1||D2) where the data distribution D1 and D2 has the
parameter ϕ1 and ϕ2, respectively.

7A distribution D(θ) with the density function p(·|φ(θ)) pa-
rameterized by θ ∈ Θ is called (ℓ2,K)-Lipschitz continuous
(Honorio, 2011) if for all z in the sample space, the log-likelihood
f(θ) = log p(z|φ(θ)) is Lipschitz continuous with respect to the
ℓ2 norm of θ with constant K(z).

7
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Lemma 2 (Lipschitzness of KL(ϕ||φ(θ)) in θ).
Given two (ℓ2,K)-Lipschitz continuous distributions
D1 = p (· | φ(θ1)) and D2 = p (· | φ(θ2)), and
a target distribution parameter ϕ ∈ Φ, we have
|KL (ϕ||φ(θ1))− KL (ϕ||φ(θ2))| ≤ LKL ∥θ1 − θ2∥ with a
constant LKL > 0.

The above Assumption 2c is about the continuity on the
distribution parameter ϕ ∈ Φ. Intuitively, this assumption
ensures that if the parameters of two distribution are close,
then their total variation distance is close as well. With
this assumption, we can show that the distance between two
distribution parameters ∥ϕ1−ϕ2∥ can be bounded by the KL
divergence between the corresponding data distributions.

Lemma 3. With Assumption 2c, we have ∥ϕ1 − ϕ2∥ ≤
Lϕ

√
KL(ϕ1||ϕ2) for some constant Lϕ > 0.

Intuitively, the above result ensures that given a target distri-
bution parameter ϕ, as long as a model θ whose correspond-
ing data distribution is close (i.e., KL(ϕ||φ(θ)) is small) to
the distribution with the parameter ϕ, then φ(θ) is close to
ϕ. We will use Lemma 3 in the proof of our main theorem
in Section 4.3.

Algorithm for LearnModel. When KL(ϕ||φ(·)) is con-
vex and Lipschitz over the model θ, its minimizer can
be computed using algorithms similar to Algorithm 1. In
our problem, given a target data distribution with the pa-
rameter ϕ, we can use the observed data samples to ap-
proximately compute the KL(ϕ||φ(θ)) when deploying a
model θ. Indeed, we assume an existence of an oracle
EstimateKL(ϕ, (z

(i)
t )i∈[nt]) which takes the observed sam-

ples (z(i)t )i∈[nt] realized from the induced data distribution
D(θ) and the target data distribution parameter ϕ as input to
approximate the value KL(ϕ||φ(θ)). We remark that such
oracle has been widely used in the literature on KL diver-
gence estimation (Rubenstein et al., 2019).

Definition 1 (Oracle EstimateKL). There exists an oracle
EstimateKL that given any target parameter ϕ ∈ Φ, er-
ror tolerance ϵKL > 0 and error probability pKL > 0, and
NKL(ϵKL, pKL) samples z1, . . . , zNKL(ϵKL,pKL) from a distribu-
tion with parameter ϕ′, returns an estimated KL divergence
K̃L(ϕ||ϕ′) satisfying

∥∥K̃L(ϕ||ϕ′)− KL(ϕ||ϕ′)
∥∥ ≤ ϵKL with

probability at least 1− pKL.

With the oracle EstimateKL to approximately compute the
KL divergence, we are now ready to present our inner algo-
rithm LearnModel (see Algorithm 2).

Similar to before, for analysis purpose, we also define regret
of LearnModel in S, the total number of rounds LearnModel
has to go through in order to output a ϵLM-suboptimal model
parameter w.r.t the KL objective function:

RS(LearnModel,KL)

Algorithm 2 Learn a model that approximately induces a
given distribution parameter ϕ

function LearnModel(ϕ ∈ Φ; ϵLM, pLM > 0, ϵKL, pKL > 0)
S ← dΘ

(ϵLM−
√

ϵKLdΘ)2
, δLM ←

√
ϵKLdΘ

ηLM ← 1√
dΘS

, NKL ← NKL(ϵKL, pKL)

θ1 ← 0
for s← 1, . . . , S do

us ← sample from Unif(SdΘ)
θ+s ← θs + δLMus, θ−s ← θs − δLMus

z+s,1:N ∼ φ(θ+s ), z
−
s,1:N ∼ φ(θ−s ) ▷ Deploy θ+s , θ−s ;

observe NKL samples
K̃L

(
ϕ||φ(θ+s )

)
← EstimateKL(ϕ, z+s,1:N , ϵKL, pKL)

K̃L
(
ϕ||φ(θ−s )

)
← EstimateKL(ϕ, z−s,1:N , ϵKL, pKL) ▷

Approximations of KL
g̃s ← dΘ

2δLM

(
K̃L(ϕ||φ(θ+s ))− K̃L(ϕ||φ(θ−s )

)
· us ▷

Approximation of∇θKL(ϕ||φ(θs))
θs+1 ← Π(1−δLM)Θ(θs − ηLMg̃s) ▷ Take gradient step

and project
θ̄ ← 1

S

∑S
s=1 θs

return θ̄

=
S∑

s=1

[
K̃L(ϕ||φ(θ+s )) + K̃L(ϕ||φ(θ−s ))− 2KL(ϕ||ϑ∗(ϕ))

]
where ϑ∗(ϕ) is the model that can induce the target distri-
bution ϕ. Using the similar arguments in Theorem 2, we
first show the following regret guarantee for LearnModel:
Theorem 3 (High-probability regret bound for Algorithm 2
with S rounds). When LearnModel is run for S steps and
invokes EstimateKL with arguments ϵKL > 0 and pKL > 0,
we have ∀p > 0

RS(LearnModel,KL) = O

(√
dΦS +

√
ϵKLdΦ · S +

√
S log

1

p

)
with probability at least 1− p− 2SpKL > 0.

Theorem 3 characterizes the regret as a function of the total
number of deployments of the procedure in LearnModel.
Together with regret characterization of the outer algorithm
in Theorem 2, we can get the final regret bound.

4.3. Putting All Pieces Together

As shown in the previous section, both the outer algo-
rithm (MinimizePR – in Section 4.1) and inner algorithm
(LearnModel – in Section 4.2) achieve a sublinear regret
w.r.t the total number of steps (T and S) when outputting an
ϵ-optimal solutions. In this section, we combine the results
in Section 4.1 and Section 4.2 to conclude the analysis for
MinimizePR (Algorithm 1) for convex PR†(ϕ). The main
result of this section is summarized as follows:
Theorem 4 (Regret of MinimizePR in N ). Under Assump-
tion 2, and given access an oracle EstimateKL, there exists
a choice of ϵKL, pKL > 0 in Algorithm 2 such that for every

8
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p > 0,

RN (MinimizePR,PR)

= Õ

(
(dΘ + dΦ)NKL(ϵKL, pKL)

1/6N5/6

√
log

1

p

)
with probability at least 1− p.

Proof Sketch of Theorem 4. Let T be the number of steps
executed by the outer algorithm MinimizePR, and S the
number of steps in LearnModel. Let NKL(ϵKL, pKL) (or
NKL for short) denote the number of samples used by
EstimateKL. Since MinimizePR calls EstimatePR and
LearnModel 2T times, and LearnModel calls EstimateKL
2S times, the overall number of samples involved in the
whole process is N = 2(2NKLS + 1)T . Following the
regret definition, we can break down the regret into the re-
gret from calling EstimatePR in the outer algorithm and the
regret from calling EstimateKL in LearnModel. Using the
fact that PR† is Lipschitz in the distribution parameter ϕ and
the distance between any two distribution parameters can be
bounded by the KL divergence between the corresponding
data distributions (Lemma 3), we show that the total regret
in N can be expressed as:

RN (MinimizePR,PR)

=O
(√

N +NKLT ·
√
S · RS(LearnModel,KL)

+(NKLS + 1) · RT (MinimizePR,PR))

where RT (MinimizePR,PR) and RS(LearnModel,KL)
are obtained from Theorem 2 and Theorem 3 as functions
of ϵLM, ϵKL, S, T and DΘ and DΦ. Then by balancing the
terms and setting ϵLM and ϵKL according to the convergence
analysis for both MinimizePR and LearnModel (Claim 9
and Claim 10), we can get an express of the total regret.

Theorem 4 show that our procedure is sublinear in the N ,
the total number of samples we deploy during the process.
Notice that this also implies that our method is sublinear
w.r.t. the total number of deployments Ttotal = S × T . To
see this, recall that the total number of samples N required
throughout the process is N = 2(2Nkl × S + 1)T ; if we
measure the regret w.r.t. the total number of deployments,
Nkl will be constant, and thus the regret will still be sublin-
ear w.r.t. Ttotal. In addition, recall from Proposition 1, the
lowest regret optimal classifier implies the optimal classifier
up to some addictive error, which means that by having a
sublinear regret in N (and Ttotal), we also get a model that
is arbitrarily close to the performative optimal model.

Empirical Evaluation Using Toy Example We provide
empirical results using a toy example to demonstrate the
efficiency of our method. In particular, we compare our
proposed method (which minimizes PR as a function of

the distribution parameter ϕ after reparametrization) with
the baseline method (which directly minimizes PR as a
model parameter θ). We observe that under different set-
tings, both methods converge. However, our proposed
method (shown in orange) is more efficient: it demon-
strates a much faster convergence rate on average over
multiple runs, indicating that our reparametrization method
is effective when dealing with distributions that are non-
convex in θ but convex in ϕ (as per Assumption 1). The
plot can be found in Appendix H. The details for repro-
ducing our experimental results can be found at https:
//github.com/UCSC-REAL/PP-bandit-feedback.

5. Practical Consideration and Future Works
Since our method uses a double-loop zeroth order optimiza-
tion method, the convergence is likely to be slow in practice.
Thus, it requires extra consideration regarding the conver-
gence rate, and efficiency can vary based on particular set-
tings. In particular, the success of our method depends on
the fast deployment of the frequently updated models. One
potential way to speed up the deployment process may be
performing parallelization, which accelerates the optimiza-
tion process and reduces the time required to find a suitable
solution (see, e.g., (Liu et al., 2020) for a detailed reference).
In our algorithm, parallelization can be applied to several
places, e.g., the two-point estimations can be computed in
parallel and potentially speed up the process.
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Impact Statement
Since the process of finding the optimal performative model
involves deploying sub-optimal models on human agents,
sample efficiency is important. Thus sample complexity
needs to be taken into consideration when choosing the par-
ticular KL divergence oracle used in LearnModel. Addition-
ally, the concept of performativity highlights a significant
broader impact of our work: the importance of recognizing
scenarios where predictions can modify the very environ-
ment they’re meant to predict. Take, for example, an online
advertising platform utilizing machine learning models to
tailor ads for users. These models, by analyzing user behav-
iors and traits to serve personalized ads, might inadvertently
influence both user and advertiser actions, thereby estab-
lishing a feedback loop. This dynamic underscores the
need for a mindful approach in deploying predictive mod-
els, especially in settings sensitive to the outcomes of such
predictions.
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A. Appendix Arrangement
We arrange the appendix as follows:

• Appendix B provides omitted algorithm and proofs for Section 2.

• Appendix C provides more examples that satisfies PR being convex in ϕ not in θ.

• Appendix D provides omitted example and proofs for Section 4.1.

• Appendix E provides omitted proofs for Section 4.2.

• Appendix F provides omitted proof for Section 4.3.

• Appendix G provides an additional literature review on performative prediction and related literature.

• Appendix H provides empirical verification using toy example generated by Example 3 to demonstrate the efficiency of
our proposed method.

B. Omitted Algorithm and Proof for Section 2
B.1. Omitted Proof for Proposition 1

Proof. Let x1, . . . , xn be the first n points queried by A. By the convexity of f , the average of these points x̄ = 1
n

∑
i xi

satisfies

f(x̄)− f(x∗) ≤ 1

n

n∑
i=1

[f(xi)− f(x∗)] =
Rn(A, f)

n

Thus ifRn(A, f) = o(n), then after n = Rn(A, f)/ϵ queries, x̄ satisfies f(x̄)− f(x∗) ≤ ϵ as required.

B.2. Omitted algorithm and proof for Algorithm 3

Algorithm 3 is a straightforward generalization of the algorithm introduced by (Agarwal et al., 2010), while we generalize
their setting where the function can be evaluated exactly to the setting where noisy evaluation is allowed.

Algorithm 3 Bandit algorithm for minimizing convex and lipschitz PR(θ)

function EstimatePR(θ) ▷ Unbiased estimate of PR(θ)
Deploy θ, observe sample z ∼ D(θ)
return ℓ(z; θ)

function MINIMIZEPR(T )
δ ←

√
dθ/T

η ← 1/
√
dΘT

θ1 ← 0
for t← 1, . . . , T do

ut ← sample from Unif(SdΘ)
θ+t ← θt + δut, θ−t ← θt − δut

P̃R(θ+t )← EstimatePR(θ+t ) ▷ Approximations of PR(θ+t ), PR(θ
−
t )

P̃R(θ−t )← EstimatePR(θ−t )

gt ← dΘ

2δ

(
P̃R(θ+t )− P̃R(θ−t )

)
· ut ▷ Approximation of∇θP̂R(θt)

θt+1 ← Π(1−δ)Θ(θt − ηgt) ▷ Take gradient step and project

return 1
T

∑T
t=1 θt

To prove Lemma 1, we first provide a series of lemmas and claims that will be useful later.
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Claim 1 (Regret from estimating PR). For any p > 0, with probability at least 1− p,

T∑
t=1

[
P̃R(θ+t )− f(θ+t )

]
≤ F

√
T log

1

p
and

T∑
t=1

[
P̃R(θ−t )− f(θ−t )

]
≤ F

√
T log

1

p

Proof. The claim follows from Hoeffding’s inequality, since EstimatePR is unbiased and bounded by [0, F ].

Claim 2 (Regret from smoothing over the sphere or ball). For any θ ∈ Θ, u ∈ S, and δ > 0, all of the following are at most
δL:

|PR(θ + δu)− PR(θ)|, |PR(θ − δu)− PR(θ)|,∣∣∣∣12 [PR(θ + δu) + PR(θ − δu)]− PR(θ)

∣∣∣∣ , and |P̂R(θ)− PR(θ)|.

Proof sketch. Lipschitzness of PR.

Claim 3 (Deviation of smoothed function). For any p > 0, with probability at least 1− p,

T∑
t=1

P̂R(θt)− ET

[
T∑

t=1

P̂R(θt)

]
≤ F

√
T log

1

p

Proof sketch. The left-hand side is the sum of a martingale difference sequence. The Azuma-Hoeffding inequality yields
the result.

Claim 4 (Gradient estimate is unbiased and bounded). There exists a constant c > 0 such that for all t ∈ [T ], Et[gt] =

∇P̂R(θt) and ∥gt∥22 ≤ cdθL
2.

Proof. Proved in Shamir (see Lemma 10, noting that the ℓ2 norm is its own dual).

Lemma 4 (Expected suboptimality under smoothing when PR is convex). Let θ ∈ Θ, and let θ1, . . . , θt ∈ Θ be a sequence
of iterates given by the update rule θt+1 = Π(1−δ)θ(θt − ηgt)− θ for some sequence of gradient estimates gt ∈ RdΘ . Then

ET

[
T∑

t=1

P̂R(θt)

]
−

T∑
t=1

P̂R(θ) ≤ D2
Θ

η
+ ηcdθL

2T

Proof of Lemma 4. Observe that

ET

[
T∑

t=1

P̂R(θt)

]
−

T∑
t=1

P̂R(θ) =
T∑

t=1

Et

[
P̂R(θt)− P̂R(θ)

]
≤

T∑
t=1

Et

[
∇P̂R(θt)⊤(θt − θ)

]
(convexity of P̂R)

=
T∑

t=1

Et

[
g⊤t (θt − θ)

]
(Claim 4)

To decompose g⊤t (θt − θ), note that

∥θt+1 − θ∥2 = ∥Π(1−δ)θ(θt − ηgt)− x∥2

≤ ∥θt − ηgt − θ∥2

= ∥θt − θ∥2 + η2∥gt∥2 − 2η · g⊤t (θt − θ)

13
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Therefore

g⊤t (θt − x) ≤ ∥θt − θ∥2 − ∥θt+1 − θ∥2 + η2∥gt∥2

2η
T∑

t=1

Et

[
g⊤t (θt − θ)

]
≤

T∑
t=1

Et

[
∥θt − θ∥2 − ∥θt+1 − θ∥2 + η2∥gt∥2

2η

]
≤ 1

2η
Et

[
∥θ1 − θ∥2 + η2cdΘL

2T
]

(Claim 4)

≤ D2
Θ

2η
+

ηcdΘL
2T

2
(diameter of Θ)

as required.

Claim 5 (Regret from projection). For any θ ∈ Θ, PR(θδ)− PR(θ) ≤ δDΘL.

Proof. Since PR is L-Lipschitz and Π(1−δ)Θ projects from a set of diameter DΘ to a set of diameter (1− δ)DΘ, we have
PR(θδ)− PR(θ) ≤ L∥θδ − θ∥ ≤ δDΘL.

Claim 6 (Optimality of projected parameters). Since PR is convex in θ, PR
(
Π(1−δ)Θ(θOPT)

)
= argminθ∈(1−δ)Θ PR(θ).

Overall Regret Analysis for Lemma 1 We can now complete our regret bound for Lemma 1. Recall the lemma statement:

Lemma 1. When PR(θ) is convex, L-Lipschitz w.r.t. the deployed model parameter θ, there exists an algorithm (Algorithm 3)

achievingRN (A3,PR) = O(
√
dΘN log 1

p ) with probability at least 1−p, where N is the total number of samples deployed
during the process.

Proof of Lemma 1. We have

RT (A3, f) =
T∑

t=1

[
EstimatePR(θ+t ) + EstimatePR(θ−t )− 2PR(θOPT)

]
=

T∑
t=1

[
P̃R(θ+t ) + P̃R(θ−t )− PR(θ+t )− PR(θ−t )

]
︸ ︷︷ ︸

(I)

+
T∑

t=1

[
PR(θ+t ) + PR(θ−t )− 2P̂R(θt)

]
︸ ︷︷ ︸

(II)

+ 2
T∑

t=1

[
P̂R(θt)− Et[P̂R(θt)]

]
︸ ︷︷ ︸

(III)

+2
T∑

t=1

[
Et[P̂R(θt)]− f̂(θ∗δ )

]
︸ ︷︷ ︸

(IV)

+ 2
T∑

t=1

[
P̂R(θ∗δ )− f(θ∗δ )

]
︸ ︷︷ ︸

(V)

+2
T∑

t=1

[PR(θ∗δ )− PR(θOPT)]︸ ︷︷ ︸
(VI)

≤ 2F

√
T log

1

p1︸ ︷︷ ︸
(I), w.p. 1 − 2p1

(Claim 1)

+ 4δLT︸ ︷︷ ︸
(II), w.p. 1
(Claim 2)

+2F

√
T log

1

p2︸ ︷︷ ︸
(III), w.p. 1 − 2p2

(Claim 3)

+
2D2

Θ

η
+ 2ηcdθL

2T︸ ︷︷ ︸
(IV), w.p. 1
(Lemma 4)

+ 2δLT︸ ︷︷ ︸
(V), w.p. 1
(Claim 2)

+2δDΘLT︸ ︷︷ ︸
(V), w.p. 1
(Claim 5)

Thus for any p > 0, a choice of p1 = p2 = p/4, along with η = 1/
√
dθT and any δ ≤

√
dθ/T , yields RT (A3,PR) =

O(
√
dθT log 1

p ) with probability at least 1− p. Finally, since EstimatePR is queried twice per step, n = 2T , which gives

usRn(A3,PR) = RT (A3,PR) = O(
√
dθn log 1

p ), completing the proof.

14
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C. Missing Proofs and Additional Examples for Section 3
Derivations for Example 3 Since ϕ is strictly increasing in [0, 1], the inverse mapping ϕ−1 is well-defined, and we can
reformulate the performative risk PR(θ) as a function of φθ, denoted PR†(φθ), as follows:

PR(θ;x) = Ey∼Bern(φθ)[ℓ(θ;x, y)]

= φθℓ(θ;x, 1) + (1− φθ)ℓ(θ;x, 0)

= φθℓ
(
ϕ−1(φθ);x, 1

)
+ (1− φθ)ℓ

(
ϕ−1(φθ);x, 0

)
=: PR†(φθ;x)

Plugging in ℓ, we have

PR†(φθ;x) = −φθ ·
(
ϕ−1(φθ)x− 1

)2 − (1− φθ) ·
(
ϕ−1(φθ)x

)2
= −φθ · (

√
φθx− 1)

2 − (1− φθ)φθx
2 (ϕ−1(φθ) =

√
φθ)

Note that for all x ∈ [0, 1], PR†(φθ;x) = PR(θ;x) is convex in φθ over [0, 1]. In contrast,

PR(θ;x) = θ2 · ℓ(θ;x, 1) + (1− θ2) · ℓ(θ;x, 0) (6)

= −θ2 · (θx− 1)2 − (1− θ2) · (θx)2 (7)

which is non-convex in θ over [0, 1] for all x ∈ [0, 1].

0 0.5 1
-0.5

0

Figure 2. An example showing that our assumption is weaker than the mixture dominance assumption in Miller et al. (2021). In the left
figure, the blue curve represents the function PR†(φθ) which is convex w.r.t the data distribution parameter φθ; while the red curve
represents the function PR(θ), which is not a convex function with respect to θ. In the right two figures, we compare PR as a function of
the model parameter θ and as a function of the distribution parameter ϕ.

Notice that Example 3 can be generalized to any distribution map ϕ(θ) that satisfies ϕ(θ) = θα for any α > 1, and any ℓβ
loss for even β value. Below in Figure 3, we provide the plot for for ϕ(θ) = θ4 with ℓ4 norm loss (L4 norm is defined

as L4(x, y) =
(∑d

i=1 |xi − yi|4
) 1

4

where d is the dimension of x and y). The original PR loss PR(θ) is in red, which is

non-convex), and the reformulated PR loss PR†(θ) is in blue via reparameterization, which is convex).

In addition, Example 3 can also be a generalized monotone polynomial function ϕ(θ). For example, ϕ(θ) = cθ2 + dθ, for
d ≥ 0, d ≥ −2c.

Derivations for Example 4

PR(θ) = Ex∼D(θ)ℓ(x; θ)

= Ex∼N(φ(θ),σ2)(θx)
2

= θ2(σ2 + φ(θ)2)

15
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Figure 3. Another example showing PR is convex in ϕ but not θ. The original PR loss PR(θ) is in red, which is non-convex), and the
reformulated PR loss PR†(θ) is in blue via reparameterization, which is convex)

when φ(θ) =
√
θ, PR(θ) is not convex in θ. To see this:

PR(θ) = θ2(σ2 + θ)

On the other hand, since ϕ = φ(θ) =
√
θ, we have

PR(ϕ) = ϕ(θ2 + ϕ)

which is convex in ϕ.

Derivations for Example 5

PR(θ) = Ey∼D(θ)(ℓ(θ;x, y))

= −EUniform[0,φ(θ)](θx− y)2

= θ2x2 − θxφ(θ) +
1

3
φ(θ)2

when φ(θ) = θ2, we have

PR(θ) = θ2x2 − θ3x+
1

3
θ4

which is non-convex in θ. On the other hand, denote ϕ = φ(θ), we have θ =
√
ϕ, plug it into PR, we have:

PR(ϕ) = ϕx2 − ϕ
√
ϕ+

1

3
ϕ2

which is convex in ϕ.

D. Omitted Proof for Section 4.1
We present a series of lemmas and claims that are helpful for proving Theorem 2.

Claim 7 (Deviation of PR† due to error of LearnModel). If PR† is L†-Lipschitz, then for any ϕ ∈ Φ, the value θ̂ ∈ Θ
returned by LearnModel(ϕ, ϵLM, pLM) satisfies |PR†(ϕ)− PR(θ̂)| ≤ L†ϵLM with probability at least 1− pLM.

Proof. We have ∣∣∣PR†(ϕ)− PR(θ̂)
∣∣∣ = ∣∣∣PR†(ϕ)− PR†(φ(θ̂))

∣∣∣
≤ L†

∥∥∥ϕ− φ(θ̂)
∥∥∥ (Lipschitzness of PR†)

≤ L†ϵLM (guarantee of LearnModel)

where the last inequality holds with probability at least 1− pLM.
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Claim 8 (Deviation of gradient estimate due to error of LearnModel and EstimatePR). Define

g̃t :=
dΦ
δ
P̃R(θ̂+t )ut and gt :=

dΦ
δ
PR†(ϕ+

t )ut (8)

For any t ∈ [T ],

gt − g̃t ≤
dΦ
δ

[
PR(θ̂+t )− P̃R(θ̂+t ) + PR†(ϕ+

t )− PR(θ̂+t )
]
ut.

Proof. We have

gt =
dΦ
δ
PR†(ϕ+

t )ut

=
dΦ
δ

[
P̃R(θ̂+t )− P̃R(θ̂+t ) + PR(θ̂+t )− PR(θ̂+t ) + PR†(ϕ+

t )
]
ut

= g̃t +
dΦ
δ

[
PR(θ̂+t )− P̃R(θ̂+t ) + PR†(ϕ+

t )− PR(θ̂+t )
]
ut (definition of g̃t)

Lemma 5 (Expected suboptimality under smoothing for PR†). For any ϕ ∈ Φ, with probability at least 1− TpLM over the
calls to LearnModel,

ET

[
T∑

t=1

P̂R
†
(ϕt)

]
−

T∑
t=1

P̂R
†
(ϕ) ≤ D2

Φ

η
+ ηcdΦL

2T +
DΦL

†ϵLMdΦT

δ

Proof of Lemma 5. For any ϕ ∈ Φ, we have

E

[
T∑

t=1

P̂R
†
(ϕt)

]
−

T∑
t=1

P̂R
†
(ϕ)

=
T∑

t=1

E
[
P̂R

†
(ϕt)− P̂R

†
(ϕ)

]

≤
T∑

t=1

E
[
∇P̂R

†
(ϕt)

⊤(ϕt − ϕ)

]
(convexity of P̂R

†
)

=
T∑

t=1

E
[
g⊤t (ϕt − ϕ)

]
(Claim 4)

=
T∑

t=1

E

[(
g̃t +

dY
δ

[
PR(θ̂+t )− P̃R(θ̂+t ) + PR†(ϕ+

t )− PR(θ̂+t )
]
· ut

)⊤

(ϕt − ϕ)

]
(Claim 8)

=
T∑

t=1

E

[(
g̃t +

dY
δ

[
PR†(ϕ+

t )− PR(θ̂+t )
]
· ut

)⊤

(ϕt − ϕ)

]
(E[P̃R(·)] = PR(·) since EstimatePR is unbiased)

=
T∑

t=1

E
[
g̃⊤t (ϕt − ϕ)

]
+

dY
δ

T∑
t=1

E
[(

PR†(ϕ+
t )− PR(θ̂+t )

)
u⊤
t (ϕt − ϕ)

]
≤

T∑
t=1

E
[
g̃⊤t (ϕt − ϕ)

]
+

dY
δ

T∑
t=1

E
[∣∣∣PR†(ϕ+

t )− PR(θ̂+t )
∣∣∣ · ∥ut∥ · ∥ϕt − ϕ∥

]
≤

T∑
t=1

E
[
g̃⊤t (ϕt − ϕ)

]
+

dY
δ

T∑
t=1

E
[
L†ϵh ·DY

]
(Claim 7, w.p. 1− Tph)

≤D2
Y

η
+ ηcdY L

2T +
dY
δ
L†ϵhDY T (same argument as in Lemma 4)
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Regret analysis for the outer algorithm in total number of step T We can now complete our regret bound for
MinimizePR (Algorithm 1). We recall the theorem statement for Theorem 2:

Theorem 2 (High-probability regret bound for Algorithm 1 in T ). When Algorithm 1 is called with arguments ϵLM and pLM,
we have for every p > 0 that

RT (MinimizePR,PR) = O

(√
dΦT +

√
ϵLMdΦ · T +

√
T log

1

p

)

with probability at least 1− p− 2TpLM.

Proof of Theorem 2. We have

RT (MinimizePR,PR)

=
T∑

t=1

[
EstimatePR(θ̂+t ) + EstimatePR(θ̂−t )− 2PR(θOPT)

]
=

T∑
t=1

[
P̃R(θ̂+t ) + P̃R(θ̂−t )− PR(θ̂+t )− PR(θ̂−t )

]
︸ ︷︷ ︸

(I)

+
T∑

t=1

[
PR(θ̂+t ) + PR(θ̂−t )− PR†(ϕ+

t )− PR†(ϕ−
t )
]

︸ ︷︷ ︸
(II)

+
T∑

t=1

[
PR†(ϕ+

t ) + PR†(ϕ−
t )− 2P̂R

†
(ϕt)

]
︸ ︷︷ ︸

(III)

+2
T∑

t=1

[
P̂R

†
(ϕt)− Et[P̂R

†
(ϕt)]

]
︸ ︷︷ ︸

(IV)

+ 2
T∑

t=1

[
Et[P̂R

†
(ϕt)]− P̂R

†
(ϕ∗

δ)

]
︸ ︷︷ ︸

(V)

+2
T∑

t=1

[
P̂R

†
(ϕ∗

δ)− PR†(ϕ∗
δ)

]
︸ ︷︷ ︸

(VI)

+2
T∑

t=1

[
PR†(ϕ∗

δ)− PR†(ϕOPT)
]

︸ ︷︷ ︸
(VII)

≤ 2F

√
T log

1

p1︸ ︷︷ ︸
(I), w.p. 1 − 2p1

(Claim 1)

+ 2L†ϵLMT︸ ︷︷ ︸
(II), w.p. 1 − 2TpLM

(Claim 7)

+ 4δLT︸ ︷︷ ︸
(III), w.p. 1
(Claim 2)

+2F

√
T log

1

p2︸ ︷︷ ︸
(IV), w.p. 1 − 2p2

(Claim 3)

+
2D2

Φ

η
+ 2ηcDΦL

2T +
2DΦL

†ϵLMDΦT

δ︸ ︷︷ ︸
(V), w.p. 1 − 2TpLM

(Lemma 5)

+ 2δL†T︸ ︷︷ ︸
(VI), w.p. 1
(Claim 2)

+2δDΦL
†T︸ ︷︷ ︸

(VII), w.p. 1
(Claim 5)

Recall that in Algorithm 1, we set δ =
√
ϵLMDΦ and η = 1/

√
DΦT . Thus for any p′ > 0, a choice of p1 = p2 = p′/4

yields

RT (A1,PR) = O

(√
DΦT +

√
ϵLMDΦ · T +

√
T log

1

p′

)
with probability at least 1− p′ − 2TpLM as required.

E. Omitted Proof for Section 4.2
We first provide a proof for Lemma 2. Recall the lemma statement:

Lemma 2 (Lipschitzness of KL(ϕ||φ(θ)) in θ). Given two (ℓ2,K)-Lipschitz continuous distributionsD1 = p (· | φ(θ1)) and
D2 = p (· | φ(θ2)), and a target distribution parameter ϕ ∈ Φ, we have |KL (ϕ||φ(θ1))− KL (ϕ||φ(θ2))| ≤ LKL ∥θ1 − θ2∥
with a constant LKL > 0.
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Proof of Lemma 2.

|KL(ϕ||φ(θ1))− KL(ϕ||φ(θ2))|

=

∣∣∣∣∫
z

p(z|ϕ) log p(z|ϕ)
p(z|φ(θ1))

dz −
∫
z

p(z|ϕ) log p(z|ϕ)
p(z|φ(θ2))

dz

∣∣∣∣
=

∣∣∣∣∫
z

p(z|ϕ)(log p(z|φ(θ1))− log p(z|φ(θ2)))dz
∣∣∣∣

≤
∫
z

p(z|ϕ) |log p(z|φ(θ1))− log p(z|φ(θ2))| dz

≤
∫
z

p(z|ϕ)LKL∥θ1 − θ2∥dz (P1 and P2 are lipschitzness continuous, Theorem 3 of (Honorio, 2011))

=LKL∥θ1 − θ2∥
∫
z

p(z|ϕ)dz︸ ︷︷ ︸
=1

=LKL∥θ1 − θ2∥

Next, we provide the proof for Lemma 3. Recall the lemma statement:

Lemma 3. With Assumption 2c, we have ∥ϕ1 − ϕ2∥ ≤ Lϕ

√
KL(ϕ1||ϕ2) for some constant Lϕ > 0.

Proof of Lemma 3.

∥ϕ1 − ϕ2∥2 ≤ LTVdTV(ϕ1, ϕ2) ≤ LTV

√
1

2
KL(ϕ1, ϕ2) ≜ Lϕ

√
KL(ϕ1, ϕ2)

The second inequality is due to Pinsker’s inequality.

We then show the example provide by Example 1 is convex in θ. Recall the example:

Example 1. Consider the density function p(z;φ(θ)) of the data distribution D(θ) satisfying p(z;φ(θ)) =
Unif(exp(cφ(θ))) for some constant c > 0 and for any convex function φ(θ), then KL(ϕ||φ(·)) is convex over θ.

Below we provide proof for it being convex in θ:

Proof for Example 1 being convex in θ. Under condition 1, we have p(z;ϕ) = 1
exp(cφ(θ)) . We can rewrite the KL(ϕ||φ(θ))

divergence as:

KL(ϕ||φ(θ)) =
∫
z

p(z;ϕ) log
p(z;ϕ)

p(z;φ(θ))
dz

=

∫
z

1

exp(cϕ)
log

exp(cφ(θ))

exp(cϕ)
dz

=
exp(cφ(θ))

exp(cϕ)
log

exp(cφ(θ)

exp(cϕ)

= exp(c(φ(θ)− ϕ))c(φ(θ)− ϕ)

Denote KL(ϕ||φ(θ)) = f(g(θ)) where f(x) = cx exp(cx) and g(θ) = φ(θ)− ϕ.

To show Equation (5) is convex in θ, it suffices to show f(x) is convex non-decreasing in x, and g(θ) is convex in θ. First,
g(θ) is convex in θ due to condition 2.
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For f(x), take the first and second derivative and find conditions to make them both non negative:

∂f(x)

∂x
= c exp(cx) + cx2 exp(cx)

= c exp(cx)(1 + cx) ≥ 0

∂2f(x)

∂x2
= c2 exp(cx)(2 + cx) ≥ 0

It suffices to set (2 + cx) ≥ 0 and c(1 + cx) ≥ 0 which suffices to set c ≥ 2
max |φ(θ)−ϕ| .

Regret Analysis and convergence guarantee of LearnModel in total number of steps S We can now complete our
regret bound for LearnModel (Algorithm 2). Recall the theorem statement:
Theorem 3 (High-probability regret bound for Algorithm 2 with S rounds). When LearnModel is run for S steps and
invokes EstimateKL with arguments ϵKL > 0 and pKL > 0, we have ∀p > 0

RS(LearnModel,KL) = O

(√
dΦS +

√
ϵKLdΦ · S +

√
S log

1

p

)
with probability at least 1− p− 2SpKL > 0.

Proof of Theorem 3.

RS(LearnModel,KL)

=
S∑

s=1

K̃L(ϕ||φ(θ+s )) + K̃L(ϕ||φ(θ−s ))− 2KL(ϕ||φ(ϑ∗(ϕ)))︸ ︷︷ ︸
=0,φ(ϑ∗(ϕ)))=ϕ


=

S∑
s=1

[
K̃L(ϕ||φ(θ+s ))− KL(ϕ||φ(θ+s )) + K̃L(ϕ||φ(θ+s ))− KL(ϕ||φ(θ−s ))

]
︸ ︷︷ ︸

(I)

+
S∑

s=1

[
KL(ϕ||φ(θ+s )) + KL(ϕ||φ(θ−s ))− 2K̂L(ϕ||φ(θs))

]
︸ ︷︷ ︸

(II)

+ 2
S∑

s=1

[
K̂L(ϕ||φ(θs))− Es[K̂L(ϕ||φ(θs))]

]
︸ ︷︷ ︸

(III)

+2
S∑

s=1

[
Es[K̂L(ϕ||φ(θs))]− K̂L(ϕ||φ(θ∗δ ))

]
︸ ︷︷ ︸

(IV)

+ 2
S∑

s=1

[
K̂L(ϕ||φ(θ∗δ ))− KL(ϕ||φ(θ∗δ ))

]
︸ ︷︷ ︸

(V)

+2
S∑

s=1

[KL(ϕ||φ(θ∗δ ))− KL(ϕ||φ(θ∗))]︸ ︷︷ ︸
(VI)

≤ 2ϵKLS︸ ︷︷ ︸
(I), w.p. 1 − 2SpKL

(Assumption 1)

+4δLKLS︸ ︷︷ ︸
(II), w.p. 1
(Claim 2)

+2FKL

√
S log

1

p2︸ ︷︷ ︸
(III), w.p. 1 − 2p2

(Claim 3)

+
2D2

Θ

ηLM
+ 2ηLMdΘL

2
KLS +

2DΘLKLϵKLdΘS

δLM︸ ︷︷ ︸
(IV), w.p. 1 − 2SpKL

(Similar argument as Lemma 5)

+2δLMLKLS︸ ︷︷ ︸
(V), w.p. 1
(Claim 2)

+2δLMDΘLKLS︸ ︷︷ ︸
(VI), w.p. 1
(Claim 5)
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Similar to Algorithm 1, we set δLM =
√
ϵKLdΘ, ηLM = 1/

√
dΘS. For any p2 = p′/2 > 0, it yields

RS(LearnModel,KL) = O

(√
dΘS +

√
ϵKLdθS +

√
S log

1

p

)
with probability 1− p′ − 2SpKL ¿ 0.

F. Omitted Proof for Section 4.3
We start with leveraging Theorem 2 to show the following convergence guarantee for MinimizePR (Algorithm 1).

Claim 9 (Convergence of MinimizePR). Given any ϵ, p > 0, MinimizePR outputs an ϵ-suboptimal solution for PR(θ)
with probability at least 1− p. Moreover, MinimizePR runs for T = O(dΦ/ϵ

2) steps and performs O(dΦ/ϵ
2) queries to

EstimatePR, as well as O(dΦ/ϵ
2) queries to LearnModel with ϵLM = O(ϵ2) and pLM = O(ϵ2p/dΦ).

Proof of Claim 9. Choosing ϵLM = 1/T , pLM = p/2T , and p′ = p/2, Theorem 2 shows that MinimizePR satisfies

RT (MinimizePR,PR) = O
(√

dΦT
)

with probability 1− p, using 2T queries to EstimatePR and 2T queries to LearnModel. By Proposition 1, T = O(dΦ/ϵ
2)

steps suffice to output a model that is ϵ-suboptimal with respect to PR. Plugging in this bound on T into the expressions for
ϵLM and pLM above yields the result.

Similarly, we have the convergence guarantee for LearnModel as well:

Claim 10 (Convergence of LearnModel). Given any ϕ ∈ Φ and ϵLM, pLM > 0, LearnModel outputs an ϵLM-suboptimal
model for Equation (5) with probability at least 1 − pLM. Moreover, LearnModel runs for S = O(dΘ/ϵ

2
LM) steps and

performs two queries to EstimateKL per step with NKL(
ϵ2LM
dθ

,
ϵ2LMpLM

4dθ
) samples per query.

Proof of Claim 10. Choosing ϵKL = 1/S, pKL = pLM/4S and p′ = pLM/2, Theorem 3 shows that LearnModel satisfies

RS(LearnModel,KL) = O
(√

dΦS
)

By Proposition 1, S = O(dΘ/ϵ
2
LM) steps suffice to output a model that is ϵLM-suboptimal with respect to KL; thus we

have ϵKL =
ϵ2LM
dΘ

, pKL = 1
4SpLM

. In total, LearnModel makes 2S queries to EstimateKL with NKL(
ϵ2LM
dΘ

,
ϵ2LMpLM

4dθ
) samples per

query.

Now are are ready to prove Theorem 4. Recall the theorem statement:
Theorem 4 (Regret of MinimizePR in N ). Under Assumption 2, and given access an oracle EstimateKL, there exists a
choice of ϵKL, pKL > 0 in Algorithm 2 such that for every p > 0,

RN (MinimizePR,PR)

= Õ

(
(dΘ + dΦ)NKL(ϵKL, pKL)

1/6N5/6

√
log

1

p

)
with probability at least 1− p.

Proof of Theorem 4. Let T be the number of steps executed by MinimizePR, and S the number of steps in LearnModel. Let
NKL(ϵKL, pKL) (or NKL for short) denote the number of samples used by EstimateKL(·, · · · , ϵKL, pKL). Since MinimizePR
calls EstimatePR and LearnModel 2T times, and LearnModel calls EstimateKL 2S times, the overall number of samples
is N = 2(2NKLS + 1)T .

Let θ+t,s, θ
−
t,s denote the models deployed by EstimateKL in the s-th step of LearnModel within the t-th step of MinimizePR,

obtaining samples z+t,s,1, . . . , z
+
t,s,NKL

and z−t,s,1, . . . , z
−
t,s,NKL

, respectively. Similarly, let θ̂+t , θ̂
−
t denote the models deployed

by EstimatePR in the t-th step of MinimizePR, obtaining samples ẑ+t , ẑ
−
t .

21



Performative Prediction with Bandit Feedback: Learning through Reparameterization

The total regret can be written as

RN (MinimizePR,PR)

=
T∑

t=1

(
ℓ(ẑ+t ; θ̂

+
t ) + ℓ(ẑ−t ; θ̂−t )− 2PR(θ∗) +

S∑
s=1

NKL∑
i=1

[
ℓ(z+t,s,i; θ

+
t,s) + ℓ(z−t,s,i; θ

−
t,s)− 2PR(θ∗)

])

=
T∑

t=1

(
ℓ(ẑ+t ; θ̂

+
t )− PR(θ̂+t ) + ℓ(ẑ−t ; θ̂−t )− PR(θ̂−t ) +

S∑
s=1

NKL∑
i=1

[
ℓ(z+t,s,i; θ

+
t,s)− PR(θ+t,s) + ℓ(z−t,s,i; θ

−
t,s)− PR(θ−t,s)

])
︸ ︷︷ ︸

n difference terms with expectation zero

+
T∑

t=1

(
PR(θ̂+t ) + PR(θ̂−t )− 2PR(θ∗) +

S∑
s=1

NKL∑
i=1

[
PR(θ+t,s) + PR(θ−t,s)− 2PR(θ∗)

])

= O
(√

N
)
+

T∑
t=1

(
PR(θ̂+t ) + PR(θ̂−t )− 2PR(θ∗) +

S∑
s=1

NKL∑
i=1

[
PR(θ+t,s) + PR(θ−t,s)− 2PR(θ∗)

])
(by Hoeffding’s inequality, w.p. 1− p′)

= O
(√

N
)
+

T∑
t=1

[
PR(θ̂+t ) + PR(θ̂−t )− 2PR(θ∗)

]
+NKL ·

T∑
t=1

S∑
s=1

[
(PR(θ+t,s) + PR(θ−t,s))− (PR(θ̂+t ) + PR(θ̂−t )) + (PR(θ̂+t ) + PR(θ̂−t ))− 2PR(θ∗)

]
= O

(√
N
)
+ (NKLS + 1)

T∑
t=1

[
PR(θ̂+t ) + PR(θ̂−t )− 2PR(θ∗)

]
+NKL ·

T∑
t=1

S∑
s=1

[
PR(θ+t,s)− PR(θ̂+t ) + PR(θ−t,s)− PR(θ̂−t )

]
= O

(√
N
)
+ (NKLS + 1) · RT (MinimizePR,PR) +NKL ·

T∑
t=1

S∑
s=1

[
PR(θ+t,s)− PR(θ̂+t ) + PR(θ−t,s)− PR(θ̂−t )

]
= O

(√
N
)
+ (NKLS + 1) · RT (MinimizePR,PR) +NKL ·

T∑
t=1

S∑
s=1

[
PR†(φ(θ+t,s))− PR(θ̂+t ) + PR†(φ(θ−t,s))− PR(θ̂−t )

]
= O

(√
N
)
+ (NKLS + 1) · RT (MinimizePR,PR)

+NKL ·
T∑

t=1

S∑
s=1

[
PR†(φ(θ+t,s))− PR†(ϕ+

t )
]

︸ ︷︷ ︸
(I)

+NKL ·
T∑

t=1

S∑
s=1

[
PR†(ϕ+

t )− PR(θ̂+t )
]

︸ ︷︷ ︸
(II)

+NKL ·
T∑

t=1

S∑
s=1

[
PR†(φ(θ−t,s))− PR†(ϕ−

t )
]

︸ ︷︷ ︸
(III)

+NKL ·
T∑

t=1

S∑
s=1

[
PR†(ϕ−

t )− PR(θ̂−t )
]

︸ ︷︷ ︸
(IV)

Term (I) is:

T∑
t=1

S∑
s=1

[
PR†(φ(θ+t,s))− PR†(ϕ+

t )
]
≤ L† ·

T∑
t=1

S∑
s=1

∥∥φ(θ+t,s)− ϕ+
t

∥∥ (Lipschitzness of PR†)

≤ L† ·
T∑

t=1

√√√√S
S∑

s=1

(∥∥φ(θ+t,s)− ϕ+
t

∥∥2) (Cauchy-Schwarz)
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= L†T

√√√√S
S∑

s=1

L2
θKL(ϕ

+
t ||φ(θ+t,s)) (Lemma 2)

≤ L†LθT ·
√

S · RS(LearnModel,KL)

and term (III) is analogous. Term (II) is

T∑
t=1

S∑
s=1

[
PR†(ϕ+

t )− PR(θ̂+t )
]
= S ·

T∑
t=1

[
PR†(ϕ+

t )− PR†(φ(θ̂+t ))
]

≤ L†S ·
T∑

t=1

∥∥∥ϕ+
t − φ(θ̂+t )

∥∥∥ (Lipschitzness of PR†)

≤ L†S ·
T∑

t=1

Lθ

√
KL(ϕ+

t ||φ(θ̂+t )) (Lemma 2)

≤ L†Lθ · S ·
T∑

t=1

√√√√ 1

S

S∑
s=1

KL(ϕ+
t ||φ(θ+t,s))

(θ̂+t := 1
S

∑S
s=1 θ

+
t,s, convexity of KL(ϕ+

t ||φ(θ)))

≤ L†LϕTS

√
1

S
RS(LearnModel,KL)

= L†LϕT
√

S · RS(LearnModel,KL)

and term (IV) is analogous. In total we have

RN (MinimizePR,PR)

= O
(√

N +NKLT ·
√
S · RS(LearnModel,KL) + (NKLS + 1) · RT (MinimizePR,PR)

)
= N ·O

(
1√
N

+

√
RS(LearnModel,KL)

S
+
RT (MinimizePR,PR)

T

)
(n = 2(NKL2S + 1)T )

= N ·O

 1√
N

+

√√√√√dΘ log 1
p′

S
+
√
ϵKLdΘ +

√
dΦ log 1

p′′

T
+
√
ϵLMdΦ


(by Theorem 2,Theorem 3, w.p. to be analyzed later)

= N ·O

((
dΘ
S

log
1

p′

)1/4

+ (ϵKLdΘ)
1/4 +

(
dΦ
T

log
1

p′′

)1/2

+ (ϵLMdΦ)
1/2

)
(for a, b ≥ 0,

√
a+ b ≤

√
a+
√
b; 1√

n
≤
√

dΦ

T )

≤ N ·

(
1 +

(
log

1

p′

)1/4

+

(
log

1

p′′

)1/2
)
·O

((
dΘ
S

)1/4

+ (ϵKLdΘ)
1/4 +

(
dΦ
T

)1/2

+ (ϵLMdΦ)
1/2

)

= N ·

(
1 +

(
log

1

p′

)1/4

+

(
log

1

p′′

)1/2
)
·O

((
dΘ
S

)1/4

+ (ϵKLdΘ)
1/4 +

(
dΦNKLS

N

)1/2

+ (ϵLMdΦ)
1/2

)
(T = N

NKLS+1 )

Choose ϵLM =
(
NKL

N

)1/3
and ϵKL = 1

4dΘ

(
NKL

N

)2/3
.

To balance the terms, set the number of steps for the outer algorithm to be T = dΦ

(ϵ−
√
ϵLMdΦ)2

, and the number of steps in

23



Performative Prediction with Bandit Feedback: Learning through Reparameterization

LearnModel to be

S =
dΘ(

ϵLM −
√
ϵKLdΘ

)2 = 4dΘ

(
N

NKL

)2/3

Plugging these expressions for ϵKL, ϵLM, and S in above, we have

Rn(MinimizePR,PR) = N ·

(
1 +

(
log

1

p′

)1/4

+

(
log

1

p′′

)1/2
)
·O

(
(dΘdΦ)

1/2

(
NKL

N

)1/6
)

= O

((
1 +

(
log

1

p′

)1/4

+

(
log

1

p′′

)1/2
)
(dΘ + dΦ)N

1/6
KL N5/6

)

We would like to ensure that this bound holds with probability p > 0. To that end, observe that the probabilistic terms are
the high-probability bounds onRS(LearnModel,KL) andRT (MinimizePR,PR). By recalling Theorem 2 and Theorem 3,
the probability that any of these bounds fails is at most

p′ + TpLM = p′ + T (p′′ + SpKL) = p′ + Tp′′ + STpKL

for any p′, p′′ > 0. For a choice of p′ = p/3, p′′ = p/3T , and pKL = pNKL

3n , this is at most p as required. Finally, plugging
these choices into the above regret bound yields

Rn(MinimizePR,PR) = O

((
1 +

(
log

1

p′

)1/4

+

(
log

1

p′′

)1/2
)
(dΘ + dΦ)N

1/6
KL N5/6

)

= O

((
1 +

(
log

1

p

)1/4

+

(
log

T

p

)1/2
)
(dΘ + dΦ)N

1/6
KL N5/6

)

= O

((
1 +

√
log

1

p

)
(dΘ + dΦ)N

1/6
KL N5/6

√
logN

)
(T ≤ N )

with probability at most p as required.

G. Additional Related Work
In this section, we provide additional related work in performative prediction and a detailed comparison of our work and
some closely related work.

Performative prediction is a new type of supervised learning problem in which the underlying data distribution shifts in
response to the deployed model (Perdomo et al., 2020; Brown et al., 2022; Drusvyatskiy & Xiao, 2020; Izzo et al., 2021; Li
& Wai, 2022; Maheshwari et al., 2022; Ray et al., 2022; Mofakhami et al., 2023). It is also called the decision-dependent
risk minimization problem (Maheshwari et al., 2022; Li et al., 2022; Yuan & Gao, 2023). In particular, Perdomo et al. (2020)
first propose the notion of the performative risk defined as PR(θ) := Ez∼D(θ)[ℓ(θ; z)] where θ is the model parameter, and
D(θ) is the induced distribution due to the deployment of θ.

One of the major focuses of performative prediction is to find the optimal model θOPT which achieves the minimum
performative prediction risk: θOPT := argminθ∈Θ PR(θ), or performative stable model θST, which is optimal under its own
induced distribution: θST := argminθ∈Θ Ez∼D(θST)[ℓ(θ; z)] . In particular, one way to find a performative stable model θST
is to perform repeated retraining (Perdomo et al., 2020).

In order to get meaningful theoretical guarantees on any proposed algorithms, works in this field generally require particular
assumptions on the mapping between the model parameter and its induced distribution (e.g., the smoothness of the mapping),
or require multiple rounds of deployments and observing the corresponding induced distributions, which can be costly in
practice (Jagadeesan et al., 2022; Mendler-Dünner et al., 2020). A few recent works are on finding performative optimal
solutions without explicitly making the convexity assumption. For example, Dong & Ratliff (2021) does not explicitly
convexity assumption, but they focus on optimization heuristics that are not guaranteed to minimize performative regret.
below, we will provide the discussions for three of them.
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In addition, minimizing the performative risk often requires knowing a specific model for the distribution map D(·) that
can be fit. To ensure performative risk minimization is tractable, one also requires imposing structural assumptions on the
distribution map. For example, Izzo et al. makes parametric assumptions on D(θ) and assumes that D(θ) has a continuously
differentiable density p(z;φ(θ)), where φ(·) : Θ→ Φ represents the mapping from the model parameter space Θ to the
data distribution parameter space Θ. Miller et al. (2021) assume the underlying data distribution follows a location family
distribution, and then impose a mixture dominance assumption on the distribution map D(·) from which it follows that
PR(θ) is convex; this again leads to a gradient-based optimization algorithm. Similar work include (Mendler-Dünner et al.,
2020; Izzo et al., 2021; Drusvyatskiy & Xiao, 2020; Cutler et al., 2021), to name a few.

Comparison with Miller et al. (2021) Miller et al. (2021) identifies mixture dominance condition for any particular model
parameter pairs under which the performative risk is convexity. In particular, they posit a simple distribution map in which
φ(θ) = ϕ0 +Mθ, where M ∈ RdΦ×dΘ and ϕ0 ∈ Φ is some “base” distribution parameter; in other words, they assume
that the data population reacts to a model by shifting each of their features according to some linear transformation of the
model parameter. Their algorithm for this special case works in two stages: first estimating φ0 and M by deploying random
models; then, once this distribution map has been accurately estimated, the performative loss is convex in θ, and can be
optimized offline. The distribution map estimation takes O(dΘ/ϵ) samples to obtain an ϵ-suboptimal model.

Comparison with Jagadeesan et al. (2022) For example, closely related is a recent paper that proposes using the Lipschitz
bandit approach to solve the performative prediction problem (Jagadeesan et al., 2022). The major differences between
this work and their work are: first, we define the regret w.r.t N rather than w.r.t T , which is a more realistic measure in the
performative prediction setting; second, their regret has exponential dependency on the “zooming dimension” d (which is
roughly the model parameter dΘ), while our dependency on the model and distribution dimensions are both linear.

Comparison with Maheshwari et al. (2022) Another closely related work is Maheshwari et al. (2022) uses zeroth-order
methods for the convex-concave minimax problem. Specifically, they proposed to formulate the performative prediction
problem as the Wasserstein distributionally robust learning with decision-dependent data problem, and further reduce
it to a constrained finite-dimensional smooth convex-concave min-max problem, and propose a zeroth-order random
reshuffling-based algorithm to solve the problem without assuming any other structure on the curvature of the min-max loss.
Similar to ours, they also use the zeroth-order method to perform their optimization procedure; different from ours, they
approach the performative prediction problem through the angle of robustness, which accounts for model misspecification in
their analysis.

Other Aspects of performative prediction Also related are the recently developed lines of work on the multiplayer
version of the performative prediction problem (Piliouras & Yu, 2022; Narang et al., 2022; Li et al., 2022; Foster et al.,
2023). While existing strategic classification and performative prediction problems focus primarily on the interplay between
a single learner and the population that reacts to the learner’s actions, this line of work takes into account competition from
multi-learners, and develop performatively stable equilibria and Nash equilibria of the game. Similarly, (Yuan & Gao, 2023)
confront multiple interactive models in some dynamic environments. Another line of work is the economic aspects of
performative prediction (Hardt et al., 2022; Mendler-Dünner et al.). From the optimization aspect, Wood & Dall’Anese
(2022) focuses on the optimization aspect of finding the performative optimal point and offers an online stochastic primal-
dual algorithm for tracking equilibrium trajectories. Also related is the recent development of the concept called induced
domain adaptation (Chen et al., 2023), whose primary focus is to study the transferability of a particular model trained
primarily on the source distribution and provide theoretical bounds on its performance on its induced distribution, which is
helpful in estimating the effect of a given classifier when repeated retraining is unavailable.

Theoretical comparisons to some existing methods in the convex case When the problem reduces to a convex,
differentiable Lipschitz case, our algorithm will be reduced to the convex case provided in Section 2.2 (the warm-up setting),
which achieves a Õ(

√
dN) regret bound. This implies that our algorithm achieves a ∆-suboptimal model with O(d/∆2)

samples (see Lemma 1).

Here, we compare the three papers that the reviewer mentioned:

• Izzo et al. (2021) focus on a single-distribution Gaussian distribution with a fixed variance setting while we cover a
boarder range of settings. Their theoretical guarantee shows that the proposed method converges to a performative
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optimal point as the number of iterations T ≈ σ−4/5 where σ bounds the output of PR from the PR of the optimal
performative point. The sample required at each iteration is O(1/σ2 log T ).

• Miller et al. (2021) show that when the distribution maps D(·) form a location-scale family and when the model
dimension is O(d), computing a ∆-suboptimal classifier requires O(d/δ) samples. We do not require these assumptions.

• Perdomo et al. (2020) focus on achieving a performative stable point while we focus on attaining a performative optimal
point.

H. Plots For Empirical Results
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Figure 4. θ ∈ [0.2, 0.4]

Figure 5. θ ∈ [0.4, 0.8]

Figure 6. θ ∈ [0.4, 0.8]

Figure 7. Empirical results comparing baseline method (zeroth-order optimization without reparametrization, orange curve) vs. our
method (zeroth order optimization after reparametrization, (blue curve) based on Example 3.
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