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Abstract. Perhaps the most fundamental model in synthetic and sys-
tems biology for inferring pathways in metabolic reaction networks is a
metabolic factory : a system of reactions that starts from a set of source
compounds and produces a set of target molecules, while conserving or
not depleting intermediate metabolites. Finding a shortest factory—that
minimizes a sum of real-valued weights on its reactions to infer the most
likely pathway—is NP-complete. The current state-of-the-art for shortest
factories solves a mixed-integer linear program with a major drawback:
it requires the user to set a critical parameter, where too large a value
can make optimal solutions infeasible, while too small a value can yield
degenerate solutions due to numerical error.

We present the first robust algorithm for optimal factories that is
both parameter-free (relieving the user from determining a parameter
setting) and degeneracy-free (guaranteeing it finds an optimal nondegen-
erate solution). We also give for the first time a complete characterization
of the graph-theoretic structure of shortest factories via cuts of hyper-
graphs that reveals two important classes of degenerate solutions which
were overlooked and potentially output by the prior state-of-the-art. In
addition we settle the relationship between the two established pathway
models of hyperpaths and factories by proving that hyperpaths are actu-
ally a subclass of factories. Comprehensive experiments over all instances
from the standard metabolic reaction databases in the literature demon-
strate our algorithm is fast in practice, quickly finding optimal factories
in large real-world networks containing thousands of reactions.

A preliminary implementation of our algorithm for robust optimal
factories in a new tool called Freeia is available free for research use at
http://freeia.cs.arizona.edu.

1 Introduction

Metabolic pathways are cornerstones of synthetic and systems biology. They
inform metabolic engineering, govern cellular environmental response, and their
perturbation has been implicated in the cause of disease [19]. Reactions in such
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pathways are typically annotated with stoichiometry ratios for their participat-
ing molecules, that specify the relative number of copies that are consumed and
produced. Networks of metabolic pathways are traditionally represented using
conventional graphs [23,24], though such graphs do not accurately model multi-
way reactions that have multiple reactants and multiple products [8,22]. Directed
hypergraphs (a generalization of directed graphs) in contrast fully capture mul-
tiway reactions [8], and represent such a reaction by a single hyperedge, directed
from its set of input reactants to its set of output products.

A fundamental task on metabolic networks is to infer the most likely pathway
that produces specific target molecules from the source compounds available to
the cell, while not exhausting intermediate metabolites. Computationally this
corresponds to the shortest factory problem we consider here: Given a metabolic
network represented by a directed hypergraph with annotated stoichiometries,
and a set of sources and targets, find a metabolic factory (a collection of reactions
that conserve or do not deplete intermediate metabolites) that produces all the
targets from the sources, while minimizing a weighted sum over its reactions.

Next we briefly summarize related work, and then state our contributions.

Related Work. The two main hypergraph models for pathway inference in
metabolic networks are hyperpaths and factories. (For a further review, see [9].)

Hyperpaths informally are a set of reactions that produces all targets from the
sources, where the reactions can be ordered so that the inputs to each reaction
are produced as outputs of preceding reactions. Italiano and Nanni [6] proved
that finding shortest hyperpaths is NP-complete. Ritz et al. [20,21] gave the first
practical exact algorithm for acyclic shortest hyperpaths. Krieger and Kececioglu
developed the first methods for general shortest hyperpaths that allow cycles:
both an efficient heuristic that is close to optimal in practice [10,13,14], and a
practical exact algorithm that uses a cutting-plane approach [15–17].

Factories informally are a set of reactions that produces all targets from the
sources, while conserving or not depleting intermediate metabolites. Factories
have been studied in the context of min-source factories (which use the fewest
possible source compounds), and min-edge factories (which use the fewest pos-
sible reactions). Cottret et al. [4] proved that finding a min-source factory is
NP-complete, while Acuña et al. [1] and Andrade et al. [2] developed methods
to enumerate all min-source factories. Krieger and Kececioglu [12] proved that
finding a min-edge factory is NP-complete, and developed a practical exact algo-
rithm that finds optimal factories while also incorporating negative regulation.
All these methods (whether explicitly or implicitly) rely on specifying the value of
a critical parameter, whose default value can exclude valid factories. Furthermore
these methods may return degenerate solutions that are either non-physical, or
correspond to an equilibrium state where targets do not actually accrue.

We will unify these two pathway models—hyperpaths and factories—by later
proving that hyperpaths are in fact a subclass of factories.

Our Contributions. In contrast to prior work, we give the first robust method
for optimal factories that never fails due to poor parameter choices, and always
delivers nondegenerate solutions. We also resolve the relationship between hyper-



Computing Robust Optimal Metabolic Factories 255

paths and factories via a new structural characterization of shortest factories.
More specifically, we make the following contributions.

• We develop the first robust algorithm for shortest factories with no user-
specified parameters, whose solution is guaranteed to be nondegenerate.

• We derive the first complete characterization of the graph-theoretic structure
of reactions in shortest factories in terms of crossing hypergraph cuts.

• We leverage this characterization to unify the main hypergraph models for
pathway inference, showing hyperpaths are actually a subclass of factories.

• Our computational results reveal the current state-of-the-art fails to find fac-
tories when they exist, due to brittleness in default parameter settings.

• Our new algorithm is fast in practice, as comprehensively demonstrated on
the standard pathway databases, with a median runtime under 5 seconds.

A preliminary implementation of our robust algorithm for optimal factories
in a new tool called Freeia (short for “robust optimal factories in metabolic
reaction networks”) is freely available at http://freeia.cs.arizona.edu.

Plan of the Paper. The next section presents our new parameter-free algorithm
for optimal factories. Section 3 gives a complete characterization of the structure
of shortest factories, proves hyperpaths comprise a subclass of factories, and devel-
ops an algorithm for optimal nondegenerate factories. Section 4 evaluates our algo-
rithm on real biological benchmarks, highlighting instances where factories were
missed by the prior state-of-the-art. Finally Sect. 5 concludes.

2 Computing Optimal Parameter-Free Factories

We next provide the necessary background on factories and hypergraphs, and
then present our parameter-free algorithm for shortest factories.

2.1 Factories and Hypergraphs

Informally, a factory in a metabolic network is a collection of reactions that
produces a set of target molecules starting from a set of source compounds,
properly taking into account the stoichiometries of intermediate metabolites in
reactions. The reactions in the factory may form cycles, and effectively can pro-
ceed simultaneously. This is in contrast to the notion of a hyperpath, which is
also a collection of reactions that produces the targets from the sources, but
without taking into account stoichiometry, and whose reactions must have an
ordering in which for each successive reaction all its input reactants are formed
as output products of prior reactions in the ordering.

For the intermediate metabolites involved in a factory (the substances other
than sources and targets), the stoichiometry ratios for the input reactants and
output products of the factory’s reactions must be such that one of two conditions
are met: either intermediate metabolites neither build up nor get depleted as the

http://freeia.cs.arizona.edu
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factory continues to produce the targets, known as conservation; or intermediate
metabolites are allowed to build up, but not be depleted, known as accumulation.
Under conservation or accumulation, by continuously supplying just the source
compounds to the factory, all targets will be produced indefinitely.

To properly represent the reactions in a metabolic network, where a given
reaction can have multiple input reactants and multiple output products,
requires a generalization of ordinary directed graphs known as a directed hyper-
graph G = (V,E), consisting of a set of directed hyperedges E, corresponding
to the reactions of the network, and a set of vertices V , corresponding to the
substances participating in the reactions. Each hyperedge e ∈ E is an ordered
pair (X,Y ) where both X,Y ⊆ V are nonempty sets of vertices, and e is
directed from set X to set Y . Here X is called the tail of e, and Y is called
its head, given by functions tail(e) = X and head(e) = Y . We refer to the in-
edges of a vertex v ∈ V by in(v) = {e∈E : v∈head(e)}, and its out-edges by
out(v) = {e∈E : v∈tail(e)}.

For a reaction represented in hypergraph G by hyperedge e, the set tail(e) is
all its input reactants, while head(e) is all its output products. For a reversible
reaction, we represent it in G by a pair of hyperedges e = (X,Y ) and its reverse
hyperedge rev(e) = (Y,X). Typically for a metabolic network represented by
hypergraph G, the sources S ⊆V of the network are vertices with no in-edges,
while targets T ⊆V are often (but not always) vertices with no out-edges.

Figure 2 in Sect. 4.2 shows a directed hypergraph.
Key to metabolic factories is the notion of flux : the relative rate at which each

reaction is used in its forward direction by the factory. In a hypergraph, we rep-
resent the flux for a factory by a nonnegative real-valued vector f = (fe)e∈E with
all fe≥0. For a metabolic network represented by a hypergraph, the stoichiom-
etry ratios of the substances in the reactions of the network can be summarized
by stoichiometry matrix M = (rve)v∈V,e∈E where rve is the stoichiometry ratio
for substance v in reaction e. We express this quantity as rve := r+ve − r−

ve,
with r+ve being the nonnegative stoichiometry ratio for v ∈ head(e), where v is
produced as an output product of reaction e; and r−

ve being the nonnegative
ratio for v∈ tail(e), where v is consumed as an input reactant of e. In all other
cases, r+ve and r−

ve are zero. Their net difference in rve is positive when e produces
more v than it consumes, and negative in the opposite situation.

Using stoichiometry matrixM, we can express whether flux f for a factory sat-
isfies conservation or accumulation. For a set I⊆V of intermediate metabolites,
denote by M

∣∣
I
matrix M restricted to rows in I. Then matrix-vector product

M
∣∣
I
f is a vector giving for each intermediate metabolite v∈I the relative excess

of v produced by reactions in the factory under flux f. Condition M
∣∣
I
f = 0 cap-

tures conservation, while M
∣∣
I
f ≥ 0 captures accumulation.

A hyperedge e with nonzero flux fe>0 is called an active edge, meaning its
corresponding reaction is used by the factory.

We now formally define the problem of finding an optimal factory in a
metabolic network. This problem has two versions, according to whether we
require conservation or accumulation of intermediate metabolites.
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Definition 1 (Shortest Factory). The Shortest Factory problem is as follows.
The input is a metabolic network represented by hypergraph G = (V,E) with

stoichiometries M , sources S⊆V , targets T ⊆V −S, and edge weight function ω.
The output is nonnegative flux f such that: for all intermediate metabolites

I = V −
(
S ∪ T

)
, either accumulation M

∣∣
I
f ≥ 0, or conservation M

∣∣
I
f = 0

holds; for each target t ∈ T , the production requirement
∑

e∈ in(t) rte fe > 0 is
met; and the total weight of active hyperedges

∑
e∈E : fe>0 ω(e) is minimum. ⊓⊔

This finds a metabolic factory, given by flux f , that produces all targets T
from the sources S, while minimizing the total weight of its active edges. We call
this total active edge weight the length of the factory.

Figure 2 in Sect. 4.2 illustrates an optimal factory as well.
For nonuniform edge weights, under a simple likelihood model where P (e)

is the probability that reaction e occurs given its input reactants, and assum-
ing independence of reactions, a shortest factory for weights ω(e) = − logP (e)
corresponds to a metabolic factory of maximum likelihood.

For uniform edge weights, theMinimum-Hyperedge Factory problem is Short-
est Factory with unit weights ω(e)=1 for all e∈E. This finds a factory that uses
the least number of reactions, corresponding to a factory ofmaximum parsimony .
We call an optimal solution to this problem a min-edge factory.

Shortest Factory—even for unit edge weights—is NP-complete [12], so there
is likely no algorithm that finds optimal factories and is worst-case efficient.

We note that factories satisfying conservation tend to exist far less frequently
than factories satisfying accumulation, as shown in Sect. 4.1 through Table 2.

2.2 Parameter-Free Shortest Factories

We now give the first parameter-free algorithm for Shortest Factory, which solves
mixed-integer linear programs (MILPs). We first review the MILP for the state-
of-the-art parameter-based algorithm, then present the MILPs for our parameter-
free algorithm for min-edge factories, and finally extend it to weighted factories.

Parameter-Based Algorithm. Given an instance of Shortest Factory, the
current state-of-the-art parameter-based algorithm [12] constructs an MILP con-
sisting of variables, constraints, and an objective function, as we review below.

The variables are grouped into flux vector f = (fe)e∈E with real-valued
variables fe, and active-edge vector x = (xe)e∈E with integer-valued variables xe.

The basic constraints are in the following classes. The domain constraints are
0≤fe≤1 and 0≤xe≤1 for all hyperedges e∈E (which ensures xe ∈ {0, 1}). For
the intermediate metabolites I = V −

(
S ∪ T

)
, we have either the conservation

constraints M
∣∣
I
f = 0, or the accumulation constraints M

∣∣
I
f ≥ 0. For hyper-

edges e ∈ E, the active edge constraints xe ≥ fe ensure xe = 1 for an active
edge e with fe > 0. Lastly for pairs of reverse hyperedges e and rev(e) that model
a single reversible reaction, the reversible-reaction constraints xe + xrev(e) ≤ 1
prevent trivial cycles that send flux through both e and its reverse.

The objective function minimizes
∑

e∈E ω(e)xe, the total active edge weight.
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All prior methods for optimal factories [2,4,12,25] are parameter-based—
which explicitly or implicitly depend on a parameter that either must be set by
the user or is hard-coded into their implementation—and effectively use a target
production constraint for each target t∈T of the form

∑
e∈in(t) rte fe ≥ ϵ, for

a small target production constant ϵ > 0, to ensure their solution produces all
targets. (This nonzero ϵ is necessary because MILPs cannot accurately represent
strict inequalities of the form

∑
e rtefe > 0.) Such a dependence on parameter ϵ is

a serious shortcoming, as an ill-suited value for ϵ that is too large can prevent the
MILP solver from finding an optimal factory (when no optimal factory produces
that much of its targets with bounded fluxes), while a value too small can cause
the MILP solver to return an invalid factory (due to numerical rounding error).

Parameter-Free Algorithm. Instead our parameter-free algorithm overcomes
this through the following approach, using one additional variable, two additional
types of constraints, and now solving a small series of MILPs. We add a real-
valued variable δ, and for each target t∈T we replace the target production con-
straint by

∑
e∈in(t) rte fe ≥ δ. Then for Minimum-Hyperedge Factory, we add a

length constraint
∑

e∈E xe ≤ ℓ, for an integer ℓ that is determined below.
The new objective function now maximizes the value of variable δ.
Notice the objective function value δ∗ of an optimal solution to this newMILP

gives the maximum possible flux that can be sent to all the targets by a factory
with at most ℓ active hyperedges. If δ∗ is zero, we know there is no factory of length
at most ℓ that produces all the targets. Once we find the smallest ℓ for which δ∗

exceeds zero, we know we have found an optimal min-edge factory.
We can find the unknown length ℓ∗ of a min-edge factory in two phases, as

follows. The first phase uses doubling, starting from ℓ = 1, multiplying ℓ by a
factor of 2 in the next iteration, where each iteration solves an MILP instance of
the above form, until δ∗ for the current limit ℓ is greater than zero. This yields an
upper bound u on ℓ∗, satisfying u < 2ℓ∗. The second phase then performs binary
search on interval [0, u], again solving MILP instances as above, to find ℓ∗.

To find a min-edge factory, whose optimal number of reactions is k, this solves
just Θ(log k) instances of the above MILP. For a hypergraph of n vertices and
m hyperedges, each MILP instance has Θ(m) variables and Θ(m+n) constraints.

Extending to Weighted Factories. We can extend this further to factories
with positively weighted reactions. We use length constraint

∑
e ω(e)xe ≤ ℓ, for

real ℓ. Then given upper bound u on the shortest factory length, such as
∑

e ω(e),
we perform bisection on [0, u] to find optimal length ℓ∗. This yields a shortest
factory, for machine precision ϵ, after solving O

(
log(u/ϵ)

)
instances of MILPs.

3 Characterizing Optimal Factories

We next give a complete characterization of the structure of shortest factories,
that captures for the first time exactly which sets of reactions correspond to
optimal factories. We then relate hyperpaths to factories, showing they actually
comprise a subclass of metabolic factories. Finally we build on this characteriza-
tion to develop the first practical algorithm for optimal nondegenerate factories.
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3.1 The Structure of Shortest Factories

To simplify our structural characterization, we first note that the multiple-source
and multiple-target factory problem can be reduced to a simpler single-source
and single-sink version, where both problems are under accumulation. (We omit
the reduction due to page limits.) Consequently, the s, t-factory problem with a
single source s and a single sink t that we work with below is fully general—and
leads to a cleaner characterization.

We next define the notions of cuts, crossing a cut, reachability, cycles, and
intact sets that are essential to the characterization of factories. (The following
terminology is in distinction to the notions of strongly-crossing a cut and strong-
reachability that are defined for hyperpaths in Sect. 3.2.)

An s, t-cut of hypergraph G = (V,E) with source s∈V and sink t∈V−{s} is
a bipartition (C,C) of its vertices V , where C ⊆ V and C := V −C, with s∈C
and t∈C. We often refer to such a cut by just specifying its source-side C.

Hyperedge e weakly-crosses s, t-cut C if tail(e) ̸⊆ C and head(e) ̸⊆ C.
In other words, hyperedge e weakly-crosses source-sink cut C if some vertex
in tail(e) is on the source-side C, while some vertex in head(e) is on the sink-
side C. A set of hyperedges F weakly-crosses C if some e∈F weakly-crosses C.

Vertex w is weakly-reachable from vertex v by hyperedges F ⊆ E if v = w,
or recursively, if w ∈ head(e) for a hyperedge e ∈ F with a vertex in tail(e)
that is weakly-reachable from v by F . We also say F weakly-reaches w from v.
Similarly v is weakly-backward-reachable from w if F weakly-reaches w from v.

A cycle is a minimal set of hyperedges F ⊆ E where for all distinct e, f ∈ F
both of the following hold: F weakly-reaches some vertex in tail(f) from some
vertex in head(e), and vice versa F weakly-reaches some vertex in tail(e) from
some vertex in head(f). In other words, in a cycle, for every pair of hyperedges,
both are weakly-reachable from the other within the cycle (while this does not
hold for any proper subset of the cycle).

A set F ⊆ E is s, t-intact with respect to source s and sink t if F has an
in-edge to t, and an in-edge to every vertex other than s that is touched by F .
In other words, an intact set is closed with respect to in-edges, as the sink and
every vertex it touches other than the source has an in-edge within the set.

We now define the three solution classes that can arise as shortest factories.

Definition 2 (Trails, Whirls, and Eddies). Consider a directed hypergraph
G = (V,E) with source s ∈ V , sink t ∈ V −{s}, and hyperedge subset F ⊆ E.

An s, t-trail is an s, t-intact set F that weakly-crosses every s, t-cut.
An s, t-whirl is an s, t-intact set F that does not weakly-cross every s, t-cut,

but contains a cycle C ⊆ F that touches sink t and does not touch source s.
An s, t-eddy is an s, t-intact set F that does not weakly-cross every s, t-cut,

does not contain a cycle touching t and not s, but contains a cycle C ⊆ F that
touches neither s nor t yet touches a vertex from which F weakly-reaches t. ⊓⊔
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Fig. 1. The three classes of factories. Every shortest factory is either a trail (shown
in red), whirl (in blue), or eddy (in black). Conversely, every trail, whirl, or eddy is a
shortest factory for some edge weights and stoichiometries. A general factory instance
can always be reduced to an equivalent one with a single source s and a single target t.
(Color figure online)

Figure 1 illustrates these three classes. (Hyperedges are drawn to indicate
multiple head- and tail-vertices.) These classes are distinct, and together they
capture all s, t-intact sets (as the proof below shows).

We can now state our main theorem, which completely characterizes the
structure of the active hyperedges of shortest factories for general edge weights
and stoichiometries, where edge weights are arbitrary reals that can be negative.

(Due to page limits, we only give sketches of the proofs for the theorems in
this proceedings paper. Full proofs will appear in the journal paper.)

Theorem 1 (Characterization of Shortest Factories). Let G = (V,E) be
a hypergraph with source s ∈ V and sink t ∈ V −{s}. Then F ⊆ E is the set
of active hyperedges of a shortest s, t-factory in G under accumulation for some
edge weights and stoichiometries if and only if F is an s, t-trail, -whirl, or -eddy.

Proof. (Sketch) For the forward implication, accumulation forces the the active
hyperedges F of an s, t-factory to be s, t-intact. Start at sink t and collect the
set R ⊆ V of vertices weakly-backward-reachable from t by F . If s∈R, we can
show F weakly-crosses every s, t-cut, so F is an s, t-trail. Otherwise when s ̸∈ R,
set F does not weakly-cross all s, t-cuts, and on collecting R depth-first backward
from t, the backward search must encounter a cycle C ⊆ F ; this implies F is an
s, t-whirl or -eddy, which proves the forward implication.

For the reverse implication, given any s, t-intact set F , we construct flux f ,
edge weights ω, and stoichiometries M , as follows. For the flux, fe=1 if e∈F ;
otherwise fe=0. For the weights, ω(e)=−1 if e∈F ; otherwise ω(e)=1. For the
stoichiometries, M = (rve) for all v∈V and e∈E, with rve := r+ve − r−

ve, where:
r+ve = 1

/∣∣in(v) ∩ F
∣∣ if e∈ in(v)∩F , otherwise r+ve =0; and r−

ve = 1
/∣∣out(v) ∩ F

∣∣
if e ∈ out(v)∩F , otherwise r−

ve = 0. For this flux f , its active hyperedges are
exactly set F , and the flux into sink t is nonzero (as F is s, t-intact). One can
show that this flux f satisfies accumulation for these stoichiometries M , and
that for these edge weights ω, its active hyperedges F are a minimum-weight
s, t-factory. Thus F is the active hyperedge set of a shortest s, t-factory f under
accumulation for edge weights ω and stoichiometries M . Finally any s, t-trail,
-whirl, or -eddy is an s, t-intact set, which proves the reverse implication. ⊓⊔

Among the three classes of solutions in Theorem 1, only a trail corresponds
to a legitimate factory that produces the targets by supplying the sources.
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A whirl, for physically-valid stoichiometries that conserve mass, corresponds
to an equilibrium solution that just maintains the existing amount of targets
without increasing their production on supplying sources.

An eddy, whose active edges produce a nonzero amount of the targets without
consuming sources, is impossible under accumulation unless its reactions fail to
conserve mass, which can only arise when the network has been misannotated
with erroneous physically-invalid stoichiometries.

In brief, Theorem 1 reveals that a shortest factory solver may return a legit-
imate solution in the form of a trail—or a degenerate solution in the form of a
whirl or eddy, both of which have been overlooked by all prior approaches to
shortest factories, and potentially output as purported solutions. Later Sect. 3.3
presents the first algorithm that finds an optimal trail—guaranteeing it delivers
an optimal nondegenerate factory.

3.2 Hyperpaths Are Factories

An unexpected consequence of the characterization in Theorem 1 is that every
hyperpath is a factory—for some choice of stoichiometries. Here we show below
in Theorem 2 a much stronger result: that given a metabolic network G with
stoichiometries M , every s, t-hyperpath is an s, t-factory under accumulation—
for the fixed stoichiometries M of G. In other words, surprisingly, hyperpaths
are actually a subclass of factories.

Formally, an s, t-hyperpath is a minimal set P = {e1, . . . , ek} of hyperedges
that can be ordered so that tail(e1)={s}, head(ek)⊇ {t}, and for all 1<i≤ k,
hyperedge ei satisfies tail(ei) ⊆ {s} ∪

⋃
1≤j<i head(ej).We sayP strongly-reaches

t from s. Hyperedge e strongly-crosses cut C if tail(e) ⊆ C and head(e) ̸⊆ C.
Set S ⊆ E strongly-crosses cut C if some hyperedge e ∈ S does. Equivalently,
s, t-hyperpaths are exactly minimal sets that strongly-cross all s, t-cuts [16,17].

Theorem 2 (Hyperpaths Are Factories). Consider a directed hypergraph
G = (V,E) with source s∈V , sink t ∈ V − {s}, stoichiometries M , and any
s, t-hyperpath P ⊆ E. Then P is the set of active hyperedges of an s, t-factory
in G for M under accumulation.

Proof. (Sketch) Given s, t-hyperpath P , we construct a flux f whose active
hyperedges are exactly P with nonzero flux into t that satisfies accumulation
under M = (rve). The construction of f processes the edges of P = {p1, . . . , pk},
making use of their ordering p1 ≺ p2 ≺ . . . ≺ pk given by the definition of a
hyperpath, where it processes them in reverse order as successively pk, . . . , p2, p1.
For each hyperedge e∈E, define the following (possibly empty) subset of its head
byH(e) :=

{
v ∈ head(e) : rve > 0

}
− {s, t}. Let ϵ be any real value with ϵ > 0.

Before processing the hyperedges of P , initialize the flux to fe=0 for all e∈E.
Then when processing the next hyperedge e∈P in reverse order, set its flux by,

fe := max

{
ϵ, max

v ∈H(e)

{
−

∑

h∈P : h≻e

rvh fh

/
rve

}}
. (1)
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On setting fe by the above rule, we can show accumulation holds for all
v ∈ H(e).

With each hyperedge e = pi ∈ P , associate the following set Wi ⊆ V , con-
sisting of all vertices that are only in H-sets of the hyperedges pi, pi+1, . . . , pk
processed up through e: namely, Wi :=

⋃
h∈P :h≽e H(h) −

⋃
g∈P : g≺e H(g).

We can then prove by induction for decreasing i∈{k, . . . , 2, 1} that after pro-
cessing e=pi∈P by setting fe using (1), accumulation is satisfied for all v∈Wi.

Consequently after processing all e ∈ P , accumulation is satisfied for every
vertex in W1, which is all vertices touched by P except s and t. Any vertex not
touched by P trivially satisfies accumulation, as it has zero flux on all incident
hyperedges. When processing is finished, fe ≥ ϵ > 0 for e ∈ P , so there is nonzero
flux into t; also fe = 0 for e ̸∈ P . Thus f is an s, t-factory under accumulation
for G whose active hyperedges are exactly hyperpath P . ⊓⊔

An immediate consequence of Theorem 2 is that for any edge weights ω,
the length of a shortest s, t-factory is always at most the length of a shortest
s, t-hyperpath. So a min-edge factory can potentially use fewer reactions than
a hyperpath (but never more). Furthermore factories can potentially exist for
more sets of sources and targets than hyperpaths (but never fewer). The latter
is demonstrated empirically in Sect. 4.1 through Table 2.

3.3 Guaranteeing Nondegeneracy

We now give the first algorithm that is guaranteed to find an optimal nondegen-
erate factory under accumulation, which by our characterization theorem is an
optimal trail. This relies on a parameter-free algorithm for correctly finding a
shortest factory such as from Sect. 2.2 (that may return a degenerate solution),
which the nondegenerate algorithm calls as a subroutine.

Our approach to finding a shortest s, t-trail in essence generates next-best
s, t-factories f (1), f (2), . . . in order of increasing length ω

(
f (1)

)
≤ ω

(
f (2)

)
≤ · · ·,

stopping at the first f (i) whose active hyperedges form an s, t-trail. This f∗=f (i)

is a shortest s, t-trail, hence f∗ is output as an optimal nondegenerate s, t-factory.
Testing whether the active hyperedges F of a factory under accumulation

form an s, t-trail is equivalent to checking whether F weakly-reaches t from s.
(Under accumulation, the active hyperedges F of an s, t-factory are s, t-intact.
So it suffices to check whether F weakly-crosses all s, t-cuts, which is equivalent
to weak-reachability.) Determining whether t is weakly-reachable from s by F
can be done in time linear in the total size of hyperedge set F (see [10,13]). So
the key is how to generate factories by increasing length to find a shortest trail.

Given a shortest factory for a problem-instance P whose active hyperedges F
are a degenerate whirl or eddy, the next-best factory for P whose active hyper-
edges F ′ ̸= F are a trail must either: (1) use a proper subset of F , and other
hyperedges outside F to weakly-reach t from s; or (2) use a proper superset
of F . Hence we can find the best trail for P by solving these two subprob-
lems (1) and (2), which we call respectively P⊂

F and P⊃
F , finding a shortest trail

for both of P⊂
F and P⊃

F , and returning the better of these two trails.
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Table 1. Dataset Summaries

C Rud S Mue B Aph B Cic S Cer H Sap E Col Reactome

Vertices 263 314 460 700 936 1,618 1,877 20,458

Hyperedges 229 273 447 755 1,250 2,132 2,999 11,802

Sources 40 45 45 58 128 171 65 8,296

Targets 44 48 51 67 227 344 73 5,066

med max med max med max med max med max med max med max med max

Tail size 2 4 2 4 2 6 2 6 1 2 1 2 2 7 2 26

Head size 2 5 2 5 2 6 2 6 1 3 1 3 2 95 1 28

In-degree 1 41 1 49 1 67 1 156 1 15 1 13 1 806 1 1,056

Out-degree 1 64 1 72 1 104 1 142 1 8 1 18 1 511 1 1,167

We can solve subset subproblem P ′ :=P⊂
F , and superset subproblem P ′ :=P⊃

F ,
by constructing a modified MILP for the parameter-free algorithm, and examin-
ing its solution F ′. (We omit details of the modified MILP due to page limits.)
If F ′ is a trail, we can show it is an optimal solution to subproblem P ′. Otherwise,
we recursively solve the two further subproblems (P ′)⊂F ′ and (P ′)⊃F ′ .

We implement this whole process using a heap H of such subproblems, where
the priority of subproblem P on H is the length (or total weight) of the best
(possibly degenerate) factory for P found by the parameter-free algorithm. The
nondegenerate algorithm repeatedly extracts from H the subproblem P of min-
imum priority, and fetches the corresponding optimal factory f∗ for P. If f∗ is
a trail, the nondegenerate algorithm halts and outputs f∗. Otherwise, subprob-
lems P⊂

F and P⊃
F are inserted into H, and the algorithm continues.

This heap-based approach can find an optimal nondegenerate factory quickly,
when shortest factories have few hyperedges, and there are few near-optimal
factories—both of which are typically the case.

4 Experimental Results

We now present results from computational experiments on biological benchmark
datasets. We highlight an example of a shortest factory instance where the prior
state-of-the-art fails, and evaluate the speed of our parameter-free algorithm.
(In addition, we also performed experiments that investigated imputing unit
stoichiometry ratios, and further differences between the parameter-based and
parameter-free approaches, which will appear in the full journal paper.)

4.1 Experimental Setup

Datasets. We evaluate our parameter-free algorithm for shortest factories on
eight standard datasets, which we now briefly describe. (For a full description
of these datasets, and their transformation into hypergraphs, see [12].) Seven of
the datasets are metabolic networks for model organisms from MetExplore [3].
We use an abbreviation of the organism name to identify these datasets (namely,
first letter of genus, underscore, followed by first three letters of species). The
final dataset contains curated human signaling pathways from Reactome [7].
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Table 2. Target Instance Feasibility

C Rud S Mue B Aph B Cic vS Cer H Sap E Col Reactome

Target instances 40 48 51 67 142 344 73 5,066

Factory, accumulation 6 17 25 40 131 273 48 3,955

Factory, conservation 0 0 0 13 127 235 1 1,632

Hyperpath 0 0 2 1 129 267 1 2,432

We consider any vertex with no in-edges a source, and any vertex with no out-
edges a target. A problem instance then involves finding a factory (or hyperpath)
from all of the sources to a given target. (When computing hyperpaths, we
created a supersource, and a zero-weight hyperedge with the supersource as its
tail, and all source vertices in its head.)

Table 1 gives statistics on the hypergraphs constructed for each dataset,
listed in order of increasing size. Overall, the hypergraphs tend to have fewer
hyperedges than vertices, suggesting potentially low connectivity between nodes.

Table 2 reports for each dataset the number of instances having a factory
(either under accumulation or conservation), or a hyperpath. As expected, there
are more instances with factories under accumulation than under conservation,
and more instances with factories under accumulation than hyperpaths.

Implementation. Our new tool Freeia [18] implements the parameter-free
algorithm for min-edge factories from Sect. 2.2, though it first runs two heuristics
described below to quickly: (1) check feasibility, or the existence of any factory;
and (2) bound the minimum number of active hyperedges, potentially tightly.

The first heuristic tests feasibility by solving the parameter-free MILP from
Sect. 2.2, but without a length constraint on the number of active hyperedges.
If the objective function value of an optimal solution with no length constraint
is zero, Freeia reports no factory exists that produces the targets.

The second heuristic has two steps. It first runs Odinn [11] (the current state-
of-the-art for optimal factories, which may exclude valid factories due to its
parameter choice), to get an upper bound k̃ on the number of active hyperedges
in a min-edge factory. Then it solves the parameter-free MILP from Sect. 2.2
where its length constraint has ℓ := k̃−1. If the objective function under this
constraint is zero, we know Odinn’s solution is optimal, and is output by Freeia.
Otherwise, Freeia runs the full parameter-free algorithm with binary search.

Freeia comprises around 300 lines of Python code. For the experiments,
we used Mmunin [16] to compute shortest hyperpaths. For directed hypergraph
representations, we used Halp (https://github.com/Murali-group/halp). MILPs
were solved using CPLEX 12.6, run on an M1 processor with 8 GB of memory.

4.2 Freeia Finds Factories Missed by the Prior State-of-the-Art

The current state-of-the-art for min-edge factories (that produce the targets
using the fewest reactions) is Odinn [11,12], which has a target production

https://github.com/Murali-group/halp
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Fig. 2. Shortest factory to the target “Cholesterol” in Reactome. Sources are shown
along the top of the figure; the target is at the far right. Dashed hyperedges represent
transport between cellular compartments. The dotted curve from LDLRAP1 ending in
a disc indicates it is a positive regulator. All stoichiometry ratios are unit, except for
hyperedge e where “Fatty acid” and “Cholesterol” both have stoichiometry ratio 1,500.

parameter ϵ (settable by the user) that specifies the minimum amount of all
targets that must be produced by a legitimate factory. Assigning parameter ϵ
can be difficult, since setting it too high excludes factories that produce the tar-
get in a nonzero amount less than ϵ, while setting it too low allows for numerical
tolerances within CPLEX to exclude valid factories. Other methods for finding
optimal factories also have an equivalent parameter that instead upper bounds
the maximum allowable flux on any hyperedge. Freeia avoids these issues, and
includes all valid factories in its space of feasible solutions.

Figure 2 highlights an instance where Freeia finds an optimal factory, yet
Odinn (being parameter-based) reports no valid factory exists. The figure shows a
shortest factory to “Cholesterol” in the pathway “Transport of small molecules”
from Reactome. Sources are along the top of the figure, and the target is at the
far right. Dashed hyperedges represent transport from one cellular compartment
to another. The dotted portion of the hyperedge involving LDLRAP1 indicates
it acts as a positive regulator of this reaction. All stoichiometries are unit, except
on the final hyperedge to the target, where “Fatty acid” and “Cholesterol” each
have stoichiometry 1,500. Note that this factory is not a hyperpath, due to the
cycle involving LDLR (and no hyperpath for this target exists).

Biologically, the reactions in this pathway lead to the accumulation of excess
cholesterol in atherosclerosis [5]. The process begins with the migration of low
density lipoproteins (LDLs) across an injured artery endothelium, after binding
to the LDL receptor (LDLR). Once transported into the subendothelial space,
these LDLs undergo hydrolysis by lysosomal acid lipase (LIPA), causing a mas-
sive release of cholesterol and fatty acids.

Odinn fails to return a valid factory for this instance due to numerical issues
in CPLEX caused by the high stoichiometry ratio for Cholesterol on its in-edge e.
(We note that this stoichiometry ratio may be an incorrect annotation.) The
default value for the target production parameter in Odinn is ϵ := 5 × 10−4,
meaning a factory is feasible only if it produces target t in quantity at least ϵ.
This high stoichiometry ratio allows sufficient target production with a very small
amount of flux on final hyperedge e, namely fe = ϵ

/
rte = 3 × 10−7. In Odinn,
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Table 3. Running Time

C Rud S Mue B Aph B Cic S Cer H Sap E Col Reactome

med max med max med max med max med max med max med vmax med max

Freeia, accum. 0.1 0.1 0.1 0.2 0.1 0.5 0.2 28 0.1 0.4 0.3 2.3 37 3,168 4.4 4,141

Odinn, accum. 0.1 0.1 0.1 0.1 0.1 0.2 0.1 2.3 0.1 0.1 0.1 0.2 3.1 2,943 3.1 6.6

Freeia, conserv. † † † † † † 0.2 0.5 0.2 47 0.4 75 0.7 0.7 4.3 97

Odinn, conserv. † † † † † † 0.1 0.1 0.1 0.3 0.1 0.5 0.2 0.2 2.9 4.1

Mmunin † † † † 0.1 0.1 0.1 0.1 0.1 525 0.1 314 0.1 0.1 9 776

† Either no factory under conservation, or no hyperpath, exists for any target in this dataset.

Time is in seconds.

each hyperedge e in the hypergraph has both a real-valued variable fe, giving
the flux on e, and an integer-valued variable xe, indicating whether e is active.
(Odinn minimizes its number of active hyperedges.) These variables are related
by constraint xe ≥ fe, which should force xe = 1 when fe > 0. Unfortunately
due to numerical tolerances in CPLEX, small values for fe do not force xe=1, so
hyperedge e is not considered active, and Odinn fails to output a valid factory.

Strikingly, we experimentally confirmed that there is no default value for the
target production parameter ϵ at which Odinn returns an optimal factory for
all instances in Reactome. The largest possible value for ϵ was calculated using
Freeia, where the objective function value of our parameter-free MILP gives
an upper bound on target production for any factory with an optimal number
of reactions. (For any higher ϵ-value, Odinn either returns a suboptimal factory
that creates the target in a larger quantity, or reports no factory exists.) The
smallest value for ϵ was found by running Odinn and observing when CPLEX
returned an invalid factory due to numerical errors. The following table lists, for
various ϵ-values, the number of Reactome instances on which Odinn experiences
the following failure modes: finding an invalid factory, when ϵ is too low; or a
suboptimal factory, or no factory, when ϵ is too high.

Target production parameter ϵ ≤10−5 5×10−4 0.0125 0.025 0.05 0.1 0.2 0.4 0.8

Odinn failures (out of 5,066 instances) all 1 2 15 35 143 378 714 1,040

More precisely, Odinn fails on at least one Reactome instance for every pos-
sible ϵ-value: it fails on the instance from Fig. 2 for ϵ ≤ 0.03, and fails on a
separate instance for ϵ≥ 0.0125. In distinction, Freeia never returns invalid or
suboptimal solutions, or reports no solution exists on an instance with a valid
factory.

4.3 Speed of Computing Parameter-Free Factories

Computing robust optimal factories with Freeia is fast in practice, with a
median running time across all instances of under five seconds. Table 3 com-
pares running times on datasets for: Freeia, our new parameter-free tool; Odinn,
the prior state-of-the-art for optimal factories; and Mmunin, the current state-
of-the-art for shortest hyperpaths. (Running times are reported in seconds.) For
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all datasets except E Col and Reactome, the Freeia tool has median running
time under a second, with its maximum time just over a minute. For the more
challenging datasets, Freeia maintains a fast median time, but its maximum
time rises to just over an hour for an isolated instance in Reactome. The time
for these longer-running instances is typically dominated by solving the MILP
from the second heuristic implemented in Freeia, which checks if a valid fac-
tory exists with one-fewer active hyperedge than Odinn’s factory. We noticed
that the computational cost of this MILP typically scales with the number of
active hyperedges in an optimal factory, and that the shortest factory for any
instance taking more than 1,000 seconds contains at least 20 hyperedges.

Surprisingly, Freeia tends to be faster than finding shortest hyperpaths with
Mmunin. This is interesting, since by Theorem 2 every hyperpath is a factory,
which implies that for any instance its space of feasible factories is larger than of
feasible hyperpaths. This difference in running time appears due to algorithmic
differences in Mmunin and Freeia, as Mmunin typically solves more MILPs per
instance than Freeia (though Freeia’s MILPs occasionally take longer to solve).

5 Conclusion

We have presented the first robust algorithm for optimal factories, that is free of
parameter settings and guarantees nondegeneracy. We also for the first time char-
acterized the graph-theoretic structure of shortest factories, establishing hyper-
paths are a subclass of factories. Comprehensive experiments demonstrate our
algorithm is fast in practice, and finds solutions missed by the prior state-of-the-
art.

Further Research. A major open problem is the characterization of shortest
factories for the case of positive edge weights (which arise under both parsimony
and maximum likelihood). While there is likely no constant-factor approximation
algorithm for Shortest Factory (since its NP-completeness proof [12] shows it is
as hard to approximate as Set Cover), a fast heuristic for shortest factories (like
for shortest hyperpaths [13]) would be useful, since all current approaches solve
mixed-integer linear programs, whose time could potentially explode in practice.
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