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Abstract

Pre-trained multimodal foundation models have demonstrated remarkable general-
izability but pose challenges for deployment due to their large sizes. One effective
approach to reducing their sizes is layerwise distillation, wherein small student
models are trained to match the hidden representations of large teacher models
at each layer. Motivated by our observation that certain architecture components,
referred to as modules, contribute more significantly to the student’s performance
than others, we propose to track the contributions of individual modules by record-
ing the loss decrement after distillation each module and choose the module with a
greater contribution to distill more frequently. Such an approach can be naturally
formulated as a multi-armed bandit (MAB) problem, where modules and loss
decrements are considered as arms and rewards, respectively. We then develop
a modified-Thompson sampling algorithm named OPTIMA to address the non-
stationarity of module contributions resulting from model updating. Specifically,
we leverage the observed contributions in recent history to estimate the changing
contribution of each module and select modules based on these estimations to
maximize the cumulative contribution. We evaluate the effectiveness of OPTIMA
through distillation experiments on various multimodal understanding and image
captioning tasks, using the CoCa-Large model [48] as the teacher model.

1 Introduction

Large pre-trained multimodality foundation models have demonstrated remarkable generalizability on
a wide range of tasks, e.g., image classification, image-text retrieval, and visual question answering
[27, 18, 49, 46, 48]. These models often contain several architectural components (referred to as
modules), each acquiring knowledge of one or more modalities through pre-training. For example,
[27] introduce a dual-encoder architecture composed of an image encoder and a text encoder, which
are jointly pre-trained to align an image with the corresponding text. This process equips each encoder
with both the unimodal representation power and the crossmodal alignment capability. [48] further
add a multimodal decoder on top of the dual-encoder architecture. The decoder learns a joint visual
and textual representation and obtains the multimodal understanding knowledge. However, the sizes
of these models have reached billions of parameters, and the number of modules will further scale to
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accommodate new modalities. This poses a significant challenge for deployment in applications with
latency and storage constraints.

Layerwise distillation is a powerful approach to compressing large models (i.e., teacher models) into
small ones (i.e., student models) with minimal loss of performance [16, 30]. This approach trains
a student to match the hidden representations of the teacher at each layer. Given that the teacher’s
layerwise representations often contain rich semantic knowledge, they can significantly improve the
student’s generalizability [19, 45, 11]. Many existing works have demonstrated the effectiveness of
this layerwise strategy in task-specific distillation, where a student is distilled from a teacher that has
been fine-tuned on the target task [38, 17].

In task-specific distillation in multimodality models, however, matching the student’s representations
with those of the teacher at every layer does not always benefit the student’s performance. Prior
research has shown that improving the representations of a specific modality (i.e., image, text, or
multimodality) tends to yield better fine-tuning results than others [51]. Therefore, we hypothesize
that the representations of such a modality may contain more relevant knowledge to the target task. If
the student focuses on mimicking these representations, it is more likely to achieve better performance
on the target task. To verify this hypothesis, we distill multiple students from a CoCa-Large teacher
[48], each only matching the teacher’s layerwise representations in a single module (i.e., image
encoder, text encoder, or multimodal decoder). As shown in Figure 1, distilling a specific module
yields significantly better performance than distilling others. If all modules are distilled with equal
weighting, interference from other modules may affect the training of this specific module, thereby
compromising the student’s fitting on the target task (Figure 3).
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Figure 1: Performances of CoCa-Tiny12 students distilled from a CoCa-Large teacher [48] on NLVR2
[37] and Microsoft COCO Caption [6]. Each bar represents the performance obtained by matching
only the layerwise representations in a single module. See Details in Section 4.

To mitigate this issue, we propose to track the individual modules’ contributions to the distillation
process on the target task and choose a module to distill at each step based on their contributions.
In this way, we can more frequently distill the module with a greater contribution. To evaluate the
contribution of a module, we distill it for a specific number of steps and observe the resulting ratio
of decrement in the distillation loss. To track its contribution continually, we repeat this procedure
throughout training. Hence, we need to explore different modules by repeatedly evaluating their
contributions and, meanwhile, exploit the module with the greatest contribution by distilling it more
frequently. Given a limited budget for training steps, we face a significant challenge in balancing
exploration and exploitation.

To address this challenge, we adopt a multi-armed bandit (MAB) approach [36, 41]. MAB targets
an online decision-making problem that chooses an action (i.e., arm) and observes a reward in each
round to maximize the cumulative reward over rounds. MAB algorithms are designed for balancing
the evaluation of all arms and choosing the arm that maximizes the cumulative reward, hence can be
leveraged to evaluate and choose modules. As illustrated in Figure 2, we consider each module as an
arm and every P steps as one round. In each round, we choose a module to distill for P steps and
evaluate its contribution as the reward. As more rewards are observed, we obtain a more accurate
estimate of the underlying reward distribution for each module, which reflects the actual contribution
of this module. Based on the reward distribution, we choose modules to maximize the cumulative
loss decrement.

However, the actual contribution of a module may change with model updating. For example,
distilling the multimodal decoder may become more beneficial when its input, i.e., the image and text
representations, are sufficiently optimized [39]. To estimate such a non-stationary underlying reward
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Figure 2: An illustration of OPTIMA.

distribution, we need to count more on rewards observed in recent history. This makes it challenging
for us to adopt classical MAB algorithms because most of them are designed for stationary underlying
reward distributions [4, 10, 40]. Therefore, they average the observed rewards over the whole history
to estimate the underlying reward distribution. In our case, since the model is unlikely to change
drastically within a few steps, and so is the underlying reward distribution, we tailor these stationary
algorithms by replacing the simple average with the exponential moving average of the observed
rewards. By discounting old rewards, the reward distribution can track the changing contribution
in recent history and provide stable and up-to-date guidance for module selection [13, 15, 28]. By
adapting MAB algorithms to the non-stationary environment of multimodality model distillation,
we propose OPTIMA (Module-wise Adaptive Distillation with Multi-arm Bandit), a novel task-
specific distillation method for multimodality foundation models. We exemplify OPTIMA using the
Thompson Sampling algorithm for its strong empirical and theoretical performance [32, 1, 5, 31, 2].
We remark that OPTIMA can be generically combined with other MAB algorithms.

We demonstrate the effectiveness of OPTIMA on various multimodality understanding and im-
age captioning benchmarks [14, 47, 37, 6]. Specifically, we distill a CoCa-Tiny12 (102M) and a
CoCa-Tiny6 (55M) from a CoCa-Large teacher (672M, [48]), a powerful pre-trained multimodality
foundation model. For both students, OPTIMA substantially surpasses the layerwise distillation
baseline. Moreover, CoCa-Tiny12 outperforms CoCa-Base in three out of four tasks with only 1/3 its
number of layers. Extensive analysis verifies that OPTIMA can track the changing contributions of
different modules and choose modules based on their contributions.

2 Preliminaries

Architectures of Multimodality Foundation Models can be generally categorized into dual-encoder
[27, 18, 49, 23], encoder-decoder [42, 46, 44], and Contrastive Captioners (CoCa, [48]). Dual-
encoder models contain an image encoder and a text encoder. The two encoders take images and
texts as inputs, respectively, and are jointly pre-trained to align an image and relevant text. This
enables each encoder to learn both the unimodal representations and the crossmodal alignment
knowledge. Encoder-decoder models contain a multimodal decoder on top of an image encoder. The
decoder learns a joint visual and textual representation and obtains the multimodal understanding
knowledge. To integrate the knowledge from the image encoder, the text encoder, and the multimodal
decoder, CoCa combines all modules in a single Transformer and trains them jointly. Specifically, the
multimodal decoder takes the representations generated by both the unimodal encoders and learns
multimodal representations with the cross-attention mechanism.

Knowledge Distillation trains a small model (i.e., student model) to match the output prediction of a
large and well-trained model (i.e., teacher model) by minimizing their prediction discrepancy [16].
Specifically, we denote the teacher model as ft(θt) and the student model as fs(θs), and consider the
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following optimization problem:

min
θs
Ltrain(θs) +DKL(θs, θt), (1)

whereLtrain(θs) is the prediction loss on the target task, e.g., the cross-entropy loss for a classification
task; DKL(θs, θt) is the KL-Divergence between the probability distributions over their predictions,
i.e., KL(fs(θs)||ft(θt)). In large Transformer-based models, distilling knowledge from only the
output predictions neglects the rich semantic knowledge in the intermediate layers. To leverage such
knowledge, researchers have proposed to match the hidden representations and attention scores at
each layer of the teacher and the student [30, 19, 11, 45].

Thompson Sampling (TS) is a widely-used MAB algorithm with Bayesian assumption [32, 40, 31,
5, 1]. TS assumes a prior distribution on the parameters of the underlying reward distribution for
each arm. To estimate the underlying reward distribution, TS updates a posterior reward distribution
(often referred to as reward distribution) for each arm based on the statistics of the observed rewards
in history. TS draws an arm from the posterior in each round to maximize the cumulative rewards in
the long term. A typical example of TS is to set both the prior distribution and the reward distribution
to be Gaussian distributions. In this case, the reward distribution of an arm is specified as

D := N
(
µ,

1

n+ 1

)
, (2)

where µ is often set as the average of the observed rewards in history and n is set as the number of
rounds the arm has been chosen.

3 Method

Problem Formulation. We consider both the teacher and the student models to be multimodality
Transformers containing c > 1 modules. For example, they are CoCa models containing c = 3
modules in this work: an image encoder, a text encoder, and a multimodal decoder.

We construct K = 2c− 1 arms, each associated with a unique, non-empty subset of modules selected
from the c modules. The k-th arm is formed as a set of model layers, denoted as Sk, in its associated
subset. We set T = T ′

P rounds, where T ′ is the total number of training steps and P ≥ 1 is the
number of steps within each round. In this way, choosing the k-th arm in the t-th round is equivalent
to distilling Sk for P steps in the range of ((t− 1)P, t · P ].

For each arm k ∈ [K], we denote its reward distribution as Dk and set it as a Gaussian distribution
specified as N (µk,

1
nk+1 ) following Eq. 2. To set a proper prior, we first randomly choose each arm

for T0 ≥ 0 rounds1, then initialize µk = µ0
k and nk = T0, where µ0

k is the average of the observed
rewards over T0 rounds. We explain why setting the reward distribution as a Gaussian distribution is
feasible in Appendix A.1.

Remark 3.1 We consider all possible combinations of modules because, at a certain training stage,
there might exist a combination such that distilling it leads to a higher reward than distilling any
single module.

Remark 3.2 Since the dependencies among modules are unclear, we should assume all arms to be
dependent and model the reward distribution as a multivariate Gaussian over all arms. However, sam-
pling from such a distribution requires decomposing the covariance matrix, which is computationally
costly. To improve efficiency, we ignore the dependency assumption. In practice, we observe no clear
disadvantage in the model performance.

OPTIMA Algorithm. We initialize

µk = µ0
k, nk = T0 and Dk = N

(
µk,

1

nk + 1

)
for all arm k ∈ [K].

At the t-th round, we sample a reward r̂k for the k-th arm from its reward distribution Dk for all
k ∈ [K]. The arm with the highest sampled reward is then chosen for this round, denoted as at. In
this way, the arm is chosen according to the belief of it being the best arm.

1T0 is included in T .
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We then play the at-th arm by distilling Sat for P steps. At any step t′ ∈ ((t − 1)P, tP ], we first
compute the distillation losses on Sat . Specifically, we denote the hidden representations at the i-th
layer of the teacher and the student as Hi

t ∈ R|x|×dt and Hi
s ∈ R|x|×ds , where dt and ds denote

the hidden dimension and |x| denotes the sequence length. Then the distillation loss on hidden
representations is defined as2:

Lat

hidn(θ
(t′)
s , θt) =

1

|Sat |
∑
i∈Sat

MSE(H i
t , H

i
sW

i
hidn), (3)

where MSE(·, ·) is the mean-squared error, and W i
hidn ∈ Rds×dt is a randomly initialized and learnable

linear projection that projects Hi
s into the same space as Hi

t . Similarly, the distillation loss on attention
scores is defined as3:

Lat
attn(θ

(t′)
s , θt) =

1

|Sat
|
∑
i∈Sat

MSE(Ai
t, A

i
s), (4)

where Ai
t, A

i
s ∈ R|x|×|x| are the attention score matrices averaged over the multiple attention heads

at the i-th layer. The student model is then optimized based on a weighted sum of all distillation
losses on Sat , i.e.,

Lat

total = Ltrain + α1DKL + α2Lat

hidn + α3Lat
attn, (5)

where Ltrain and DKL are defined in Eq. 1 and α1, α2, α3 ≥ 0 are hyper-parameters. Specifically,
the student model is updated with an SGD-type algorithm [21]:

θ(t
′+1)

s ← θ(t
′)

s − η∇θsL
at

total(θ
(t′)
s , θt),

where η > 0 is the learning rate. The same procedure is then repeated for P steps.

We then compute the reward rat for playing the at-th arm. Specifically, we design the reward as the
averaged ratios of decrements over all types of distillation losses:

rat
=

1

|U |
∑

L(·)∈U

max

(
0,
L(θ((t−1)P )

s )− L(θ(tP )
s )

L(θ((t−1)P )
s )

)
. (6)

where U = {DKL(·),Lhidn(·),Lattn(·)}. Note that Lhidn(·) and Lattn(·) are defined in Eq. 3 and
Eq. 4, respectively, but by replacing Sat with the set of all layers. They measure the change in the
distillation loss on the full model; otherwise, the reward definition changes with the pulled arm and
thus cannot provide an evaluation metric consistent across all arms.

The numerator is the difference between L(θ((t−1)P )
s ) and L(θ(tP )

s ). This loss change is accumulated
for P steps to reduce the uncertainty caused by noises in the stochastic gradients. As a result, it can
reliably reflect the contribution of Sat

to the distillation performance of the full model.

We consider both the changes in output prediction discrepancy (DKL(·)) and the layerwise represen-
tation distances (Lhidn(·) and Lattn(·)). This improves the robustness of the reward over different
tasks because a specific distance metric may not consistently well reflect the distillation performance
on all tasks (Figure 7).

For all types of losses, we compute the ratio of the loss change to the loss in the previous round.
Normalizing the loss changes prevents the reward from being biased by the scales of different losses.
We further clip each ratio by zero to bound the reward between (0, 1), which is desirable for achieving
a good performance guarantee in the Thompson Sampling (TS) algorithm. Finally, we average the
rewards over all types of losses.

After computing the reward rat
, we update the reward distribution Dat

. Specifically, we update the
distribution mean, µat

, as the exponential moving average of the observed rewards in the past:

µat ← γµat + (1− γ)rat , (7)

2We omit the “(t′)” superscript on {Hi
s,W

i
hidn}i∈Sat

to simplify the notations. We assume the teacher and
student have the same number of layers. The case of having different layers will be elaborated in Section 4.3.

3We omit the “(t′)” superscript on {Ai
s}i∈Sat

to simplify the notations.
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where γ ∈ (0, 1) is a hyper-parameter. We then increase nat by one and update Dat following Eq. 2.
Since the exponential moving average discounts the old rewards, µat tends to reflect the average
of the rewards within recent rounds. Recall that the actual contribution of each module changes
dynamically. By using µat

as the distribution mean, Dat
can capture the changing contribution and

provides up-to-date guidance for module selection. The complete algorithm is shown in Alg. 14.

Algorithm 1 OPTIMA: Module Adaptive Distillation
1: Input: T : the number of total rounds; P : the number of steps in each round; K = 2c − 1: the

number of arms; γ: a discounted factor. θ(0)s , θt: the initialized student and the teacher models.
2: Output: θ(T

′)
s

3: t′ = 0, nk = µk = 0 ∀k = 1, ...,K .
4: for t = 1, ..., T do
5: for k = 1, ...,K do
6: Sample a reward for arm k: r̂k ∼ N

(
µk,

1
nk+1

)
.

7: end for
8: Select arm at ← argmaxk r̂k.
9:

10: for p = 1, ..., P do
11: Compute Lat

total(θ
(t′)
s , θt) following Eq. 5.

12: θ
(t′+1)
s ← θ

(t′)
s − η∇θsL

at

total(θ
(t′)
s , θt).

13: t′ ← t′ + 1.
14: end for
15:
16: Compute rat

following Eq. 6.
17: Update µat

following Eq. 7.
18: nk ← nk + 1.
19: end for

4 Experiments

We verify the effectiveness of OPTIMA on popular multimodal understanding and image captioning
benchmarks.

4.1 Data

We conduct task-specific distillation on three multimodal understanding tasks: visual question
answering (VQA, [14]), visual entailment (SNLI-VE, [47]), and visual reasoning (NLVR2, [37]).
VQA is to answer an input question with a sentence based on an input image. It is formulated as
a classification problem with 3129 classes where each class corresponds to an answer. SNLI-VE
is a three-way classification problem to predict whether an input sentence entails the input image,
contradicts it, or is neutral to it. NLVR2 is a binary classification problem to predict whether an input
sentence is true or false about an input image pair. We further train and evaluate the model using
the Microsoft COCO Caption dataset [6] and the Karpathy-test split, respectively. The task is to
describe an input image with a sentence. See Appendix A.2 for details.

4.2 Models

We evaluate OPTIMA on CoCa [48]. It is a powerful Transformer-based multimodality foundation
model pre-trained on web-scale alt-texts [18] and image-text pairs [50]. Since CoCa consists of
an image encoder, a text encoder, and a multimodal decoder, it provides a sufficiently large action
space for OPTIMA. Furthermore, the decoder produces multimodal representations, which allows it
to be directly fine-tuned without any extra step of multimodal pre-training, commonly needed for
dual-encoder models [35, 49, 9].

4We assume T0 = 0 for simplicity of demonstration.
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For each target task, we fine-tune a pre-trained CoCa-Large as the teacher (672M, 48 layers (24/12/12
layers in image/text/multimodal modules), dt = 1024). We then distill a task-specific student from
the fine-tuned teacher. Specifically, we consider two architectures: CoCa-Tiny12 (101.8M, 12 layers
(6/3/3 layers), ds = 768) and CoCa-Tiny6 (54.5M, 6 layers (3/1/2 layers), ds = 768). The layers in
each module of the student are initialized with the layers uniformly sampled from the corresponding
module of a pre-trained CoCa-Base (293M, 36 layers, d = 768).

4.3 Implementation Details

Teacher Initialization. We fine-tune a pre-trained CoCa-Large as the teacher for each target task. For
multimodal understanding tasks, we attach a randomly initialized task-specific linear classifier on top
of the multimodal decoder for answer prediction. We fine-tune both the model and the classifier using
the cross-entropy loss. For the image captioning task, we directly fine-tune CoCa with the captioning
loss [48], i.e., Lcap =

∑|x|
ℓ=1 logPθt(yℓ|y<ℓ, x). We follow [48] for all fine-tuning hyper-parameters

(See Appendix A.3 for details).

Task-Specific Distillation. We fix the fine-tuned teacher and distill a student using OPTIMA on each
task. For all tasks, we train the student for T ′ = 100k steps. We use Adafactor with decoupled weight
decay [34] as the optimizer with β = (0.9, 0.999) and a learning rate of 1× 10−3 with a linear decay
schedule. We match the i-th layer of a student’s module with the ⌈gi⌉-th layer of the corresponding
teacher’s module, where g is the ratio of the number of layers of the two modules. We randomly
initialize Whidn ∈ Rds×dt . We set α1 = 0, α2 = 1 and α3 = 1× 10−2 for all tasks. For OPTIMA,
we set γ = 0.98, T0 = 10, P = 100 and T = T ′

P = 1k. Full details are deferred to Appendix A.4.

4.4 Baselines

Pre-trained Vision-Language Models (VLMs). To compare with models with similar scales, we
present the fine-tuning performance of existing pre-trained VLMs: UNITER [7], OSCAR [24], ViLT
[20], VILLA [12], CLIP-ViLp [35] and ALBEF [23]. Different from foundation models, VLMs often
contain a single backbone, e.g., a 12-layer Transformer. The backbone takes both image features
and text embeddings as inputs and learns the multimodal representations. They then use an auxiliary
model to predict the input image features, e.g., CLIP-ViLp uses a pre-trained CLIP encoder [27],
ALBEF uses a pre-trained ViT-B/16 [8], and the rest use a pre-trained Faster R-CNN [3]. We exclude
methods that outperform the CoCa-Large teacher.

Multimodality Distillation Methods. We further compare OPTIMA with existing multimodality
distillation methods: MiniVLM [43], DistilVLM [11] and DIDE [45]. Different from OPTIMA:
1) All methods conduct distillation in the pre-training stage. Pre-training distillation significantly
improves the student’s generalizability but requires much more computational resources than task-
specific distillation. 2) All methods consider VLMs as the teachers. VLMs are much smaller
than CoCa models, and a small teacher-student capacity gap often improves the effectiveness of
distillation [26, 25]. However, VLMs are less generalizable and can only distill students on limited
tasks. MiniVLM adopts knowledge distillation on additional unlabeled data (Eq. 1). DistilVLM
adopts layerwise distillation. DIDE distills a dual-encoders student from a VLM teacher by aligning
cross-modal attentions. We ignore concurrent methods with a teacher that significantly outperforms
the CoCa-Large teacher.

4.5 Main Result

Table 1 summarizes the evaluation results of layerwise distillation and OPTIMA. We report the
median over five random seeds5. On both CoCa-Tiny6 and CoCa-Tiny12, OPTIMA can achieve
consistent and notable improvements upon layerwise distillation over all tasks. The gains are most
prominent in NLVR2 and COCO, e.g., the gains on CoCa-Tiny12 are 0.9 and 4.4, respectively. This
may be explained by Figure 3, which shows the contributions of modules in these tasks exhibit high
variances and the training of a specific module can impair the training of others. The gain is slightly
smaller in CoCa-Tiny6 than CoCa-Tiny12. This might be because CoCa-Tiny6 converges slower, and
that specific module is less likely to over-fit quickly and interfere with others.

5The standard deviations are reported in Appendix A.5.
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Compared with pre-trained VLMs at the same scale, CoCa-Tiny12 (OPTIMA) can achieve simi-
lar performance with a smaller size. Compared with CoCa-Base, OPTIMA can achieve notable
improvements on three out of four tasks with only 1/3 its number of layers.

Compared with MiniVLM, DistilVLM and DIDE, OPTIMA can achieve significantly better perfor-
mance on CoCa-Tiny12 and similar performance on CoCa-Tiny6 over all tasks. Recall that these
baseline methods use web-scale pre-training data for distillation and use single-backbone VLMs as
teachers. In contrast, OPTIMA uses limited target task data and faces a much larger capacity gap,
e.g., 5 times larger for CoCa-Tiny12. Nevertheless, the performance gaps between CoCa-Tiny12

(OPTIMA) and CoCa-Large are comparable to those in the baseline methods. Furthermore, while
baseline methods demonstrate gains on limited tasks, OPTIMA shows well-rounded gains on all
tasks.

Table 1: The evaluation results of OPTIMA and baseline methods on VQA, SNLI-VE, NLVR2 and
COCO Caption. The results of all baselines are reported from the original papers. The inference
speedup is computed with respect to the batch-averaged inference time of the corresponding teacher
model averaged across all tasks. We present the sizes of backbone parameters because the embedding
sizes vary largely across methods depending on the implementation details. All sizes are counted
based on the released checkpoints from the authors.

Method Teacher Params. Inference VQA SNLI-VE NLVR2 COCO
(million) Speedup test-std test test-p CIDEr

UNITER-Base [7] - 146.5 - 72.9 78.3 77.9 -
OSCAR-Base [24] - 146.5 - 73.4 - - 137.6
ViLT-Base [20] - 85.6 - - 76.4 76.1 -
VILLA-Base [12] - 146.5 - 73.7 79.0 79.3 -
CLIP-ViLp [35] - 187.7 - 74.1 79.0 - 127.9
ALBEF [23] - 241.0 - 74.7 80.3 80.5 -
CoCa-Base [48] - 293.1 - 69.2 83.6 80.2 126.7
CoCa-Large [48] - 672.1 - 75.3 85.6 82.6 132.3

MiniVLM12×384 [43] OSCAR-Base 30.0 3.1× 68.1 - - 115.0
DistilVLM12×384 [11] OSCAR-Base 30.0 3.1× 69.2 - - 117.1
DIDE12 [45] ViLT-Base 171.3 3.0× 69.2 76.3 75.6 -

CoCa-Tiny6 CoCa-Large 54.5 6.2× 68.7 82.0 76.5 112.2
CoCa-Tiny6 (OPTIMA) CoCa-Large 54.5 6.2× 69.0 82.3 77.0 113.5
CoCa-Tiny12 CoCa-Large 101.8 3.4× 71.2 83.9 80.4 116.8
CoCa-Tiny12 (OPTIMA) CoCa-Large 101.8 3.4× 71.6 84.3 81.3 121.2

5 Analysis

In this section, we verify that OPTIMA improves the student’s performance, tracks the actual
contributions of all modules, and chooses arms based on their contributions. We further investigate
the design of the reward function in Appendix A.6 and study the discounted factor of the non-
stationary reward distribution in Appendix A.7.

5.1 OPTIMA Improves the Student’s Performance

Figure 3 compares the performance of the students obtained by 1) fixed-arm distillation: distilling a
fixed arm over rounds, 2) random-arm distillation: randomly choosing an arm to distill in each round,
and 3) OPTIMA. The performance of fixed-arm distillation varies largely across tasks. Distilling an
arm that contains more modules than other arms does not always improve the student performance,
e.g., “Img+Txt+Multi” achieves 80.4 while “Img+Multi” achieves 81.1 in NLVR2. In contrast,
OPTIMA demonstrates superiority over all fixed-arm and random-arm distillation baselines. This
suggests that OPTIMA can find a better weighting for arm selection for each task.

Figure 4 shows the prediction loss and the output layer prediction discrepancy (i.e., Ltrain and DKL

defined Eq. 1) on the dev set are both lower in OPTIMA than in layerwise distillation. This suggests
that the student achieves better generalization performance on both the distillation and the prediction
of the target task.
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Figure 3: A comparison of the performance of the students by 1) distilling a fixed arm over rounds
(shown in solid colors, where each arm is denoted by its associated subset of modules); 2) randomly
choosing an arm to distill in each round (denoted by “Random”); and 3) OPTIMA.
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Figure 4: The prediction loss and the output layer prediction discrepancy (i.e., Ltrain and DKL

defined Eq. 1, respectively) in OPTIMA and layerwise distillation (denoted by “LWD”).

5.2 Reward Distributions Reflect the Contributions of Arms

Figure 5 (Left) shows the means of the reward distributions of all arms through training. In all tasks,
“Img+Txt+Multi” quickly dominates the others, while “Multi” and “Txt+Multi” remain incompetent.
The reward distributions of all arms slowly evolve through training. For example, in COCO, the arms
containing the image encoder all show a non-increasing trend in the later stage of training, while
“Txt” shows an increasing trend.

Figure 5 (Right) verifies such evolving reward distributions can correctly reflect the changing
contributions of modules. We can observe a strong and positive correlation between the mean of the
reward distribution of an arm and the accuracy obtained by distilling this fixed arm through training.
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Figure 5: Left: The means of the reward distributions of all arms (i.e., {µk}Kk=1) through training.
Right: The correlation between the means of the reward distributions of individual arms and the test
accuracy obtained by distilling these arms through training.

5.3 OPTIMA Choose Arms Based on Reward Distributions

Figure 6 visualizes the frequency of choosing each arm through training. In all tasks, we can observe
that “Img+Txt+Multi” is the most frequently chosen arm. In COCO, the frequency distributions
across arms are flatter than in SNLI-VE and NLVR2, which is consistent with Figure 5 that the means
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of the reward distributions are more concentrated across arms. This suggests OPTIMA can choose
arms based on the reward distributions.
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Figure 6: A visualization of the frequency of each arm being chosen through training. A deeper color
represents a higher frequency.

6 Discussion

Application to Other Multi-module Multimodality Models. In this study, we primarily demonstrate
the efficacy of OPTIMA when applied to models within the CoCa family. This initial success signifies
that OPTIMA could be applicable in scenarios where one or more modules predominantly contribute
to the target task, a phenomenon also observed in other multi-module models [35]. The exploration
of the application of OPTIMA to other multi-module models is left for future research.

Furthermore, OPTIMA does not incur computational and memory costs exceeding those of layerwise
distillation, as it calculates only the necessary layerwise losses and gradients for distilling a subset of
modules. This efficiency enables the exploration of OPTIMA’s applicability to larger foundational
models - those incorporating diverse modules to accommodate not only image and text modalities
but also others such as audio and video.

Design Fine-grained Action Space. In this study, we divide the CoCa model coarsely into three
modules based on modalities, and design the action space to encompass all possible module com-
binations. However, different layers within a single module could exhibit variable contributions to
the target task. For example, lower layers tend to capture high-frequency signals crucial for feature
extraction, while upper layers typically learn low-frequency signals, vital for semantic understand-
ing. By further subdividing each module into groups of layers, we can refine the action space to
encompass all possible combinations of layer groups, potentially enabling the finding of better arms.
Additionally, this enhanced granularity enables the extension of our method to single-module VLMs
and single-modality models, such as large language models (LLMs) and vision models.

However, directly applying OPTIMA encounters challenges in this fine-grained scenario. Firstly, the
dependencies among layer groups can substantially exceed those among modalities, conflicting with
the current sampling strategy which assumes minimal dependencies between arms (See Remark 3.2
in Section 3). Secondly, expanding the action space prolongs exploration time and, consequently,
increases training costs. Given these challenges, adapting OPTIMA to such a fine-grained scenario
necessitates modifications in the sampling strategy and explorations into more efficient reinforcement
learning algorithms, aspects we designate for future research.

7 Conclusion

We propose OPTIMA, a module-wise adaptive distillation method for multimodality models. We
employ a simple MAB algorithm to demonstrate that distillation based on the contributions of
modalities represents a promising and intriguing research direction. We posit that adopting more
sophisticated reinforcement learning algorithms can yield greater improvements, and we designate
such explorations for future research.
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A Appendix

A.1 Gaussian as the Posterior

Here we explain why setting the reward distribution as a Gaussian distribution is feasible. Recall that
we consider a non-stationary environment. We design the reward distribution to model the rewards
observed in recent history. Within a small number of steps, the model is unlikely to change drastically.
Therefore, the observed rewards, which are computed as the ratios of decrement in loss, are unlikely
to be skewed. As a result, Gaussian is a feasible choice.

A.2 Data

For the VQA task, we conduct downstream fine-tuning and testing on the VQA 2.0 dataset [14],
which consists of 83k images and 444k questions for training, 41k images, and 214k questions for
validation. For the image captioning task on COCO, we use [6] for training and testing. It contains
11k images for training and 5k images for validation and 5k images for testing.

A.3 Teacher Model Implementation Details

We fine-tune a pre-trained CoCa-Large model [48] as the teacher. It contains 672M parameters in
Transformer layers and contains a total of 787M parameters including the embedding size. It contains
24 layers in the image encoder, and 12 layers in the text encoder, and 12 layers in the multimodal
decoder. We use a vocabulary size of 64k. We use 576 as the image resolution and 18 as the patch
size for image inputs. We use 64 as the max sequence length for text inputs. We follow [48] for
fine-tuning hyper-parameters for all tasks, as listed in Table 2.

Table 2: Hyper-parameters for fine-tuning CoCa-Large teacher models.
Hyper-parameters VQA SNLI-VE NLVR2 COCO Caption

Optimizer Adafactor with Decoupled Weight Decay
Adam βs (0.9, 0.999)
Gradient Clipping 1.0
Learning Rate Schedule Linear Schedule Decaying to Zero
Warm-up Steps 1k
Weight Decay Rate 0.1
Pooler Learning Rate 5× 10−4 1× 10−3 5× 10−3 N/A
Encoder Learning Rate 2× 10−5 5× 10−5 2× 10−5 1× 10−5

RandAugment 1, 10 1, 10 None None
Training Steps 100k 50k 50k 50k
Batch Size 64 128 64 128
Dropout of Task Layer 0.5 0.5 0.5 N/A

For multimodal understanding tasks, we follow [48] to apply an attentional pooler with a single
query to extract embedding from the decoder output, and train a linear classifier on top of the pooled
embedding. For NLVR2, we construct two input sequences, each containing the concatenation of the
description and one image. The two output representations are further concatenated as the input to
the classifier. For image captioning, we apply the captioning loss proposed in [48]. We do not use the
CIDEr metric-specific optimization [29]. We use a greedy strategy for decoding.

A.4 Distillation Implementation Details

For each task, we distill a CoCa-Tiny12 student and a CoCa-Tiny6 student from a fine-tuned CoCa-
Large teacher on that task. CoCa-Tiny12 contains 102M parameters in the Transformer layers
and contains a total of 152M parameters including the embedding size. CoCa-Tiny6 contains
55M parameters in the Transformer layers and contains a total of 105M parameters including the
embedding size. We use 576 as the image resolution and 18 as the patch size for image inputs. To
tokenize text input, we use a sentence-piece model [33, 22] with a vocabulary size of 64k trained on
the sampled pre-training dataset. We use 64 as the max sequence length for text inputs. We follow
[48] for fine-tuning hyper-parameters for all tasks, as listed in Table 3.

We conduct a two-stage distillation for CoCa-Tiny6. We first distill CoCa-Tiny12 from CoCa-Large,
then use the distilled CoCa-Tiny12 as the teacher to teach CoCa-Tiny6. Existing works have shown
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that introducing an intermediate-sized teacher reduces the gap between the teacher and the student
model, which allows the distillation to be more effective [26].

We distill the model for a total of T ′ steps, i.e., a total of T = T ′/P rounds. Among the T rounds,
the first T0 ·K rounds are used for initialization of the parameters of the reward distribution.

Table 3: Hyper-parameters for distilling CoCa-Tiny student models.
Hyper-parameters VQA SNLI-VE NLVR2 COCO Caption

T0 10
P 100
T 1000
γ 0.98
αs (0.0, 1.0, 1× 10−2)

Optimizer Adafactor with Decoupled Weight Decay
Adam βs (0.9, 0.999)
Gradient Clipping 1.0
Learning Rate Schedule Linear Schedule Decaying to Zero
Learning Rate 1× 10−3

Warm-up Steps 1k
Weight Decay Rate 0.1
RandAugment 1, 10 1, 10 None None
Training Steps (T ′) 125k 100k 100k 100k
Batch Size 128 384 256 256
Dropout of Task Layer 0.5 0.5 0.5 N/A

A.5 Statistics of Experimental Results

We report the median of five random seeds for experiment results on CoCa-Tiny12 and CoCa-Tiny6.
Table 4 show the standard deviations of the experimental results in Table 1.

Table 4: The standard deviation of the experimental results in Table 1.
Method VQA SNLI-VE NLVR2 COCO Caption

Acc Acc Acc CIDEr

CoCa-Tiny6 0.20 0.25 0.11 0.15
CoCa-Tiny6 (OPTIMA) 0.22 0.13 0.35 0.15
CoCa-Tiny12 0.17 0.23 0.15 0.88
CoCa-Tiny12 (OPTIMA) 0.08 0.15 0.30 0.32

A.6 Design of Reward

Recall that we design the reward (Eq. 6) as the averaged ratio of loss decrements over three types
of distillation losses: DKL (Eq. 1), Lhidn (Eq. 3) and Lattn (Eq. 4). Figure 7 compares ours with
two variants: 1) rKD: the ratio of loss decrement of DKL; 2) rLWD: the averaged ratio of loss
decrements over Lhidn and Lattn. We can observe that rKD performs better than rLWD in NLVR2 but
reversely in COCO. Since captioning tasks often rely more on contextual knowledge in the layerwise
representations than classification tasks, the layerwise representation distance may better characterize
the distillation performance in COCO. By taking both distance metrics into consideration, rOPTIMA

performs well on both tasks.

A.7 Design of the Reward Distribution

Recall that we design the mean of the reward distribution (Eq. 7) as the exponential moving average
(EMA) of the past rewards. Figure 8 shows a hyper-parameter study on the halflife of the EMA,
computed as − 1

log2 γ . Halflife is the number of rounds the EMA decays by one-half. We can observe
that a too-large or too-small halflife, meaning that counting too many old rewards or counting only
instantaneous rewards can both be harmful to the student’s performance. This corroborates that the
actual contribution of each module is non-stationary in the long term and stationary in the short term,
and using EMA with an appropriate γ can correctly track the changing contribution.
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