
Eye-Tracking in Physical Human–Robot Interaction: Mental
Workload and Performance Prediction

Satyajit Upasani, Virginia Tech, Blacksburg, VA, USA, Divya Srinivasan, Clemson
University, Clemson, SC, USA,Qi Zhu, National Institute of Standards and Technology,
Boulder, CO, USA, Jing Du, University of Florida, Gainesville, FL, USA, and
Alexander Leonessa, Virginia Tech, Blacksburg, VA, USA

Background: In Physical Human–Robot Interaction (pHRI),
the need to learn the robot’s motor-control dynamics is associated
with increased cognitive load. Eye-tracking metrics can help un-
derstand the dynamics of fluctuating mental workload over the
course of learning.

Objective: The aim of this study was to test eye-tracking
measures’ sensitivity and reliability to variations in task diffi-
culty, as well as their performance-prediction capability, in
physical human–robot collaboration tasks involving an industrial
robot for object comanipulation.

Methods: Participants (9M, 9F) learned to coperform a virtual
pick-and-place task with a bimanual robot over multiple trials. Joint
stiffness of the robotwasmanipulated to increasemotor-coordination
demands. The psychometric properties of eye-tracking measures and
their ability to predict performance was investigated.

Results: StationaryGaze Entropy and pupil diameterwere the
most reliable and sensitive measures of workload associated with
changes in task difficulty and learning. Increased task difficulty was
more likely to result in a robot-monitoring strategy. Eye-tracking
measures were able to predict the occurrence of success or failure
in each trial with 70% sensitivity and 71% accuracy.

Conclusion: The sensitivity and reliability of eye-tracking
measures was acceptable, although values were lower than
those observed in cognitive domains. Measures of gaze behaviors
indicative of visualmonitoring strategies weremost sensitive to task
difficulty manipulations, and should be explored further for the
pHRI domain where motor-control and internal-model formation
will likely be strong contributors to workload.

Application: Future collaborative robots can adapt to
human cognitive state and skill-level measured using eye-
tracking measures of workload and visual attention.

Keywords: strategies, reliability, virtual environments, motor
learning, psychometrics

INTRODUCTION
Collaborative robots (cobots) are becoming

more usable, versatile, and increasingly safe to
operate in close proximity with humans (Haddadin
& Croft, 2016). In Physical Human–Robot In-
teraction (pHRI), although cobots have achieved
higher standards of safety and compliance in re-
cent years, they can still impose a significant
workload on the user’s attentional and cognitive-
motor resources (Marchand et al., 2021; Stirling
et al., 2020), and may require time and effort to
learn (Aronson et al., 2018; Cornwall, 2015).
Hence, it is important to understand the cognitive
challenges involved in controlling these complex
devices and be able to predict the consequences of
such cognitive challenges on performance.

Past research has shown that performing joint
actions with a robot, for example, using wearable
robots such as myoelectric prostheses and pow-
ered exoskeletons or using joystick-operated ro-
botic arms, tends to pose cognitive challenges
because the user cannot easily predict the device’s
control dynamics (Aronson et al., 2018; Chadwell
et al., 2016; Cornwall, 2015; Kao, 2009). In other
words, users may find it difficult to develop an
internal mental model of the cobot and hence not be
able to anticipate the consequences of a joint action
with the robot, thereby exhibiting an increased
reliance on vision to monitor robot behavior. Hu-
man motor control literature has theorized that
learning to use novel or complex tools such as
cobots requires the formation of new internal
models for tool behaviors, as well as updating of
the internal mental models of the limb controlling
the tool (Wolpert et al., 2011). Additionally, using
cobots for comanipulation tasks (i.e., tasks where
the human and robot cooperate to manipulate
shared objects)may also be challenging because of
the need to monitor the manipulated object as well
as the surrounding environment for hazards or
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potential collisions (Steinfeld et al., 2006). Lastly,
comanipulation tasks can be intrinsically difficult,
due to the need to remember multiple task steps
with conditional relationships, and needing to
perform complex spatial transformations mentally
(Van Acker et al., 2020) or deal with time pres-
sures (Bommer & Fendley, 2018).

Thus, it is expected that there is a high mental
workload present during initial stages of learning
to perform joint actions with a cobot, as the user
attempts to build an internal model of the device
and movement (Sailer, 2005). Over the course of
practice, mental workload is expected to attenuate
due to refinement of neural processes and in-
creasing automaticity in the task (Sailer, 2005; O.
White & French, 2017). Understanding the dy-
namics of mental workload over the course of
motor learning and continuous measurement of
these constructs can help in designing learning/
training protocols and help minimize workload
for users of cobots. Eye-tracking is a promising
technique for measuring mental workload and
predicting performance, since it can provide both
physiological measures, (e.g., pupil dilation) that
correlate with the involuntary neural response to
mental workload (Just et al., 2003), as well as eye-
movement measures (e.g., fixation rate), which
reflect voluntary gaze behavior and strategies for
maximizing performance (Land, 2009; Srinivasan
&Martin, 2010). Eye-tracking measures have also
been shown to change over the course of learning
and to be able to classify distinct stages of motor-
skill acquisition (Sailer, 2005). In surgical tasks,
the ability to focus on the most informative ana-
tomical regions is an important determinant of
expertise (Law et al., 2004; Zheng et al., 2021),
which suggests that gaze patterns may correlate
with, and predict task performance. The versatility
of eye-tracking, coupled with its increasing wear-
ability and ubiquity, make eye-tracking a viable
technology to implement in dynamic, real-world
environments (Cognolato et al., 2018).

Previous research on the psychometric prop-
erties of eye-trackingmeasures has largely focused
on cognitive tasks involving change-detection or
working memory (Matthews et al., 2015; Zargari
Marandi et al., 2018). In the pHRI domain in-
volving tasks requiring motor skills, although
some studies have been conducted on changes in
specific eye-tracking measures, the psychometric

properties of eye tracking metrics are yet to be
established as there have been no systematic in-
vestigations of the sensitivity and reliability of eye
tracking in predicting changes in mental workload
and/or performance. Studies in the domains of
assistive and surgical robotics have found that
higher mental workload increased pupil diameter
(Aronson et al., 2018; M. M. White et al., 2017)
and stationary gaze entropy (SGE) (Wu et al.,
2019), and reduced the fixation rate (Novak et al.,
2015). Additionally, SGE and the gaze transitions
between areas of interest have been found to re-
duce over the course of learning (Sobuh et al., 2014;
Wu et al., 2021). Recent work has also begun to
explore the use of eye-tracking measures to predict
performance in the pHRI domain (Aronson et al.,
2018; Wu et al., 2021). Using machine-learning
techniques, Aronson and colleagues were able to
associate distinct scanning behaviors with different
control modes of an assistive robot (Aronson et al.,
2018). Other work by the same authors discussed
the potential ability of gaze behavior to predict
unexpected performance conditions or errors, based
on which a cobot could take corrective actions
(Aronson & Admoni, 2018). In robotic surgery,
which requires efficient visual scanning to identify
key anatomical features, stationary gaze entropy
was found to predict task performance improve-
ments (Wu et al., 2021). This finding supports
earlier research that found that gaze behavior could
discriminate between expert and novice surgical
performance (Law et al., 2004; Wilson et al., 2010;
Zheng et al., 2021).

A better and more systematic understanding of
the reliability of these different eye tracking
metrics, and their sensitivity to variations in task
difficulty and learning, can help establish the
potential utility of eye-tracking metrics as a con-
tinuous measure of human cognitive state in
human–cobot interaction, thereby guiding online/
adaptive control of robotic systems to be re-
sponsive to human state. A combination of pu-
pillometric and gaze-behavior measures may also
be able to effectively predict task performance in
pHRI. If imminent failure can be predicted by eye-
tracking metrics, the adaptability of robotic sys-
tems can be improved by enabling the design of
anticipatory safety mechanisms.

Thus, this study aimed to quantify the sensi-
tivity and reliability of eye-tracking measures of
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workload to variations in task difficulty and
learning in a pHRI task. The ability of gaze-
behavior measures to distinguish different visual
strategies across task difficulty and learning, and
predict task performance, were also studied. We
designed a task that required participants to
control a bimanual cobot to pick and place virtual
objects at different target locations, while avoiding
collisions with virtual objects. The task was timed,
and participants performed it under two different
levels of task difficulty. Several eye-tracking met-
rics such as pupil dilation, fixation count, fixations
in different areas of interest (AOI), and gaze en-
tropies were computed. Based on the literature
reviewed, we expected that these metrics would
provide different types of information related to
mental workload. Specifically, pupil dilation and
fixation count indicate overall workload and visual
monitoring demand respectively. Stationary gaze
entropy (SGE), accounting for the fixation distri-
bution across different regions of the environment,
indicates the need for visual monitoring of the task
environment (to detect/avoid collisions in our task).
Gaze transition entropy (GTE) can account for the
transitions between different areas of the environ-
ment, and hence indicate the potential emergence of
repetitive scanning patterns over the course of
learning. Fixations in the different AOI extracted
from eye tracking can be used to infer internal
model formation. Since fixations are typically di-
rected towards the targets in goal-directed move-
ments, increasedfixations on themanipulated cobot
(vs. targets) would indicate an increased reliance on
vision for controlling the cobot.

Considering these aspects of eye-tracking
measures, we proposed the following aims
and hypotheses. As our first aim, we quantified
the sensitivity of eye-tracking metrics in a hu-
man–robot comanipulation task, by studying
how human participants learned to use a cobot
under two different levels of task difficulty. For
the second aim, we estimated the reliability of
the different eye-tracking metrics, to provide
a more detailed characterization of their ef-
fectiveness as workload measures in pHRI. As
a third aim, we explored the changes in visual
strategies (in terms of the relative visual focus
on different AOI in the environment) over the
course of learning to use the robot. As the
fourth aim, we explored the extent to which

eye-tracking metrics during could predict pHRI
task performance on a trial-to-trial basis. While
Aim 4 was exploratory in nature, the hypoth-
eses for Aims 1–3 are described below.

Hypotheses

Sensitivity and Reliability of Eye-Tracking
Metrics (Aims 1 and 2). We expected SGE,
GTE, pupil dilation, and fixation count to be
higher in the more difficult task condition, and
that these metrics would decrease over time
(with learning) in both tasks, although the rate
of change would depend on task difficulty.
Based on the psychometric properties of eye-
tracking metrics reported in cognitive domain
(e.g., Matthews et al., 2015), we expected
pupil dilation, fixation count, and entropy
metrics to have good reliability in pHRI tasks.

Changes in Visual Strategy (Aim 3). Fixations
on the manipulated cobot were expected to be
higher in the high-difficulty task condition and
reduce over the course of learning in both
conditions.

MATERIALS AND METHODS

Experimental Setup

The inspiration for our task environment is
a potential industrial scenario in which a human
operator uses a physically coupled robot to lift
heavy objects (perhaps oddly shaped ones) and
place them in assigned target locations. The task
was simulated in virtual reality (VR), since VR
affords high freedom over experimental manip-
ulations and speed in the presentation of stimuli,
particularly in tasks involving physical-object
interaction. VR also enables flexible measure-
ment of motor performance and eye-movement
behavior, since the position and orientation of all
VR objects relative to the user is precisely known
(Clay et al., 2019). Lastly, VR headsets enable the
precise control of light incident on the eyes, thus
helping reduce the undesirable effects of envi-
ronmental illumination on pupil dilation. Partic-
ipants performed the task using the Rethink
Robotics Baxter Robot, which has two 7-DOF
arms that can be manipulated freely by grasping
their wrists. Custom handles were 3-D printed
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and attached to the robot wrists to enable a secure
and comfortable grasp. We visualized a virtual
model of Baxter inside a Unity VR environment
(Unity version 2020.1.9f1) by sending Baxter’s
real-time joint positions to Unity at 140 Hz using
the ROS# package (Zhou et al., 2020, schematic
in Figure 1(a)). The HTC Vive Pro Eye VR
headset was used for rendering the virtual task and

environment in this study. Participants stood close
to, and facing, the Baxter robot while wearing the
VR headset, to coperform virtual object manipu-
lations without needing any large headmovements
to scan their environment (Figure 1(b)). Partic-
ipants experienced a first-person view of the task
(VR visualization shown in Figure 1(c)). They
manipulated a virtual plate with a ball on it, which

Figure 1. (a) Schematic of custom-built communication module between Baxter and VR; (b) Participant wearing
the VR headset and operating the robot; (c) Participant’s view in VR, with robot, plate, and target locations; (d)
Experimental protocol showing familiarization followed by 4 blocks of 12 experimental trials. Baseline PD was
obtained before, and NASA-TLX after, each trial.
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simulated physical properties of an actual ball such
as rolling around inside the plate and falling out if
tilted. When cued by the experimenter, partic-
ipants had to pick and transfer the object (plate
with ball) on to a selected target location (any one
of three target towers chosen randomly), without
colliding with any virtual objects, within 10 sec-
onds. In the case of any errors (collision, ball drop,
or excessive time), the trial would be marked
incomplete, and the object would be reset at the
starting location.

Participants

A convenience sample of 24 participants was
recruited from the local community. Data from 6
participants were lost or excluded due to the
following factors—excessive head-jerking (n = 1),
eye-strain (n = 1), physical exhaustion (n = 1),
equipment failure (n = 2), and incomplete data
recording (n = 1), resulting in data from a total of
18 participants (9M, 9F) for further analysis. Their
mean agewas 26.8 years (SD 4 years). Participants
were included if they could read at arm’s length
without the use of corrective lenses, and were free
of any recent history of musculoskeletal disorders
(past 12 months). Individuals with a history of
migraine, vertigo, and epilepsy were excluded,
since these conditions can increase the suscepti-
bility to VR sickness. Participants signed a written
informed consent, and the research was approved
by the Virginia Tech Institutional Review Board
(#21-203).

Experiment Design and Protocol

The two independent variables in the experi-
ment were task difficulty and trial number. Task
difficulty was manipulated by changing the de-
gree of “match” between the joint impedances of
the two arms of the robot, with two levels, low
difficulty (LD; matched impedances) and high
difficulty (HD; mismatched impedances). The
stiffness and damping parameters of the Baxter
robot were used to vary joint impedances. The
mismatched HD condition was created by stiff-
ening some degrees of freedom on one Baxter
arm, thereby limiting the arm’s range of mo-
tion (ROM). This made the control of the robot
less intuitive and increased motor coordination

demands needed to bimanually balance the
plate and ball. In a first familiarization session
(Figure 1(d)), participants learnt to control the
Baxter robot, put on the VR headset and
practice the individual components of the main
task. Familiarization was followed by the ex-
perimental session that included four blocks of
trials with three trials of 5 min each. The first and
second blocks were always performed in the
order of LD followed by HD, to avoid transfer of
learning effects. The order of difficulty (LD vs. HD)
was randomized for the third and the fourth blocks
(counterbalanced across participants).

Data Collection and Processing

A custom Unity script recorded pupil size and
3-D coordinates of the gaze point at 90 Hz from
the eye-tracker embedded within the VR headset.
When the participant looked at any VR object
(also referred to as an area of interest or AOI), the
gaze point intersected with the surface of the
object, thus registering as a “hit” on the AOI. Each
eye-tracking sample was associated with an AOI-
hit. The script also recorded the 3-D coordinates of
the virtual plate, ball, and the virtual Baxter’s end-
effectors, as well as the instantaneous timer value
corresponding to transfer completion. The pro-
portion of successful transfers in each trial was
used as a measure of task performance. Task
performance, fixation count, median pupil dilation
(PD), stationary gaze entropy (SGE), and gaze
transition entropy (GTE) were computed for each
30 s interval of each trial, using procedures de-
scribed in Appendix A. The ratios of fixations on
specificAOIs, that is, the plate (which included the
ball), the robot-arms, and the top surfaces of the
targets, per each 30-second interval were com-
puted, to understand the relative attentional focus
directed towards these AOI.

Statistical Analysis

Effect of Task Difficulty and Learning on
Performance and Workload. A mixed factor
ANOVA was used to test for the effects of
difficulty Condition (LD, HD), Gender (male,
female), Trial (1–6 for each condition), and their
interactions on performance, eye-tracking met-
rics, and NASA-TLX mental workload ratings.
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Significant effects were followed by post hoc
pairwise comparisons using Tukey’s HSD test.
Sensitivity of eye-tracking metrics was estimated
using effect size (partial eta-squared ηp

2) for main
and interaction effects (Lakens, 2013). Eta-squared
values were interpreted as .01 = small, .06 = me-
dium, .14 = large (Cohen, 1988).

Reliability Analysis. The standard error of
measurement (SEM), as an index of absolute
reliability, and the intraclass correlation co-
efficient (ICC), as an index of relative re-
liability, were computed using procedures
described in Appendix B.

Effect of Task Difficulty and Learning on
AOI-Measures. To understand differences in
visual behavior and strategies, the same mixed
factor ANOVA described above used to test for
the effects of our independent variables on AOI-
measures.

Performance Prediction Using Eye-Tracking
Metrics. Two logistic regression models were
generated to predict the occurrence of a success (0)
or failure (1)—the first model included only the
independent variables of the experiment (condi-
tion, Trial, and their interaction) as predictor
variables (for comparison purposes), whereas the
second model only included eye-tracking metrics
(pupil dilation, fixation metrics, entropy, and
AOI-based metrics) as predictor variables. Con-
fusion matrices were generated for both models,
along with measures of classifier performance
(accuracy, precision, recall, specificity, negative
predictive value (NPV), and F1-score) (Webb,
2010).

For all analyses, the significance level was set
at α = .05, and all statistical analyses were
performed in JMP Pro (version 16.0.0, SAS
Institute Inc., USA).

RESULTS

Performance and Perceived Workload

The proportion of successes was significantly
lower in the HD condition (p < .0001, as seen in
Figure 2(a). Additionally, successes increased
significantly with time (trials) (p < .0001), in-
dicating that participants learnt to better perform
the task. There was no significant interaction
effect of condition and trial on performance,

suggesting that participants improved at a simi-
lar rate in both conditions. Females exhibited
significantly lower performance than males (p =
.0014). NASA-TLX mental workload ratings
were significantly higher in the HD condition
compared to the LD condition, (p < .0001), and
ratings for both conditions reduced over the
course of learning (p < .0001) accompanied by
a significant Condition × Trial interaction effect
(p < .0001). Ratings were not significantly
different across genders.

Sensitivity of Eye-Tracking Metrics to
Changes in Task Difficulty and Learning

All eye tracking metrics showed significant
differences across condition (Figure 2). PD, FC,
and SGE increased in the HD condition com-
pared to the LD condition, and GTEwas reduced
in the HD condition compared to the LD con-
dition. The effect of Trial was also significant on
PD, SGE, and FC. PD and SGE reduced, and FC
increased across successive trials, although the
change in PD was nonmonotonic (Figure 2(c)).
The Condition × Trial interaction effect was
significant on PD and FC. There was no effect of
Gender on eye-tracking workload metrics. The
p-values and effect sizes for these statistical
comparisons are shown in Table 1.

Reliability of Eye-Tracking Metrics

Table 1 also shows the participant variance
components and ICC values for each metric.
Based on the criteria stated in (Becser et al., 1998;
Ettinger et al., 2003; Zargari Marandi et al.,
2018), all eye-tracking metrics showed good
reliability (>.4) except GTE, which showed poor
reliability. Pupil dilation showed the highest re-
liability (.68), followed by SGE (.44), fixation
count (.41), and GTE (.17).

Effect of Task Difficulty and Learning
on AOI-measures

Considering AOI-based measures, plate-
fixations significantly reduced, and robot-
arm fixations significantly increased, in the
HD condition compared to the LD condition
(Figure 3(a) and (c)). Target-fixations were not
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significantly different across conditions. The main
effect of Trial on plate-fixations was significant,
corresponding to an increase over time, whereas
robot-arm fixations decreased over time. Signifi-
cant Condition × Trial interaction effects (effect
sizes and p-values in Table 2) and posthoc tests

indicated that these changes over time occurred
only in the HD condition. Target-fixations did not
change significantly over trials. Males exhibited
significantly more plate-fixations, compared to
females, who exhibited significantly more robot-
fixations.

Figure 2. (a) Performance (b) NASA-TLX ratings on mental demand, and (c-f) eye-tracking workload
metrics over the course of six learning trials for each task condition (low difficulty LD, high difficulty HD).
Individual data points represent least squaresmeans, and the error bars represent 1 standard error. Note: � denotes
a significant main effect of condition, and �� denotes a significant main effect of Trial. Significant main effects of
condition and trial were seen in performance (a) and NASA-TLX ratings (b). Among the eye-tracking metrics,
pupil dilation, SGE and GTE (c,e,f) showed significant main effects of Condition, while pupil dilation, fixation
count and SGE (c–e) showed significant main effects of Trial.
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TABLE 1: Sensitivity, Variance Components, and Reliability (ICC and SEM) of Eye Tracking Metrics

Workload Measures

Effect Size (ηp
2) (p-value)

Participant Variance
Components

Reliability
Metrics

Condition Trial
Condition x

Trial
Between (S2

Bs)
[LCI-UCI]

Within (S2
Ws)

[LCI-UCI] ICC SEM

Pupil dilation (mm) .019
(<.0001)

.085
(<.0001)

.019
(<.0001)

.054
[.013, .07]

.026
[.024, .03]

.68 .16

Fixation count .005
(.0009)

.016
(<.0001)

.006
(.02)

184
[58.8, 309.1]

263.7
[248.5, 280.3]

.41 16.24

SGE (normalized) .021
(<.0001)

.02
(<.0001)

.0027
(.33)

.001
[.0004, .002]

.0015
[.0014, .0015]

.44 .04

GTE (normalized) .002
(.03)

.0009
(.85)

.0008
(.86)

.0005
[.0002, .0009]

.0025
[.0023, .0026]

.17 .05

Sensitivity is quantified using partial eta-squared (ηp
2) as a measure of effect size. Bold fonts indicate significant effects

(p < .05). The 95% lower and 95% upper confidence limits are shown in square brackets.

Figure 3. Proportion of fixations on (a) the plate, (b) the robot-arms, and (c) the targets over
the course of six learning trials for each condition (LD, HD). Individual data points
represent least squares means, and the error bars represent 1 standard error. Note: � denotes
a significant main effect of Condition, and �� denotes a significant main effect of Trial.
Significant main effects of Condition and Trial were seen in plate-fixations and robot-arm
fixations.

EYE-TRACKING IN HUMAN-ROBOT INTERACTION 2111



Performance Prediction Using
Eye-Tracking Metrics

The confusion matrices for the two logistic
regression models are represented together in
Table 3, along with the model performance
metrics. Overall, the model with eye-tracking
measures as predictors (Model 2) was more
sensitive (recall of 70%), specific (71%), and
accurate (71%) than the model with performance
measures only (Model 1—recall 52%, speci-
ficity 67%, and accuracy 60%).

DISCUSSION

This study explored the potential of eye-tracking
as a continuous and nonintrusive technique for
measuring the mental workload associated with
learning to use a bimanual robot. While the psy-
chometric properties of eye-tracking metrics have
been explored in cognitive tasks (Matthews et al.,
2015), the sensitivity and reliability of eye-tracking
metrics have not been systematically investigated in
pHRI tasks. Further, no work in the human–robot
interaction domain has explored the concurrent
effects of task difficulty and time/learning on
mental workload, as done here. Our overall re-
sults indicated that performance and perceived
mental workload were affected by task difficulty
but improved over the course of multiple trials (as
intended). These changes were similar across
males and females; however, females exhibited
lower overall performance and reported higher
workload compared to males. This performance
advantage for males in manipulating the robot
may be explained by their average physical
strength and dexterity being higher than females
(Thomas & French, 1985).

Sensitivity of Eye-Tracking Metrics to
Changes in Task Difficulty and Learning

Among the eye-tracking workload measures,
stationary gaze entropy (SGE) and pupil di-
ameter (PD) increased with task difficulty and
gradually reduced over multiple trials, although
PD did not reduce monotonically. A number of
past studies have found SGE to increase while
monitoring highly variable or complex visual
environments (Shiferaw et al., 2019) or more
difficult surgical procedures (Wu et al., 2019). In
this study, higher SGE in the HD condition may
have been due to the need to monitor and track
the robot’s (more unpredictable) behavior, or to
monitor the environment for potential collisions.
Higher fixation count (FC) in the HD condition
may have been the result of more frequent
collision-monitoring. FC did not change sig-
nificantly over time in the HD condition, sug-
gesting that the visual monitoring demands in
the HD condition may have been persistently
high throughout the experiment. Interestingly,
FC also increased in the last three trials of the LD
condition. While this may suggest an increased
visual monitoring workload, collisions remained
infrequent in these trials and the NASA-TLX
ratings did not rise. A possible explanation is
that after learning to minimize errors during the
first half of the LD condition, participants may
have shifted to more frequent visual sampling of
the plate’s orientation to ensure more precise
placement, or tracking the ball, or improving
other (secondary) aspects of performance. Fix-
ations have been found to be not only sensitive
to workload but also be task-specific and increase
due to visual monitoring strategies in prior work
(Rivecourt et al., 2008; Zhang et al., 2022), which

TABLE 2: Effect Sizes and P-Values for AOI-Measures

AOI-Measures Condition Trial Condition x Trial

Plate-fixations .08 (<.0001) .018 (<.0001) .008 (.004)
Robot-fixations .08 (<.0001) .0195 (<.0001) .014 (<.0001)
Target-fixations .00001 (<.0001) .0024 (<.0001) .004 (<.0001)

Bold fonts indicate significant effects (p < .05).
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may be a reason for the dissociation of FC with
collisions and NASA-TLX ratings in our study.
It should be noted that although all our workload
metrics showed significant differences across
task conditions and most measures showed an
effect of learning trial, all effect sizes were small
(Cohen, 1988), with GTE and FC effects likely
being too small to be practically important. Pupil
dilation had a medium-to-large effect of learning
trial (ηp

2 = .085).
On the other hand, AOI-based measures of

gaze behavior had medium-to-large effect sizes
for task difficulty, specifically the plate-fixations
(ηp

2 = .0797) and robot-fixations (ηp
2 = .0793).

Further insight into the nature of task demands
and the source of workload is provided by these
AOI-based measures. It was found that the plate
accrued the most fixations of all the task-relevant
AOI. This was likely because participants relied
on visual feedback of the plate in an effort to
maintain their virtual “grip,” as well as to prevent
the ball from rolling off. In the HD condition,
participants seemed to significantly reduce plate-
fixations and increase robot-fixations (Figure 3(a)
and (c)). Further analysis revealed a significantly
higher likelihood of collisions in the HD con-
dition, which might have led participants to look
away from the plate to monitor the robot-arms
and avoid collisions with targets. Additionally,
participants may also have directed their visual
attention towards the robot in order to better
evaluate, and to develop an internal model of, the
robot’s control dynamics. This is supported by the
observation that some participants tended to move
the robot-arms in a random, exploratory manner
in the HD condition for some time initially,
presumably to better understand their dynamics.
Robot-arm fixations reduced significantly over
the course of the trials, suggesting that partic-
ipants reduced their dependence on vision for
monitoring the arms, likely as a result of forming an
improved internal model. The lack of a significant
difference in target-fixations between conditions
may be due to a fixed target-monitoring strategy
in both conditions, and not devoting additional
visuomotor effort towards accurate placement in
the HD condition. Regarding gender differences,
females tended to fixate more on the robot
compared to males in both the LD and HD
conditions. Previous research has found females

to be more risk-averse (Byrnes et al., 1999), which
may have contributed to greater “checking” be-
havior towards the movement of the robot.

In summary, to detect differences due to task
difficulty and learning,measures of gaze behaviors
may need to be included in addition to traditional
eye-tracking measures of mental workload in fu-
ture pHRI studies.

Reliability of Eye-Tracking Metrics

The relative reliability of PD (ICC = .68) was
highest among all metrics, followed by SGE
(.44) and FC (.41), and considered to be good
based on criteria stated in previous research on
eye-tracking measures (Zargari Marandi et al.,
2018). However, it should be noted that PD is
generally more reliable in studies involving
cognitive (as opposed to motor-control) tasks
(Krejtz et al., 2018; Matthews et al., 2015). The
SEM value for PD was .16 mm, which is
considered acceptable, since mental workload
effects on PD typically range from .1 mm to
.5 mm from baseline (Pfleging et al., 2016).
However, in our study, the highest difference in
the least squares means of pupil dilation between
each trial in the LD and HD conditions was
∼.1 mm (Figure 2(c)). Thus, the SEM of PDmay
have been too large (indicating a large within-
subject variance) for PD to be a reliable measure
of workload. The small effect size of condition
on PD further supports this conclusion. How-
ever, the effect of Trial on PD was significantly
larger, indicating that PD may be a better in-
dicator of changes in mental workload that occur
over learning, as opposed to those due to task
difficulty.

Performance Prediction Using
Eye-Tracking Metrics

The model with eye-tracking measures was
more sensitive, specific, and accurate, clearly out-
performing the model with task variables, for
classifying the outcome of each trial to be a success
or failure. This is likely because eye-tracking
measures continuously capture individual varia-
tion in workload and visual behavior, which our
task-based independent variables cannot. Much
existing work in adaptive robotics, largely in the
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rehabilitation domain (Brown et al., 2016), tends
to adapt robot behavior based solely on task
performance. However, in industrial use-cases,
adapting robot behavior based on performance
may prove to be too late due to the high safety
costs of failures. Thus, using eye-tracking work-
load measures may provide proactive, anticipatory
information about mental and visuomotor effort
preceding a success or a failure, potentially leading
to more timely and accurate adaptation of robot
behavior.

LIMITATIONS AND FUTURE WORK

A limitation of our study is the potential effect
of physical workload on our results, specifically
PD, which has been shown to increase with the
perception of physical effort (Zénon et al., 2014).
Although we attempted to control for physical
workload by offering rest periods after each trial,
multiple participants reported wrist strain during
the study, which may have affected PD in ad-
dition to mental workload. We acknowledge that
a real-world comanipulation task may inevitably
require a certain degree of physical effort, and
that the effectiveness of pupil dilation may be
a more effective measure during tasks that largely
involve motor-cognitive workload. Future re-
search should consider the extent to which cobots
may reduce or eliminate physical workload and
define specific use-cases in which pupil dilation

may be an effective measure. A second limitation
is that this study only recruited college students as
participants, thus, limiting the generalizability of
our results to other populations. With the rising
age of industrial workers, it is expected that older
adults will frequently use, and benefit from,
physically coupled robots in the future work-
place. Thus, future research needs to examine
mental workload and strategies associated with
pHRI across diverse users. Finally, since our task
environment was virtual, there may be some
differences in terms of eliciting appropriate gaze
behaviors and cognitive responses between the
virtual and physical world. Specifically, the ab-
sence of haptic feedback from the movement of
the ball usually utilized for physically manipu-
lating an object may have increased reliance on
visual feedback and monitoring, thus potentially
overestimating the increase in plate-fixations in
the VR tasks studied here. However, the lack of
haptic feedback may also occur in a real-world
scenario—a collaborative robot that provides a high
degree of physical assistance may still abstract the
physical dynamics of the manipulated object from
the human user. Thus, an increase in plate-fixations
may still be a useful indicator of workload in real-
world scenarios, although this needs to be con-
firmed by future work. Another related consider-
ation is that manipulating a physical object may
require additional physical effort and lead to in-
creases in pupil dilation beyond those due tomental

TABLE 3: Confusion Matrices for Logistic Regression Models Comparing the Predictive Ability of Ma-
nipulated Task Variables (a; Model 1) versus Eye-Tracking Measures (b; Model 2)

Model 1: Condition, Trial and Condition × Trial (R-squared = .062)

Predicted success/failure

1 0
Actual success/failure 1 .516 .484 Recall = .52

0 .328 .672 Specificity = .67
Precision = .52 NPV = .67 Accuracy = .60 F1 score = .54

Model 2: Eye-Tracking Measures (R-squared = .304)

Predicted success/failure

1 0
Actual success/failure 1 .704 .296 Recall = .70

0 .294 .706 Specificity = .71
Precision = .68 NPV = .73 Accuracy = .71 F1 score = .69

2114 August 2024 - Human Factors



workload. Future studies could be conducted in
real-world environments or in higher-fidelity VR
environments to determine the extent to which
these findings can be generalized to real-world
robot manipulation scenarios.

CONCLUSION

Overall, this work found that SGE and PD
may be usable indicators of mental workload in
pHRI, specifically under precision and monitor-
ing demands. Pupil dilation may be a more
sensitive indicator of workload changes due to
learning, than those due to task difficulty. Visual-
attention metrics, specifically those that quantify
the number of fixations in different AOIs, may be
highly useful and informative in a pHRI context.
Interestingly, the sensitivity of these metrics to
both task difficulty and learning was comparable
to, or higher than our workloadmetrics. Although
AOI-based metrics are not direct measures of
workload, they provide important information re-
garding visual strategies and performance,which are
important mediators of workload (Loft et al., 2007;
Tsang&Vidulich, 2006). Thus, their validity should
be explored further, especially in the pHRI domain
where motor-control and internal-model formation
will likely be strong contributors to workload.

KEY POINTS

· Physically coupled robots may be controlled to adapt
to the operator’s mental state as it changes over the
course of time due to differences in task difficulty
and learning, but there is little work exploring the
measures that may be most suitable for continuously
tracking operator state/workload in pHRI.

· We propose that eye-tracking measures can be
good candidates for measuring workload in pHRI
due to their relative unintrusiveness and relevance
to motor performance.

· In the current study, we aimed to investigate the
sensitivity and reliability of eye-tracking metrics of
workload, the use of visual attentional measures for
drawing inferences regarding visuomotor strategies,
and the ability of these measures to predict per-
formance in pHRI.

· SGE and PD were the most sensitive and reliable
eye-tracking measures—SGE was equally sensi-
tive to task difficulty manipulations and learning,

and PD was more sensitive to changes over
learning. Measures of visual attention were able to
quantify changes in visuomotor strategy due to
task difficulty, learning, and between genders.

· A combination of eye-tracking measures of work-
load and visual attention were able to predict per-
formance (success/failure) with a sensitivity of 70%
and accuracy of 71%.

· Future work should investigate the usefulness of
eye-tracking workload measures in different pHRI
task contexts, and in different populations such as
older adults. This work should leverage involuntary
measures of workload such as pupil dilation, as well
as measures of gaze behavior and visual strategies,
which are tightly coupled with motor performance.

APPENDIX

APPENDIX A

Eye-Tracking Data Processing

Although the sampling frequency of the eye-
tracker was set at 90 Hz, the actual sampling
frequency depended on the graphics rendering
speed of the computer and was hence variable
over time (Llanes-Jurado et al., 2020). Hence,
data were uniformly resampled at 90 Hz using
a custom MATLAB script. Next, all samples
which corresponded to a pupil diameter value
of �1 (which meant that the eyes were not
tracked for those times) were removed. Any re-
maining gaps in the data, except those larger than
100 ms were linearly interpolated (Hessels et al.,
2017). We classified the gaze samples into fix-
ations using the I-VDT velocity-dispersion al-
gorithm (Komogortsev & Karpov, 2013). Prior to
applying the algorithm, we computed the visual
angle between successive gaze points using the
scalar product of the gaze point vectors. Then,
we obtained angular velocity by applying the
Savitzky–Golay filter to the visual angle data
(Holmqvist et al., 2011). Finally, as specified
in the I-VDT algorithm, gaze points with an
angular velocity greater than 75 deg/s were
classified as saccades, and the remaining data
were classified into fixations using a disper-
sion threshold of 1 deg and a minimum fixation
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duration of 80 ms (Aronson et al., 2018). For
each fixation, we recorded the most frequently-
hit AOI as the “fixated-AOI,” which resulted in
a time series of successive fixated-AOIs for
each trial.

Computation of Dependent Measures

To quantify performance, each transfer was
first categorized as a success if the plate was
transferred to the target within 10-s or a failure if
either a drop or collision occurred, or if the 10-s
timer ran out before the plate was transferred.
Numbers of successes and failures were com-
puted per 30-s interval and expressed as a pro-
portion of the total number of transfers in each
30-s interval. Proportions of successes and fail-
ures were used as measures of task performance.
Fixation count was calculated per 30-s interval
during the trial. We computed the median pupil
dilation (PD) of the left eye from each 30 s in-
terval, by subtracting the baseline pupil diameter
from the raw pupil diameter during the 30 s in-
terval. Equations that were used to compute sta-
tionary gaze entropy (SGE) and gaze transition
entropy (GTE), adapted from (Shiferaw et al.,
2019), are given below

HsðxÞ ¼ �
XN
i¼1

pðiÞ× log2pðiÞ (1)

where Hs(x) is the SGE value for a particular
time-bin “x” (equal to 30 s), “i” represents the
successive AOI-fixations in the interval “x” and
“p” is the proportion of fixations on the ith AOI
in the interval “x.”

HgðxÞ ¼ �
XN
i¼1

pðiÞ
"XN

j¼1

pðijjÞ× log2pðijjÞ
#

(2)

where Hg(x) is the value of GTE, “p(i)” is the
stationary distribution of fixation locations, and
“p (i | j)” is the probability of transitioning to
AOI “j” given current position of “i.” SGE and
GTE were both normalized to the maximum
theoretical entropy for each 30-s interval, equal
to log2N (Shiferaw et al., 2019). The total
number of unique VR objects that were fixated

during the study comprised the state space for
the entropy calculation. Lastly, we also com-
puted the ratio of fixations on the following
AOI—the plate (which included the ball), the
robot-arms, and the top surface of the target
pillars, per 30-second interval, in order to un-
derstand the relative attentional focus directed
towards these AOI. These AOI were selected
because they were directly related to partic-
ipants’ goals and actions, and hence were critical
components of the task. Fixations on the table
and the floor were coded as “miscellaneous”
fixations that were not task-relevant.

APPENDIX B

Computation of Reliability Measures

The total variability of the data set was
partitioned according to the mixed effects model
(Searle et al., 2009)

Ecstr ¼ μþ βc þ γtr þ αs þ ecstr (3)

where Ecstr is the measured value of an eye-
tracking measure for a specific condition c in
trial tr of subject s; μ is the grand mean; βc is the
fixed effect due to condition (task difficulty); γtr
is the fixed effect of the learning trial; αs is the
random effect of subject; and ecstr is the re-
sidual. Both random effects (αs, ecstr) were
assumed to be independently and identically
distributed, to have zero covariance between
any pair of values and to have a mean of zero.
The mixed-effects model was resolved using
a REML procedure in JMP® Pro (Version 14,
SAS Institute Inc., Cary, NC) to estimate the
variance between subjects (S2BS, i.e., the variance
of αs) and within subject (S

2
WS, i.e., the variance

of ecstr) with 95% confidence intervals. These
variance components were then used to calculate
reliability metrics.

SEM was calculated as the square-root of the
within-subjects variance, and ICC was computed
using the following equation (Shrout&Fleiss, 1979)

ICC ¼ S2
BS

S2
BS þ S2

WS

(4)
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