
Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs
(Authors’ version)

Mayank Rathee
UC Berkeley

Yuwen Zhang
UC Berkeley

Henry Corrigan-Gibbs
MIT

Raluca Ada Popa
UC Berkeley

Abstract—We present Whisper, a system for privacy-preserving
collection of aggregate statistics. Like prior systems, a Whisper
deployment consists of a small set of non-colluding servers;
these servers compute aggregate statistics over data from
a large number of users without learning the data of any
individual user. Whisper’s main contribution is that its server-
to-server communication cost and its server-side storage costs
scale sublinearly with the total number of users. In particular,
prior systems required the servers to exchange a few bits
of information to verify the well-formedness of each client
submission. In contrast, Whisper uses silently verifiable proofs,
a new type of proof system on secret-shared data that allows
the servers to verify an arbitrarily large batch of proofs by
exchanging a single 128-bit string. This improvement comes
with increased client-to-server communication, which, in cloud
computing, is typically cheaper (or even free) than the cost of
egress for server-to-server communication. To reduce server
storage, Whisper approximates certain statistics using small-
space sketching data structures. Applying randomized sketches
in an environment with adversarial clients requires a careful
and novel security analysis. In a deployment with two servers
and 100,000 clients of which 1% are malicious, Whisper can
improve server-to-server communication for vector sum by
three orders of magnitude while each client’s communication
increases by only 10%.

1. Introduction

Private-aggregation systems make it possible to compute
aggregate statistics about a population of devices, while
revealing no information—beyond the aggregate statistic
itself—about any device’s data. These systems make it pos-
sible to privately collect information on user behavior [6],
public health trends [10], [65], and device telemetry [90] at
million-user scale.

In this paper, we focus on private-aggregation systems
based on multi-party computation techniques [3], [13], [26],
[43], [45], [48], [50], [57], [61], [63], [72], [81], [86], [89].
These systems require a small set of infrastructure providers
(“servers”); the systems protect client privacy as long as an
adversary cannot compromise all servers. Deployments of
private aggregation at Apple [6], Google [10], Mozilla [90],
and others [50] use this approach.

In a run of one such private-aggregation protocol, each
user splits its data using a cryptographic secret-sharing

scheme, and sends one share to each server. In addition,
each user sends the servers a zero-knowledge proof attesting
that its secret shares are well-formed. After receiving the
data submissions and validity proofs from a large number
of clients, the servers verify each proof, and then aggregate
the valid submissions to compute the statistic of interest.

An annoyance in prior systems [3], [13], [43], [48],
[50], [72] is that the servers must exchange messages to
check each client’s validity proof, so the server-to-server
communication cost is linear in the number of clients. When
the number of clients is in the millions, this server-to-server
communication cost is significant.

More recent systems [26], [74], [89] support computing
the “heavy-hitter” statistic: each client holds a string and the
statistic computes the set of most popular client-held strings.
This statistic is useful when the universe of possible client
submission is large—for example, when computing the set
of URLs that most often cause a user’s browser to crash.

When computing heavy hitters, existing multiparty-
computation-based systems [26], [74], [89] require the
servers to store an amount of secret state that grows linearly
with the number of clients. When the client submissions
arrive in a stream [1], the servers cannot begin processing
the first client submission until the last submission arrives.
As a result, as the number of client uploads increases, the
servers’ memory and storage requirements balloon.

We present Whisper, a system for privacy-preserving
collection of aggregate statistics that has server-to-server
communication and server storage costs sublinear in the
number of users. Whisper provides these properties while
supporting the computation both of simple arithmetic statis-
tics and of heavy hitters. Whisper uses the same deployment
model as existing systems [43], [48], [74] (Figure 1) and
provides the same privacy property: if there is at least one
honest server, no adversarial coalition of malicious clients
and servers can learn any information about honest clients’
data, beyond what the aggregate statistics themselves leak.
Silently verifiable proofs. To reduce server-to-server com-
munication in Whisper, we introduce silently verifiable
proofs, a new type of zero-knowledge proof system on
secret-shared data [25]. In a silently verifiable proof system,
the verifiers can verify a batch of proofs by exchanging a
single field element. This batch verification is possible even
when the provers are mutually distrusting and when each
prover is proving a different statement. Clients in Whisper

1

Storage

batchi

…

Upload
Service

Processing
Service

Server 1

Server 2

Client

partial aggregate

batchi+1

…

batch
testing

result

Figure 1: Whisper’s server architecture. Clients split their
data using a secret-sharing scheme and send one share to
each server. The servers process submissions in batches.

use silently verifiable proofs to convince the servers that
their data submissions are well formed; the servers can check
arbitrarily large batches of proofs using only a few bits of
server-to-server communication.

We show how to construct silently verifiable proofs in
the random-oracle model from a variety of existing proof
systems on secret-shared data [25], [27], [28], [43]. Our con-
struction begins with a recent theoretical proof system [71],
which (implicitly) gives a relatively inefficient silently verifi-
able proof using an MPC-in-the-head-like construction [75].
We then improve the concrete efficiency of their construction
by replacing the traditional multiparty computation they use
with a prover-aided multiparty computation [25], [80].

To sketch how our silently verifiable proofs work, con-
sider a prover who wants to prove that its input G lies in some
language L. Each verifier holds a secret share of the input
G. Furthermore, say that we have a zero-knowledge proof
system ⇧L on secret-shared data for the language L in which
the verifiers communicate with each other over a broadcast
channel (existing protocols satisfy this property [25], [48]).

To generate the silent proof, the prover locally simulates
the execution of all of the parties (prover and verifiers)
running the protocol ⇧L. The prover then sends to each
verifier (1) a transcript of all messages that the simulated
verifiers exchanged via the broadcast channel and (2) the
view of each verifier in the simulated protocol. To check the
proof, the silent verifiers only need to check that (a) their
transcripts of the simulated broadcast channel are identical
and (b) their simulated views are correct according to the
protocol ⇧L. The verifiers can locally generate secret shares
of a test value that is zero if and only if both of these checks
pass (with high probability). To check a batch of proofs at
once, the verifiers can publish a random linear combination
of each proof’s test value and accept if the resulting value
sums to zero. We depict this construction in Figure 2.
Privately streaming heavy hitters. To avoid needing to
store per-client state in our private heavy-hitters computa-
tion, we use a small-space sketching data structure [96]. In
doing so, we give up on computing the exact heavy hitters,
and instead settle for a good approximation—we expect this
trade-off to be acceptable in many applications.

Applying a sketch in the context of private aggregation

requires some care. In particular, existing sketching data
structures can provide a good approximation of the true
heavy hitters when the client’s data values are chosen in-
dependently of the random hash functions used in the data
structure [34], [40], [41], [82], [95], [96]. However, when
clients can contribute maliciously-crafted data submissions
that depend on the data structure’s hash functions, the
standard correctness analysis does not suffice [4], [18], [38],
[69], [70], [88], [93]. We show how to use silently verifiable
proofs, along with a refined analysis of the sketching data
structures, to guarantee that we correctly approximate the
heavy hitters, even in the face of malicious clients.

We implement Whisper on top of ISRG’s libprio-rs
library [51]. In our evaluation where two servers aggregate
1024-sized vectors across 100,000 clients of which 1% are
malicious, each server in Whisper only sends 0.2 MB com-
pared to 415 MB for state-of-the-art Prio3 [51]. In achieving
this, our per-client communication increases to 303 KB
from 274 KB for Prio3. This trade-off is most appealing
in cloud deployments, where ingress is free and egress is
costly. We estimate up to 3⇥ reduction in server operating
costs for certain statistics. When the same servers compute
heavy hitters over a stream of 1.75 million client uploads,
our baseline Poplar [26] overruns the 64 GB memory at
the servers and takes four days to finish, while Whisper
takes about two hours and recovers all the heavy hitters
with probability at least 0.999. Streaming the heavy hitter
computation in Whisper comes at a 14-17⇥ increase in client
communication over Poplar, however, it stays under 500 KB.

2. System Overview

In this section, we outline Whisper’s system architecture,
capabilities, and security properties.

2.1. System Model

A Whisper deployment consists of two or more logical
servers, and a large number of clients. All the communica-
tion happens over TLS-protected network channels.
Servers. Each logical server in Whisper server runs in its
own administrative domain, separate from all other servers
in the system. A logical Whisper server can consist of a
large number of physical servers or cloud instances. For
conciseness, we use “server” to refer to a logical server.
We assume that all participants in the system have the
cryptographic public keys of each server in the system. The
servers jointly compute the same set of aggregate statistics
on the users’ data. There are E servers (Eerifiers).
Clients. Each client holds a piece of private data; the servers
compute aggregate statistics over all clients’ data. Clients in
Whisper communicate with each of the Whisper servers and
do not communicate with other clients. We assume that the
clients have a means to authenticate to the servers [8].
Threat model and real-world deployments. While Whis-
per works with any number of servers, we evaluate our

2

Init view

Bcast view
?

Prover Verifier2

v3

v1

Figure 2: Overview: Constructing silently verifiable proofs from zero-knowledge proofs on secret-shared data. Given a zero-
knowledge proof ⇧ on secret-shared data, the prover, in its head, 1 initializes each verifier’s view, and 2 simulates their
interaction as per ⇧ to generate the broadcast view. 3 It sends to each real verifier their initial view and the simulated
broadcast view. 4 Each verifier locally verifies a part of the simulation to generate a share of the final decision.

system, and present additional optimizations, in the two-
server setting. Moreover, real-world deployments [10], [50],
[52], [90] of prior work [26], [43] with similar threat models
typically adopt the two-server setting. This setting requires
two non-colluding servers for privacy (more details in §2.4).
The non-collusion assumption is unavoidable here and has to
appear either between clients [16], [24], [84] or servers [26],
[43]. In recent times, Mozilla [52], [90], NIH (with Apple
and Google) [10], and Horizontal [52] have partnered with
ISRG to run the second non-colluding server in their deploy-
ments. Through the Divvi Up project [50], any organization
can request this service from ISRG. We make no synchrony
requirement and the adversary can observe all network links.

2.2. Architecture

Whisper computes aggregate statistics in a sequence of
time epochs: at the end of each epoch, the servers publish
a set of aggregate statistics computed over the data of the
clients participating during the just-completed epoch. The
protocol flow in each epoch works in the following three
steps, depicted in Figure 1.
Step 1: Client data submission. Each client authenticates
to the Upload Service at each server, which associates this
client with an id. The client uploads an encoding of its
private data with a silently verifiable proof of valid encoding
by sending a single message to each server.

The Upload Service associates each message with a
specific batch of submissions, a batch corresponding to a
time interval. We need to ensure that each client uploads to
the same batch on each server. A malicious client can try
to upload in E different batches at the E servers to cause
E times more work for the servers. At the same time, we
do not want the “silent” servers to communicate per client
to reach consensus. To prevent this issue, Whisper has each
client first submit its upload to the first server. This server
will verify that this client id has not uploaded already. It
will assign this message to a batch and will return a signed
acknowledgment fack that covers the batch identifier and the
client id. The client will then upload to the other servers to
the same batch by presenting fack.

Step 2: Server data validation and aggregation. After
receiving client submissions, the servers check that they
are well formed using the silently verifiable proof in each
submission. To keep the server state from growing, Whisper
servers verify client submissions in batches as they arrive
within the epoch. The Processing Service processes each
batch. It first tests the validity of the submissions in the
batch by running the batch-verification routine of the silently
verifiable proofs. In the optimistic case—when all clients in
a batch are honest—the entire validity check requires the
servers to exchange a single short (128-bit) field element. If
any proof in the batch is invalid, the servers will identify
the failing proof via group-testing techniques [54]; they will
discard the corresponding malformed submissions. These
steps require interacting with the corresponding Processing
Service on the other servers. It then aggregates the values
in the batch into a running partial aggregate.
Step 3: Publishing the aggregate statistic. After the
servers process all input batches, the Processing Service
combines the resulting aggregate with the aggregates on the
other servers to obtain the aggregate statistic.

2.3. Supported statistics

The configuration of a Whisper deployment specifies
which aggregate statistic 5 the system will compute in each
epoch. Following prior private-aggregation systems [26],
[43], [48], Whisper supports any aggregate statistic that can
be computed via a verifiable additive encoding of the client’s
data [43], [68]. We discuss additive encodings in more detail
in §4. Using encodings from prior work [31], [41], [43],
[57], [86], [97], Whisper supports the following statistics:
• Basic statistics: ���, ����, ��������, ������, ���/���

(over small domains)
• Counting: ��������� �����, ����������� ���������
• Boolean operations: ���, ��
• Machine learning: ������ ����������, A2 �����������

As one of our technical contributions, we show that
Whisper can also support computation of approximate heavy
hitters (popular strings) via a new additive encoding (§5).

3

In many cases, Whisper reveals to the servers slightly
more information about the client inputs (G1, . . . , G=) than
the aggregate statistic 5 (G1, . . . , G=) itself. For example,
practical private-aggregation schemes for �������� addi-
tionally leak the mean [43]. As in prior work, we define the
leakage 5̂ (G1, . . . , G=) of the encoding to capture this extra
information. In Whisper, the leakage function is always sym-
metric in its inputs—so the leakage reveals no information
about which client 8 held which private input G8 .

2.4. Security properties

Whisper’s security properties are similar to existing
privacy-preserving systems for collecting aggregate statis-
tics. We describe these properties in more detail in Sec-
tions 4.2 and 5; we sketch them here. All of the security
properties are relative to an aggregate statistic 5 and an
associated leakage function 5̂ .
• Privacy. As long as one server is honest, no server or

malicious client learns any information about the hon-
est clients’ data G1, . . . , G=, except what can be inferred
from the aggregate statistic 5 (G1, . . . , G=) and the leakage
function 5̂ (G1, . . . , G=). All the statistics 5 that Whisper
supports and their leakage functions 5̂ are symmetric in
their inputs, and therefore, the output reveals no informa-
tion about which client submitted which input.

• Correctness against malicious clients. If all the servers
are honest, then a small set of malicious clients can
only affect the aggregate statistic 5 by misreporting their
private data. When 5 computes heavy hitters, we allow
malicious clients to introduce some small additional error
in the output with low probability (Theorem 5.2).
For privacy, it is important that “enough” honest clients

participate in each epoch. This ensures that 5 (G1, . . . , G=)
and 5̂ (G1, . . . , G=) don’t reveal any private information about
honest clients’ inputs. For example, if there is a single honest
client in an epoch, the output can trivially leak the client’s
data. Noising the aggregate statistic to provide differential
privacy [56], [86] (§7) gives some protection in this case. To
limit the number of malicious clients, as in prior works [25],
[26], [43], [86], we assume that the servers employ Sybil-
protection mechanisms [8], [9], [50], [100].

3. Silently Verifiable Proofs

A silently verifiable proof system is a new type of zero-
knowledge proof system on distributed data that allows a set
of verifiers to check an arbitrarily large batch of proofs, from
independent provers, with verifier-to-verifier communication
cost constant in the batch size.

We first recall the notion of distributed data [25] and
the definition of a zero-knowledge proof on distributed
data [25].

Distributed data [25]. A data item G 2 F= is distributed
between a set of E parties (e.g., verifiers) if the 8-th party
holds a piece G8 2 F=8 of G, where G = (G1kG2k . . . kGE),

Gen → "!, "", "pub

"!, "pub

"", "pub

Eval → vtag1

Eval → vtag2

+	= 0	?

Eval → ∗ *#

← Eval*! ∗Eval → ∗ *"
Eval → ∗ *! ← Eval*" ∗ ← Eval*# ∗

+	= =	+
+	
= 0	?

Figure 3: Silently verifiable proofs with batch verification.

and we use “k” to denote concatenation. Secret-shared data
is a special case of distributed data. For example, when G

is additively secret-shared, it holds that G =
Õ

E

8=1 G8 where
G 2 F= and, for all 8 2 [E], G8 2 F=.

Zero-knowledge proof on distributed data [25]. Such a proof
system is a protocol that takes place between:
• a prover, holding an input G 2 F=, for a finite field F and

prover input size =,
• E verifiers, where the 8-th verifier holds a piece G8 2 F=̂

of the input G, for verifier input size =̂.
The protocol allows the prover to convince the verifiers that
the input G = (G1k · · · kGE) satisfies a public predicate—
i.e., that the input G is in some language L ✓ F=—while
revealing nothing about the input G apart from the pieces of
the input G that they already hold and the fact that G 2 L.

We consider a flavor of zero-knowledge proofs on dis-
tributed data that has a very simple communication pattern:
1) the prover sends each verifier a single message,
2) the verifiers each broadcast a single message to the other

verifiers, and
3) each verifier runs some computation on the received

messages to determine whether to accept or reject.
Many existing proof systems have this structure [25], [43],
[48]. In practice, a designated verifier receives the messages
from all verifiers and decides to accept or reject the proof.

A silently verifiable proof is a special zero-knowledge
proof on distributed data where the verifiers’ decision to
accept or reject the proof is a linear function of the broad-
casted messages. As we discuss in §3.2, silently verifiable
proofs allow verifiers to check a large batch of proofs at
once, with minimal verifier-to-verifier communication.

3.1. Definition

We define silently verifiable proof systems in the
information-theoretic setting, i.e., we require the proof sys-
tems to be secure against computationally unbounded prover
and verifiers. Later on, we will consider computationally-
secure variants of these proof systems—in that setting, we
consider infinite families of languages L = {L_}1

_=1, we
require all algorithms to run in time poly(_), and we prove
security against adversaries that run in time poly(_).

4

Our definition of zero-knowledge proofs on distributed
data closely follows those in prior work [25], [43], [48]. The
key differences are:
1) our proofs have a “public part” that the prover sends to

all verifiers, in addition to a per-verifier “secret part,” and
2) we only consider non-interactive proof systems—in

which the prover sends a single message to each verifier.

Notation. For = 2 N, [=] denotes the set {1, . . . , =}. For
strings G and H, GkH denotes their concatenation.
Syntax: Zero-knowledge proof on distributed data. For
a finite field F, prover input size =, verifier input size =̂, tag
size @, and language L ⇢ F=, a E-verifier zero-knowledge
proof system on distributed data consists of the following
algorithms:
Gen(G1, . . . GE) ! (c1, . . . , cE , c

pub). Randomized proce-
dure takes as input G8 2 F=̂ for each verifier 8 2 [E] and
outputs E private proofs c8 and one public proof c

pub.
Eval(G8 , c8 , cpub; A) ! vtag

8
2 F@ . Takes as input the 8-th

verifier input G8 , private proof c8 , the public proof c
pub,

and a random tape A. Returns a proof tag vtag
8

of size @.
Ver(vtag1, . . . , vtagE) 2 F. Takes as input the E verification

tags and checks whether to accept or reject the proof. By
convention, output 0 2 F indicates acceptance.

Silent verification. We say that the proof system is silently
verifiable if the verification predicate Ver computes a linear
function (over field F) of the verification tags it takes as
input. The tag size @ is one and Ver checks that the (scaled)
verification tags sum to zero; both follow from the linearity
of the verification predicate.

A zero-knowledge proof system on distributed data—
whether silently verifiable or not—must satisfy the following
completeness, soundness, and zero-knowledge properties.
Completeness. Completeness states that verification will
always succeed if G 2 L and all the parties are honest.
Formally, we say that a E-verifier silently verifiable proof
system for a language L has completeness if, for all input
shares G1, . . . , GE such that G = (G1 | |G2 | | . . . | |GE) 2 L and for
all choices of the verifiers’ randomness A, if we compute

(c1, . . . , cE , c
pub) Gen(G1, . . . , GE)

vtag
8
 Eval(G8 , c8 , cpub; A), for 8 2 [E],

we have Ver(vtag1, . . . , vtagE) = 0.
Soundness. Soundness states that a prover trying to prove
that G is in the language L for G 8 L will fail the veri-
fication at the E honest verifiers. Formally, we say that a
E-verifier silently verifiable proof system for a language L
has soundness error n if, for all adversaries A, it holds that:

Pr
A

2666664

Ver(vtag⇤1, . . . , vtag⇤E) = 0 and (G⇤1 | | . . . | |G⇤E) 8 L :
(G⇤1, . . . , G⇤E , c⇤1, . . . , c⇤E , cpub

⇤) A()
vtag

⇤
8
 Eval(G⇤

8
, c
⇤
8
, c

pub⇤; A), for all 8 2 [E]

3777775
6 n .

In the information-theoretic setting, the adversary A can
run in unbounded time. When we use the random-oracle
model [17], all algorithms have access to a common random

oracle; soundness holds only against adversaries making a
bounded number of random-oracle queries.

Zero knowledge. Any strict subset of the verifiers does not
learn any information about the prover’s private input G other
than what can be inferred from the pieces they hold and the
fact that G 2 L. In our private analytics use case where the
input is additively secret-shared, this property guarantees
that the client leaks no information about its private data to
an adversarial coalition of up to E � 1 out of the E servers.

Formally, we say that a E-verifier silently verifiable proof
system has X-statistical zero knowledge if, for every strict
subset � ⇢ [E], there exists a simulator S such that for all
G1, . . . , GE 2 F=̂, where (G1kG2k . . . kGE) 2 L, the following
distributions are X-close in statistical distance, where d is
an upper bound on the number of bits of randomness that
Eval uses:

Dreal =

8>>>>>>>>>><
>>>>>>>>>>:

{view8}82� :
(c1, . . . , cE , c

pub) Gen(G1, . . . , GE)
A R {0, 1}d

vtag
8
 Eval(G8 , c8 , cpub; A), for 8 2 �

view8
✓
G8 , c8 , c

pub
, A

vtag1, . . . , vtagE

◆
, for 8 2 �

9>>>>>>>>>>=
>>>>>>>>>>;

and Dideal = S ({G8}82�).
If a proof system has X-statistical zero knowledge with
X = 0, we say that it has perfect zero knowledge. In the
computational setting, we require that the simulator runs in
probabilistic polynomial time, in the security parameter. Fur-
thermore, we can relax the definition to allow the simulation
to be computational, rather than statistical.

Efficiency metrics. The most important efficiency metric
in a silently verifiable proof system is the proof size—the
number of bits output by Gen. It dictates the number of bits
the prover must send to the verifiers during an interaction.

Generalizations. Following prior work [25], we can gen-
eralize the definition of silently verifiable proof systems:
• we can require completeness and/or soundness to hold

when only a subset of the verifiers is honest,
• we can require zero knowledge to hold when G is secret-

shared and the simulator is given no explicit input.
Moreover, we can further generalize the definition by:

• relaxing the notion of silent verification to consider proof
systems on distributed data where the verifier-to-verifier
communication to check a batch of proofs grows sublin-
early (not just constant) in the batch size.

• considering non-linear verification predicate Ver.
• considering asymmetric input sizes, or asymmetric tag

sizes (especially when Ver is not linear) for the verifiers.
• considering verification over point-to-point channels in-

stead of broadcast.
Since our simpler definition suffices for our application,

we defer these generalizations to future work.

5

3.2. Features of silently verifiable proofs

We now mention two useful properties of our proofs:
Batch checking. A set of verifiers can check an arbitrarily
large batch of silently verifiable proofs at the same com-
munication cost as checking a single proof. Recall that, to
verify a silently verifiable proof, the verifiers
• each compute a verification tag from their input, and
• check that their verification tags sum to zero.

To verify a batch of ⌫ proofs, the verifiers compute the
verification tags for each of the ⌫ proofs as before. Rather
than broadcasting the verification tags for each proof sepa-
rately, the verifiers can agree on a shared random test vector
C 2 F⌫. Each verifier 8 publishes the inner product of their ⌫
verification tags (as a vector in F⌫) with the shared random
vector C (Figure 3). If any set of verification tags in the batch
sums to a non-zero value, then the combined verification tag
will be non-zero with probability at least 1 � 1

|F | .
Zero-knowledge against malicious verifiers. By definition,
silently verifiable proof systems provide zero-knowledge
even if a subset of the verifiers is malicious. This strong
privacy guarantee comes for free because each verifier just
sends a single message. Given an honest prover, the mes-
sages sent by honest verifiers are independent of the error in-
troduced by malicious verifiers in their messages. Therefore,
malicious verifiers learn no additional information about the
prover’s private input by deviating from the protocol.

3.3. General construction: silently verifiable proofs

We now show how to construct silently verifiable proof
systems. We only focus on the case where the input is
additively secret-shared between the verifiers, and not other-
wise arbitrarily distributed. We refer to the zero-knowledge
proof systems in this setting as zero-knowledge proofs on
secret-shared data. This suffices for the applications that
we consider in this work.

Our strategy is to start with a conventional zero-
knowledge proof system on secret-shared data that is not
silent—that is, the verification predicate may compute a
non-linear function [25], [43], [48]. Then we show how to
convert any non-silent proof into a silent one in the random-
oracle model [17].

Batching via deterministic verification. At a high-level,
batched verification can be achieved given a (non-silent)
zero-knowledge proof system on secret-shared data for
which the verification is deterministic. When the verification
is deterministic, the prover can locally compute the verifi-
cation transcript and send it to the verifiers. The verifiers
can then do a simple consistency check on the transcript
to verify the proof, and the check can be batched to verify
multiple transcripts (one for each proof to be verified) at
once.

An approach to get deterministic verification is to
build zero-knowledge proofs on secret-shared data using
the “MPC-in-the-head” paradigm [71], [75]. To prove that

some G 2 L, the high-level idea is for the prover to run
an MPC protocol (a.k.a. base protocol) that computes the
predicate “G 2 L” in its head—meaning, playing the role of
each party in the MPC. The transcript from this emulated
execution is then used to prove the validity of the statement.
The recent theoretical work of Hazay et al. [71] adapts this
paradigm to build batch-verifiable zero-knowledge proofs on
secret-shared data from an MPC protocol that computes the
predicate in question. However, their proofs assume that a
majority of the verifiers are honest.

Silently verifiable proofs, on the other hand, need to
guarantee zero-knowledge even when a majority of the ver-
ifiers are dishonest. In this setting, we consider efficient and
specialized base protocols [25], [27], [43] where the verifiers
need to sample a random challenge after the prover commits
to the proof. Therefore, to make the verification determin-
istic, a transform similar to the Fiat-Shamir transform [25],
[62], [104] is required alongside a tailored application of
MPC-in-the-head.

Delegating verification via MPC-in-the-head and Fiat-
Shamir. Figure 4 shows our construction, which we now
explain. It starts with a non-silent zero-knowledge proof
system on secret-shared data. Our idea is to have the prover
run the non-silent proof system, playing the role both of the
prover and of all E verifiers in that proof system.

In our construction, rather than delegating the MPC
protocol to the prover, we delegate the verification protocol
of non-silent zero-knowledge proofs on secret-shared data.
This not only makes silent verification possible but also
leads to shorter proofs compared to the conventional use
of MPC-in-the-head [71].

In our setting, the prover simulates the process of:
• the non-silent prover sending a proof to each verifier,
• the verifiers sampling random coins and using these to

generate verification tags, and
• each verifier broadcasting a verification tag.

In the second step, the prover uses a Fiat-Shamir-like trans-
formation [25], [62], [104] to derive the randomness that
the (simulated) verifiers use to check the non-silent proofs.

For 8 2 [E], the prover writes down the view of the 8-th
verifier as the private proof c8 . The prover writes down all
of the public messages (i.e., the non-silent public proof and
broadcasted verification tags) as the public proof c

pub.
Upon receipt of the proof, each verifier first checks that

the simulated view of the protocol, contained in their private
proof c8 , is correct. Then, the verifiers must check that the
simulated broadcast messages in the public proof c

pub are
consistent with their simulated local views. The verifiers do
this by taking an appropriate random linear combination of
the elements in their simulated views and public proofs.

Putting all of this together, we have:

Theorem 3.1 (Silently verifiable proofs). The construction
of Figure 4, when instantiated with a zero-knowledge proof
on secret-shared data for a language L with soundness
error n , produces a silently verifiable proof for L in the
random-oracle model with soundness error n 0 = E)

2+1
|F | + (n +

6

Proof Prover to Verifier to verifier
system verifier All good 3 bad

Non-silent |c | ?@ ?@

Silent |c | + E + @ 1 3 log2
?

3

TABLE 1: Communication in field elements for silently
verifiable proofs (Figure 4) and the underlying non-silent
proof system. There are ? provers and a small set of E

verifiers. The non-silent proof system has tag size @. Entries
represent the comm. from each prover to each verifier, and
verifier to verifier comm. to verify the batch of ? proofs.
The proofs are either all honestly generated or 3 out of ?

are malicious. $ (·) notation is suppressed for readability.

1
|F |))� against adversaries making at most) random-oracle
queries, where � = (1�)

|F |)E . This transformation preserves
the zero-knowledge property of the underlying proof system.

We prove this theorem in §A.1. The soundness error
n
0 simplifies to ⇡ E)

2

|F | + n) when the adversary’s run-
ning time) ⌧ |F|. When) is poly(_), |F| ⇡ 2_, and
n = negl(_), the soundness error n 0 of the silently verifiable
proof stays negl(_). Instantiating this template with standard
zero-knowledge proofs on secret-shared data [25], we have:

Corollary 3.2 (Arithmetic circuit satisfiability). For an
arithmetic circuit ⇠ : F= ! F, let L⇠ be the language of
vectors in F= such that ⇠ (G) = 0 2 F. Let " > 1 denote the
number of multiplication gates in ⇠. Then there exists a E-
verifier silently verifiable proof for L⇠ in the random oracle
model, with soundness error n 6 E)

2+2E)+1
|F | + 2E+1

")

|F |�" against
adversaries making at most) < |F|/2 random-oracle
queries, perfect zero-knowledge, and proof size 2" + 5E + 3
field elements to each verifier.

Shorter public proof. In existing zero-knowledge proofs
on secret-shared data [25], [43], [48], the Ver(·) algorithm
uses the sum of its inputs to compute its output, i.e.,
Ver(vtag1, . . . , vtagE) = VerInner (vtag), where VerInner (·) is
the main decision algorithm and vtag = vtag1+· · ·+vtagE 2
F@ . We use this structure to shrink the public proof size
from Figure 4 as follows. The public proof cpub includes the
sum vtagNS,1 + · · · + vtagNS,E of non-silent verification tags
rather than including all tags separately and all the verifier
checks stay linear as before. This reduces the proof size
from Corollary 3.2 to 2" + E + 7 field elements. Table 1
shows our proof size and verification communication.

3.4. Extensions: Sublinear proof size

Let L be the language of vectors that satisfy an arith-
metic circuit with " multiplication gates. Our proofs so far
(Corollary 3.2) for the language L, have proof size linear
in " . We now show how, when the language L is more
structured, we can make the proof size sublinear in " .

Repeated instances of a subcircuit. If the circuit is
made up of just affine combinations of "⌧ instances of
a single subcircuit ⌧ : F! ! F of algebraic degree 3, then
instantiating Theorem 3.1 with prior zero-knowledge proofs
on secret-shared data [25], we can achieve the proof size
2! + 3"⌧ + E + 3 with soundness error ⇡ (E) + 3"⌧))

|F |
(when "⌧ ,) ⌧ |F|) and zero-knowledge parameter X = 0.
Constant-degree languages. Languages with a constant
degree (typically 3 = 2) define the valid submissions for
many statistics like (vector) ���, ����, �������� and
��������� �����. For these languages, prior work [25]
constructs and implements [51] zero-knowledge proofs on
secret-shared data with proof size $ (

p
"). Using these

non-silent proof systems, we can directly generate silently
verifiable proofs with proof size $ (

p
") via Theorem 3.1.

Moreover, $ (log ")-round interactive proofs from prior
work [25] achieve proof size $̃ (log "), and can be com-
piled to non-interactive proofs (although with a soundness
loss [12], [19], [25]). Using these non-interactive proofs, we
get silently verifiable proofs with $̃ (log ") proof size.
Language of vectors of Hamming-weight one. When
computing the ��������� ����� and ����������� ���-
������ statistics [43], and sketching for heavy hitters (§5),
each client must prove to the servers that it has secret-shared
a vector of Hamming-weight one. Prior work on arithmetic-
sketching schemes [26]–[28] gives protocols for this with
constant server-to-server communication. We can compile
them into a silently verifiable proof following Figure 4.

4. Collecting Aggregate Statistics

4.1. Preliminaries: Additive encodings

We recall additive encodings, as used in Prio [43] and
other private-aggregation systems [26], [29], [48], [57], [74],
[79], [81], [86], [97]. For an input space X , an output
space Y , and number of inputs =, let 5 : X = ! Y be an
aggregation function. For a finite field F, encoding length ✓,
and a function 5̂ : X = ! {0, 1}⇤, a private additive encoding
for 5 with leakage 5̂ consists of three efficient algorithms:
• Encoder ⇢ (G) ! 4. Outputs an encoding 4 2 F✓ of input
G 2 X .

• Verifier + (4) ! {0, 1}. Verifies an encoding 4 2 F✓ .
• Decoder ⇡ (4) ! H. Outputs the decoding H 2 Y of its

input 4 2 F✓ .
These algorithms must satisfy the following properties:
• Completeness: For all G1, . . . , G= 2 X and for all 8 2 [=],

then it holds that + (⇢ (G8)) = 1 and ⇡ (⇢ (G1) + · · · +
⇢ (G=)) = 5 (G1, . . . , G=).

• Soundness: If + (4) = 1, then there exists G 2 X such that
⇢ (G) = 4. Moreover, there is an efficient algorithm that
computes such an G.

• Privacy: There exists an efficient simulator S such that
for all G1, . . . , G= 2 X , S

�
5 (G1, . . . , G=), 5̂ (G1, . . . , G=)

�
outputs an identical distribution as ⇢ (G1) + · · · + ⇢ (G=).

7

Silently verifiable proofs. Construction of silently verifi-
able proofs over the finite field F with input size = for the
language L ✓ F= with E verifiers from a (non-silent) proof
system (GenNS,EvalNS,VerNS). The construction uses a
hash function � : {0, 1}⇤ ! {0, 1}d, which we model as
a random oracle, where d random bits are used by EvalNS.

Proof generation.
Gen(G1, . . . , GE) ! (c1, . . . , cE , c

pub):
• Generate the non-silent proof:

(c1, . . . , cE , c
pub
NS) GenNS (G1, . . . , GE)

• Use multiparty Fiat-Shamir [25] to derive the random-
ness ANS that the verifiers will use to verify the proof:

28 � (8, G8 , c8 , cpubNS), for 8 2 [E]
ANS � (21, . . . , 2E).

• Derive the verification tags that the verifiers would
broadcast to verify the non-silent proof with random-
ness ANS. That is, for 8 2 [E], set

vtagNS,8 EvalNS (G8 , c8 , cpubNS ; ANS) 2 F@

.

Then compute:

c
pub (cpubNS , 21, . . . , 2E , vtagNS,1, . . . , vtagNS,E).

• Output (c1, . . . , cE , c
pub).

Proof evaluation.
Eval(G8 , c8 , cpub; A) ! vtag

8
:

• Parse c
pub ! (cpubNS , 2

⇤
1, . . . , 2

⇤
E
, vtag

⇤
NS,1, . . . , vtag

⇤
NS,E).

• Rederive the randomness A
⇤
NS that the non-silent veri-

fiers would have used to verify the proof:

A
⇤
NS � (2⇤1, . . . , 2⇤E).

• Derive the verification tags that the verifiers would
broadcast to verify the non-silent proof with random-
ness A

⇤
NS. That is, set

vtagNS,8 EvalNS (G8 , c8 , cpubNS ; A⇤NS) 2 F@

• The verifiers must check that:
– the prover computed the challenge value correctly:

2
⇤
8
= � (8, G8 , c8 , cpubNS),

– all verifiers’ c
pub values are identical,

– the prover provided correct verification tags, i.e.,
verifier 8 checks that vtag⇤NS,8 = vtagNS,8 , and

– verification of the non-silent proof succeeds:
VerNS (vtag⇤NS,1, . . . , vtag⇤NS,E) = 0.

Each verifier 8 uses the shared randomness A to form
a value vtag

8
2 F such that vtag1 + · · · + vtagE = 0 2 F

if and only if these checks all succeed, with high
probability over the choice of A.

• Return vtag
8
2 F.

Figure 4: General construction of silently verifiable proofs.

For example, there is a folklore additive encoding for
��������. Let F = {0, 1, 2, 3, . . . } be a finite field and let =
be the number of inputs. The input space of the encoding is
X 2 {0, . . . , ⌫} ✓ F, for some bound ⌫ where

p
⌫ < =|F|.

The output space of the encoding is Y = Q. The encoding
routine outputs ⇢ (G) = (G, G2) 2 F2, so the encoding length
is ✓ = 2. The verification routine + (0, 1) accepts if 0 6
0, 1 6 ⌫ and 0

2 = 1 2 F. The decoding routine outputs
⇡ (0, 1) = (1

=
� (0

=
)2) 2 Q.

Recent work proposes powerful theoretical generaliza-
tions of additive encodings [68]. These encodings do not na-
tively provide verifiability—taking advantage of these more
recent encodings is an exciting direction for future work.

4.2. Private-aggregation scheme

We now use silently verifiable proofs to construct a
private-aggregation scheme where servers communicate and
store sublinear in the number of clients (in optimistic case).

The protocol is essentially that of prior work [3], [43],
[45], [48], [50], [74], [81], [86], except with silently ver-
ifiable proofs. Prior work formalizes its security proper-
ties [43], [48], [50], [74], so we only sketch them here. In the

following, we say that a client’s submission is “valid” if there
exists an input G 2 X such that an honest client produces the
same submission on input G. The protocol is defined relative
to a public aggregation function 5 : X ⇤ ! Y .
• Correctness against malicious clients: If all servers are

honest, then the servers output 5 applied to the inputs of
clients whose submissions were valid.

• Privacy: As long as one server is honest, the protocol
only reveals the value of the aggregation function 5 and
leakage function 5̂ applied to the inputs of clients whose
submissions were valid.

Building blocks. The private-aggregation protocol with =

clients and E servers for the function 5 works over a finite
field F and requires two building blocks:
• A private additive encoding (⇢ ,+ ,⇡) over F with input

space X , output space Y and encoding length ✓ for the
aggregation function 5 with leakage 5̂ .

• A silently verifiable proof system (Gen,Eval,Ver) over
F for the language L = {4 | + (4) = 1 and 4 2 F✓ } with
E verifiers, where ✓ is the encoding length and + is the
additive-encoding verifier.

8

Protocol. At a high level, the protocol proceeds as follows:
Each client 8 2 [=] performs the following steps:
• On input G8 , generate an additive encoding 4 ⇢ (G8) 2
F✓ of the input. Split the encoding into E additive shares:
4 = 41 + · · · + 4E 2 F✓ .

• Generate a silently verifiable proof that the encoding is
well formed: (c1, . . . , cE , c

pub) Gen(41, . . . , 4E).
• For 9 2 [E], send (4 9 , c 9) to server 9 and c

pub to all.
Next, each server 9 2 [E] performs the following steps:
• For each client 8 2 [=], generate a verification tag vtag

8
2

F to verify that client 8’s submission is valid.
• Take a random linear combination (using randomness

shared across all servers) of the = verification tags
(one per client) to construct a batched verification tag
vtag

¢

9
2 F. Send this tag to the first server.

Finally, the servers perform the following steps:
• The first server checks that

Õ
92 [E] vtag

¢

9
= 0 2 F and

broadcasts the result to all the other servers.
• If the check fails, the servers jointly employ group testing

(§4.3) to identify the failing proofs and weed out the
malformed inputs.

• Each server 9 2 [E] adds its shares of each (valid)
encoding to generate a share 4

¢

9
2 F✓ of the sum of

encodings. Server 9 sends 4
¢

9
to the first server.

• The first server computes the sum 4
¢ Õ

92 [E] 4
¢

9
2 F✓

and computes the final output out ⇡ (4¢) 2 Y , i.e.,
the aggregate statistic over the clients’ secret inputs.
We argue in Appendix B that this protocol provides cor-

rectness against malicious clients. The argument for privacy
follows exactly as in prior work [43]. As mentioned in §2.2,
the servers in this protocol can verify the submissions in
batches of size =1 each and locally aggregate their shares
of passing submissions as they go. In the end, each server
9 2 [E] sends its 4

¢

9
to the first server.

Efficiency. The server storage while running the protocol is
essentially just a vector in F✓ . The server-to-server commu-
nication depends on the number of malicious clients (§4.3).
Supported statistics. Using existing additive encod-
ings [31], [41], [43], [57], [86], [97], Whisper can compute
the following aggregation functions:
• Basic statistics: ���, ����, ��������, ������, ���/���

(over small domains)
• Counting: ��������� �����, ����������� ���������
• Boolean operations: ���, ��
• Machine learning: ������ ����������, A2 �����������

4.3. Finding failing proofs

In our private-aggregation protocol, when malicious
clients submit invalid proofs, the servers’ batch-verification
check fails. To identify the failing proofs with little server-
to-server communication, the servers can use standard algo-
rithms for group testing [53], [54]; similar approach has been
adopted in prior work on anonymous communication [2]

and private analytics [89]. Whisper uses the binary-splitting
algorithm [54], [73]: with a rough estimate on the upper
bound of the number of “defective” uploads 3 in each batch
of =1 clients, the servers first split the batch into 3 non-
overlapping batches of =1/3 clients each and compute vtag

¢

8

for 8 2 [E] for each such batch. They exchange these verifica-
tion tags to find which batches contain defective uploads. For
each defective batch, they recursively search for defective
clients within each batch in parallel. They continue recursing
until they are left with defective singleton batches—these
are the malicious clients. This requires 1 + log =1

3
rounds of

server interaction and $ (E3 log =1
3
) field elements in total

communication per batch of =1 clients.
This strategy only works if the servers split each batch

into consistent sub-batches even though some uploads could
be in some servers’ batches but not in others. We do not want
extra server communication to reach a consensus on these
sub-batches. Instead, during setup, the servers share a key
for a pseudorandom function and use it to map each client’s
id (from §2.2) to a random and deterministic sub-batch.

In our approach, the additional server overhead to iden-
tify failing proofs allows malicious clients to degrade the
system’s performance. However, we show in our evaluation
(§6) that the servers remain efficient and available (unlike a
DDoS attack) even in the presence of a large number of
malicious clients. Moreover, we discuss a strategy in §7
to permanently ban malicious clients and get rid of the
overhead of repeatedly identifying the same offenders.

5. Sketching for heavy hitters

The heavy-hitters aggregate statistic takes as input a set
of = strings, each ! bits long. It returns the set of strings
that appear more than a certain number of times in the input.
Prior work [26], [89] has proposed custom protocols for
efficient computation of exact heavy hitters. A limitation of
these protocols is that they require $ (!) rounds and they
do not support streaming computation (i.e., the servers must
store and repeatedly compute over all client submissions).

In this section, we consider the relaxed problem of
computing approximate heavy hitters—we tolerate a small
probability of failure in outputting the heavy hitters. The
benefit is that we get a streaming-friendly protocol with
round complexity constant in the string length !.

Our approach, following prior work on private aggre-
gation [86], is to use linear sketches [34], [40], [41], [82],
[96]. For our purposes, a linear sketch is just an additive
encoding (in the sense of §4.1) for the approximate heavy-
hitters function. Prior private-aggregation schemes using
sketching for heavy hitters [86] require the servers to run
in time 2! on string length !. Instead, we identify as fitting
a more advanced sketching construction due to Pagh et
al. [96], that reduces the servers’ work to polynomial in
the string length !. (We could also have used the count-
min sketch with the “dyadic trick” [41]. The sketch of Pagh
et al. is better for our application, since the clients can
compress their secret-shared submissions to servers using
distributed point functions [28], [49].) We compare with

9

the approach of computing approximate heavy hitters using
Local Differential Privacy in §8.
Notation. In this section, all arithmetic happens over a
finite field F with size |F|, which we assume to be Z? for a
prime modulus ?. Positive elements are {1, . . . , b ?2 c}. The
value �G represents the field element ?�G. We use the total
ordering �b ?2 c < · · · < �1 < 0 < 1 < · · · < b ?2 c.

5.1. Building block: Bucketed string counting

Our private-heavy-hitters construction uses the private-
aggregation scheme of §4 as a subroutine. In particular, we
instantiate that private-aggregation protocol with an aggre-
gation function that we call “bucketed-string-counting.”

The aggregation function is parameterized by a num-
ber of buckets ⌫, number of client inputs =, and a string
length !. Each client holds a pair of a bucket ID in
{1, . . . , ⌫} and an !-bit string f. For each bucket 1 2 [⌫],
the aggregation function puts the “average” of the strings
in bucket 1. That is, if we view each string as a vector
f̂ 2 {�1, 1}! ✓ F, then for each bucket 1 2 [⌫], the
aggregation function sums up the values in each bucket.
Private-aggregation for bucketed string counting. Fig-
ure 14 of Appendix C gives a simple additive encoding
(⇢ ,+ ,⇡) for bucketed string counting with encoding length
✓ = (! + 1) · ⌫ and no leakage. For each bucket and for
each bit of each string, we use one instance of the additive
encoding for the ��� function. The validity predicate just
ensures that the client only inserted a string into a single
bucket (i.e., that there is only one bucket-aligned run of
non-zero values) and that the string is encoded in {�1, 1}! .

We use arithmetic sketching [27], [28] to construct
silently verifiable proofs for the language of valid encodings
(see §3.4). The encoding and the proof system then, via the
private-aggregation protocol of Section 4.2, yield a private-
aggregation scheme for bucketed string counting.
Optimization in the two-server case. When there are only
two servers, we can use verifiable distributed point functions
(VDPFs) [28], [49] to compress the secret-shared additive
encodings sent by each client. A VDPF gives a succinct way
to secret share a weight-one vector. The verifiability property
means that two servers, each holding a purported succinct
share of a weight-one vector, can tell that their shares are
well formed by performing an equality check on a short
string. As with our silently verifiable proofs, it is possible
for the servers to batch-verify a large number of VDPFs by
exchanging a short string. VDPFs thus can replace silently
verifiable proofs in the two-server setting for heavy hitters.

5.2. Our heavy-hitters protocol

In our protocol (Figure 5), each client first hashes its
input string G 2 {0, 1}! into one of ⌫ buckets, where ⌫ is
a protocol parameter. The client and servers then run the
private-aggregation protocol for bucketed string counting to
compute the “average” of the strings in each bucket.

Heavy hitters protocol. Parameters: a number of
clients =, a string length !, a number of buckets ⌫, hash
functions �bucket : {0, 1}! ! [⌫] and �sign : {0, 1}! !
{0, 1}, and a heavy-hitter threshold) .

Client input preparation. Given a string G 2 {0, 1}!
as input:
• The client hashes the string to get a bucket ID 1 and

sign bit V:

1 �bucket(G) 2 [⌫] and V �sign(G) 2 {0, 1}.

• If V = 0, the client complements its bitstring G Ḡ.
• The client participates in the secure-aggregation

protocol for bucketed string counting using input
(1, VkG) 2 [⌫] ⇥ {0, 1}!+1.

Output decoding. The output of the secure-aggregation
protocol is, for each bucket, (1) the number of strings
in that bucket and (2) the sum over F!+1 of all strings
in that bucket. This output-decoding procedure recovers
the set of approximate heavy hitters from this output.

Initialize a set � = ; of heavy hitters. Then, for each
bucket 1 2 [⌫] containing at least) strings:
• Let B 2 F!+1 be the sum of the strings in bucket 1.
• “Round” B to a bitstring f̂ 2 {0, 1}!+1 by mapping

each value in {�=, . . . , 0} ✓ F to 0 and all other
values to 1.

• Parse (V,f) f̂ 2 {0, 1} ⇥ {0, 1}! .
• If V = 0, complement the bits of f: f f̄.
• Add f to the set of heavy hitters �.

Finally, output � as the set of heavy hitters.

Figure 5: Our protocol for approximate heavy hitters.

If there were no collisions—i.e., distinct strings hash to
distinct buckets—the output of the bucketed string counting
function would exactly give the set of all heavy hitters. How-
ever, since multiple distinct strings may fall into the same
bucket, we need to recover heavy hitters despite collisions.

The delicate part of the analysis is showing that, for the
purposes of finding heavy hitters, these collisions do not
matter too much. If a string is a heavy hitter, it is unlikely
that it will fall into a bucket containing so many non-heavy-
hitters that we cannot recover the original heavy hitter. To
recover a heavy hitter from a bucket, we just round each
bit of the bucket’s counter either up or down to determine
whether the corresponding bit of the string is either 0 or 1.

5.3. Security analysis

Since our heavy-hitters protocol only uses our private-
aggregation scheme (§4) as a subroutine, the security of
that scheme does not imply the security of our heavy-
hitters protocol. For example, the client in our heavy-hitters

10

Heavy-hitters correctness game. Parameters: a num-
ber of buckets ⌫, string length !, encoding length ✓,
number of honest clients =, number of malicious clients
<, heavy-hitter threshold) , and an adversary A.
1) The adversary outputs a list of strings, each in

{0, 1}! , along with a state st:

(st, G1, . . . , G=) A()
corresponding to the honest parties’ inputs.

2) The challenger chooses random hash functions

�sign : {0, 1}! ! {0, 1} and �bucket : {0, 1}! ! [⌫] .
3) The adversary outputs < encodings, each in F✓ :

(H1, . . . , H<) A�sign ,�bucket (st).
If, for any 8 2 [<], the encoding H8 is invalid—i.e.,
+ (H8) = 0, the experiment output is “0”.

4) For each 8 2 [=], the challenger runs the client-
input-preparation step of our heavy-hitters protocol
(Figure 5) with inputs G1, . . . , G= to get encodings
I1, . . . , I= 2 F✓ .

5) The challenger computes the sum (2 F✓ of all
encodings:

((H1 + · · · + H<) + (I1 + · · · + I=) 2 F✓

.

6) The challenger runs the output-decoding step of our
heavy-hitters protocol (Figure 5) using the sum (as
input. The output-decoding procedure produces a set
� of heavy hitters.

7) If there is a string f 2 {0, 1}! that:
• appears more than) times in the list (G1, . . . , G=)

of the honest clients’ inputs, and
• does not appear in the set of heavy hitters �,

then the challenger outputs “1”.

Figure 6: Security game for our heavy-hitters protocol.

protocol (Figure 5) is supposed to hash its string into a
bucket—a malicious client may hash its string using some
adversarial strategy with the goal of corrupting the system’s
output. In addition, our security definitions in Figure 5 did
not handle approximate statistics or randomized encodings.

We now prove a notion of correctness against malicious
clients, and later show privacy against malicious servers.
Correctness against malicious clients. We formally define
our notion of correctness against malicious clients in Fig-
ure 6. Intuitively, we would like to guarantee that the servers
recover all of the heavy hitters, even in the presence of an ad-
versary that controls some number of malicious clients and
may choose the strings that all honest parties will submit.
The only guarantees we have are that (a) malicious clients’
must submit valid additive encodings to the bucketed-string-

counting protocol and (b) the adversary must choose the
honest parties’ strings independently of the random hash
functions used in our sketching data structures. In a real
run of our protocol, our private-aggregation scheme’s input-
validity checks enforce restriction (a), and the fact that
honest clients will choose their strings independently of the
sketch’s randomness enforce restriction (b).

At a high level, we say that adversary wins the game if
the system’s output fails to find any heavy hitter among
the honest clients’ inputs. As long as we can show that
the probability of winning for the adversary is small, the
protocol will be useful in the face of malicious clients.

We now analyze the winning probability.

Definition 5.1 (Heavy hitters: correctness against mali-
cious clients). For a finite field F, string length !, bucket
count ⌫, number of honest clients =, number of malicious
clients <, heavy-hitter threshold) and adversary A, let
HHAdv!,⌫,=,<,) [A] denote the probability that the experi-
ment of Figure 6 outputs “1” when instantiated with these
parameters. We say that the heavy-hitters protocol is n-
correct against malicious clients if, for all adversaries A,
HHAdv!,⌫,=,<,) [A] 6 n .

We prove the following theorem in Appendix C:

Theorem 5.2 (Heavy hitters: correctness against malicious
clients). For a finite field F, string length !, bucket count ⌫,
heavy-hitter threshold) , number of honest clients =, number
of malicious clients < <) , if:
• the field characteristic of F satisfies char(F) > 2(= +<),
• there are : distinct heavy-hitting strings among the hon-

est parties’ inputs, and
• ⌘̄ is the total number of non-heavy-hitter occurrences

among the honest parties’ inputs,
then for all adversaries A, it holds that

HHAdv!,⌫,=,<,) [A] 6 :
2

⌫

+ : · ⌘̄
⌫ · () � <) .

Privacy against malicious servers. The only interaction
that happens in our heavy-hitters scheme is one execution of
the private-aggregation scheme for bucketed string counting.
Therefore, all that our protocol execution leaks (provided
that at least one server is honest) is the output of bucketed-
string-counting function computed over all clients’ inputs.
The leakage function here is symmetric in its inputs—so
the association of clients to strings is completely hidden.
At the same time, the output of the string-counting function
does leak something beyond the heavy hitters, as in prior
work [26], [86]. The leakage is small in absolute terms,
since the number of buckets will be far smaller than the
number of clients. Even so, it would be possible to further
obscure the leakage using differential-privacy (§7).

6. Evaluation

We implement Whisper in Rust on top of the libprio-rs
library [51]. Implementations of both Whisper and the com-

11

Figure 7: Server-to-server communication and time of each
server for verification and aggregation of common statistics.

Figure 8: Communication and proof generation time per
client for common statistics.

Figure 9: Verification communication per server with an
increasing number of clients for Hist 1024.

parison systems are multithreaded. For heavy hitters, we im-
plement our two-server optimization (§5) that uses VDPFs
and given their compatibility with rings Z2: for : 2 N, our
heavy hitters code runs over Z216 and Z232 (depending on the
number of clients) for faster arithmetic. We use SHA-256
to batch multiple verification tags for VDPFs. Our VDPF
code borrows from Poplar’s codebase [42]. To be sound
against adversaries that run in time at most ⇡ 2128, for
general statistics, we perform two parallel runs with 128-
bit field each (details deferred to §D), and for heavy hitters,
we set _ = 128 for VDPFs. Our code is available online at
https://github.com/ucbsky/whisper.

Evaluation setup. We use two servers to mirror existing de-

ployments [6], [10], [65], [90]: one in Iowa (us-central1-a)
and the other in Virginia (us-east4-c). Both have 32 vCPUs
and 64 GB memory. We use a MacBook Pro as a client.

6.1. General statistics

Baseline. We first compare with the state-of-the-art system
Prio3 [51], [74]. For some statistics, Prio3 has a “chunk-
size” parameter that trades client-to-server communication
for server-to-server communication. We call the client-
optimized configuration Prio3-c and the server-optimized
configuration Prio3-s. We compare with both.

Statistics. We consider three main statistics supported by
Prio3: ������ ��� (“sumvec”), ��������� ����� (“hist”),
and ���� (“avg”). For vector sums, we consider vector sizes
128 and 1024, and 16-bit entries. For frequency count, we
consider 1024 and 8192 bins. Means are over 64-bit values.

Server performance. Figure 7 shows the server-to-server
communication and server time (after submissions are re-
ceived) for Whisper and Prio3. Increasing the number of
malicious clients barely affects Whisper’s server time. How-
ever, as we discuss in §4.3, finding 3 malicious clients
requires communication $ (3 log =

3
), and therefore, server

communication increases as the number of malicious clients
increases. The server-to-server communication remains up
to two orders of magnitude lower than the Prio3-c baseline.
The communication-cost improvement comes at an average
cost of roughly a 1.4⇥ increase in server time. For ����
with 10 million clients (10% malicious), server time and
verification communication are 116 sec and about 108 bytes
(linear scaling, as expected), respectively.

Client performance. Figure 8 compares Whisper with Prio3
on client communication (encoding + proof size) and client
time (proof generation). Whisper has roughly 1.4⇥ more
client communication than Prio3-c. As the size of the statis-
tics increases, the increase in our client communication
relative to Prio3 goes down. Our client time is at most a
few milliseconds and about 2-3⇥ higher than baseline.

Server-optimized Prio3. Whisper improves server-to-server
communication by up to 30⇥ over Prio3-s. Whisper outper-
forms Prio3-s in both client and server communication, and
the server time is comparable.

Total communication. The total communication (clients and
servers combined) in Whisper is at most 2⇥ over Prio3-c
and is up to 2⇥ better than Prio3-s when 1% clients are
malicious.

Dollar cost. Using Google Cloud’s pricing model [64], [66],
we estimate up to 3⇥ reduction in the cost of running the
servers (about 2⇥ reduction on average) over our baseline.

Silently verifiable proofs. Figure 9 shows batch verifiabil-
ity of our silently verifiable proofs. When the number of
malicious clients is fixed, verification communication stays
constant as clients increase. Prio3’s proof verification com-
munication scales linearly with clients. Our batch verifica-

12

https://github.com/ucbsky/whisper

Figure 10: Server time to compute heavy hitters over a
stream of client submissions for 0.1% threshold and 0.05%
malicious clients. Poplar runs out of the main memory at
the vertical line.

Figure 11: Server-to-server communication and time of each
server to compute heavy hitters.

tion comes at some increase in proof size, proof generation
time, and proof verification time (Figures 7 and 8).

6.2. Heavy hitters

Baseline. We compare with Poplar [26], the state-of-the-art
system for private heavy hitters in the two-server setting.

Parameters. We sample 256-bit client inputs from a Zipf
distribution with parameter 1.03 and support 10,000, as in
Poplar’s evaluation [26]. We configure Poplar as in their
evaluation. For Whisper, we set the parameters such that
the probability of finding all the heavy hitters is at least
0.999. We consider three heavy hitter thresholds 10%, 1%,
and 0.1% of the total number of clients. When using the
10% threshold, we use (via Theorem 5.2 and Corollary C.1)
a sketch with 32 buckets and 10 sketching instances. When
using the 1% threshold, we use 256 buckets and 14 sketching
instances. When using the 0.1% threshold, we use 1024
buckets and 17 sketching instances. We set the number of
malicious clients as half the heavy hitter threshold, and to
maintain our success probability, we double the number of
buckets in our experiment with malicious clients. For our
streaming experiment, we form batches of 3,000 clients.

Streaming. Figure 10 shows server runtime to process large
streams with millions of clients. The computation in Poplar
cannot be streamed and all submissions stay in memory.
At around 1.5M clients, it exceeds the server’s memory,
and swapping to disk degrades its performance. Mitigating

this slowdown would require using larger, more expensive
servers. Whisper uses streaming to avoid this slowdown.
Moreover, with the fixed batch size, Whisper’s server time
after the last submission is independent of the stream size.
We scale Whisper to 10 million clients and observe server
time of 44063 sec (linear scaling, as expected).
Other metrics (server). Whisper’s server time is typically
lower than Poplar (Figure 11) and server-to-server commu-
nication is up to two orders of magnitude lower (Figure 11).
This translates to up to 3.8⇥ reduction in the dollar cost to
run the servers based on Google Cloud’s pricing [64], [66].
Other metrics (client). Whisper’s client communication is
10-17⇥ larger than Poplar, and the client is up to 2⇥ slower.
Concretely, our client communication is less than 500 KB for
all the three heavy-hitter thresholds. Moreover, historically,
cloud providers don’t charge for ingress communication.
Total communication. Whisper’s larger client communica-
tion compared to Poplar shows up in the total communica-
tion (clients and servers combined). The total communica-
tion in Whisper is 8-13⇥ (50k clients with C = 0.1% being
the worst) more than Poplar.

7. Extensions

Eliminating bad clients. When the servers repeatedly com-
pute aggregate statistics over the same user population [1],
[65], [76], the servers may want to permanently exclude
malicious clients from participating in this system. Before
removing a client permanently from the system, the honest
servers may want to ensure that the client indeed acted
maliciously—i.e., it was not being framed by a malicious
server. We can accomplish this additional security goal if we
assume that all the servers have cryptographic public keys
of each client. Each client signs the messages that it sends
to the servers. For all the clients with valid signatures, the
servers proceed as before. For the clients whose submissions
are identified as invalid in the current and past sessions, each
server can use zero-knowledge proofs [67], [103] to prove
that they did the correct computation on their shares and that
they have the client’s signature on those shares. This step is
relatively expensive, but the servers only need to do it rarely.
For such a defense to be useful, the servers must employ
some Sybil defense [5] to make it harder for malicious users
to reenter the system by creating new accounts.
Differential privacy in Whisper. Like prior work [26],
[43], [89], Whisper provides MPC-style privacy: the only
information leaked about clients’ inputs (G1, . . . , G=) is via
the aggregate statistic 5 (G1, . . . , G=) that the system outputs.
In some cases, this statistic itself could implicitly reveal
sensitive data, e.g., via intersection attacks [20], [26], [43],
[46]. To mitigate this leakage, Whisper can achieve differ-
ential privacy [56] where the servers publish noisy shares
of the statistic, as in prior work [26], [43], [86]. For our
heavy hitters protocol, if the ✓1 norm of the total noise
is bounded by � with high probability, then we can still
recover heavy hitters that occur more than) +� times with

13

similar success probability as before (Corollary C.2). When
the number of clients in the system is large, the accuracy
remains high [26].

8. Related Work

Single-server model. There is a rich literature on sys-
tems for private collection of aggregate statistics via local
differential privacy [7], [14], [15], [33], [86], often using
sketching algorithms as Whisper does. These systems pro-
vide an incomparable privacy property to Whisper: we aim
for an MPC-style privacy property—nothing leaks beyond
the aggregate statistic—while these systems provide user-
level differential privacy (and they do leak information about
each user’s data beyond the aggregate statistic itself). A
secondary distinction is that these systems do not necessarily
protect correctness against malicious clients [7], [14], [15],
[24], [33], [39], [55], [78], [86], [107]; adding such defenses
can be expensive [16], [24], [57], [81], [84]–[86], [92].
Private analytics. Another common approach in private an-
alytics systems is to split trust across multiple non-colluding
servers [3], [13], [43], [45], [57], [61], [63], [72], [74], [81],
[86], [99], [102]. These protocols [13], [43], [63], [72], [74],
[99], [102] offer MPC-style privacy protection. As we have
discussed, to defend against malicious clients, these systems
tend to require server-to-server communication linear in the
number of clients. Systems relying on hardware trust [105]
are vulnerable to side-channel attacks on enclaves [36], [91].
Private heavy hitters. Mix-net [35], [94] and other anony-
mous communication systems [44], [59], [60] can be used
to compute heavy hitters from the multiset of clients’ strings
while providing anonymity, however, the entire multiset of
the client inputs leaks in the process. In the distributed-trust
setting, existing protocols incur high server-to-server com-
munication [11], [23], [77], cannot compute heavy hitters
over a stream leading to large server-side storage [89] or
both [26]. Star [47] considers a different setting with an
aggregation server with a separate randomness server and
doesn’t hide the identity of clients with the same input.
Except for Plasma [89], the server egress in all these works
scales linearly with the number of clients. Plasma works in
a different threat model than Whisper assuming an honest
majority among three servers which can be challenging to
find in the real-world [83]. Moreover, Plasma and the two-
server state-of-the-art Poplar [26] cannot stream heavy hitter
computation leading to large server storage and require the
servers to interact over multiple rounds.
Differentially private aggregate statistics. There is a long
line of work [7], [14], [15], [30], [32], [33], [58], [98], [106]
on computing aggregate statistics over randomized responses
collected from the clients. The noise added by the clients
provides differential privacy, however, it leads to a loss in
the accuracy of the output and makes it challenging to filter
malformed submissions [21]. Moreover, noisy submissions
per client leak some information about the client’s private
input. Whisper and related systems [3], [26], [43], [89]
provide a different privacy guarantee where only the output

and a modest leakage function are seen by the servers with-
out any information on an individual client’s contribution,
and the accuracy of the output is preserved. However, as
mentioned in §7, when the leakage from the output is a
concern, Whisper uses differential privacy where similar
to [26], [37], [43], [86], the noise is added directly to the
aggregate [101]. This maintains higher accuracy compared
to local differential privacy. Zhu et al. [39], [107] develop
a trie-based heavy hitters protocol where subsampling the
clients provides meaningful differential privacy without re-
quiring additional noise. Prochlo [22] requires a trusted
shuffler.
Batch verifiable proofs on secret-shared data. Zero-
knowledge proofs on secret-shared data supporting batch
verification are implicit in recent work by Hazay et al. [71]
where the proof sizes are at least linear in the size of the
predicate. Our silently verifiable proofs provide batch veri-
fication with sublinear-sized proofs for structured languages
common in private analytics. For the language of one-hot
vectors, verifiable distributed point functions [49] offer batch
verification and succinct key sizes.

Acknowledgements

We thank the anonymous reviewers, the shepherd, and
Yuval Ishai for their helpful feedback. We thank Matei
Zaharia for references on discretized streams, and Jelani
Nelson for references on sketching schemes. We also thank
students in the Sky security group for feedback that im-
proved the presentation of this paper. This work is sup-
ported by NSF CAREER 1943347, and gifts from Ac-
centure, AMD, Anyscale, Capital One, Facebook, Google,
IBM, Intel, Mohamed bin Zayed University of Artificial
Intelligence, Mozilla, Samsung, SAP, and VMware. This
work was funded in part by the FinTech@CSAIL Initiative
and NSF grant CNS-2054869.

References

[1] “Mozilla Telemetry Data Documentation: Raw Ping Data, Ping
Types,” https://docs.telemetry.mozilla.org/datasets/pings.html.

[2] I. Abraham, B. Pinkas, and A. Yanai, “Blinder: MPC based scalable
and robust anonymous committed broadcast,” IACR Cryptol. ePrint
Arch., p. 248, 2020.

[3] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy preserving aggregate statistics via boolean shares,”
in SCN, 2022.

[4] M. Ajtai, V. Braverman, T. S. Jayram, S. Silwal, A. Sun, D. P.
Woodruff, and S. Zhou, “The white-box adversarial data stream
model,” in PODS, 2022.

[5] Apple, “Assessing fraud risk request and analyze risk data using
server-to-server calls,” "https://developer.apple.com/documentation/
devicecheck/assessing_fraud_risk".

[6] ——, “Learning iconic scenes with differential privacy,” https://ma
chinelearning.apple.com/research/scenes-differential-privacy.

[7] ——, “Learning with privacy at scale,” "https://docs-assets.develope
r.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf".

14

https://docs.telemetry.mozilla.org/datasets/pings.html
https://machinelearning.apple.com/research/scenes-differential-privacy
https://machinelearning.apple.com/research/scenes-differential-privacy

[8] ——, “Managed device attestation for apple devices,” https://supp
ort.apple.com/guide/deployment/managed-device-attestation-dep28
afbde6a/web.

[9] ——, “Mitigate fraud with AppAttest and DeviceCheck,” WWDC21,
2021.

[10] Apple and Google, “Exposure notification privacy-preserving ana-
lytics (enpa) white paper,” https://covid19-static.cdn-apple.com/app
lications/covid19/current/static/contact-tracing/pdf/ENPA_White_
Paper.pdf.

[11] G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof, B. Pinkas,
K. Takahashi, and J. Tomida, “Efficient secure three-party sorting
with applications to data analysis and heavy hitters,” in CCS, 2022.

[12] T. Attema, S. Fehr, and M. Klooß, “Fiat-shamir transformation of
multi-round interactive proofs,” in TCC (1), 2022.

[13] L. Bangalore, M. H. F. Sereshgi, C. Hazay, and M. Venkitasubra-
maniam, “Flag: A framework for lightweight robust secure aggrega-
tion,” in AsiaCCS, 2023.

[14] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta, “Practical
locally private heavy hitters,” in NIPS, 2017.

[15] R. Bassily and A. D. Smith, “Local, private, efficient protocols for
succinct histograms,” in STOC, 2015.

[16] J. Bell, A. Gascón, T. Lepoint, B. Li, S. Meiklejohn, M. Raykova,
and C. Yun, “ACORN: Input validation for secure aggregation,” in
USENIX Security, 2023.

[17] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in CCS, 1993.

[18] O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev, “A
framework for adversarially robust streaming algorithms,” J. ACM,
vol. 69, 2022.

[19] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle
proofs,” in TCC (B2), 2016.

[20] O. Berthold and H. Langos, “Dummy traffic against long term
intersection attacks,” in PETS, 2002.

[21] A. Biswas and G. Cormode, “Interactive proofs for differentially
private counting,” in CCS. ACM, 2023.

[22] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnés, and B. Seefeld, “Prochlo:
Strong privacy for analytics in the crowd,” in SOSP, 2017.

[23] J. Böhler and F. Kerschbaum, “Secure multi-party computation of
differentially private heavy hitters,” in CCS, 2021.

[24] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in CCS, 2017.

[25] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-knowledge proofs on secret-shared data via fully linear PCPs,”
in CRYPTO (3), 2019.

[26] ——, “Lightweight techniques for private heavy hitters,” in IEEE
S&P, 2021.

[27] ——, “Arithmetic sketching,” in CRYPTO (1), 2023.
[28] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing: Im-

provements and extensions,” in CCS, 2016.
[29] A. Broadbent and A. Tapp, “Information-theoretic security without

an honest majority,” in ASIACRYPT, 2007.
[30] M. Bun, J. Nelson, and U. Stemmer, “Heavy hitters and the structure

of local privacy,” ACM Trans. Algorithms, vol. 15, 2019.
[31] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA:

Privacy-preserving aggregation of multi-domain network events and
statistics,” in USENIX Security, 2010.

[32] K. N. Chadha, J. Chen, J. C. Duchi, V. Feldman, H. Hashemi,
O. Javidbakht, A. McMillan, and K. Talwar, “Differentially pri-
vate heavy hitter detection using federated analytics,” CoRR, vol.
abs/2307.11749, 2023.

[33] T. H. Chan, M. Li, E. Shi, and W. Xu, “Differentially private
continual monitoring of heavy hitters from distributed streams,” in
PETS, 2012.

[34] M. Charikar, K. C. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” Theor. Comput. Sci., vol. 312, 2004.

[35] D. Chaum, “Untraceable electronic mail, return addresses, and dig-
ital pseudonyms,” Commun. ACM, vol. 24, 1981.

[36] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGX-
PECTRE: Stealing intel secrets from SGX enclaves via speculative
execution,” in EuroS&P, 2019.

[37] S. G. Choi, D. Dachman-Soled, M. Kulkarni, and A. Yerukhimovich,
“Differentially-private multi-party sketching for large-scale statis-
tics,” PETS, 2020.

[38] D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data struc-
tures in adversarial environments,” in CCS, 2019.

[39] G. Cormode and A. Bharadwaj, “Sample-and-threshold differential
privacy: Histograms and applications,” in AISTATS, 2022.

[40] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in
data streams,” Proc. VLDB Endow., 2008.

[41] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” J. Algorithms,
vol. 55, 2005.

[42] H. Corrigan-Gibbs, “heavyhitters,” https://github.com/henrycg/hea
vyhitters.

[43] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” in NSDI, 2017.

[44] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in IEEE S&P,
2015.

[45] G. Danezis, C. Fournet, M. Kohlweiss, and S. Z. Béguelin, “Smart
meter aggregation via secret-sharing,” in SEGS@CCS, 2013.

[46] G. Danezis and A. Serjantov, “Statistical disclosure or intersection
attacks on anonymity systems,” in Information Hiding, 2004.

[47] A. Davidson, P. Snyder, E. B. Quirk, J. Genereux, B. Livshits, and
H. Haddadi, “STAR: Secret sharing for private threshold aggregation
reporting,” in CCS, 2022.

[48] H. Davis, C. Patton, M. Rosulek, and P. Schoppmann, “Verifiable
distributed aggregation functions,” PETS, 2023.

[49] L. de Castro and A. Polychroniadou, “Lightweight, maliciously
secure verifiable function secret sharing,” in EUROCRYPT (1), 2022.

[50] Divvi Up, https://divviup.org/.
[51] ——, https://github.com/divviup/libprio-rs.
[52] ——, “A year-end letter from our vice president,” https://divviup.or

g/blog/eoy-letter-2023/.
[53] R. Dorfman, “The Detection of Defective Members of Large Popu-

lations,” The Annals of Mathematical Statistics, vol. 14, no. 4, 1943.
[54] D. Du, F. K. Hwang, and F. Hwang, Combinatorial group testing

and its applications. World Scientific, 2000, vol. 12.
[55] Y. Duan, N. Youdao, J. F. Canny, and J. Z. Zhan, “P4P: Practical

large-scale privacy-preserving distributed computation robust against
malicious users,” in USENIX Security, 2010.

[56] C. Dwork, “Differential privacy: A survey of results,” in TAMC,
2008.

[57] T. Elahi, G. Danezis, and I. Goldberg, “Privex: Private collection of
traffic statistics for anonymous communication networks,” in CCS,
2014.

[58] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
aggregatable privacy-preserving ordinal response,” in CCS, 2014.

[59] S. Eskandarian and D. Boneh, “Clarion: Anonymous communication
from multiparty shuffling protocols,” in NDSS, 2022.

15

https://support.apple.com/guide/deployment/managed-device-attestation-dep28afbde6a/web
https://support.apple.com/guide/deployment/managed-device-attestation-dep28afbde6a/web
https://support.apple.com/guide/deployment/managed-device-attestation-dep28afbde6a/web
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://github.com/henrycg/heavyhitters
https://github.com/henrycg/heavyhitters
https://divviup.org/
https://github.com/divviup/libprio-rs
https://divviup.org/blog/eoy-letter-2023/
https://divviup.org/blog/eoy-letter-2023/

[60] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh,
“Express: Lowering the cost of metadata-hiding communication with
cryptographic privacy,” in USENIX Security, 2021.

[61] M. Faisal, J. Zhang, J. Liagouris, V. Kalavri, and M. Varia, “TVA:
A multi-party computation system for secure and expressive time
series analytics,” in USENIX Security, 2023.

[62] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in CRYPTO, 1986.

[63] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical
queries and machine learning on distributed datasets,” IEEE Trans.
Inf. Forensics Secur., vol. 15, 2020.

[64] Google, “All networking pricing,” https://cloud.google.com/vpc/net
work-pricing.

[65] ——, “Exposure notifications: Help slow the spread of covid-19,
with one step on your phone,” "https://www.google.com/covid19/e
xposurenotifications".

[66] ——, “VM instance pricing,” https://cloud.google.com/compute/v
m-instance-pricing.

[67] J. Groth, “On the size of pairing-based non-interactive arguments,”
in EUROCRYPT (2), 2016.

[68] S. Halevi, Y. Ishai, E. Kushilevitz, and T. Rabin, “Additive random-
ized encodings and their applications,” in CRYPTO (1), 2023.

[69] M. Hardt and D. P. Woodruff, “How robust are linear sketches to
adaptive inputs?” in STOC, 2013.

[70] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer,
“Adversarially robust streaming algorithms via differential privacy,”
J. ACM, vol. 69, 2022.

[71] C. Hazay, M. Venkitasubramaniam, and M. Weiss, “Your rep-
utation’s safe with me: Framing-free distributed zero-knowledge
proofs,” IACR Cryptol. ePrint Arch., p. 1523, 2022.

[72] T. Humphries, R. A. Mahdavi, S. Veitch, and F. Kerschbaum,
“Selective MPC: distributed computation of differentially private
key-value statistics,” in CCS, 2022.

[73] F. K. Hwang, “A method for detecting all defective members in a
population by group testing,” Journal of the American Statistical
Association, 1972.

[74] IETF, “Verifiable distributed aggregation functions draft-irtf-cfrg-
vdaf-07,” https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/.

[75] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-
knowledge from secure multiparty computation,” in STOC, 2007.

[76] ISRG, “Introducing ISRG Prio services for privacy respecting met-
rics,” "https://www.abetterinternet.org/post/introducing-prio-service
s".

[77] P. Jangir, N. Koti, V. B. Kukkala, A. Patra, B. R. Gopal, and
S. Sangal, “Poster: Vogue: Faster computation of private heavy
hitters,” in CCS, 2022.

[78] M. Jawurek and F. Kerschbaum, “Fault-tolerant privacy-preserving
statistics,” in PETS, 2012.

[79] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Regression on
distributed databases via secure multi-party computation,” in DG.O,
2004.

[80] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero
knowledge with applications to post-quantum signatures,” in CCS,
2018.

[81] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly ag-
gregation for the smart-grid,” in PETS, 2011.

[82] K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Thorup, “Heavy
hitters via cluster-preserving clustering,” in FOCS, 2016.

[83] Y. Lindell, D. Cook, T. Geoghegan, S. Gran, R. Schmidt, E. Kret,
D. Kaviani, and R. A. Popa, “The deployment dilemma: Merits &
challenges of deploying MPC,” https://mpc.cs.berkeley.edu/blog/d
eployment-dilemma.

[84] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and A. Hithnawi,
“Rofl: Robustness of secure federated learning,” in IEEE S&P, 2023.

[85] E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Haeberlen,
“Arboretum: A planner for large-scale federated analytics with dif-
ferential privacy,” in SOSP, 2023.

[86] L. Melis, G. Danezis, and E. D. Cristofaro, “Efficient private statis-
tics with succinct sketches,” in NDSS, 2016.

[87] G. T. Minton and E. Price, “Improved concentration bounds for
count-sketch,” 2013.

[88] I. Mironov, M. Naor, and G. Segev, “Sketching in adversarial envi-
ronments,” SIAM J. Comput., vol. 40, 2011.

[89] D. Mouris, P. Sarkar, and N. G. Tsoutsos, “Plasma: Private,
lightweight aggregated statistics against malicious adversaries with
full security,” Cryptology ePrint Archive, Paper 2023/080.

[90] Mozilla, “Next steps in privacy-preserving telemetry with Prio,” ht
tps://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-pre
serving-telemetry-with-prio/.

[91] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens, “Plundervolt: Software-based fault injection attacks
against Intel SGX,” in IEEE S&P, 2020.

[92] M. Naor, B. Pinkas, and E. Ronen, “How to (not) share a password:
Privacy preserving protocols for finding heavy hitters with adversar-
ial behavior,” in CCS, 2019.

[93] M. Naor and E. Yogev, “Bloom filters in adversarial environments,”
in CRYPTO (2), 2015.

[94] C. A. Neff, “A verifiable secret shuffle and its application to e-
voting,” in CCS, 2001.

[95] J. Nelson, H. L. Nguyen, and D. P. Woodruff, “On deterministic
sketching and streaming for sparse recovery and norm estimation,”
Linear Algebra and its Applications, vol. 441, 2014.

[96] R. Pagh, “Compressed matrix multiplication,” ACM Trans. Comput.
Theory, vol. 5, 2013.

[97] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li, “Privacy
and accountability for location-based aggregate statistics,” in CCS,
2011.

[98] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy
hitter estimation over set-valued data with local differential privacy,”
in CCS, 2016.

[99] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “ELSA: Secure
aggregation for federated learning with malicious actors,” in IEEE
S&P, 2023.

[100] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds: Flexible
anonymous credentials from zksnarks and existing identity infras-
tructure,” Cryptology ePrint Archive, Paper 2022/878.

[101] T. Steinke, “Multi-central differential privacy,” CoRR, vol.
abs/2009.05401, 2020.

[102] K. Talwar, “Differential secrecy for distributed data and applica-
tions to robust differentially secure vector summation,” CoRR, vol.
abs/2202.10618, 2022.

[103] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials
over any field,” in CCS, 2021.

[104] K. Yang and X. Wang, “Non-interactive zero-knowledge proofs to
multiple verifiers,” in ASIACRYPT (3), 2022.

[105] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI, 2017.

[106] M. Zhou, T. Wang, T. H. Chan, G. Fanti, and E. Shi, “Locally
differentially private sparse vector aggregation,” in IEEE S&P, 2022.

[107] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated
heavy hitters discovery with differential privacy,” in AISTATS, 2020.

16

https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://mpc.cs.berkeley.edu/blog/deployment-dilemma
https://mpc.cs.berkeley.edu/blog/deployment-dilemma
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

Appendix A.
Supplemental material for Section 3

A.1. Proof of Theorem 3.1

Denote the non-silent proof system by ⇧NS and the silent
proof system by ⇧. Completeness of ⇧ follows from the
completeness of ⇧NS.

Zero-knowledge. Denote the simulator for ⇧NS by SNS.
Construct a simulator S for ⇧ as follows:
• On input {G8}82�, invoke SNS ({G8}82�) and receive
{view⇤

8
}82�.

• For 8 2 �, parse view
⇤
8
! (G8 , c8 , cpubNS , ANS,

vtag
⇤
NS,1, . . . , vtag

⇤
NS,E).

• Randomly sample {28}82 [E]\� 2 {0, 1}d and for 8 2 �,
set 28 � (8, G8 , c8 , cpubNS)

• Set cpub (cpubNS , 21, . . . , 2E , vtag
⇤
NS,1, . . . , vtag

⇤
NS,E).

• Program the random oracle as: ANS � (21, . . . , 2E).
• Sample a random A.
• For 8 2 [E], use the randomness A to form vtag

8
2 F

such that vtag1 + · · · + vtag
E
= 0 if and only if c

pub in
each view view8 is identical with high probability over
the choice of A.

• For 8 2 �, set view8 (G8 , c8 , cpub, A, vtag1, . . . , vtagE).
• Output {view8}82�.

For statistical distance, observe that S perfectly simulates 1)
the view of {28}82 [E]\� by randomly sampling them because
� is a random oracle, and 2) the view of vtag1, . . . , vtagE
because the local checks done by the verifiers in Eval(·)
pass (from completeness), and therefore contribute zero to
vtag1, . . . , vtagE which are just a function of c

pub and A.

Soundness. We split the proof of soundness into two parts:
• Claim 1: Assuming that multiparty Fiat-Shamir is sound,

the rest of the protocol is sound. We consider an in-
termediate proof system ⇧Interactive in the Fcoin-hybrid
model. Fcoin returns common fresh randomness to the set
of parties that invoked it. We claim that the soundness
error of ⇧Interactive is at most 1

|F | worse than ⇧NS.
• Claim 2: Loss in soundness error from multiparty Fiat-

Shamir [25], [62] over ⇧Interactive is polynomial in _.

Claim 1. The construction of ⇧Interactive is presented in Fig-
ure 12. If any of the following happens, by construction we
have that vtag1 + · · · + vtag

E
< 0 except with probability

1
|F | : 1) the prover equivocates about {vtag⇤NS,8}82 [E] , or
2) any vtag

⇤
NS,8 is incorrectly computed by prover, or 3)

VerNS (vtag⇤NS,1, . . . , vtag⇤NS,E) < 0. Therefore, the sound-
ness error of ⇧Interactive is nInt 6 n + 1

|F | .

Claim 2. Consider the adversarial strategies defined in Def-
inition A.1 for generating proofs for silent proof system ⇧.
We now analyze the loss in advantage for the adversary A if
restricted to AFS1 and AFS2. If the adversary equivocates or
28 < �8 (G8 , c8 , cpubNS), then verifiers accept with probability

Interactive proof system ⇧interactive. ⇧interactive from
non-silent proof system ⇧NS = (GenNS,EvalNS,VerNS).
• Prover does (c1, . . . , cE , c

pub
NS) GenNS (G1, . . . , GE)

and sends (c8 , cpubNS) to 8-th verifier.
• All parties invoke Fcoin and receive ANS.
• Prover does vtag

⇤
NS,8 EvalNS (G8 , c8 , cpubNS ; ANS),88.

• Prover sends vtag
⇤
NS,1, . . . , vtag

⇤
NS,E to all verifiers.

• The verifiers invoke Fcoin and receive A, and then for
8 2 [E], 8-th verifier does:
– Derives tag vtagNS,8 EvalNS (G8 , c8 , cpubNS ; ANS).
– Outputs vtag

8
s.t. vtag1 + · · · + vtagE = 0 iff these

checks pass with prob. > 1 � 1
|F | over A’s choice:

⇤ All verifiers received the same {vtag⇤NS,8}82 [E] .
⇤ vtag

⇤
NS,8 = vtagNS,8 .

⇤ VerNS (vtag⇤NS,1, . . . , vtag⇤NS,E) = 0.

Figure 12: Interactive proof system ⇧Interactive

at most 1
|F | . If the adversary correctly guesses 28 without

making the call �8 (G8 , c8 , cpubNS), then it can simply make
this call at the very end to satisfy the restriction without
affecting its advantage. Therefore, the adversary’s advantage
is reduced at most by 1

|F | . Now, for AFS2, no additional
advantage is lost because A can always make the outer call
� (21, . . . , 2E) at the end if not made before and it can always
pad to) queries with dummies.

We now have two mutually exclusive adversarial strate-
gies AFSRev and AFSFwd whose union represents all of AFS2.
AFSRev produces an output with probability at most E)

2

|F |
because the expected number of collisions between the 8-
th input of any of the) outer � calls and the output of any
of the) inner �8 calls which are made afterward is at most
)

2

|F | , and the probability of this happening for any 8 2 [E] is
at most E)

2

|F | . We analyze AFSFwd in Lemma A.2.

Definition A.1. Consider an adversarial prover A for the
silently verifiable proof system from Figure 4. The adversary
is allowed random oracle queries of two types. Denoted by
�8 (0, 1, 2), the “inner” queries are of the form � (8, 0, 1, 2)
for 8 2 [E], and the rest of the queries to � are the “outer”
queries. We define four adversarial strategies:
• AFS1: If the adversary doesn’t equivocate and out-

puts (G1, . . . , GE), (c1, . . . , cE , c
pub) where c

pub =
(cpubNS , 21, . . . , 2E , vtagNS,1, . . . , vtagNS,E), then for all 8 2
[E], it receives 28 as the output of �8 (G8 , c8 , cpubNS).

• AFS2: Same as AFS1 but also makes the outer call
� (21, . . . , 2E). Moreover, all calls to random oracles are
distinct, and exactly) calls are made to each �8 and �.

• AFSRev: AFS2 when there exists 8 2 [E] such that the invo-
cation 28 �8 (G8 , c8 , cpubNS) is made after � (21, . . . , 2E).

17

Multiparty Fiat-Shamir reduction. Prover %
⇤
Int for

⇧Interactive from black-box access to a prover A for the
silent proof system ⇧. A makes) queries each to the E

inner random oracles �1, . . . ,�E and the outer random
oracle �. �8 denotes queries of form � (8, ·, ·, ·).
• Pick a random integer 8⇤ 2 [)].
• For 8 2 [E], initialize an empty list !8 .
• Run A and respond to it as follows except the 8

⇤-th
outer query made by A:
– For inner query �8 (H, Hc , Hpub): pick a random I,

add “(H, Hc , Hpub) : I” to !8 and return I.
– For outer query � (I1, . . . , IE): return a random

value.
• For the 8

⇤-th outer query � (I⇤1, . . . , I⇤E):
– For each I

⇤
8
, scan the list !8 and from all the

entries which map to I
⇤
8
, randomly pick an entry

(H⇤
8
, H

c

8

⇤
, H

pub⇤) such that Hpub⇤ is common in all
the E entries picked. If no entry exists, abort.

– For 8 2 [E], send (H⇤
8
, H

c

8

⇤
, H

pub⇤) to 8-th verifier.
– Receive A from the verifiers and return A to A.

• Receive (G1, . . . , GE , c1, . . . , cE , c
pub) from A, where

c
pub ! (cpubNS , 21, . . . , 2E , vtagNS,1, . . . , vtagNS,E).

• Check the following and abort if any fails: c
pub
NS =

H
pub⇤, G8 = H

⇤
8
, c8 = H

c

8

⇤ and 28 = I
⇤
8

for 8 2 [E].
• Send (vtagNS,1, . . . , vtagNS,E) to all the verifiers.

Figure 13: Malicious prover for ⇧Interactive

• AFSFwd: AFS2 where for all 8 2 [E], invocations 28
�8 (G8 , c8 , cpubNS) are made before � (21, . . . , 2E).

Lemma A.2. In a silently verifiable proof system ⇧, all
adversaries with strategy AFSFwd (Definition A.1) who gen-
erate the output (G1, . . . , GE , c1, . . . , cE , c

pub) with) random
oracle calls, where G =

Õ
82 [E] G8 8 L, the E honest verifiers

accept with probability at most nInt)

(1�)
|F|)E

, where nInt is the
probability that the honest verifiers in ⇧Interactive (Figure 12)
accept any interaction for G 8 L.

Proof. We construct a malicious prover %
⇤
Int in Figure 13

such that for any adversary A with strategy AFSFwd making
the verifiers accept an incorrect statement in ⇧ with proba-
bility ?, %⇤Int makes the verifiers in ⇧Interactive accept on the
same statement with probability ?

)
·
�
1 �)

|F |
�
E .

An accepting proof generated via AFSFwd leads to an
accepting interaction for %

⇤
Int as long as the guess 8

⇤ is
correct and the correct entry (H⇤

8
, H

c

8

⇤
, H

pub⇤) is picked from
the list !8 for all 8 2 [E].

We first look at the guess 8
⇤. By definition, AFSFwd

makes) calls to the outer random oracle � and one of these
calls corresponds to the output it generates. The probability
that the guess 8

⇤ is correct is 1
)

. Now, we look at the entry

picked by %
⇤
Int from the list !8 when responding to the 8

⇤-th
outer query. From the restriction on AFSFwd, we know that
the correct entry exists in the list !8 if guess 8

⇤ is correct,
but there can be other entries that map to the same I

⇤
8
. The

probability of collisions from other) � 1 inner �8 queries
is 6)

|F | . The probability that all the guesses are correct is
> 1

)
·
�
1 �)

|F |
�
E .

Wrapping it up, %⇤Int generates an accepting interaction
with probability > ? · 1

)
·
�
1�)

|F |
�
E . Since nInt >

?

)
·
�
1�)

|F |
�
E ,

we have that ? 6 nInt ·)
(1�)

|F|)E
. ⇤

Appendix B.
Supplemental material for Section 4

Correctness against malicious clients. We prove that
our private-aggregation scheme (§4.2) satisfies correctness
against malicious clients. As long as the servers remove all
invalid submissions before aggregation, from the correctness
of the additive encoding, the output will be 5 (G1, . . . , G=),
where G1, . . . , G= are valid submissions. Consider a submis-
sion (41, . . . , 4E), (c1, . . . , cE , c

pub). Let 4 =
Õ

82 [E] 48 and
for 8 2 [E], vtag

8
is the verification tag generated by 8-

th server from 48 , c8 , c
pub. For an invalid encoding, i.e.,

+ (4) < 1, the probability that
Õ

82 [E] vtag8 = 0 is 6 n

where n is the soundness error of our silently verifiable
proof system. When

Õ
82 [E] vtag8 < 0, the probability that

batch verification passes (vtag1, . . . , vtagE) is 6 1
|F | (from

random linear combination). Since servers test at most log =

3

batches per client where 3 is an upper bound on the number
of invalid submissions, the probability that the invalid sub-
mission isn’t caught in any batch is 6 1

|F | · log =

3
. Therefore,

the probability that all 3 invalid submissions are caught by
the servers is > 1 � 3 · n � 3

|F | · log =

3
.

Appendix C.
Supplemental material for Section 5

Proof of Theorem 5.2. For the challenger to output "1",
all the encodings H1, . . . , H< should be valid. In a valid
encoding, the magnitude at each coordinate is at most
1, therefore, kH1 + · · · + H<k1 6 <. Consider a heavy-
hitting string G which appears)G >) times in G1, . . . , G=
and let 1 = �bucket(G). Parse the sum of all encodings
(! ((21 | |B1), . . . , (2⌫ | |B⌫)). We focus on the 1-th bucket:
21 | |B1 2 F ⇥ F!+1. Since all the encodings are valid, the
counter field 21 is a sum of values in {0, 1} with at least)G
of them being 1 (from all the occurrences of G). Therefore,
21 >) . This satisfies the condition that rounding will
be performed on the 1-th bucket during output decoding
(Figure 5). What’s left to argue is when rounding and
subsequent complementing recovers G.

The output of the rounding operation is invariant to the
magnitude of each coordinate in a bucket; it only reads the
sign. As long as the sign of each coordinate in B1 matches
that of an encoding of G, the output will be correct. Let IG be

18

Additive encoding for bucketed string counting.
Additive encoding for the aggregation function
5 : X = ! Y , where:
• the input space is X = ([⌫] ⇥ {0, 1}!), pairs of a

bucket ID and an !-bit string, and
• the output space is Y = F⌫⇥ (F!)⌫, for each bucket,

the number of strings in the bucket and the sum (over
F!) of the strings in that bucket.

The scheme takes as parameters: a finite field F, a
number of buckets ⌫, the bitlength ! of the input
strings. The encoding length is ✓ = (! + 1) · ⌫.

Encoding ⇢ (1 2 [⌫],f 2 {0, 1}!):
• Represent f as a vector f̂ 2 {�1, 1}! over F.
• For 8 = 1, . . . , ⌫:

– If 8 = 1, set B8 (1kf̂) 2 F!+1.
– Otherwise, set B8 0 2 F!+1.

• Output (B1, . . . , B⌫) 2 (F!+1)⌫.

Verification + (H 2 F✓):
• Parse ((21kB1), . . . , (2⌫kB⌫)) H 2 (F!+1)⌫.
• Check that there is a unique 8 2 [⌫] such that (28 | |B8)

is a non-zero vector.
• Check that 28 = 1 2 F and B8 2 {�1, 1}! ✓ F! .

Decoding ⇡ (H 2 F✓):
• Parse ((21kB1), . . . , (2⌫kB⌫)) H 2 (F!+1)⌫.
• Output (21, . . . , 2⌫), (B1, . . . , B⌫) 2 F⌫ ⇥ (F!)⌫.

Figure 14: Additive encoding for bucketed string counting.

the encoding of G generated by the client input preparation
step (Figure 5). We split (as follows:

(= (H1 + · · · + H<) +
�
(IG + · · · + IG) +

’
82/Heavy

I8 +
’

82/Tail

I8

�

= (H + ((G + (Heavy + (Tail)
where /Heavy, /Tail denote subsets of [=] such that /Heavy
contains indices 8 where I8 is an encoding of a heavy-hitting
string other than G, while /Tail contains all the remaining
(non-heavy) indices. In a similar way, the 1-th bucket of (

can be written as:

B1 = ,H + (,G +,Heavy +,Tail)
We now look at the event k,H + ,Heavy + ,Tailk1 <) .
This event leads to the correct recovery of G because each
coordinate of |,G | is >) , and therefore, their signs are
preserved in B1.

Recall that we proved above that k,H k1 6 <. When
k,Heavyk1 + k,Tailk1 <) � < holds, it implies k,H +
,Heavy +,Tailk1 <) .

Bounding k,Heavyk1. Consider a heavy-hitting string G
0 < G.

Since G1, . . . , G= (and therefore, G, G0) are picked before the
hash functions are sampled, we have that Pr[�bucket(G0) =
1] 6 1

⌫
. In the flip case, when �bucket(G0) < 1, the 1-

th bucket in the encoding of G
0 will be 0. Using triangle

inequality and union bound over all : � 1 heavy-hitting
strings other than G, we get:

Pr
⇥
k,Heavyk1 > 0

⇤
6

:

⌫

Bounding k,Tailk1. Recall that ,Tail represents the contents
of the 1-th bucket in

Õ
82/Tail I8 . For 8 2 /Tail, denote the

contents of the 1-th bucket of encoding I8 by B
Tail
8,1
2 F!+1.

Using Markov’s inequality,

Pr
⇥
k,Tailk1 >) � <

⇤
6 Pr

" ’
82/Tail

kBTail
8,1
k1 >) � <

#

6
E
hÕ

82/Tail kBTail
8,1
k1

i
) � <

We know that BTail
8,1

is either 0 or BTail
8,1
2 {�1, 1}!+1. The latter

happens with 1
⌫

probability because hash functions are ran-
domly sampled after G1, . . . , G= are committed. Therefore,

E

" ’
82/Tail

kBTail
8,1
k1

#
=

’
82/Tail

E
h
kBTail

8,1
k1

i
=

’
82/Tail

1
⌫

=
⌘̄

⌫

Winding it up.

Pr
⇥
G 8 �

⇤
6 Pr

⇥
k,Heavyk1 + k,Tailk1 >) � <

⇤
6 Pr

⇥
k,Heavyk1 > 0

⇤
+ Pr

⇥
k,Tailk1 >) � <

⇤
6

:

⌫

+ ⌘̄

⌫ · () � <)
Taking a union bound over all : heavy-hitting strings, we
get HHAdv!,⌫,=,<,) [A] 6 :

2

⌫
+ : ·⌘̄

⌫· ()�<) ⇤

Corollary C.1 (Heavy hitters: success amplification). For a
finite field F, a string length !, bucket count ⌫, a number of
honest clients =, a number of malicious clients <, a heavy
hitter threshold) , a number of sessions ' and adversary A,
let HHAdvMulti!,⌫,=,<,) ,' [A] denote the probability that
the experiment G1 of figure 15 outputs “1”. Given same
conditions as theorem 5.2,

HHAdvMulti!,⌫,=,<,) ,' [A] 6 : ·
✓
:

⌫

+ ⌘̄

⌫ · () � <)

◆
'

Proof. Follows from the proof of theorem 5.2. ⇤

Corollary C.2 (Heavy hitters: bounded adversarial error).
For a finite field F, a string length !, a bucket count
⌫, a number of honest clients =, a number of malicious
clients <, a heavy hitter threshold) , a bound � on the
error and adversary A, let HHAdvDP!,⌫,=,<,) ,� [A] de-
note the probability that the experiment G2 of figure 15
outputs “1”. Given same conditions as theorem 5.2 with
char(F) > 2(= +< +�) and :

0 distinct heavy-hitting strings

19

Variants of heavy-hitters game. The game is param-
eterized by the same parameters as figure 6.

G1: Heavy-hitters game with parallel sessions. Takes
additional parameter ' denoting the number of parallel
sessions.
• Same as step 1 in figure 6 (shared across all ses-

sions).
• The challenger initializes the set �0 {}.
• For A 2 [']:

– Same steps as figure 6 excluding steps 1, 7.
– The challenger updates �

0 �
0 [� where �

is the result of output-decoding for the current
session.

• If there is a string f 2 {0, 1}! that:
– appears more than) times in the list (G1, . . . , G=)

of the honest clients’ inputs, and
– does not appear in the set of heavy hitters �

0,
then the challenger outputs “1.”

G2: Heavy-hitters game with error. Takes additional
parameter � denoting the bound on error.
• First two steps same as steps 1 and 2 in figure 6.
• The adversary outputs < encodings along with an

error vector X, each in F✓ :

(H1, . . . , H<, X) A�sign ,�bucket (st).
If, for any 8 2 [<], the encoding E8 is invalid—i.e.,
+ (H8) = 0, or if kXk1 > �, the experiment output is
“0.”

• Same as step 4 in figure 6.
• The challenger computes the sum (2 F✓ of all

encodings and X:

((H1 + · · · + H<) + (I1 + · · · + I=) + X 2 F✓

.

• Same as step 6 in figure 6.
• If there is a string f 2 {0, 1}! that:

– appears more than) + � times in the list
(G1, . . . , G=) of the honest clients’ inputs, and

– does not appear in the set of heavy hitters �,
then the challenger outputs “1.”

Figure 15: Security games for our heavy-hitters protocol.

among honest parties’ input each of which occurs >) + �
times,

HHAdvDP!,⌫,=,<,) ,� [A] 6 :
0 · :
⌫

+ :
0 · ⌘̄

⌫ · () � <)

Proof. Follows from the proof of theorem 5.2. ⇤

Lemma C.3 (Heavy hitters: correctness against malicious
clients with ✓2 bound). Given the same parameters and
conditions as Corollary C.1. Let ⌘̄2 denote the ✓2 norm of
the histogram of strings excluding the : heavy hitters. Then
we have

HHAdvMulti!,⌫,=,<,) ,' [A] 6

(! + 1) ·
✓
:

2

⌫

+
: · ⌘̄2

2

⌫ · () � <)2

◆
'

Proof. This follows similarly to the analysis of ✓2 error in
count sketch [34], [87]. ⇤

Appendix D.
Smaller field for silently verifiable proofs

From Theorem 3.1, we have that silently verifiable proofs
are sound against adversaries running in at most) time only
if |F| >)

2. In this section, we discuss an optimization which
allows fields with |F| >) , but requires concurrently proving
the statement twice. The high-level idea is to ask the prover
to provide two sets of proofs on the same statement. The
randomness for each proof is different, but comes from the
same random oracle call. In particular, each random oracle
call outputs double the bits, one half for each proof.

We now describe the changes to the proof generation
step in Figure 4; the proof evaluation step requires similar
changes.
• The first step remains the same. Generate the non-silent

proof:

(c1, . . . , cE , c
pub
NS) GenNS (G1, . . . , GE)

• Use multiparty Fiat-Shamir [25] to derive the randomness
ANS, A

0
NS that the verifiers will use to verify the proof:

28 , 2
0
8
 � (8, G8 , c8 , cpubNS), for 8 2 [E]

ANS, A
0
NS � (21, 2

0
1, . . . , 2E , 2

0
E
).

• Derive the verification tags that the verifiers would
broadcast to verify the non-silent proof with random-
ness ANS, A

0
NS. That is, for 8 2 [E], set

vtagNS,8 EvalNS (G8 , c8 , cpubNS ; ANS) 2 F@

.

vtag
0
NS,8 EvalNS (G8 , c8 , cpubNS ; A 0NS) 2 F@

.

Then compute:

c
pub (cpubNS , 21, 2

0
1, . . . , 2E , 2

0
E
,

vtagNS,1, vtag
0
NS,1, . . . , vtagNS,E , vtag

0
NS,E).

20

• Output (c1, . . . , cE , c
pub).

If the non-silent proof generation uses Fiat-Shamir, then
recursively apply the changes to the non-silent proof as well.

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper presents Whisper, a design for privacy-
preserving collection aggregate statistics. As part of the
design, they propose "silently verifiable proofs" based on
MPC-in-the-head, that allows a set of anytrust servers to ver-
ify large batch of proofs on secret shared data by exchanging
a single 128-bit string. Their system significantly reduces
the server-to-server communication overhead by reasonably
increasing the communication overhead for the client.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established Field

E.3. Reasons for Acceptance

1) Addresses an important problem of calculating statistics
over private client data securely with different applica-
tions.

2) Uses a new construct called silently verifiable proofs that
builds upon a new ZK proof system that allows batch
checking and zero-knowledge against malicious verifiers.

3) The authors implement Whisper and provide extensive
benchmarks and open source their code.

E.4. Noteworthy Concerns

The prover time of the Whisper system is slower than
previous systems which might put more computation over-
head on the clients.

Appendix F.
Response to the Meta-Review

In our experiments, the Whisper prover time is indeed
2–3⇥ that of the baseline, as we discuss in §6. At the same
time, the absolute cost is at most 64 milliseconds for the
applications we discuss, which may not be a concern in
practice. Reducing the prover time is a worthwhile direction
for future work.

21

	Introduction
	System Overview
	System Model
	Architecture
	Supported statistics
	Security properties

	Silently Verifiable Proofs
	Definition
	Features of silently verifiable proofs
	General construction: silently verifiable proofs
	Extensions: Sublinear proof size

	Collecting Aggregate Statistics
	Preliminaries: Additive encodings
	Private-aggregation scheme
	Finding failing proofs

	Sketching for heavy hitters
	Building block: Bucketed string counting
	Our heavy-hitters protocol
	Security analysis

	Evaluation
	General statistics
	Heavy hitters

	Extensions
	Related Work
	References
	Appendix A: Supplemental material for Section 3
	Proof of thm:silentsec

	Appendix B: Supplemental material for Section 4
	Appendix C: Supplemental material for Section 5
	Appendix D: Smaller field for silently verifiable proofs
	Appendix E: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix F: Response to the Meta-Review

