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Abstract
Given an algorithmic predictor that is accurate
on some source population consisting of strategic
human decision subjects, will it remain accurate
if the population respond to it? In our setting, an
agent or a user corresponds to a sample (X,Y )
drawn from a distributionD and will face a model
h and its classification result h(X). Agents can
modify X to adapt to h, which will incur a distri-
bution shift on (X,Y ). Our formulation is moti-
vated by applications where the deployed machine
learning models are subjected to human agents,
and will ultimately face responsive and interactive
data distributions. We formalize the discussions
of the transferability of a model by studying how
the performance of the model trained on the avail-
able source distribution (data) would translate to
the performance on its induced domain. We pro-
vide both upper bounds for the performance gap
due to the induced domain shift, as well as lower
bounds for the trade-offs that a classifier has to
suffer on either the source training distribution or
the induced target distribution. We provide fur-
ther instantiated analysis for two popular domain
adaptation settings, including covariate shift and
target shift.

1. Introduction
Decision-makers are increasingly required to be transparent
on their decision-making rules to offer the “right to explana-
tion” (Goodman & Flaxman, 2017; Selbst & Powles, 2018;
Ustun et al., 2019). Being transparent also invites potential
adaptations from the population, leading to potential shifts.
We are motivated by settings where the deployed machine
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learning models interact with human agents, and will ul-
timately face data distributions that reflect human agents’
responses to the models. For instance, when a model is used
to decide loan applications, candidates may adapt their fea-
tures based on the model specification in order to maximize
their chances of approval; thus the loan decision classifier
observes a new shifted distribution caused by its own de-
ployment (e.g., see Figure 1 for a demonstration). Similar
observations can be articulated for application in the insur-
ance sector, e.g., insurance companies may develop policy
such that customers’ behaviors might adapt to lower pre-
mium (Haghtalab et al., 2020), the education sector, e.g.,
teachers may want to design courses in a way that students
are less incentivized to cheat (Kleinberg & Raghavan, 2020),
and so on.

FEATURE WEIGHT ORIGINAL VALUE ADAPTED VALUE

Income 2 $ 6,000 −→ $ 6,000

Education Level 3 College −→ College

Debt -10 $40,000 −→ $20,000

Savings 5 $20,000 −→ $0

Figure 1. An example of an agent who originally has both savings
and debt, observes that the classifier penalizes debt (weight -10)
more than it rewards savings (weight +5), and concludes that their
most efficient adaptation is to use their savings to pay down debt.

In this paper, we provide a general framework for quanti-
fying the transferability of a decision rule when facing re-
sponsive decision subjects. What we would like to achieve
is some characterizations of the performance guarantee of
a classifier — that is, given a model primarily trained on
the source distribution DS , how good or bad will it perform
on the distribution it induces D(h), which depends on the
model h itself. A key concept in our setting is the induced
risk, defined as the error a model incurs on the distribution
induced by itself:

Induced Risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ) (1)

Most relevant to the above formulation are the works of lit-
erature on strategic classification (Hardt et al., 2016a), and
performative prediction (Perdomo et al., 2020). In strategic
classification, agents are modeled as rational utility maxi-
mizers, and under a specific agent’s response model, game
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theoretical solutions were proposed to model the interactions
between the agents and the decision-maker. In performative
prediction, a similar notion of risk called the performative
prediction risk is introduced to measure a given model’s
performance on the distribution itself induces. Different
from ours, one of their main focus is to find the optimal clas-
sifier that achieves minimum induced risk after a sequence
of model deployments and observing the corresponding re-
sponse datasets, which might be computationally expensive.

In particular, our results are motivated by the following
challenges in more general scenarios:

• Modeling assumptions being restrictive In many prac-
tical situations, it is often hard to accurately characterize
the agents’ utilities. Furthermore, agents might not be
fully rational when they respond. All the uncertainties
can lead to a far more complicated distribution change
in (X,Y ), as compared to often-made assumptions that
agents only change X but not Y (Hardt et al., 2016a;
Chen et al., 2020a; Dong et al., 2018b).

• Lack of access to response data During training, ma-
chine learning practitioners may only have access to data
from the source distribution, and even when they can an-
ticipate changes in the population due to human agents’
responses, they cannot observe the newly shifted distribu-
tion until the model is actually deployed.

• Retraining being costly Even when samples from the in-
duced data distribution are available, retraining the model
from scratch may be impractical due to computational
constraints, and will result in another round of agents’
response at its deployment.

The above observations motivate us to focus on understand-
ing the transferability of a model before diving into finding
the optimal solutions that achieve the minimum induced risk
– the latter problem often requires more specific knowledge
on the mapping between the model and its induced distri-
bution, which might not be available during the training
process. Another related research problem is to find models
that will perform well on both the source and the induced
distribution. This question might be solved using techniques
from domain generalization (Zhou et al., 2021; Sheth et al.,
2022).

We add detailed discussions on how our work relates to and
differs from these fields in related works (Section 1.2), as
well as on how to use existing techniques to solve these two
questions in Appendix A.2. and Appendix F. We leave the
full discussions of these topics to future work.

1.1. Our Contributions

In this paper, we aim to provide answers to the following
fundamental questions:

• Source risk⇒ Induced risk For a given model h, how
different is ErrD(h)(h), the error on the distribution in-
duced by h, from ErrDS

(h) := PDS
(h(X) ̸= Y ), the

error on the source?

• Induced risk ⇒ Minimum induced risk How much
higher is ErrD(h)(h), the error on the induced distribu-
tion, than minh′ ErrD(h′)(h

′), the minimum achievable
induced error?

• Induced risk of source optimal⇒Minimum induced
risk Of particular interest, and as a special case of
the above, how does ErrD(h∗

S)(h
∗
S), the induced error

of the optimal model trained on the source distribu-
tion h∗

S := argminh ErrDS
(h), compare to h∗

T :=
argminh ErrD(h)(h)?

• Lower bound for learning tradeoffs What is the mini-
mum error a model must incur on either the source distri-
bution ErrDS

(h) or its induced distribution ErrD(h)(h)?

For the first three questions, we prove upper bounds on the
additional error incurred when a model trained on a source
distribution is transferred over to its induced domain. We
also provide lower bounds for the trade-offs a classifier has
to suffer on either the source training distribution or the
induced target distribution. We then show how to specialize
our results to two popular domain adaptation settings: co-
variate shift (Shimodaira, 2000; Zadrozny, 2004; Sugiyama
et al., 2007; 2008; Zhang et al., 2013) and target shift (Lip-
ton et al., 2018; Guo et al., 2020; Zhang et al., 2013).

1.2. Related Work

Our work most closely relates to the fields of strategic clas-
sification, domain adaptation, and performative prediction.
In particular, our work considers a setting similar to the
studies of strategic classification (Hardt et al., 2016a; Chen
et al., 2020a; Dong et al., 2018a; Chen et al., 2020b; Miller
et al., 2020), which primarily focus on developing robust
classifiers in the presence of strategic agents, rather than
characterizing the transferability of a given model’s perfor-
mance on the distribution itself induces. Our work also
builds on efforts in domain adaptation (Jiang, 2008; Ben-
David et al., 2010; Sugiyama et al., 2008; Zhang et al., 2019;
Kang et al., 2019; Zhang et al., 2020). The major difference
between our setting and those from previous works is that
the changes in distribution are not passively provided by
the environment, but rather an active consequence of model
deployment. We reference specific prior work in these two
domains in Appendix A.2, and here provide more detailed
discussions on the existing work in performative prediction.

Performative Prediction Performative prediction is a new
type of supervised learning problem in which the underlying
data distribution shifts in response to the deployed model
(Perdomo et al., 2020; Mendler-Dünner et al., 2020; Brown
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et al., 2020; Drusvyatskiy & Xiao, 2020; Izzo et al., 2021;
Li & Wai, 2022; Maheshwari et al., 2021). In particular,
Perdomo et al. (2020) first propose the notion of the perfor-
mative risk defined as PR(θ) := Ez∼D(θ)[ℓ(θ; z)], where θ
is the model parameter, and D(θ) is the induced distribution
as a result of the deployment of θ. Similar to our definition
of induced risk, performative risk also measures a given
model’s performance on the distribution itself induces.

The major difference between our work and performative
prediction is that we focus on different aspects of the in-
duced domain adaptation problem. One of the primary fo-
cuses of performative prediction is to find the optimal model
θOPT which achieves the minimum performative prediction
risk, or performative stable model θST, which is optimal
under its own induced distribution. In particular, one way to
find a performative stable model θST is to perform repeated
retraining (Perdomo et al., 2020). In order to get mean-
ingful theoretical guarantees on any proposed algorithms,
works in this field generally require particular assumptions
on the mapping between the model parameter and its in-
duced distribution (e.g., the smoothness of the mapping), or
requires multiple rounds of deployments and observing the
corresponding induced distributions, which can be costly
in practice (Jagadeesan et al., 2022; Mendler-Dünner et al.,
2020). On the contrary, our work’s primary focus is to study
the transferability of a particular model trained primarily on
the source distribution and provide theoretical bounds on
its performance on its induced distribution, which is useful
for estimating the effect of a given classifier when repeated
retraining is unavailable. As a result, our work does not
assume the knowledge of the supervision/label information
on the transferred domain. Also related are the recently de-
veloped lines of work on the multiplayer version of the per-
formative prediction problem (Piliouras & Yu, 2022; Narang
et al., 2022), and the economic aspects of performative pre-
diction (Hardt et al., 2022; Mendler-Dünner et al., 2022).
The details for reproducing our experimental results can
be found at https://github.com/UCSC-REAL/Model_
Transferability.

2. Notation and Formulation
All proofs of our results can be found in the Appendix.

Suppose we are given a parametric model h ∈ H primarily
trained on the training data set S := {xi, yi}Ni=1, which is
drawn from a source distribution DS , where xi ∈ Rd and
yi ∈ {−1,+1}. However, h will then be deployed in a
setting where the samples come from a test or target distri-
bution DT that can differ substantially from DS . Therefore,
instead of finding a classifier that minimizes the prediction
error on the source distribution ErrDS

(h) := PDS
(h(X) ̸=

Y ), ideally the decision maker would like to find h∗ that
minimizes ErrDT

(h) := PDT
(h(X) ̸= Y ). This is often re-

ferred to as the domain adaptation problem, where typically,
the transition from DS to DT is assumed to be independent
of the model h being deployed.

We consider a setting in which the distribution shift depends
on h, or is thought of as being induced by h. We will use
D(h) to denote the induced domain by h:

DS → encounters model h → D(h)
Strictly speaking, the induced distribution is a function of
both DS and h and should be better denoted by DS(h). To
ease the notation, we will stick withD(h), but we shall keep
in mind its dependency of DS . For now, we do not specify
the dependency of D(h) as a function of D and h, but later
in Section 4 and 5 we will further instantiate D(h) under
specific domain adaptation settings.

The challenge in the above setting is that when training h,
the learner needs to carry the thoughts that D(h) should be
the distribution it will be evaluated on and that the training
cares about. Formally, we define the induced risk of a
classifier h as the 0-1 error on the distribution h induces:1

Induced risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ). (2)

Denote by h∗
T := argminh∈H ErrD(h)(h) the classifier

with minimum induced risk. More generally, when the loss
may not be the 0-1 loss, we define the induced ℓ-risk as

Induced ℓ-risk : Errℓ,D(h)(h) := Ez∼D(h)[ℓ(h; z)]

The induced risks will be the primary quantities we are
interested in quantifying. The following additional notation
will also help present our theoretical results in the following
few sections:

• Distributions of Y on a distribution D: DY := PD(Y =
y), and in particularDY (h) := PD(h)(Y = y), DY |S :=
PDS

(Y = y).

• Distribution of h on a distributionD: Dh := PD(h(X) =
y), and in particular Dh(h) := PD(h)(h(X) =
y), Dh|S := PDS

(h(X) = y).

• Marginal distribution of X for a distribution D: DX :=
PD(X = x), and in particular DX(h) := PD(h)(X =
x), DX|S := PDS

(X = x).2

• Total variation distance (Ali & Silvey, 1966):
dTV(D,D′) := supO|PD(O)− PD′(O)|.

2.1. Example Induced Domain Adaptation Settings

We provide two example models to demonstrate the use
cases of the distribution shift models described in our pa-
per. We provide more detailed descriptions of both settings

1The “:=” defines the RHS as the probability measure function
for the LHS.

2For continuous X , the probability measure shall be read as
the density function.
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and instantiate our bounds in Section 4.3 and Section 5.3,
respectively.

Strategic Response As mentioned before, one example
of induced distribution shift is when human agents perform
strategic response to a decision rule. In particular, it is
natural to assume that the mapping between feature vec-
tor X and the qualification Y before and after the human
agents’ best response satisfies covariate shift: the feature
distribution P(X) will change, but P(Y |X), the mapping
between Y and X , remain unchanged. Notice that this is
different from the assumption made in the classic strategic
classification setting (Hardt et al., 2016a), where any adap-
tations are considered malicious, which means any changes
in the feature vector X do not change the underlying true
qualification Y . In this example, we assume that changes in
feature X could potentially lead to changes in the true qual-
ification Y and that the mapping between Y and X remains
the same before and after the adaptation. This is a common
assumption made in a recent line of work on incentivizing
improvement behaviors from human agents (see, e.g., Chen
et al., 2020b; Shavit et al., 2020). We use Figure 2 (top)
as a demonstration of how distribution might shift for the
strategic response setting. In Section 4.3, we will use the
strategic classification setup to verify our obtained results.

X1X1

X2X2 X3X3

YY h(X )h(X )

X′ 1X′ 1

X′ 2X′ 2 X′ 3X′ 3

Y′ Y′ 

YY

X1X1 X3X3

X2X2 h(X )h(X )

Y′ Y′ 

X′ 1X′ 1 X′ 3X′ 3

X′ 2X′ 2

Figure 2. Example causal graph annotated to demonstrate covariate
shift (the top panel) and target shift (the bottom panel) as a result
of the deployment of h. Grey nodes indicate observable variables
and transparent nodes are not observed at the training stage. Red
arrow emphasizes h induces changes in certain variables.

Replicator Dynamics Replicator dynamics is a com-
monly used model to study the evolution of an adopted
“strategy” in evolutionary game theory (Tuyls et al., 2006;

Friedman & Sinervo, 2016; Taylor & Jonker, 1978; Raab &
Liu, 2021). The core notion of it is the growth or decline
of the population of each strategy depends on its “fitness”.
Consider the label Y = {−1,+1} as the strategy, and the
following behavioral response model to capture the induced
target shift:

PD(h)(Y = +1)

PDS
(Y = +1)

=
Fitness(Y = +1)

EDS
[Fitness(Y )]

The intuition behind the above equation is that the change of
the Y = +1 population depends on how predicting Y = +1
“fits” a certain utility function. For instance, the “fitness”
can take the form of the prediction accuracy of h for class
+1, namely Fitness(Y = +1) := PDS

(h(X) = +1|Y =
+1). Intuitively speaking, a higher “fitness” describes more
success of agents who adopted a certain strategy (Y = −1
or Y = +1). Therefore, agents will imitate or replicate their
successful peers by adopting the same strategy, resulting in
an increase in the population (PD(h)(Y )).

With the assumption that P(X|Y ) stays unchanged, this in-
stantiates one example of a specific induced target shift. We
will provide detailed conditions for target shift in Section 5.
We also use Figure 2 (bottom) as a demonstration of how
distribution might shift for the replicator dynamic setting.
In Section 5.3, we will use a detailed replicator dynamics
model to further instantiate our results.

3. General Bounds
In this section, we first provide upper and lower bounds
for any induced domain without specifying the particu-
lar type of distribution shift. In particular, we first pro-
vide upper bounds for the transfer error of any classifier h
(that is, the difference between ErrD(h)(h) and ErrDS

(h)),
as well as between ErrD(h)(h) and the minimum induced
risk ErrD(h∗

T )(h
∗
T ). We then provide lower bounds for

max{ErrDS
(h),ErrD(h)(h)}, that is, the minimum error a

model h must incur on either the source distribution DS or
the induced distribution D(h).

3.1. Upper Bound

We first investigate the upper bounds for the transfer errors.
We begin by showing generic bounds and further instantiate
the bound for specific domain adaptation settings in Section
4 and 5. We begin by answering the following question:

How does a model h trained on its training data set fare on
the induced distribution D(h)?

To that end, we define the minimum and h-dependent com-
bined error of any two distributions D and D′ as:
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λD→D′ := min
h′∈H

ErrD′(h′) + ErrD(h′)

ΛD→D′(h) := max
h′∈H

ErrD′(h) + ErrD(h)

and their correspondingH-divergence as dH×H(D,D′) =
2 suph,h′∈H |PD(h(X) ̸= h′(X))− PD′(h(X) ̸= h′(X))| .
TheH-divergence is a celebrated measure proposed in the
domain adaptation literature (Ben-David et al., 2010) which
will be useful for bounding the difference in errors of any
two classifiers. Following the classical arguments from
Ben-David et al. (2010), we can easily prove the following:

Theorem 3.1 (Source risk ⇒ Induced risk). The
difference between ErrD(h)(h) and ErrDS

(h) is upper
bounded by: ErrD(h)(h) ≤ ErrDS

(h) + λDS→D(h) +
1
2dH×H(DS ,D(h)).

The transferability of a model h between ErrD(h)(h) and
ErrDS

(h) looks precisely the same as in the classical domain
adaptation setting (Ben-David et al., 2010).

An arguably more interesting quantity in our setting to un-
derstand is the difference between the induced error of any
given model h and the error induced by the optimal model
h∗
T : ErrD(h)(h) − ErrD(h∗

T )(h
∗
T ). We get the following

bound, which differs from the one in Theorem 3.1:

Theorem 3.2 (Induced risk⇒Minimum induced risk).
The difference between ErrD(h)(h) and ErrD(h∗

T )(h
∗
T )

is upper bounded by: ErrD(h)(h) − ErrD(h∗
T )(h

∗
T ) ≤

λD(h)→D(h∗
T

)+ΛD(h)→D(h∗
T

)(h)

2 + 1
2 · dH×H(D(h∗

T ),D(h)).

The above theorem informs us that the induced transfer
error is generally bounded by the “average” achievable error
on both distributions D(h) and D(h∗

T ), as well as the H
divergence between the two distributions.

The major benefit of the results in Theorem 3.2 is that it
provides the decision maker a way to estimate the minimum
induced risk ErrD(h∗

T )(h
∗
T ) even when she only has access

to the induced risk of some available classifier h, as long
as she can characterize the statistical difference between
the two induced distribution. The latter, however, might
not seem to be a trivial task itself. Later in Section 3.3, we
briefly discuss how our bounds can still be useful even when
we do not have the exact characterizations of this quantity.

3.2. Lower Bound

Now we provide a lower bound on the induced transfer error.
We particularly want to show that at least one of the two
errors ErrDS

(h), and ErrD(h)(h), must be lower-bounded
by a certain quantity.

Theorem 3.3 (Lower bound for learning tradeoffs ). Any
model h must incur the following error on either the source

or induced distribution: max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))−dTV(Dh|S ,Dh(h))

2 .

The proof leverages the triangle inequality of dTV. This
bound is dependent on h; however, by the data process-
ing inequality of dTV (and f -divergence functions in gen-
eral) (Liese & Vajda, 2006), we have dTV(Dh|S ,Dh(h)) ≤
dTV(DX|S ,DX(h)). Applying this to Theorem 3.3 yields:

Corollary 3.4. For any model h,

max{ErrDS
(h),ErrD(h)(h)}

≥dTV(DY |S ,DY (h))− dTV(DX|S ,DX(h))

2
.

The benefit of Corollary 3.4 is that the bound does not
contain any quantities that are functions of the induced dis-
tribution; as a result, for any classifier h, we can estimate
the learning tradeoffs between its source risk and its in-
duced risk using values that are computable without actually
deploying the classifier at the first place.

3.3. How to Use Our Bounds

The upper and lower bounds we derived in the previous
sections (Theorem 3.2 and Theorem 3.3) depend on the
following two quantities either explicitly or implicitly: (1)
the distribution D(h) induced by the deployment of the
model h in question, and (2) the optimal target classifier h∗

T

as well as the distribution D(h∗
T ) it induces. The bounds

may therefore seem to be of only theoretical interest since
in reality we generally cannot compute D(h) without actual
deployment, let alone compute h∗

T . Thus in general it is
unclear how to compute the value of these bounds.

Nevertheless, our bounds can still be useful and informative
in the following ways:

General modeling framework with flexible hypothetical
shifting models The bounds can be evaluated if the de-
cision maker has a particular shift model in mind, which
specifies how the population would adapt to a model. A
common special case is when the decision maker posits an
individual-level agent response model (e.g. the strategic
agent (Hardt et al., 2016a) - we demonstrate how to evaluate
in Section 4.3). In these cases, the H-divergence can be
consistently estimated from finite samples of the population
(Wang et al., 2005), allowing the decision maker to estimate
the performance gap of a given h without deploying it. The
general bounds provided can thus be viewed as a framework
by which specialized, computationally tractable bounds can
be derived.

Estimate the optimal target classifier h∗
T from a set of

imperfect models Secondly, when the decision maker

5



Model Transferability with Responsive Decision Subjects

has access to a set of imperfect models h̃1, h̃2 · · · h̃t ∈ HT

that will predict a range of possible shifted distribution
D(h̃1), · · · D(h̃t) ∈ DT and a range of possibly optimal
target distribution hT ∈ HT , the bounds on h∗

T can be
further instantiated by calculating the worst case in this
predicted set :3

ErrD(h)(h)− ErrD(h∗
T )(h

∗
T )

≲ max
D′∈DT ,h′∈HT

UpperBound(D′, h′),

max{ErrDS
(h),ErrD(h∗

T )(h
∗
T )}

≳ min
D′∈DT ,h′∈HT

LowerBound(D′, h′).

We provide discussions on the tightness of our bounds in
Appendix H.

4. Covariate Shift
In this section, we focus on a particular distribution shift
model known as covariate shift, in which the distribution of
features changes, but the distribution of labels conditioned
on features remains the same:

PD(h)(Y = y|X = x) = PDS
(Y = y|X = x) (3)

PD(h)(X = x) ̸= PDS
(X = x) (4)

Thus with covariate shift, we have

PD(h)(X = x, Y = y)

=PD(h)(Y = y|X = x) · PD(h)(X = x)

=PDS
(Y = y|X = x) · PD(h)(X = x)

Let ωx(h) :=
PD(h)(X=x)

PDS
(X=x) be the importance weight at x,

which characterizes the amount of adaptation induced by h
at instance x. Then for any loss function ℓ we have:
Proposition 4.1 (Expected Loss on D(h) Under Covariate
Shift). ED(h)[ℓ(h;X,Y )] = EDS

[ωx(h) · ℓ(h;x, y)].

The above derivation is a classic trick and offers the basis
for performing importance reweighting when learning under
covariate shift (Sugiyama et al., 2008). The particular form
informs us that ωx(h) controls the generation of D(h) and
encodes its dependency on both DS and h, and is critical
for deriving our results below.

4.1. Upper Bound

We now derive an upper bound for transferability under
covariate shift. We will particularly focus on the opti-
mal model trained on the source data DS , which we de-
note as h∗

S := argminh∈H ErrS(h). Recall that the clas-
sifier with minimum induced risk is denoted as h∗

T :=

3UpperBound and LowerBound are the RHS expressions in
Theorem 3.2 and Theorem 3.3.

argminh∈H ErrD(h)(h). We can upper bound the differ-
ence between h∗

S and h∗
T as follows:

Theorem 4.2 (Suboptimality of h∗
S). Let X be distributed

according to DS . We have:

ErrD(h∗
S
)(h

∗
S)− ErrD(h∗

T
)(h

∗
T )

≤
√

ErrDS (h
∗
T ) ·

(√
Var(ωX(h∗

S)) +
√

Var(ωX(h∗
T ))

)
.

This result can be interpreted as follows: h∗
T incurs an irre-

ducible amount of error on the source data set, represented
by

√
ErrDS

(h∗
T ). Moreover, the difference in induced risks

between h∗
S and h∗

T is at its maximum when the two clas-
sifiers induce adaptations in “opposite” directions; this is
represented by the sum of the standard deviations of their
importance weights,

√
Var(ωX(h∗

S)) +
√

Var(ωX(h∗
T )).

4.2. Lower Bound

Recall that in Theorem 3.3, for the general setting, it is
unclear whether the lower bound is strictly positive or not.
In this section, we provide further understanding for when
the lower bound dTV(DY |S ,DY (h))−dTV(Dh|S ,Dh(h))

2 is indeed
positive under covariate shift. Under several assumptions,
our previously provided lower bound in Theorem 3.3 is
strictly positive with covariate shift.
Assumption 4.3. |EX∈X+(h),Y=+1[1 − ωX(h)]| ≥
|EX∈X−(h),Y=+1[1− ωX(h)]| .

where X+(h) = {x : ωx(h) ≥ 1} and X−(h) = {x :
ωx(h) < 1}.
This assumption states that increased ωx(h) value points are
more likely to have positive labels.
Assumption 4.4. |EX∈X+(h),h(X)=+1[1 − ωX(h)]| ≥
|EX∈X−(h),h(X)=+1[1− ωX(h)]|.

This assumption states that increased ωx(h) value points are
more likely to be classified as positive.
Assumption 4.5. Cov

(
PDS

(Y = +1|X = x) −
PDS

(h(x) = +1|X = x), ωx(h)
)
> 0.

This assumption is stating that for a classifier h, within all
h(X) = +1 or h(X) = −1, a higher PD(Y = +1|X = x)
associates with a higher ωx(h).
Theorem 4.6. Under Assumption 4.3 - Assumption 4.5, the
following lower bound is strictly positive under covariate
shift:

max{ErrDS (h),ErrD(h)(h)}

≥dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0.

4.3. Covariate Shift via Strategic Response

As introduced in Section 2.1, we consider a setting caused
by strategic response in which agents are classified by and
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adapt to a binary threshold classifier. In particular, each
agent is associated with a d dimensional continuous feature
x ∈ Rd and a binary true qualification y(x) ∈ {−1,+1},
where y(x) is a function of the feature vector x. Consistent
with the literature in strategic classification (Hardt et al.,
2016a), a simple case where after seeing the threshold binary
decision rule h(x) = 2 · 1[x ≥ τh]− 1, the agents will best
response to it by maximizing the following utility function:

u(x, x′) = h(x′)− h(x)− c(x, x′),

where c(x, x′) is the cost function for decision subjects to
modify their feature from x to x′. We assume all agents
are rational utility maximizers: they will only attempt to
change their features when the benefit of manipulation is
greater than the cost (i.e. when c(x, x′) ≤ 2) and the agent
will not change their feature if they are already accepted (i.e.
h(x) = +1). For a given threshold τh and manipulation
budget B, the theoretical best response of an agent with
original feature x is:

∆(x) = argmax
x′

u(x, x′) s.t. c(x, x′) ≤ B.

To make the problem tractable and meaningful, we further
specify the following setups:
Setup 1. (Initial Feature) Agents’ initial features are uni-
formly distributed between [0, 1] ∈ R1.
Setup 2. (Agent’s Cost Function) The cost of changing
from x to x′ is proportional to the distance between them:
c(x, x′) = ∥x− x′∥.

Setup 2 implies that only agents whose features are in be-
tween [τh −B, τh) will attempt to change their feature. We
also assume that feature updates are probabilistic, such that
agents with features closer to the decision boundary τh have
a greater chance of updating their feature and each updated
feature x′ is sampled from a uniform distribution depending
on τh, B, and x (see Setup 3 & 4):
Setup 3. (Agent’s Success Manipulation Probability) For
agents who attempt to update their features, the probability
of a successful feature update is P(X ′ ̸= X) = 1− |x−τh|

B .

Intuitively this setup means that the closer the agent’s origi-
nal feature x is to the decision boundary τh, the more likely
they can successfully change their feature to cross the deci-
sion boundary.
Setup 4 (Adapted Feature’s Distribution). An agent’s up-
dated feature x′, given original x, manipulation budget
B, and classification boundary τh, is sampled as X ′ ∼
Unif(τh, τh + |B − x|).

Setup 4 aims to capture the fact that even though agent tar-
gets to change their feature to the decision boundary τh (i.e.
the least cost action to get a favorable prediction outcome),

they might end up reaching a feature that is beyond the
decision boundary.

With the above setups, we can specify the bound in Theo-
rem 4.2 for the strategic response setting as follows:
Proposition 4.7. For our assumed setting of strategic re-
sponse described above, Theorem 4.2 implies

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤

√
2B
3 ErrDS

(h∗
T ).

We can see that the upper bound for strategic response de-
pends on the manipulation budget B, and the error the ideal
classifier made on the source distribution ErrDS

(h∗
T ). This

aligns with our intuition that the smaller the manipulation
budget is, the fewer agents will change their features, thus
leading to a tighter upper bound on the difference between
Errh∗

S
(h∗

S) and Errh∗
T
(h∗

T ). This expression also allows us
to provide bounds even without the knowledge of the map-
ping between D(h) and h, since we can directly compute
ErrDS

(h∗
T ) from the source distribution and an estimated

optimal classifier h∗
T .

5. Target Shift
We consider another popular domain adaptation setting
known as target shift, in which the distribution of labels
changes, but the distribution of features conditioned on the
label remains the same:

PD(h)(X = x|Y = y) = PDS
(X = x|Y = y) (5)

PD(h)(Y = y) ̸= PDS
(Y = y) (6)

For binary classification, let p(h) := PD(h)(Y = +1), and
PD(h)(Y = −1) = 1 − p(h). Notice that p(h) encodes
the full adaptation information from DS to D(h), since the
mapping between Y and X , P(X = x|Y = y), is known
and remains unchanged during target shift. We have for any
proper loss function ℓ:

ED(h)[ℓ(h;X,Y )]

=p(h) · ED(h)[ℓ(h;X,Y )|Y = +1]

+ (1− p(h)) · ED(h)[ℓ(h;X,Y )|Y = −1]
=p(h) · EDS

[ℓ(h;X,Y )|Y = +1]

+ (1− p(h)) · EDS
[ℓ(h;X,Y )|Y = −1]

We will adopt the following shorthands:
Err+(h) := EDS

[ℓ(h;X,Y )|Y = +1], Err−(h) :=
EDS

[ℓ(h;X,Y )|Y = −1]. Note that Err+(h),Err−(h) are
both defined on the conditional source distribution, which is
invariant under the target shift assumption.

5.1. Upper Bound

We first provide characterizations of the upper bound on the
transferability of h∗

S under target shift. Denote by D+ the
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positive label distribution on DS (PDS
(X = x|Y = +1))

and D− the negative label distribution on DS (PDS
(X =

x|Y = −1)). Let p := PDS
(Y = +1).

Theorem 5.1. For target shift, the difference between
ErrD(h∗

S)(h
∗
S) and ErrD(h∗

T )(h
∗
T ) bounds as:

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤ |ω(h∗

S)− ω(h∗
T )|

+(1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .

The above bound consists of two components. The first
quantity captures the difference between the two induced
distributions D(h∗

S) and D(h∗
T ). The second quantity char-

acterizes the difference between the two classifiers h∗
S , h

∗
T

on the source distribution.

5.2. Lower Bound

Now we discuss lower bounds. Denote by TPRS(h) and
FPRS(h) the true positive and false positive rates of h on
the source distribution DS . We prove the following:
Theorem 5.2. For target shift, any model h must incur the
following error on either DS or D(h):

max{ErrDS (h),ErrD(h)(h)}

≥|p− p(h)| · (1− |TPRS(h)− FPRS(h)|)
2

.

The proof extends the bound of Theorem 3.3 by further
explicating each of dTV(DY |S ,DY (h)), dTV(Dh|S , Dh(h))
under the assumption of target shift. Since |TPRS(h) −
FPRS(h)| < 1 unless we have a trivial classifier that
has either TPRS(h) = 1, FPRS(h) = 0 or TPRS(h) =
0, FPRS(h) = 1, the lower bound is strictly positive. Tak-
ing a closer look, the lower bound is determined linearly by
how much the label distribution shifts: p− p(h). The differ-
ence is further determined by the performance of h on the
source distribution through 1− |TPRS(h)− FPRS(h)|. For
instance, when TPRS(h) > FPRS(h), the quality becomes
FNRS(h) + FPRS(h), that is the more error h makes, the
larger the lower bound will be.

5.3. Target Shift via Replicator Dynamics

We now further instantiate our theoretical bound for target
shift (Theorem 5.1) using a particular replicator dynamics
model previously used in (Raab & Liu, 2021). In particular,
the fitness function is specified as the prediction accuracy
of h for class y:

Fitness(Y = y) := PDS
(h(X) = y|Y = y) (7)

Then we have E [Fitness(Y )] = 1 − ErrDS
(h), and

p(h)
PDS

(Y=+1) =
PrDS

(h(X)=+1|Y=+1)

1−ErrDS
(h) . Plugging the result

back into Theorem 5.1 we get the following bound for the
above replicator dynamic setting:
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Figure 3. Results for synthetic experiments on real-world
data. Diff := ErrD(h∗

S
)(h

∗
S) − ErrD(h∗

T
)(h

∗
T ), Max :=

max{ErrDS (h
∗
T ),ErrD(h∗

T
)(h

∗
T )}, UB := upper bound specified

in Theorem 4.2, and LB := lower bound specified in Theorem 4.6.
For each time step K = k, we compute and deploy the source
optimal classifier h∗

S and update the credit score for each individ-
ual according to the received decision as the new reality for time
step K = k + 1. Details of the data generation are deferred to
Appendix D.

Proposition 5.3. Under the replicator dynamics model de-
scribed in Equation (7), |ω(h∗

S)− ω(h∗
T )| bounds as:

|ω(h∗
S)− ω(h∗

T )| ≤ PDS
(Y = +1)

· |ErrDS
(h∗

S)− ErrDS
(h∗

T )| · |TPRS(h
∗
S)− TPRS(h

∗
T )|

ErrDS
(h∗

S) · ErrDS
(h∗

T )
.

The above result shows that the difference between the in-
duced risks ErrD(h∗

S)(h
∗
S) and ErrD(h∗

T )(h
∗
T ) only depends

on the difference between the two classifiers’ performances
on the source data DS . This offers the decision maker a
great opportunity to evaluate the performance gap by us-
ing their corresponding evaluations on the source data only
without observing their corresponding induced distributions.

6. Experiments
We present synthetic experimental results on both simulated
and real-world data sets.

Synthetic experiments using simulated data We gen-
erate synthetic data sets from the structural equation mod-
els described on simple causal DAG in Figure 2 for co-
variate shift and target shift. To generate the induced dis-
tribution D(h), we posit a specific adaptation function
∆ : Rd × H → Rd, so that when an input x encoun-
ters classifier h ∈ H, its induced features are precisely
x′ = ∆(x, h). We provide details of the data generation
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processes and adaptation functions in Appendix D.

We take our training data set {x1, . . . , xn} and learn a “base”
logistic regression model h(x) = σ(w · x).4 We then con-
sider the hypothesis class H := {hτ | τ ∈ [0, 1]}, where
hτ (x) := 2 ·1[σ(w ·x) > τ ]−1. To compute h∗

S , the model
that performs best on the source distribution, we simply vary
τ and take the hτ with the lowest prediction error. Then,
we posit a specific adaptation function ∆(x, hτ ). Finally, to
compute h∗

T , we vary τ from 0 to 1 and find the classifier
hτ that minimizes the prediction error on its induced data
set {∆(x1, hτ ), . . . ,∆(xn, hτ )}. We report our results in
Figure 4.

For all four datasets, we do observe positive gaps
ErrD(h∗

S)(h
∗
S)− ErrD(h∗

T )(h
∗
T ), indicating the suboptimal-

ity of training on DS . The gaps are well bounded by the
theoretical results. For the lower bound, the empirical ob-
servation and the theoretical bounds are roughly within the
same magnitude except for one target shift dataset, indicat-
ing the effectiveness of our theoretical result. Regarding the
upper bound, for target shift, the empirical observations are
well within the same magnitude of the theoretical bounds
while the results for the covariate shift are relatively loose.

Figure 4. Results for synthetic experiments on simulated and real-
world data. Diff := ErrD(h∗

S
)(h

∗
S) − ErrD(h∗

T
)(h

∗
T ), Max :=

max{ErrDS (h
∗
T ),ErrD(h∗

T
)(h

∗
T )}, UB := upper bound specified

in Theorem 4.2, and LB := lower bound specified in Theorem 4.6.

Synthetic experiments using real-world data We also
perform synthetic experiments using real-world data to
demonstrate our bounds. In particular, we use the FICO
credit score data set (Board of Governors of the Federal Re-
serve System (US), 2007) which contains more than 300k
records of TransUnion credit scores of clients from different
demographic groups. For our experiment on the prepro-
cessed FICO data set (Hardt et al., 2016b), we convert the
cumulative distribution function (CDF) of TransRisk score
among different groups into group-wise credit score densi-
ties, from which we generate a balanced sample to represent
a population where groups have equal representations. We

4σ(·) is the logistic function and w ∈ R3 denotes the weights.

demonstrate the application of our results in a series of re-
source allocations. Similar to the synthetic experiments on
simulated data, we consider the hypothesis class of thresh-
old classifiers and treat the classification outcome as the
decision received by individuals.

For each time step K = k, we compute h∗
S , the statistical

optimal classifier on the source distribution (i.e., the cur-
rent reality for step K = k), and update the credit score
for each individual according to the received decision as
the new reality for time step K = k + 1. Details of the
data generation are again deferred to Appendix D. We re-
port our results in Figure 3. We do observe positive gaps
ErrD(h∗

S)(h
∗
S)−ErrD(h∗

T )(h
∗
T ), indicating the suboptimality

of training on DS . The gaps are well bounded by the theo-
retical upper bound (UB). Our lower bounds (LB) do return
meaningful positive gaps, demonstrating the trade-offs that
a classifier has to suffer on either the source distribution or
the induced target distribution. We also provide additional
experimental results using synthetic datasets generated ac-
cording to causal graphs defined in Figure 2. Due to page
limits, we defer the detailed discussions of these results to
Appendix D.2.2.

7. Conclusions and Future Directions
Unawareness of the potential distribution shift might lead to
unintended consequences when training a machine learning
model. One goal of our paper is to raise awareness of this
issue for the safe deployment of machine learning methods
in high-stake scenarios. We also provide a general frame-
work for characterizing the performance difference for a
fixed-trained classifier when the decision subjects respond
to it.

Our contributions are mostly theoretical. A natural exten-
sion of our work is to collect real human experiment data to
verify the usefulness and tightness of our bounds. Another
potential future direction is to develop algorithms to find an
optimal model that achieves minimum induced risk, which
has been an exciting ongoing research problem in the field
of performative prediction. Furthermore, using techniques
from general domain adaptation to find robust classifiers
that perform well in both the source and induced distribution
is another promising direction.
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Supplement to “Model Transferability with Responsive Decision Subjects”

We arrange the appendix as follows:

• Appendix A.1 provides some real-life scenarios where transparent models are useful or required.

• Appendix A.2 provides additional related work on strategic classification and domain adaptation, as well as a detailed
comparison of our setting and other sub-areas in domain adaptation.

• Appendix B.1 provides proof for Theorem 3.1.

• Appendix B.2 provides proof for Theorem 3.2.

• Appendix B.3 provides proof of Theorem 3.3.

• Appendix B.4 provides proof for Proposition 4.1.

• Appendix B.5 provides proof for Theorem 4.2.

• Appendix B.6 provides proof for Theorem 4.6.

• Appendix B.7 provides omitted assumptions and proof for Section 4.3.

• Appendix B.8 provides proof for Theorem 5.1.

• Appendix B.9 provides proof for Theorem 5.2.

• Appendix B.10 provides proof for Proposition 5.3.

• Appendix C provides additional lower bound and examples for the target shift setting.

• Appendix D provides missing experimental details.

• Appendix E discusses challenges in minimizing induced risk.

• Appendix F provides discussions on how to directly minimize the induced risk.

• Appendix G provides discussions on adding regularization to the objective function.

• Appendix H provides discussions on the tightness of our theoretical bounds.

A. Additional Discussions
A.1. Example Usages of Transparent Models

As we mentioned in Section 1, there is an increasing requirement of making the decision rule to be transparent due to its
potential consequences impacts to individual decision subject. Here we provide the following reasons for using transparent
models:

• Government regulation may require the model to be transparent, especially in public services;

• In some cases, companies may want to disclose their models so users will have explanations and are incentivized to
better use the provided services.

• Regardless of whether models are published voluntarily, model parameters can often be inferred via well-known query
“attacks”.

In addition, we name some concrete examples of some real-life applications:

• Consider the Medicaid health insurance program in the United States, which serves low-income people. There is an
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obligation to provide transparency/disclose the rules (model to automate the decisions) that decide whether individuals
qualify for the program — in fact, most public services have ”terms” that are usually set in stone and explained in the
documentation. Agents can observe the rules and will adapt their profiles to be qualified if needed. For instance, an
agent can decide to provide additional documentation they need to guarantee approval. For more applications along
these lines, please refer to this report.5

• Credit score companies directly publish their criteria for assessing credit risk scores. In loan application settings,
companies actually have the incentive to release criteria to incentivize agents to meet their qualifications and use their
services.Furthermore, making decision models transparent will gain the trust of users.

• It is also known that it is possible to steal model parameters, if agents have incentives to do so.6 For instance,
spammers frequently infer detection mechanisms by sending different email variants; they then adjust their spam
content accordingly.

A.2. Additional Related Work

Strategic Classification Strategic Classification focuses on the problem of how to make predictions in the presence of
agents who behave strategically in order to obtain desirable outcomes (Hardt et al., 2016a; Chen et al., 2020a; Dong et al.,
2018a; Chen et al., 2020b; Miller et al., 2020). In particular, (Hardt et al., 2016a) first formalizes strategic classification
tasks as a two-player sequential game (i.e., a Stackelberg game) between a model designer and strategic agents. Agent
best response behavior is typically viewed as malicious in the traditional setting; as a result, the model designer seeks to
disincentivize this behavior or limit its impact by publishing classifiers that are robust to any agent’s adaptations. In our
work, the agents’ strategic behaviors are not necessarily malicious; instead, we aim to provide a general framework that
works for any distribution shift resulting from the human agency.

Most existing work in strategic classification assumes that human agents are fully rational and will always perform best
response to any given classifier. As a result, their behaviors can be fully characterized based on pre-specified human response
models (Hardt et al., 2016a; Chen et al., 2020a). While we are also interested in settings where agents respond to a decision
rule, we focus on the distribution shift of human agents at a population level and characterize the induced distribution
as a function of the deployed model. Instead of specifying a particular individual-level agent’s response model, we only
require the knowledge of the source data DS , as well as some characterizations of the relationship between the source and
the induced distribution, e.g., they satisfy some particular distribution shift models, like covariate shift (see Section 4),
or target shift (see Section 5), or we have access to some data points from the induced distribution so we can estimate
their statistical differences like H-divergence (see Section 3). In addition, the focus of our work is different from strategic
classification. Instead of designing models robust to strategic behavior, we primarily study the transferability of a given
model’s performance on the distribution itself induces.

Domain Adaptation There has been tremendous work in domain adaptation studying different distribution shifts and
learning from shifting distributions (Jiang, 2008; Ben-David et al., 2010; Sugiyama et al., 2008; Zhang et al., 2019; Kang
et al., 2019; Zhang et al., 2020; Xie et al., 2022). Our results differ from these previous works since in our setting, changes
in distribution are not passively provided by the environment, but rather an active consequence of model deployment. Part of
our technical contributions is inspired by the transferability results in domain adaptations (Ben-David et al., 2010; Zadrozny,
2004; Gretton et al., 2009; Sugiyama et al., 2008; Lipton et al., 2018; Azizzadenesheli et al., 2019).

Our work, at first sight, looks similar to several sub-areas within the literature of domain adaptation, e.g., domain gener-
alization, adversarial attack, and test-time adaptation, to name a few. For instance, the notion of observing an “induced
distribution” resembles similarity of the adversarial machine learning literature (Lowd & Meek, 2005; Huang et al., 2011;
Vorobeychik & Kantarcioglu, 2018). One of the major differences between ours and adversarial machine learning is that in
adversarial machine learning, the true label Y stays the same for the attacked feature, while in our paper, both X and Y
might change in the induced distribution D(h). In Appendix A.2, we provide detailed comparisons between our setting and
the other subfields in domain adaptation mentioned above.

Comparisons of our setting and Some Areas in Domain Adaptation We compare our setting (We address it as IDA,
representing “induced domain adaptation”) with the following areas:

5https://datasociety.net/library/poverty-lawgorithms/
6https://www.wired.com/2016/09/how-to-steal-an-ai/
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• Adversarial attack (Chakraborty et al., 2018; Papernot et al., 2016; Song et al., 2019): in adversarial attack, the true
label Y stays the same for the attacked feature, while in IDA, we allow the true label to change as well. One can think
of adversarial attack as a specific form of IDA where the induced distribution has a specific target, that is to maximize
the classifier’s error by only perturbing/modifying. Our transferability bound does, however, provide insights into how
standard training results transfer to the attack setting.

• Domain generalization (Wang et al., 2021b; Li et al., 2017; Muandet et al., 2013): the goal of domain generalization is
to learn a model that can be generalized to any unseen distribution; Similar to our setting, one of the biggest challenges
in domain generalization also the lack of target distribution during training. The major difference, however, is that our
focus is to understand how the performance of a classifier trained on the source distribution degrades when evaluated
on the induced distribution (which depends on how the population of decision subjects responds); this degradation
depends on the classifier itself.

• Test-time adaptation (Varsavsky et al., 2020; Wang et al., 2021a; Nado et al., 2021): the issue of test-time adaptation
falls into the classical domain adaptation setting where the adaptation is independent of the model being deployed.
Applying this technique to solve our problem requires accessing data (either unsupervised or supervised) drawn from
DS(h) for each h being evaluated during different training epochs.

Remark We believe that techniques from Domain Adaptation can potentially be applied to our setting when the decision-
maker is interested in producing a classifier that performs well on the induced distribution. In general, we suspect that it will
require the decision maker to know certain information about how the induced distribution and the source distribution differ,
e.g. some potential characterizations of their statistical differences. Here we provide two possible directions:

• Data Augmentation: The basic idea of data augmentation is to augment the original data point (x, y) pairs with new
pairs (A(x), B(x))where A(·) and B(·) denote a pair of transformations. Then we add the new pairs to the training
dataset. A(·) and B(·) are usually seen as a way of simulating domain shift, and the design of A(·) and B(·) is key to
performance. In our case, A and B are functions of the classifier h, and they capture how the classifier influences the
potential response from the decision subjects. This requires the decision maker to have a specific response model in
mind when designing the augmented data points.

• Learning Disentangled Representations: Instead of forcing the entire model or features to be domain invariant, which is
challenging, one can relax this constraint by allowing some parts to be domain-specific, essentially learning disentangled
representations. In our induced domain adaptation setting, this means separating features into two sets, one set contains
features that are invariant to the deployment of a classifier, and the other set contains features that will be potentially
affected by. Then we can decompose a classifier into domain-specific biases and domain-agnostic weights, and only
keep the latter when dealing with the unseen induced domain.

B. Proof of Results
B.1. Proof of Theorem 3.1

Proof. We first establish two lemmas that will be helpful for bounding the errors of a pair of classifiers. Both are standard
results from the domain adaption literature (Ben-David et al., 2010).

Lemma B.1. For any hypotheses h, h′ ∈ H and distributions D,D′,

|ErrD(h, h′)− ErrD′(h, h′)| ≤ dH×H(D,D′)

2
.

Proof. Define the-cross prediction disagreement between two classifiers h, h′ on a distribution D as ErrD(h, h′) :=
PD(h(X) ̸= h′(X)). By the definition of theH−divergence,

dH×H(D,D′) = 2 sup
h,h′∈H

|PD(h(X) ̸= h′(X))− PD′(h(X) ̸= h′(X))|

= 2 sup
h,h′∈H

|ErrD(h, h′)− ErrD′(h, h′)|

≥ 2 |ErrD(h, h′)− ErrD′(h, h′)| .
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Another helpful lemma for us is the well-known fact that the 0-1 error obeys the triangle inequality (see, e.g., (Crammer
et al., 2008)):

Lemma B.2. For any distribution D over instances and any labeling functions f1, f2, and f3, we have ErrD(f1, f2) ≤
ErrD(f1, f3) + ErrD(f2, f3).

Denote by h̄∗ the ideal joint hypothesis, which minimizes the combined error:

h̄∗ := argmin
h′∈H

ErrD(h)(h
′) + ErrDS

(h′)

We have:

ErrD(h)(h) ≤ ErrD(h)(h̄
∗) + ErrD(h)(h, h̄

∗) (Lemma B.2)

≤ ErrD(h)(h̄
∗) + ErrDS

(h, h̄∗) +
∣∣ErrD(h)(h, h̄

∗)− ErrDS
(h, h̄∗)

∣∣
≤ ErrD(h)(h̄

∗) + ErrDS
(h) + ErrDS

(h̄∗) +
1

2
dH×H(DS ,D(h)) (Lemma B.1)

= ErrDS
(h) + λDS→D(h) +

1

2
dH×H(DS ,D(h)). (Definition of h̄∗)

B.2. Proof of Theorem 3.2

Proof. Invoking Theorem 3.1, and replacing h with h∗
T and S with D(h∗

T ), we have

ErrD(h)(h
∗
T ) ≤ ErrD(h∗

T )(h
∗
T ) + λD(h)→D(h∗

T ) +
1

2
dH×H(D(h∗

T ),D(h)) (8)

Now observe that

ErrD(h)(h) ≤ ErrD(h)(h
∗
T ) + ErrD(h)(h, h

∗
T )

≤ ErrD(h)(h
∗
T ) + ErrD(h∗

T )(h, h
∗
T ) +

∣∣∣ErrD(h)(h, h
∗
T )− ErrD(h∗

T )(h, h
∗
T )

∣∣∣
≤ ErrD(h)(h

∗
T ) + ErrD(h∗

T )(h, h
∗
T ) +

1

2
dH×H(D(h∗

T ),D(h)) (by Lemma B.1)

≤ ErrD(h)(h
∗
T ) + ErrD(h∗

T )(h) + ErrD(h∗
T )(h

∗
T ) +

1

2
dH×H(D(h∗

T ),D(h)) (by Lemma B.2)

≤ ErrD(h∗
T )(h

∗
T ) + λD(h)→D(h∗

T ) +
1

2
dH×H(D(h∗

T ),D(h)) (by equation 8)

+ ErrD(h∗
T )(h) + ErrD(h∗

T )(h
∗
T ) +

1

2
dH×H(D(h∗

T ),D(h))

Adding ErrD(h)(h) to both sides and rearranging terms yields

2ErrD(h)(h)− 2ErrD(h∗
T )(h

∗
T ) ≤ ErrD(h)(h) + ErrD(h∗

T )(h) + λD(h)→D(h∗
T ) + dH×H(D(h∗

T ),D(h))
= ΛD(h)→D(h∗

T )(h) + λD(h)→D(h∗
T ) + dH×H(D(h∗

T ),D(h))

Dividing both sides by 2 completes the proof.

B.3. Proof of Theorem 3.3

Proof. Using the triangle inequality of dTV, we have

dTV(DY |S ,DY (h)) ≤ dTV(DY |S ,Dh|S) + dTV(Dh|S ,Dh(h)) + dTV(Dh(h),DY (h)) (9)
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and by the definition of dTV, the divergence term dTV(DY |S ,DY (h)) becomes

dTV(DY |S ,Dh|S) = |PDS
(Y = +1)− PDS

(h(x) = +1)|

=

∣∣∣∣EDS
[Y ] + 1

2
− EDS

[h(X)] + 1

2

∣∣∣∣
=

∣∣∣∣EDS
[Y ]

2
− EDS

[h(X)]

2

∣∣∣∣
≤ 1

2
· EDS

[|Y − h(X)|]
= ErrDS

(h)

Similarly, we have

dTV(Dh(h),DY (h)) ≤ ErrD(h)(h)

As a result, we have

ErrDS
(h) + ErrD(h)(h) ≥ dTV(DY |S ,Dh|S) + dTV(Dh(h),DY (h))

≥ dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h)) (by equation 9)

which implies

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
.

B.4. Proof of Proposition 4.1
Proof.

ED(h)[ℓ(h;X,Y )]

=

∫
PD(h)(X = x, Y = y)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PD(h)(X = x)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) · PD(h)(X = x)

PDS
(X = x)

· ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) · ωx(h) · ℓ(h;x, y) dxdy

=EDS
[ωx(h) · ℓ(h;x, y)]

B.5. Proof of Theorem 4.2

Proof. We start from the error induced by h∗
S . Let the average importance weight induced by h∗

S be ω̄(h∗
S) = EDS

[ωx(h
∗
S)];

we add and subtract this from the error:

ErrD(h∗
S)(h

∗
S) = EDS

[ωx(h
∗
S) · 1(h∗

S(x) ̸= y)]

= EDS
[ω̄(h∗

S) · 1(h∗
S(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

In fact, ω̄(h∗
S) = 1, since

ω̄(h∗
S) =EDS

[ωx(h
∗
S)] =

∫
ωx(h

∗
S)PDS

(X = x)dx

=

∫ PD(h)(X = x)

PDS
(X = x)

PDS
(X = x)dx =

∫
PD(h)(X = x)dx = 1
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Now consider any other classifier h. We have

ErrD(h∗
S)(h

∗
S)

= EDS
[1(h∗

S(x) ̸= y)] + EDS
[(ωx(h

∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

≤ EDS
[1(h(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)] (by optimality of h∗

S on DS)
= EDS

[ω̄(h) · 1(h(x) ̸= y)] + EDS
[(ωx(h

∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)] (multiply by ω̄(h∗

S) = 1)
= EDS

[ωx(h) · 1(h(x) ̸= y)] + EDS
[(ω̄(h)− ωx(h)) · 1(h(x) ̸= y)] (add and subtract ω̄(h∗

S))
+ EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

= ErrD(h)(h) + Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

Moving the error terms to one side, we have

ErrD(h∗
S)(h

∗
S)− ErrD(h)(h)

≤ Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

≤
√

Var(ωx(h∗
S)) · Var(1(h∗

S(x) ̸= y)) (|Cov(X,Y )| ≤
√

Var(X) · Var(Y ))

+
√

Var(ωx(h)) · Var(1(h(x) ̸= y))

=
√

Var(ωx(h∗
S)) · ErrS(h∗

S)(1− ErrS(h∗
S)) +

√
Var(ωx(h)) · ErrDS

(h)(1− ErrDS
(h))

≤
√

Var(ωx(h∗
S)) · ErrS(h∗

S) +
√

Var(ωx(h)) · ErrDS
(h) (1− ErrDS

(h) ≤ 1)

≤
√

ErrDS
(h) ·

(√
Var(ωx(h∗

S)) +
√

Var(ωx(h))

)
Since this holds for any h, it certainly holds for h = h∗

T .

B.6. Omitted Assumptions and Proof of Theorem 4.6

Denote X+(h) = {x : ωx(h) ≥ 1} and X−(h) = {x : ωx(h) < 1}. First, we observe that∫
X+(h)

PDS
(X = x)(1− ωx(h))dx

+

∫
X−(h)

PDS
(X = x)(1− ωx(h))dx = 0

This is simply because of
∫
x
PDS

(X = x) · ωx(h)dx =
∫
x
PD(h)(X = x)dx = 1.

Proof. Notice that in the setting of binary classification, we can write the total variation distance between DY |S and DY (h)
as the difference between the probability of Y = +1 and the probability of Y = −1:

dTV(DY |S ,DY (h))

=
∣∣PDS

(Y = +1)− PD(h)(Y = +1)
∣∣

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x)dx−
∫

PDS
(Y = +1|X = x)PDS

(X = x)ωx(h)dx

∣∣∣∣
=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣ (10)

Similarly we have

dTV(Dh|S ,Dh(h)) =

∣∣∣∣∫ PDS
(h(x) = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣ (11)
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We can further expand the total variation distance between DY |S and DY (h) as follows:

dTV(DY |S ,DY (h))

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣
=
∣∣∣∫

X+(h)

PD(Y = +1|X = x)PDS
(X = x) · (1− ωx(h))dx︸ ︷︷ ︸

≤0

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx︸ ︷︷ ︸
>0

∣∣∣
=−

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

−
∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx (by Assumption 4.3)

=

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx (by equation 10)

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Similarly, by assumption 4.4 and equation equation 11, we have

dTV(Dh|S ,Dh(h)) =

∫
PDS

(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Thus we can bound the difference between dTV(DY |S ,DY (h)) and dTV(Dh|S ,Dh(h)) as follows:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

−
∫

PD(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

=

∫
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]PDS

(X = x) · (ωx(h)− 1)dx

= EDS
[(PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)) (ωx(h)− 1)] (by Assumption 4.5)

> EDS
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]EDS

[ωx(h)− 1]

= 0

Combining the above with Theorem 3.3, we have

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0

B.7. Omitted details for Section 4.3

With Setup 2 - Setup 4, we can further specify the important weight wx(h) for the strategic response setting:
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Lemma B.3. Recall the definition for the covariate shift important weight coefficient ωx(h) :=
PD(h)(X=x)

PDS
(X=x) , for our strategic

response setting, we have,

wx(h) =


1, x ∈ [0, τh −B)
τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

1, x ∈ [τh +B, 1]

(12)

Proof for Lemma B.3:

Proof. We discuss the induced distribution D(h) by cases:

• For the features distributed between [0, τh −B]: since we assume the agents are rational, under assumption 2, agents
with feature that is smaller than [0, τh −B] will not perform any kinds of adaptations, and no other agents will adapt
their features to this range of features either, so the distribution between [0, τh −B] will remain the same as before.

• For the target distribution between [τh −B, τh] can be directly calculated from assumption 3.

• For distribution between [τh, τh +B], consider a particular feature x⋆ ∈ [τh, τh +B], under Setup 4, we know its new
distribution becomes:

PD(h)(x = x⋆) = 1 +

∫ τh

x⋆−B

1− τh−z
B

B − τh + z
dz

= 1 +

∫ τh

x⋆−B

1

B
dz

=
1

B
(−x⋆ + τh + 2B)

• For the target distribution between [τh +B, 1]: under assumption 2 and 4, we know that no agents will change their
feature to this feature region. So the distribution between [τh +B, 1] remains the same as the source distribution.

Recall the definition for the covariate shift important weight coefficient ωx(h) :=
PD(h)(X=x)

PDS
(X=x) , the distribution of ωx(h)

after agents’ strategic responding becomes:

ωx(h) =


1, x ∈ [0, τh −B) and x ∈ [τh +B, 1]
τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

0, otherwise

(13)

Proof for Proposition 4.7:

Proof. According to Lemma B.3, we can compute the variance of wx(h) as Var(wx(h)) = E(wx(h)
2)−E(wx(h)

2) = 2
3B.

Then plugging it into the general bound for Theorem 4.2 gives us the desired result.

B.8. Proof of Theorem 5.1

Proof. Defining p := PDS
(Y = +1), p(h) = PD(h)(Y = +1), we have

ErrD(h∗
S)(h

∗
S) = p(h∗

S) · Err+(h∗
S) + (1− p(h∗

S)) · Err−(h∗
S) (by definitions of p(h∗

S), Err+(h∗
S), and Err−(h∗

S))

= p · Err+(h∗
S) + (1− p) · Err−(h∗

S)︸ ︷︷ ︸
(I)

+(p(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] (14)
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We can expand (I) as follows:

p · Err+(h∗
S) + (1− p) · Err−(h∗

S)

≤ p · Err+(h∗
T ) + (1− p) · Err−(h∗

T ) (by optimality of h∗
S on DS)

= p(h∗
T ) · Err+(h∗

T ) + (1− p(h∗
T )) · Err−(h∗

T ) + (p− p(h∗
T )) · [Err+(h∗

T )− Err−(h∗
T )]

= ErrD(h∗
T )(h

∗
T ) + (p− p(h∗

T )) · [Err+(h∗
T )− Err−(h∗

T )] .

Plugging this back into equation 14, we have

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤ (p(h∗

S)− p)[Err+(h∗
S)− Err−(h∗

S)] + (p− p(h∗
T )) · [Err+(h∗

T )− Err−(h∗
T )]

Notice that

0.5(Err+(h)− Err−(h)) = 0.5 · 1− 0.5 · P(h(X) = +1|Y = +1)− 0.5 · P(h(X) = +1|Y = −1)
= 0.5− PDu(h(X) = +1)

where Du is a distribution with a uniform prior. Then

(p(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] = 2(p(h∗

S)− p) · (0.5− PDu
(h(X) = +1))

(p− p(h∗
T ))[Err+(h∗

T )− Err−(h∗
T )] = 2(p− p(h∗

T )) · (0.5− PDu
(h(X) = +1))

Adding together these two equations yields

(p(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] + (p− p(h∗

T )) · [Err+(h∗
T )− Err−(h∗

T )]

= 2(p(h∗
S)− p) · (0.5− PDu

(h∗
S(X) = +1)) + 2(p− p(h∗

T )) · (0.5− PDu
(h∗

T (X) = +1))

= (p(h∗
S)− p(h∗

T ))− 2 (p(h∗
S)PDu

(h∗
S(X) = +1)− p(h∗

T )PDu
(h∗

T (X) = +1))

+ 2p · (PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1))

≤ |p(h∗
S)− p(h∗

T )| · (1 + 2|PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1)|)
+ 2p · |PDu

(h∗
S(X) = +1)− PDu

(h∗
T (X) = +1)| (15)

Meanwhile,

|PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|

≤ 0.5 · |PD|Y=+1(h
∗
S(X) = +1)− PD|Y=+1(h

∗
T (X) = +1)|

+ 0.5 · |PD|Y=−1(h
∗
S(X) = +1)− PD|Y=−1(h

∗
T (X) = +1)|

= 0.5 (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) (16)

Combining equation 15 and equation 16 gives

|p(h∗
S)− p(h∗

T )| · (1 + 2 · |PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|)

+ 2p · |PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|

≤ |p(h∗
S)− p(h∗

T )| · (1 + dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

+ p · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

≤ |p(h∗
S)− p(h∗

T )|+ (1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .

B.9. Proof of Theorem 5.2

We will make use of the following fact:

Lemma B.4. Under label shift, TPRS(h) = TPRh(h) and FPRS(h) = FPRh(h).
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Proof. We have

TPRh(h) =PD(h)(h(X) = +1|Y = +1)

=

∫
PD(h)(h(X) = +1, X = x|Y = +1)dx

=

∫
PD(h)(h(X) = +1|X = x, Y = +1)PD(h)(X = x|Y = +1)dx

=

∫
1(h(x) = +1)PD(h)(X = x|Y = +1)dx

=

∫
1(h(x) = +1)PDS

(X = x|Y = +1)dx (by definition of label shift)

=

∫
PDS

(h(X) = +1|X = x, Y = +1)PDS
(X = x|Y = +1)dx

=TPRS(h)

The argument for TPRh(h) = TPRS(h) is analogous.

Now we proceed to prove the theorem.

Proof of Theorem 5.2. In section 3.2 we showed a general lower bound on the maximum of ErrDS
(h) and ErrD(h)(h):

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2

In the case of label shift, and by the definitions of p and p(h),

dTV(DY |S ,DY (h)) = |PDS
(Y = +1)− PD(h)(Y = +1)| = |p− p(h)| (17)

In addition, we have

Dh|S = PS(h(X) = +1) = p · TPRS(h) + (1− p) · FPRS(h) (18)

Similarly

Dh(h) = PD(h)(h(X) = +1)

= p(h) · TPRh(h) + (1− p(h)) · FPRh(h)

= p(h) · TPRS(h) + (1− p(h)) · FPRS(h) (by Lemma B.4) (19)

Therefore

dTV(Dh|S ,Dh(h)) =|PDS
(h(X) = +1)− PD(h)(h(X) = +1)|

=|(p− p(h)) · TPRS(h) + (p(h)− p) · FPRS(h)| (By equation 19 and equation 18)
=|p− p(h)| · |TPRS(h)− FPRS(h)| (20)

which yields:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h)) = |p− p(h)|(1− |TPRS(h)− FPRS(h)|) (By equation 17 and equation 20)

completing the proof.
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B.10. Proof of Proposition 5.3

Proof.

|p(h∗
S)− p(h∗

T )| ·
1

PDS
(Y = +1)

=
|(1− ErrDS

(h∗
S))TPRS(h

∗
S)− (1− ErrDS

(h∗
T ))TPRS(h

∗
T )|

(1− ErrDS
(h∗

S)) · (1− ErrDS
(h∗

T ))

≤|ErrDS
(h∗

S)− ErrDS
(h∗

T )| · |TPRS(h
∗
S)− TPRS(h

∗
T )|

(1− ErrDS
(h∗

S)) · (1− ErrDS
(h∗

T ))
(21)

The inequality above is due to Lemma 7 of (Liu & Liu, 2015).

C. Lower Bound and Example for Target Shift
C.1. Lower Bound

Now we discuss lower bounds. Denote by TPRS(h) and FPRS(h) the true positive and false positive rates of h on the
source distribution DS . We prove the following:

Theorem C.1. Under target shift, any model h must incur the following error on either the DS or D(h):

max{ErrDS
(h),ErrD(h)(h)}

≥|p− p(h)| · (1− |TPRS(h)− FPRS(h)|)
2

.

The proof extends the bound of Theorem 3.3 by further explicating each of dTV(DY |S ,DY (h)), dTV(Dh|S , and Dh(h))
under the assumption of target shift. Since |TPRS(h) − FPRS(h)| < 0 unless we have a trivial classifier that has either
TPRS(h) = 1, FPRS(h) = 0 or TPRS(h) = 0, FPRS(h) = 1, the lower bound is strictly positive. Taking a closer look,
the lower bound is determined linearly by how much the label distribution shifts: p − p(h). The difference is further
determined by the performance of h on the source distribution through 1 − |TPRS(h) − FPRS(h)|. For instance, when
TPRS(h) > FPRS(h), the quality becomes FNRS(h) + FPRS(h), that is the more error h makes, the larger the lower
bound will be.

C.2. Example Using Replicator Dynamics

Let us instantiate the discussion using a specific fitness function for the replicator dynamics model (Section 2.1), which is
the prediction accuracy of h for class +1:

[Fitness of Y = +1] := PDS
(h(X) = +1|Y = +1) (22)

Then we have E [Fitness of Y ] = ErrDS
(h), and

p(h)

PDS
(Y = +1)

=
PDS

(h(X) = +1|Y = +1)

ErrDS
(h)

Plugging the result back to our Theorem 5.1 we have

Proposition C.2. Under the replicator dynamics model in Eqn. (22), |p(h∗
S)− p(h∗

T )| further bounds as:

|p(h∗
S)− p(h∗

T )| ≤ PDS
(Y = +1)

· |ErrDS
(h∗

S)− ErrDS
(h∗

T )| · |TPRS(h
∗
S)− TPRS(h

∗
T )|

ErrDS
(h∗

S) · ErrDS
(h∗

T )
.

That is, the difference between ErrD(h∗
S)(h

∗
S) and ErrD(h∗

T )(h
∗
T ) is further dependent on the difference between the two

classifiers’ performances on the source data DS . This offers an opportunity to evaluate the possible error transferability
using the source data only.
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D. Missing Experimental Details
D.1. Synthetic Experiments Using DAG

Here we provide details in terms of the data-generating process for the simulated dataset.

Covariate Shift We specify the causal DAG for covariate shift setting in the following way:

X1 ∼ Unif(−1, 1)
X2 ∼ 1.2X1 +N (0, σ2

2)

X3 ∼ −X2
1 +N (0, σ2

3)

Y := 2sign(X2 > 0)− 1

where σ2
2 and σ2

3 are parameters of our choices.
Adaptation function We assume the new distribution of feature X ′

1 will be generated in the following way:

X ′
1 = ∆(X) = X1 + c · (h(X)− 1)

where c ∈ R1 > 0 is the parameter controlling how much the prediction h(X) affect the generating of X ′
1, namely the

magnitude of distribution shift. Intuitively, this adaptation function means that if a feature x is predicted to be positive
(h(x) = +1), then decision subjects are more likely to adapt to that feature in the induced distribution; Otherwise, decision
subjects are more likely to be moving away from x since they know it will lead to a negative prediction.

Target Shift We specify the causal DAG for target shift setting in the following way:

(Y + 1)/2 ∼ Bernoulli(α)

X1|Y = y ∼ N[0,1](µy, σ
2)

X2 = −0.8X1 +N (0, σ2
2)

X3 = 0.2Y +N (0, σ2
3)

where N[0,1] represents a truncated Gaussian distribution taken value between 0 and 1. α, µy , σ2,σ2
2 and σ2

3 are parameters
of our choices.
Adaptation function We assume the new distribution of the qualification Y ′ will be updated in the following way:

P(Y ′ = +1|h(X) = h, Y = y) = chy, where {h, y} ∈ {−1,+1}

where 0 ≤ chy ∈ R1 ≤ 1 represents the likelihood for a person with original qualification Y = y and get predicted as
h(X) = h to be qualified in the next step (Y ′ = +1).

D.2. Synthetic Experiments Using Real-world Data

On the preprocessed FICO credit score data set (Board of Governors of the Federal Reserve System (US), 2007; Hardt et al.,
2016b), we convert the cumulative distribution function (CDF) of TransRisk score among demographic groups (denoted as
A, including Black, Asian, Hispanic, and White) into group-dependent densities of the credit score. We then generate a
balanced sample where each group has equal representation, with credit scores (denoted as Q) initialized by sampling from
the corresponding group-dependent density. The value of attributes for each data point is then updated under a specified
dynamics (detailed in Appendix D.2.1) to model the real-world scenario of repeated resource allocation (with decision
denoted as D).
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D.2.1. PARAMETERS FOR DYNAMICS

Since we are considering the dynamic setting, we further specify the data generating process in the following way (from
time step T = t to T = t+ 1):

Xt,1 ∼ 1.5Qt + U [−ϵ1, ϵ1]
Xt,2 ∼ 0.8At + U [−ϵ2, ϵ2]
Xt,3 ∼ At +N (0, σ2)

Yt ∼ Bernoulli(qt) for a given value of Qt = qt

Dt = ft(At, Xt,1, Xt,2, Xt,3)

Qt+1 = {Qt · [1 + αD(Dt) + αY (Yt)]}(0,1]
At+1 = At (fixed population)

where {·}(0,1] represents truncated value between the interval (0, 1], ft(·) represents the decision policy from input features,
and ϵ1, ϵ2, σ are parameters of choices. In our experiments, we set ϵ1 = ϵ2 = σ = 0.1.

Within the same time step, i.e., for variables that share the subscript t, Qt and At are root causes for all other variables
(Xt,1, Xt,2, Xt,3, Dt, Yt). At each time step T = t, the institution first estimates the credit score Qt (which is not directly
visible to the institution, but is reflected in the visible outcome label Yt) based on (At, Xt,1, Xt,2, Xt,3), then produces the
binary decision Dt according to the optimal threshold (in terms of the accuracy).

For different time steps, e.g., from T = t to T = t+ 1, the new distribution at T = t+ 1 is induced by the deployment of
the decision policy Dt. Such impact is modeled by a multiplicative update in Qt+1 from Qt with parameters (or functions)
αD(·) and αY (·) that depend on Dt and Yt, respectively. In our experiments, we set αD = 0.01 and αY = 0.005 to capture
the scenario where one-step influence of the decision on the credit score is stronger than that for ground truth label.

D.2.2. ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results on the real-world FICO credit score data set. With the initialization
of the distribution of credit score Q and the specified dynamics, we present results comparing the influence of vanilla
regularization terms in decision-making (when estimating the credit score Q) on the calculation of bounds for induced risks.7

In particular, we consider L1 norm (Figure 5) and L2 norm (Figure 6) regularization terms when optimizing decision-making
policies on the source domain. As we can see from the results, applying vanilla regularization terms (e.g., L1 norm and
L2 norm) on source domain without specific considerations of the inducing-risk mechanism does not provide significant
performance improvement in terms of smaller induced risk. For example, there is no significant decrease of the term Diff as
the regularization strength increases, for both L1 norm (Figure 5) and L2 norm (Figure 6) regularization terms.

E. Challenges in Minimizing Induced Risk
In this section, we provide discussion on the challenges in performing induced domain adaptation.

E.1. Computational Challenges

The literature of domain adaptation has provided us solutions to minimize the risk on the target distribution via a nicely
developed set of results (Sugiyama et al., 2008; 2007; Shimodaira, 2000). This allows us to extend the solutions to minimize
the induced risk too. Nonetheless we will highlight additional computational challenges.

We focus on the covariate shift setting. The scenario for target shift is similar. For covariate shift, recall that earlier we
derived the following fact:

ED(h)[ℓ(h;X,Y )] = ED[ωx(h) · ℓ(h;x, y)]
This formula informs us that a promising solution that uses ωx(h) to perform reweighted ERM. Of course, the primary
challenge that stands in the way is how do we know ωx(h). There are different methods proposed in the literature to estimate
ωx(h) when one has access to D(h) (Zhang et al., 2013; Long et al., 2016; Gong et al., 2016). How any of the specific
techniques work in our induced domain adaptation setting will be left for a more thorough future study. In this section, we

7The regularization that involves induced risk considerations will be discussed in Appendix G.
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(f) L1 penalty, weak regularization strength.

Figure 5. Results of applying L1 penalty with different strength when constructing h∗
S . The left column consisting of panels (a), (c), and

(e) compares Max := max{ErrDS (h
∗
T ),ErrD(h∗

T
)(h

∗
T )} and LB := lower bound specified in Theorem 4.6. The right column consisting

of panels (b), (d), and (f) compares Diff := ErrD(h∗
S
)(h

∗
S)− ErrD(h∗

T
)(h

∗
T ) and UB := upper bound specified in Theorem 4.2. For each

time step K = k, we compute and deploy the source optimal classifier h∗
S and update the credit score for each individual according to the

received decision as the new reality for time step K = k + 1.

focus on explaining the computational challenges even when such knowledge of ωx(h) can be obtained for each model h
being considered during training.

Though ωx(h), ℓ(h;x, y) might both be convex with respect to (the output of) the classifier h, their product is not necessarily
convex. Consider the following example:

Example 1 (ωx(h) · ℓ(h;x, y) is generally non-convex). Let X = (0, 1]. Let the true label of each x ∈ X be y(x) =
1
(
x ≥ 1

2

)
. Let ℓ(h;x, y) = 1

2 (h(x)− y)2, and let h(x) = x (simple linear model). Notice that ℓ is convex in h. Let D be

the uniform distribution, whose density function is fD =

{
1, 0 < x ≤ 1

0, otherwise
. Notice that if the training data is drawn from D,

then h is the linear classifier that minimizes the expected loss. Suppose that, since h rewards large values of x, it induces
decision subjects to shift towards higher feature values. In particular, let D(h) have density function

fD(h) =

{
2x, 0 < x ≤ 1

0, otherwise
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(b) L2 penalty, strong regularization strength.
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(c) L2 penalty, medium regularization strength.
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(d) L2 penalty, medium regularization strength.
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(f) L2 penalty, weak regularization strength.

Figure 6. Results of applying L2 penalty with different strength when constructing h∗
S . The left column consisting of panels (a), (c), and

(e) compares Max := max{ErrDS (h
∗
T ),ErrD(h∗

T
)(h

∗
T )} and LB := lower bound specified in Theorem 4.6. The right column consisting

of panels (b), (d), and (f) compares Diff := ErrD(h∗
S
)(h

∗
S)− ErrD(h∗

T
)(h

∗
T ) and UB := upper bound specified in Theorem 4.2. For each

time step K = k, we compute and deploy the source optimal classifier h∗
S and update the credit score for each individual according to the

received decision as the new reality for time step K = k + 1.

Then for all x ∈ X , ωx(h) =
fD(h)(x)

fD(x) = 2x. Notice that ωx(h) = 2x is convex in h(x) = x. Then

ωx(h) · ℓ(h;x, y) = 2x · 1
2
(h(x)− y)2

= x(x− y)2 =

{
x3, 0 < x < 1

2

x(x− 1)2, 1
2 ≤ x ≤ 1

which is clearly non-convex.

Nonetheless, we provide sufficient conditions under which ωx(h) · ℓ(h;x, y) is in fact convex:

Proposition E.1. Suppose ωx(h) and ℓ(h;x, y) are both convex in h, and ωx(h) and ℓ(h;x, y) satisfy ∀h, h′, x, y: (ωx(h)−
ωx(h

′)) · (ℓ(h;x, y)− ℓ(h′;x, y)) ≥ 0. Then ωx(h) · ℓ(h;x, y) is convex.

Proof. Let us use the shorthand ω(h) := ωx(h) and ℓ(h) := ℓ(h;x, y). To show that ω(h) · ℓ(h) is convex, it suffices to
show that for any α ∈ [0, 1] and any two hypotheses h, h′ we have

ω(α · h+ (1− α) · h′) · ℓ(α · h+ (1− α) · h′) ≤ α · ω(h) · ℓ(h) + (1− α) · ω(h′) · ℓ(h′)
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By the convexity of ω,

ω(α · h+ (1− α) · h′) ≤ α · ω(h) + (1− α) · ω(h′)

and by the convexity of ℓ,

ℓ(α · h+ (1− α) · h′) ≤ α · ℓ(h) + (1− α) · ℓ(h′)

Therefore it suffices to show that

[α · ω(h) + (1− α) · ω(h′)] · [α · ℓ(h) + (1− α) · ℓ(h′)]− α · ω(h) · ℓ(h) + (1− α) · ω(h′) · ℓ(h′) ≤ 0

⇔ α(α− 1) · ω(h)ℓ(h)− α(α− 1) · [ω(h)ℓ(h′) + ω(h′)ℓ(h)] + α(α− 1) · ω(h′)ℓ(h′) ≤ 0

⇔ α(α− 1) · [ω(h)− ω(h′)] · [ℓ(h)− ℓ(h′)] ≤ 0

⇔ [ω(h)− ω(h′)] · [ℓ(h)− ℓ(h′)] ≥ 0

By the assumed condition, the left-hand side is indeed non-negative, which proves the claim.

This condition is intuitive when each x belongs to a rational agent who responds to a classifier h to maximize her chance
of being classified as +1: For y = +1, the higher loss point corresponds to the ones that are close to decision boundary,
therefore, more −1 negative label points might shift to it, resulting to a larger ωx(h). For y = −1, the higher loss point
corresponds to the ones that are likely mis-classified as +1, which “attracts” instances to deviate to.

E.2. Challenges due to the lack of access to data

In the standard domain adaptation settings, one often assumes the access to a sample set of X , which already poses challenges
when there is no access to label Y after the adaptation. Nonetheless, the literature has observed a fruitful development of
solutions (Sugiyama et al., 2008; Zhang et al., 2013; Gong et al., 2016).

One might think the above idea can be applied to our IDA setting rather straightforwardly by assuming observing samples
from D(h), the induced distribution under each model h during the training. However, we often do not know precisely how
the distribution would shift under a model h until we deploy it. This is particularly true when the distribution shifts are
caused by human responding to a model. Therefore, the ability to “predict” accurately how samples “react” to h plays a very
important role (Ustun et al., 2019). Indeed, the strategic classification literature enables this capability by assuming full
rational human agents. For a more general setting, building robust domain adaptation tools that are resistant to the above
“prediction error” is also going to be a crucial criterion.

F. Discussions On Performing Direct Induced Risk Minimization
In this section, we provide discussions on how to directly perform induced risk minimization for our induced domain
adaptation setting. We first provide a gradient descent based method for a particular label shift setting where the underlying
dynamic is replicator dynamic described in Section 5.3. Then we propose a solution for a more general induced domain
adaptation setting where we do not make any particular assumptions on the undelying distribution shift model.

F.1. Gradient descent based method

Here we provide a toy example of performing direct induced risk minimization under the assumption of label shift with
underlying dynamics as the replicator dynamics described in Section 5.3.

Setting Consider a simple setting in which each decision subject is associated with a 1-dimensional continuous feature
x ∈ R and a binary true qualification y ∈ {−1,+1}. We assume label shift setting, and the underlying population
dynamic evolves the replicator dynamic setting described in Section 5.3. We consider a simple threshold classifier, where
Ŷ = h(x) = 1[X ≥ θ], meaning that the classifier is completely characterized by the threshold parameter θ. Below we will
use Ŷ and h(X) interchangeably to represent the classification outcome. Recall that the replicator dynamics is specified as
follows:

PD(h)(Y = y)

PDS
(Y = y)

=
Fitness(Y = y)

EDS
[Fitness(Y )]

(23)
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Figure 7. Experimental results of directly optimizing for the induced risk under the assumption of replicator dynamic. The X-axis denotes
the prediction accuracy of ErrD(h∗

S
)(h

∗
S), where h∗

S is the source optimal classifier under each settings. The Y-axis is the percent of
performance improvement using the classifier that optimize for h∗

T = argminErrD(h)(h), which the decision maker considers the
underlying response dynamics (according to replicator dynamics in Equation (23)) of the decision subjects. Different color represents
different utility function, which is reflected by the specifications of values in Uy,ŷ; within each color, different dots represent different
initial qualification rate.

where EDS
[Fitness(Y )] = Fitness(Y = y)PDS

(Y = y) + Fitness(Y = −y)(1 − PDS
(Y = y)). Fitness(Y = y) is the

fitness of strategy Y = y, which is further defined in terms of the expected utility Uy,ŷ of each qualification-classification
outcome pair (y, ŷ):

Fitness(Y = y) :=
∑
ŷ

P[Ŷ = ŷ|Y = y] · Uy,ŷ

where Uy,ŷ is the utility (or reward) for each qualification-classification outcome combination.P(X|Y = y) is sampled
according to a Gaussian distribution, and will be unchanged since we consider a label shift setting.

We initialize the distributions we specify the initial qualification rate PDS
(Y = +1). To test different settings, we vary the

specification of the utility matrix Uy,ŷ and generate different dynamics.

Formulate the induced risk as a function of h To minimize the induced risk, we first formulate the induced risk as a
function of the classifier h’s parameter θ taking into account of the underlying dynamic, and then perform gradient descent
to solve for locally optimal classifier h∗

T .

Recall from Section 5, under label shift, we can rewrite the induced risk as the following form:

ED(h)[ℓ(h;X,Y )] =p(h) · EDS
[ℓ(h;X,Y )|Y = +1] + (1− p(h)) · EDS

[ℓ(h;X,Y )|Y = −1]

where p(h) = PD(h)(Y = +1).

Since EDS
[ℓ(h;X,Y )|Y = +1] and EDS

[ℓ(h;X,Y )|Y = −1] are already functions of both h and DS , it suffices to show
that the accuracy on D(h), p(h) = PD(h)(Y = +1), can also be expressed as a function of θ and DS .

To see this, recall that for a threshold classifier Ŷ = 1[X > θ], it means that the prediction accuracy can be written as a
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function of the threshold θ and target distribution D(h):

PD(h)(Y = +1)

= PD(h)(Ŷ = +1, Y = +1) + PD(h)(Ŷ = −1, Y = −1)
= PD(h)(X ≥ θ, Y = +1) + PD(h)(X ≤ θ, Y = −1)

=

∫ ∞

θ

PD(h)(Y = +1) P(X = x|Y = 1)︸ ︷︷ ︸
unchanged because of label shift

dx

+

∫ θ

−∞
PD(h)(Y = −1) P(X = x|Y = −1)︸ ︷︷ ︸

unchanged because of label shift

dx (24)

where P(X|Y = y) remains unchanged over time, and PD(h)(Y = y) evolves over time according to Equation (23), namely

PD(h)(Y = y)

=PDS
(Y = y)× Fitnessg(Y = y)

EDS
[Fitnessg(Y )]

=PDS
(Y = y)×

∑
ŷ PDS

[Ŷ = ŷ|Y = y,G = g] · Uŷ,y∑
y(
∑

ŷ PDS
[Ŷ = ŷ|Y = y,G = g] · Uŷ,y)PDS

[Y = y]
(25)

Notice that Ŷ is only a function of θ, and Uy,ŷ are fixed quantities, the above derivation indicates that we can express
PD(h)(Y = y) as a function of θ and DS . Plugging it back to Equation (24), we can see that the accuracy can also be
expressed as a function of the classifier’s parameter θ, indicating that the induced risk can be expressed as a function of θ.
Thus we can use gradient descent using automatic differentiation w.r.t θ to find a optimal classifier h∗

T that minimize the
induced risk.

Experimental Results Figure 7 shows the experimental results for this toy example. We can see that for each setting,
compared to the baseline classifier h∗

S , the proposed gradient based optimization procedure returns us a classifier that
achieves a better prediction accuracy (thus lower induced risk) compared to the accuracy of the source optimal classifier.

F.2. General Setting: Induced Risk Minimization with Bandit Feedback

In general, finding the optimal classifier that achieves the optimal induced risk h∗
T is a hard problem due to the interactive

nature of the problem (see, e.g. the literature of performative prediction (Perdomo et al., 2020) for more detailed discussions).
Without making any assumptions on the mapping between h and D(h), one can only potentially rely on the bandit feedbacks
from the decision subjects to estimate the influence of h onD(h): when the induced risk is a convex function of the classifier
h’s parameter θ, one possible approach is to use the standard techniques from bandit optimization (Flaxman et al., 2005)
to iteratively find induced optimal classifier h∗

T . The basic idea is: at each step t = 1, · · · , T , the decision maker deploy
a classifier ht, then observe data points sampled from D(ht) and their losses, and use them to construct an approximate
gradient for the induced risk as a function of the model parameter θt. When the induced risk is a convex function in the
model parameter θ, the above approach guarantees to converge to h∗

T , and have sublinear regret in the total number of steps
T .

The detailed description of the algorithm for finding h∗
T is as follows:
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Algorithm 1 One-point bandit gradient descent for performative prediction
Result: return θT after T rounds
θ1 ← 0
foreach time step t← 1, . . . , T do

Sample a unit vector ut ∼ Unif(S)
θ+t ← θt + δut

Observe data points z1, . . . , znt ∼ D(θ+t )
ĨR(θ+t )← 1

nt

∑nt

i=1 ℓ(zi; θ
+
t )

g̃t(θt)← d
δ ĨR(θ+t ) · ut ▷ g̃t(θt) is an approximation of∇θ ÎR(θt)

θt+1 ← Π(1−δ)Θ(θt − ηg̃t(θt)) ▷ Take gradient step; project onto (1− δ)Θ := {(1− δ)θ | θ ∈ Θ}
end

G. Regularized Training
In this section, we discuss the possibility that indeed minimizing regularized risk will lead to a tighter upper bound. Consider
the target shift setting. Recall that p(h) := PD(h)(Y = +1) and we have for any proper loss function ℓ:

ED(h)[ℓ(h;X,Y )] = p(h) · EDS
[ℓ(h;X,Y )|Y = +1] + (1− p(h)) · EDS

[ℓ(h;X,Y )|Y = −1]

Suppose p < p(h∗
T ), now we claim that minimizing the following regularized/penalized risk leads to a smaller upper bound.

EDS
[ℓ(h;X,Y )] + α · EDuniform ||

h(X) + 1

2
||

where in above Duniform is a distribution with uniform prior for Y .

We impose the following assumption:

• The number of predicted +1 for examples with Y = +1 and for examples with Y = −1 are monotonic with respect to
α.

Consider the easier setting with ℓ = 0-1 loss. Then

EDuniform ||h(X)|| = 0.5 · (PX|Y=+1[h(X) = +1] + PX|Y=−1[h(X) = +1])− 0.5

= 0.5 · (EX|Y=+1[ℓ(h(X),+1)]− EX|Y=−1[ℓ(h(X),−1])

The above regularized risk minimization problem is equivalent to

(p+ 0.5 · α) · EX|Y=+1[ℓ(h(X),+1)] + (p− 0.5 · α) · EX|Y=−1[ℓ(h(X),−1]

Recall the upper bound in Theorem 5.1:

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤ |p(h∗

S)− p(h∗
T )|︸ ︷︷ ︸

Term 1

+ (1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))︸ ︷︷ ︸

Term 2

.

With a properly specified α > 0, this leads to a distribution with a smaller gap of |p(h̃S) − p(h∗
T )|, where h̃S denotes

the optimal classifier of the penalized risk minimization - this leads to a smaller Term 1 in the bound of Theorem 5.1.
Furthermore, the induced risk minimization problem will correspond to an α s.t. α∗ =

p(h∗
T )−p
0.5 , and the original h∗

S

corresponds to a distribution of α = 0. Using the monotonicity assumption, we will establish that the second term in
Theorem 5.1 will also smaller when we tune a proper α.
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H. Discussion on the tightness of our theoretical bounds
General Bounds in Section 3 For the general bounds reported in Section 3, it is not trivial to fully quantify the tightness
without further quantifying the specific quantities of the terms, e.g. the H divergence of the source and the induced
distribution, and the average error a classifier have to incur for both distribution. This part of our results adapted from the
classical literature in learning from multiple domains (Ben-David et al., 2010). The tightness of usingH-divergence and
other terms seem to be partially validated therein.

Bounds in Section 4 and Section 5 For more specific bounds provided in Section 4 (for covariate shift) and Section 5
(target shift), however, it is relatively easier to argue about the tightness: the proofs there are more transparent and are easier
to back out the conditions where the inequalities are relaxed. For example, in Theorem 5.1, the inequalities of our bound are
introduced primarily in the following two places: 1) one is using the optimiality of h∗

S on the source distribution. 2) the other
is bounding the statistical difference in h∗

S and h∗
T ’s predictions on the positive and negative examples. Both are saying that

if the differences in the two classifiers’ predictions are bounded in a range, then the result in Theorem 5.1 is relatively tight.
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