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Abstract. In the first part of the paper we survey several results from Popa’s deforma-
tion/rigidity theory on the classification of tensor product decompositions of large natural classes
of II1 factors. Using a mélange of techniques from deformation/rigidity theory, model theory,
and the recent works [CIOS21,CDI22] we highlight an uncountable family of existentially closed
II1 factors M which do not admit tensor product decompositions M = P⊗Q into diffuse factors
where Q is full. In the last section we discuss several open problems regarding the structural
theory of existentially closed factors.

1. Introduction

A von Neumann algebra is an algebra of bounded linear operators on a Hilbert space which
is closed under the adjoint operation and in the weak operator topology. A central theme in
operator algebras is the study of tensor product decompositions of II1 factors: indecomposable
infinite dimensional von Neumann algebras which admit a trace. A II1 factor which does not
admit a tensor product decomposition into diffuse factors is called prime. Using the notion of
∗-orthogonal von Neumann algebras, Popa showed in [Po83] that the II1 factor L(FS) arising
from the free group FS with uncountably many generators S is prime. Using Voiculescu’s free
probability theory, Ge obtained the first examples of separable prime II1 factors by showing that
the free group factors L(Fn), with n ≥ 2, have this property [Ge96].

These results have been since generalized and strengthened in several ways. Ozawa used strong
C∗-algebraic techniques to prove that for any icc hyperbolic group Γ, the II1 factor L(Γ) is
solid, meaning that the relative commutant of any diffuse subalgebra is amenable [Oz03]. By
developing a new approach approach on closable derivations, Peterson showed primeness of L(Γ),
whenever Γ is any nonamenable icc group with positive first Betti number [Pe06]. Using the
framework of his powerful deformation/rigidity theory, Popa gave a new proof of the solidity of
L(Fn) [Po06b]. Subsequently, an intense activity in the study of tensor product decompositions
of II1 factors led to a plethora of new examples of prime II1 factors arising from various classes
of countable groups and their measure preserving actions [Oz04,Po06a,CI08,CH08,Va10b,Bo12,
HV12,DI12,CKP14,Ho15,DHI16,CdSS17,Dr19a, IM19].

In most of these results, the groups Γ for which L(Γ) was proven to be prime either satisfy
an algebraic assumption (e.g. Γ is an amalgamated free product group or a wreath product
group) or have some “rank one” properties (e.g., Γ is a lattice in a rank one simple Lie group

2010 Mathematics Subject Classification. 46L10; 03C66; 22D55; 46L36.
Key words and phrases. II1 factor, full factor, McDuff factor, s-prime factor, property (T), Popa’s intertwining

by bimodules techniques, finite index inclusions of von Neumann algebras, wreath-like product group, tracial
wreath-like product von Neumann algebra, tensor product of von Neumann algebras, spectral gap property,
existentially closed factor, embedding universality.

I.C. was partially supported by NSF Grants DMS-2154637 and FRG-DMS-1854194; D.D. was supported by the
postdoctoral fellowship fundamental research 12T5221N of the Research Foundation Flanders; A.I. was partially
supported by NSF Grants DMS-2153805 and FRG-DMS-#1854074, and a Simons Fellowship.

1



2 I. CHIFAN, D. DRIMBE, AND A. IOANA

or admits a certain unbounded quasi-cocycle). On the other hand, the primeness problem for
higher rank lattices is wide open. A general conjecture predicts that any icc irreducible lattice
Γ in a product G1×· · ·×Gn of connected non-compact simple real Lie groups with finite center
gives rise to a prime II1 factor [Io17, Problem V]. This is a von Neumann algebraic counterpart
of the fact, implied by Margulis’ normal subgroup theorem (see [Zi84, Theorem 8.1.1]), that
Γ does not admit any direct product decomposition into infinite groups. Using methods from
Popa’s deformation/rigidity theory, this conjecture has been confirmed when G1, . . . , Gn have
rank one [DHI16]. On the other hand, when at least one of the groups G1, . . . , Gn has rank
greater than one, the conjecture is notoriously hard. Some positive evidence in this case has
been obtained in [IM19]. Using results from [Io08, BIP18], it was shown in [IM19] that any
profinite free ergodic probability measure preserving action of Γ gives rise to a prime II1 factor.

The first main goal of the paper is to discuss Popa’s deformation/rigidity theory. This is a
remarkable framework that, starting in the early 2000s, has led to unprecedented progress in
the theory of von Neumann algebras (see the survey papers [Po07, Va10, Io12, Io17]). At the
heart of Popa’s theory is the innovative idea of using deformations of II1 factors to locate rigid
subalgebras. We briefly explain this principle in Section 3 and, in addition, we present Popa’s
proof [Po06b] of Ozawa’s solidity result [Oz03] of the free group factors.

The second main goal of this paper is to study tensor product decompositions for certain natural
families of II1 factors arising from model theory [GHS13,FGHS16]. To motivate our results, we
recall that existentially closed groups are simple [HS88] and as such do not admit any nontrivial
direct or semi-direct product decompositions. Since existentially closed factors are von Neumann
algebraic analogues of existentially closed groups, it is reasonable to expect they share similar
indecomposability properties. It is known that existentially closed factors M are McDuff, i.e.
M ∼=M⊗̄R where R is the hyperfinite II1 factor, [GHS13], but not strongly McDuff1, i.e. M does
not admit a tensor product decomposition B⊗̄R with B a full II1 factor and R the hyperfinite
II1 factor, [AGKE20]. However, besides this result, little is known regarding possible tensor
decompositions of existentially closed factors.

In this paper we make progress on this problem by obtaining in Sections 6 and 7 a series
of tensor indecomposability results for existentially closed factors. First, by building upon
[CIOS21, CDI22] (see Section 4) and using Popa’s deformation/rigidity theory we provide in
Theorem 7.1 an uncountable family of existentially closed II1 factors M that do not admit
tensor product decompositions M = P⊗Q into diffuse factors with Q full. In fact, we believe
that this property holds for any existentially closed factor M and we provide several instances
when it holds under certain additional assumptions on P or Q. For instance, we establish
the property whenever Q is a group von Neumann algebra of a non-inner amenable group, see
Theorem 7.6. Finally, we conclude our paper by proposing in Section 8 several open problems
regarding the structure of existentially closed factors beyond tensor indecomposability.

2. Preliminaries on von Neumann Algebras

2.1. Terminology. A tracial von Neumann algebra is a pair (M, τ) consisting of a von Neumann
algebra M and a faithful normal tracial state τ : M → C. This induces a norm on M by the
formula ∥x∥2 = τ(x∗x)1/2, for all x ∈ M . We denote by U (M) the group of unitary elements
of M , by Z(M) the center of M and by Aut(M) the group of τ -preserving automorphisms of
M . For u ∈ U (M), we denote by Ad(u) ∈ Aut(M) the inner automorphism of M given by
Ad(u)(x) = uxu∗. The group of all inner automorphisms of M is denoted by Inn(M). For a

1This terminology was introduced by Popa in [Po09].
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set I, we denote by (M I , τ) the tensor product tracial von Neumann algebra ⊗i∈I(M, τ). For

J ⊂ I, we view MJ ⊂M I , in the natural way. For i ∈ I, we write M i instead of M{i}.

All inclusions P ⊂M of von Neumann algebras are assumed unital unless otherwise stated. We
denote by EP : M → P the unique τ -preserving conditional expectation from M onto P , by
eP : L2(M) → L2(P ) the orthogonal projection onto L2(P ) and by ⟨M, eP ⟩ the Jones’ basic
construction of P ⊂ M . We also denote by P ′ ∩M = {x ∈ M : xy = yx, for all y ∈ P} the
relative commutant of P in M and by NM (P ) = {u ∈ U (M) : uPu∗ = P} the normalizer of
P in M . For two von Neumann subalgebras P1, P2 ⊂M , we denote by P1 ∨ P2 = W ∗(P1 ∪ P2)
the von Neumann algebra generated by P1 and P2.

Let ω be a free ultrafilter on N. Consider the C∗-algebra ℓ∞(N,M) = {(xn)n ⊂M : supn ∥xn∥ <
∞} and its closed ideal I = {(xn)n ∈ ℓ∞(N,M) : limn→ω ∥xn∥2 = 0}. The ultrapower of M
is the tracial von Neumann algebra Mω := ℓ∞(N,M)/I whose canonical trace is given by
τω(x) = limn→ω τ(xn), for any x = (xn)n ∈Mω.

Finally, for any positive integer n, we denote by 1, n the set {1, . . . , n}.

2.2. Finite index inclusions of von Neumann algebras. The Jones index for an inclusion
P ⊆ M of II1 factors is the dimension of L2(M) as a left P -module [Jo81]. Pimsner and Popa
defined a probabilistic notion of index for an inclusion P ⊆M of arbitrary von Neumann algebras
with conditional expectation, which extends Jones’ index for inclusions of II1 factors [PP86,
Theorem 2.2]. Specifically, the inclusion P ⊆M of tracial von Neumann algebras is said to have
probabilistic index [M : P ] = λ−1, where

λ = inf{∥EP (x)∥22∥x∥−2
2 : x ∈M+, x ̸= 0}.

Here we use the convention that 1
0 = ∞.

We continue by recording several basic facts from the literature concerning finite index inclusions
of von Neumann algebras which we will use in the proofs of our main results in Sections 5
and 7. First, recall that a von Neumann algebra M is called completely atomic if 1 is an
orthogonal sum of minimal projections in M . The first three items are essentially contained
in [Po95] and we refer the reader to [CdSS17, Proposition 2.3] for a proof. The fourth item is
precisely [Jo81, Proposition 2.1.15], while the last one follows directly from the definition.

Proposition 2.1. Let N ⊂M be an inclusion of tracial von Neumann algebras with [M : N ] <
∞ and P a tracial factor. Then the following hold:

(1) If p ∈ N is a non-zero projection, then [pMp : pNp] <∞.
(2) If N is a factor and r ∈ N ′ ∩M is a non-zero projection, then [rMr : Nr] <∞.
(3) If Z(M) is completely atomic, then Z(N) is completely atomic.
(4) If M and N are factors, then [M⊗̄P : N⊗̄P ] <∞.
(5) Let R ⊂ N be a von Neumann subalgebra satisfying [N : R] <∞. Then [M : R] = [M :

N ][N : R].

We end this section by recalling two more results on finite index inclusions, that will be essential
to deriving our main results in Section 7.

Lemma 2.2 ( [Po02, Lemma 3.1]). Let P ⊂ Q ⊂ M be an inclusion of tracial von Neumann
algebras such that P ⊆ Q is a finite index inclusion of II1 factors. Then [P ′∩M : Q′∩M ] <∞.

Lemma 2.3 ( [CIK13, Lemma 2.3]). Let M,N ⊆ P be von Neumann algebras. Let M0 be the
von Neumann algebra generated by EN (M) inside N , M0 := EN (M)′′ ⊆ N . If [P : M ] < ∞,
then [N :M0] <∞.
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2.3. Popa’s intertwining techniques. Almost two decades ago, S. Popa introduced in [Po03,
Theorem 2.1 and Corollary 2.3] a powerful analytic criterion for identifying intertwiners be-
tween arbitrary subalgebras of tracial von Neumann algebras, see Theorem 2.4 below. This
technique, known as Popa’s intertwining-by-bimodules technique, has played an essential role in
the classification of von Neumann algebras program via Popa’s deformation/rigidity theory.

Theorem 2.4. [Po03] Let (M, τ) be a tracial von Neumann algebra and let P,Q ⊆M be (not
necessarily unital) von Neumann subalgebras. Then the following are equivalent:

(1) There exist projections p ∈ P, q ∈ Q, a ∗-homomorphism θ : pPp → qQq and a partial
isometry 0 ̸= v ∈M such that v∗v ≤ p, vv∗ ≤ q and θ(x)v = vx, for all x ∈ pPp.

(2) For any group G ⊂ U (P ) such that G′′ = P there is no net (un)n ⊂ G satisfying
∥EQ(xuny)∥2 → 0, for all x, y ∈M .

(3) There exist finitely many xi, yi ∈ M and C > 0 such that
∑

i ∥EQ(xiuyi)∥22 ≥ C for all
u ∈ U (P ).

(4) There exists a non-zero projection f ∈ P ′ ∩ ⟨M, eQ⟩ such that Tr(f) <∞.

(5) There exists a P -Q-subbimodule H of 1PL
2(M)1Q such that dim(HQ) < +∞.

If one of the three equivalent conditions from Theorem 2.4 holds, then we say that a corner of
P embeds into Q inside M , and write P ≺M Q. If we moreover have that Pp′ ≺M Q, for any
projection 0 ̸= p′ ∈ P ′ ∩ 1PM1P , then we write P ≺s

M Q (where the superscript “s” stands for
strong).

For further use, we recall several useful intertwining results for von Neumann subalgebras.

Lemma 2.5. Let (M, τ) be a tracial von Neumann algebra and P ⊂ pMp, Q ⊂ qMq, R ⊂ rMr
be von Neumann subalgebras, where p, q, r ∈M are projections. Then the following hold.

(1) [DHI16, Lemma 2.4(2)] If Pz ≺M Q for any non-zero projection z ∈ NpMp(P )
′ ∩M ,

then P ≺s
M Q.

(2) [DHI16, Lemma 2.4(3)] Assume P ≺M Q. Then there is a non-zero projection z ∈
NpMp(P )

′ ∩M such that Pz ≺s
M Q.

(3) [Va08, Lemma 3.5] If P ≺M Q, then Q′ ∩ qMq ≺M P ′ ∩ pMp.
(4) [Va08, Lemma 3.7] If P ≺M Q and Q ≺s

M R, then P ≺M R.
(5) If S ⊆ P is a finite index von Neumann subalgebra, then S ≺M R if and only if P ≺M R.

Lemma 2.6. [PP86, Lemma 2.3] Let N ⊂M be an inclusion of tracial von Neumann algebras
satisyfing [M : N ] <∞. The following hold:

(1) M ≺s
M N .

(2) If Z(N) is completely atomic, then M ≺M Nq, for any non-zero projection q ∈ N ′ ∩M .

For proofs of (1) and (2) we refer the reader to [CIK13, Lemma 2.4] and [Dr19b, Lemma 2.11],
respectively.

We end this section with the following elementary lemma. For completeness, we also include a
short proof and refer the reader to Definition 4.5 for the notion of cocycle action.

Lemma 2.7. Let Γ ↷σ,α A be a cocycle action and let M = A⋊σ,α Γ the corresponding twisted
crossed product von Neumann algebra. Then M ≺M A if and only if Γ is finite.

Proof. If Γ is finite then A ⊆M has finite index and thus Lemma 2.6(1) implies that M ≺M A.

To see the converse assume M ≺M A. Then part (3) in Theorem 2.4 implies the exis-

tence of finitely many x1, . . . , xn, y1, . . . , yn ∈ M and C > 0 such that
∑k

i=1 ∥EA(xiugyi)∥22 ≥
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C, for all g ∈ Γ. Approximating xi and yi, via the Kaplansky Density Theorem, by elements in
the ∗-algebra generated by the linear span of AΓ, this inequality further implies the existence
of an integer l ≥ k, a constant C ′ > 0, and x′i = aiugi , y

′
i = biuhi

, where ai, bi ∈ A and gi, hi ∈ Γ

for all i ∈ 1, l, such that

(2.1)
l∑

i=1

∥EA(x
′
iugy

′
i)∥22 ≥ C ′, for all g ∈ Γ.

Now notice that EA(x
′
iugy

′
i) = aiEA(ugiuguhi

)σh−1
i
(bi) = aiEA(α(gi, g)α(gig, hi)ugighi

)σh−1
i
(bi) =

τ(ugighi
)aiα(gi, g)α(gig, hi)σh−1

i
(bi). Since α(gi, g)α(gig, hi) ∈ U (A), basic estimates further

imply that ∥EA(x
′
iugy

′
i)∥2 ≤ ∥ai∥∞∥bi∥∞|τ(ugighi

)| = δgighi,1∥ai∥∞∥bi∥∞. Combining this with
relation (2.1) we get

l∑
i=1

δgighi,1 ≥
C ′

maxli=1 ∥ai∥∞∥bi∥∞
> 0.

This implies Γ ⊆ {g−1
i h−1

i : i ∈ 1, l}, entailing Γ is finite. □

2.4. Relative amenability and weak containment of bimodules. A tracial von Neumann
algebra (M, τ) is amenable if there exists a net (ξn)n ∈ L2(M) ⊗ L2(M) such that ⟨xξn, ξn⟩ →
τ(x) and ∥xξn − ξnx∥2 → 0, for all x ∈ M . Connes’ celebrated classification of amenable
factors [Co76] shows that M is amenable if and only if M is approximately finite dimensional.

Next, we recall the notion of relative amenability introduced by Ozawa and Popa in [OP07]. Let
(M, τ) be a tracial von Neumann algebra. Let p ∈M be a projection and P ⊂ pMp,Q ⊂M be
von Neumann subalgebras. Following [OP07, Section 2.2], we say that P is amenable relative to
Q inside M if there exists a net (ξn)n ∈ L2(⟨M, eQ⟩) such that ⟨xξn, ξn⟩ → τ(x) for all x ∈ pMp
and ∥yξn − ξny∥2 → 0, for all y ∈ P . It is a fact that P is amenable relative to C inside M if
and only if P is amenable.

Let M,N be tracial von Neumann algebras. An M -N -bimodule MHN is a Hilbert space H
equipped with two commuting normal unital ∗-homomorphisms M → B(H) and Nop → B(H).
If M = N , we say, for simplicity, that MHM is an M -bimodule. For two bimodules MHN and

MKN , we say that MHN is weakly contained in MKN if for any ϵ > 0, finite sets F ⊂M,G ⊂ N
and ξ ∈ H, there exist η1, . . . , ηn ∈ K such that

|⟨xξy, ξ⟩ −
n∑

i=1

⟨xηiy, ηi⟩| ≤ ϵ, for all x ∈ F and y ∈ G.

Examples of bimodules include the trivialM -bimodule ML
2(M)M and the coarseM -N -bimodule

ML
2(M)⊗ L2(N)N .

Finally, it is a fact that a subalgebra P ⊂ pMp is amenable relative to Q inside M if and only
if PL

2(pM)M is weakly contained in PL
2(⟨M, eQ⟩)M (see for instance [AP22, Theorem 13.4.4]).

3. Popa’s Deformation/Rigidity Theory

3.1. Deformations. In the last two decades, Popa’s deformation/rigidity theory has led to
unprecedented progress in the theory of von Neumann algebras, see the survey papers [Po07,
Va10, Io12, Io17]. Popa’s theory is centered on the remarkable idea of using deformations of II1
factors to locate rigid subalgebras. In Theorem 3.6 we will illustrate this principle by presenting
Popa’s proof [Po06b] of Ozawa’s solidity result [Oz03] for the free group factors. First, we make
precise the notion of a deformation.
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Definition 3.1. A deformation of the identity of a tracial von Neumann algebra (M, τ) is a
sequence of unital, trace preserving, completely positive maps ϕn :M →M satisfying ∥ϕn(x)−
x∥2 → 0, for all x ∈M.

A linear map ϕ : M → M is called completely positive if the amplification ϕ(m) : Mm(C) →
Mm(C) given by ϕ(m)([xi,j ]) = [ϕ(xi,j)] is positive, for any m ≥ 1.

Before presenting some examples of deformations, we recall some terminology. Let (M, τ) be a
tracial separable von Neumann algebra. A map ϕ : M → M is called subunital if ϕ(1) ≤ 1 and
subtracial if τ ◦ϕ ≤ τ . For a von Neumann subalgebra P ⊂M , the map ϕ is called P -bimodular
if ϕ(axb) = aϕ(x)b, for all a, b ∈ P and x ∈ M . Let P ⊂ M be a von Neumann subalgebra.
Following [Po01, Section 2], we say thatM has the Haagerup property relative to P if there exists
a sequence of normal subunital subtracial completely positive P -bimodular maps ϕn : M → M
such that ∥ϕn(x)−x∥2 → 0, for any x ∈M and such that every ϕn satisfies the following relative
compactness property: if (wk)k is a sequence of unitaries in M satisfying ∥EP (awny)∥2 → 0, for
all a, b ∈M , then ∥ϕn(wk)∥2 → 0 when k → ∞.

Next, we continue by presenting two examples of deformations. For a comprehensive list of
examples, we refer the reader to [Io12, Section 3] (see also [Io17, Section 3]). The first one was
used by Popa by using the Haagerup property to show that certain von Neumann algebras have
trivial fundamental group [Po01], thereby solving a longstanding question in operator algebras.

Example 3.2. Let Γ ↷ (X,µ) be a probability measure preserving action of a countable group
and let φn : Γ → C be a sequence of positive definite functions such that φn(g) → 1, for all
g ∈ Γ. Then the sequence ϕn : L∞(X) ⋊ Γ → L∞(X) ⋊ Γ given by ϕn(aug) = φn(g)aug is a
deformation of the identity of L∞(X)⋊ Γ.

If Γ has the Haagerup property [Ha79] (which is equivalent to L(Γ) having the Haagerup property
relative to C), one can choose φn : Γ → C to satisfy φn ∈ c0(Γ), for any n. In addition, if
Γ = SL2(Z), then the the sequence ϕn is a deformation of the II1 factor M = L∞(T2)⋊SL2(Z)
which witnesses the fact that M has the Haagerup property relative to L∞(T2). This fact is an
essential ingredient in Popa’s proof that M has trivial fundamental group.

Now, we now turn our attention to the foundational notions of malleable and s-malleable de-
formations introduced by Popa in [Po01, Po03] which consists of a special path of completely
positive maps. This novel concept was used with great effect in classifying large classes of factors.

Definition 3.3. Let (M, τ) be a tracial von Neumannn algebra. A pair (M̃, (αt)t∈R) is called
a malleable deformation of M if the following conditions hold:

(1) (M̃, τ̃) is a tracial von Neumann algebra such that M ⊂ M̃ and τ = τ̃|M ,

(2) (αt)t∈R ⊂ Aut(M̃, τ̃) is a 1-parameter group with limt→0 ∥αt(x) − x∥2 = 0, for any

x ∈ M̃,
(3) αt does not converge uniformly to the identity on (M)1 as t→ 0.

In addition, if also the following condition holds

(4) There exists β ∈ Aut(M̃, τ̃) that satisfies β|M = IdM , β2 = IdM̃ and βαt = α−tβ, for
any t ∈ R.

then (M̃, (αt)t∈R, β) is called an s-malleable deformation of M .

There are several natural classes of von Neumann algebras that admit (s-)malleable deforma-
tions:
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• Free group factors, and more generally, amalgamated free product von Neumann algebras
[Po86,Po06b, IPP05].

• HNN extensions von Neumann algebras [FV10].
• Wreath products von Neumann algebras [Po03,Po05, Io06].
• Von Neumann algebras that are constructed from trace preserving action of groups that
admit unbounded cocycles valued into various orthogonal representations, [Si10].

• Von Neumann algebras that admit certain unbounded closable derivations [DI12].

Our second deformation that we concretely exemplify is the malleable deformation of free groups
factors which was used by Popa [Po06b] to prove Ozawa’s solidity result [Oz03] for free group
factors.

Example 3.4. Free group factors admit natural malleable deformations as follows [Po06b]. For
simplicity, we recall the deformation of the group factor M = L(Fn) with 2 ≤ n ≤ ∞. Let

{ak}nk=1 ∪ {bk}nk=1 be the generators of F2n and denote M̃ = M ∗M . By viewing Fn as the

subgroup of F2n generated by {ak}nk=1, we obtain an embedding of M inside M̃ . We denote

still by {ak}nk=1 ∪{bk}nk=1 the canonical unitaries in M̃ . We now construct a 1-parameter group

of automorphisms (αt)t∈R of M̃ as follows. Let {hk}nk=1 ⊂ M̃ be hermitian elements such that
bk = exp(ihk), for any k ∈ 1, n.

For every t ∈ R, we define a trace preserving automorphism αt of M̃ by letting:

αt(ak) = exp(ithk)ak, αt(bk) = bk, for every k ∈ 1, n.

In fact, this malleable deformation is s-malleable as witnessed by defining a trace preserving
automorphism β of M̃ by letting:

β(ak) = ak, β(bk) = b∗k, for every k ∈ 1, n.

3.2. Deformation versus Rigidity. An important concept in deformation/rigidity theory and
a main source of rigidity is the notion of property (T) for von Neumann algebras introduced
by Connes and Jonnes [CJ85] and its relative version for inclusions of von Neumann algebras
defined by Popa [Po01].

Definition 3.5. An inclusion of tracial von Neumann algebras P ⊂M has the relative property
(T) if any deformation ϕn :M →M of the identity must converge uniformly to the identity on
the unit ball of P . A tracial von Neumann algebra M has property (T) if the inclusion M ⊂M
has relative property (T).

Relative property (T) should be thought of as rigidity by noticing that no property (T) von
Neumann algebra can have “lots” of deformations. To exemplify this, we note that if a tracial von
Neumann algebra M has property (T) and the Haagerup property relative to C (which provides
“non-trivial” deformations), then M is completely atomic. Indeed, using the Haagerup property
we let ϕn :M →M be a sequence of normal subunital subtracial completely positive maps such
that ∥ϕn(x)− x∥2 → 0, for any x ∈ M , and every ϕn satisfies ∥ϕn(wk)∥2 → 0 for any sequence
of unitaries (wk)k in M that weakly goes to 0. Since property (T) can also be characterized by
using completely positive maps that are only subunital and subtracial (see [Po01]), we obtain
that ϕn must converge uniformly to the identity on the unit ball of M . Hence, there is n0 ≥ 1
such that ∥ϕn0(x) − x∥2 ≤ 1/2 for any x ∈ U(M). If we assume by contradiction that M is
not diffuse, then there is a sequence of unitaries (wk)k in M that weakly goes to 0, and hence,
∥ϕn0(wk)∥2 → 0. This gives the contradiction that 1 = limk→∞ ∥ϕn0(wk) − wk∥2 ≤ 1/2, and
hence, M is not diffuse. Moreover, since property (T) and the relative Haagerup property pass
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to corners of M (see [Po01]), it follows that any corner of M is not diffuse, and thus, M is
completely atomic.

The natural correspondence between completely positive maps and bimodules provides a refor-
mulation of relative property (T) in terms of bimodules. First, recall that if H is anM -bimodule,
then a vector ξ ∈M is P -central if xξ = ξx, for all x ∈ P , and tracial if ⟨xξ, ξ⟩ = ⟨ξx, ξ⟩ = τ(x),
where M is endowed with the trace τ . A net of vectors (ξn)n ⊂ H is called P -almost central if
∥xξn − ξnx∥2 → 0, for any x ∈ P . Following [Po01], the inclusion P ⊂ M has relative property
(T) if and only if any M -bimodule without central P -vectors does not admit a net (ξn)n of
tracial, M -almost central vectors. Hence, relative property (T) requires that all M -bimodules
satisfy a certain spectral gap condition.

A remarkable discovery of Popa [Po06a,Po06b] is that one can obtain rigidity by only using that
certain bimodules have spectral gap. For instance, if P ⊂ M is a non-amenable subalgebra,
then there does not exist a net (ξn)n ∈ L2(M)⊗L2(M) of tracial, P -almost central vectors; this
follows from the fact that P is non-amenable relative to C inside M , see Section 2.4. To explain
the spectral gap terminology, we note that Connes’ theorem [Co76] gives that a II1 factor P is
non-amenable if and only if there exist a finite set S ⊂ P and k > 0 such that

∥ξ∥2 ≤ k
∑
y∈S

∥yξ − ξy∥2, for all ξ ∈ L2(P )⊗ L2(P ).

This principle of using spectral gap from non-amenable subalgebras is illustrated below in the
proof of Theorem 3.6.

3.3. Solidity of Free Group Factors. In this section we present Popa’s deformation/rigidity
theory proof [Po06b] of Ozawa’s solidity result for the free group factors.

Theorem 3.6. [Oz03] Let M = L(Fn), for some 2 ≤ n ≤ ∞. Then M is solid, i.e., for every
diffuse von Neumann subalgebra A ⊂M , the relative commutant A′ ∩M is amenable.

The proof uses the free malleable deformation (M̃, (αt)t∈R) from Example 3.4. Recall that

M̃ =M ∗M . We will use the fact that the contraction EM ◦αt : L
2(M) → L2(M) is a compact

operator, for any t > 0. In fact, the following weaker property will suffice for our purposes:

Lemma 3.7. If (un)n ⊂ U(M) is a sequence that converges weakly to 0, then for any t > 0 we
have limn→∞ ∥EM (αt(un))∥2 = 0.

Proof. Denote ρ(t) = sin(πt)
πt and notice that 0 < ρ(t) < 1, for all t > 0. Note that exp(ihk) can

be seen as the canonical generating unitary of L(Z) for any k ∈ 1, n. Thus, by identifying L(Z)
with L∞(T) we derive that

τ(exp(ithk)) =
1

2π

∫ π

−π
exp(itθ) dθ = ρ(t), for all t > 0 and k ∈ 1, n.

This implies that

(3.1) EM (αt(ug)) = ρ(t)|g|ug, for all t ∈ R and g ∈ Fn.

Here, |g| denotes the word length of g ∈ Fn with respect to the generating set {ak}nk=1.

Consider the Fourier expansion un =
∑

g∈Fn
τ(unu

∗
g)ug. Then by formula 3.1 we get that

EM (αt(un)) =
∑

g∈Fn
ρ(t)|g|τ(unu

∗
g)ug and thus ∥EM (αt(un))∥22 =

∑
g∈Fn

ρ(t)2|g||τ(unu∗g)|2.
Thus, if N ≥ 1 is an integer, then using that

∑
g∈Fn

|τ(unu∗g)|2 = ∥un∥22 = 1, we get that

∥EM (αt(un))∥22 ≤
∑
|g|≤N

|τ(unu∗g)|2 + ρ(t)2N
∑
|g|≥N

|τ(unu∗g)|2 ≤
∑
|g|≤N

|τ(unu∗g)|2 + ρ(t)2N .
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Since the set {g ∈ Fn : |g| ≤ N} is finite and limn→∞ τ(unu
∗
g) = 0, for all g ∈ Fn, we conclude

that lim supn→∞ ∥EM (αt(un))∥22 ≤ ρ(t)2N , for all N ≥ 1. Since 0 < ρ(t) < 1, the conclusion of
the corollary follows. ■

The source of rigidity in the proof of Theorem 3.6 is given by the following spectral gap result.

Lemma 3.8. The Hilbert M -bimodule L2(M̃)⊖L2(M) is isomorphic to an infinite multiple of
the coarse M -bimodule, (L2(M)⊗̄L2(M))⊕∞.

In particular, if B ⊂M is a non-amenable von Neumann subalgebra, then the trivial B-bimodule
is not weakly contained in the B-bimodule L2(M̃)⊖ L2(M).

Proof. Let S ⊂ F2n be the set of elements g ∈ Fn whose reduced form begins and ends with
a non-zero power of bk for some k ∈ 1, n. Since L2(M̃) ⊖ L2(M) =

⊕
g∈S sp(MugM), in

order to prove the assertion, it suffices to show that sp(MugM) ∼= L2(M)⊗̄L2(M), as Hilbert
M -bimodules, for any g ∈ S.

If g ∈ S, then g−1Fng ∩ Fn = {e}. Hence, τ(u∗guhuguk) = δg−1hg,k−1 = δh,eδk,e = τ(uh)τ(uk), for
all h, k ∈ Fn. This implies τ(u∗gaugb) = τ(a)τ(b), for all a, b ∈M , and further that

⟨xugy, zugt⟩ = τ(u∗gz
∗xugyt

∗) = τ(z∗x)τ(yt∗) = ⟨x⊗ y, z ⊗ t⟩L2(M)⊗̄L2(M), for all x, y, z, t ∈M .

Thus, x ⊗ y 7→ xugy extends to an isomorphism of Hilbert M -bimodules L2(M)⊗̄L2(M) ∼=
sp(MugM).

In order to prove the last part of the lemma, let B ⊂M be a non-amenable von Neumann sub-
algebra. First, note that the B-bimodule L2(M)⊗ L2(M) is weakly contained in the coarse B-
bimodule L2(B)⊗L2(B). This follows from the fact that any left (respectively, right) B-module
is contained in L2(B)⊕∞ as a left (respectively, right) B-module (see, for instance, [AP22, Propo-
sition 8.2.3]). Next, we derive that the B-bimodule (L2(M)⊗̄L2(M))⊕∞ is weakly contained
in the B-bimodule (L2(B)⊗̄L2(B))⊕∞, and hence, in the coarse B-bimodule L2(B)⊗̄L2(B).
Finally, if we assume by contradiction that the trivial B-bimodule is weakly contained in the
B-bimodule L2(M̃) ⊖ L2(M), we derive from the first part of the lemma that the trivial B-
bimodule is weakly contained in the coarse B-bimodule L2(B)⊗̄L2(B). This implies that B is
amenable, contradiction. This proves the lemma. ■

Proof of Theorem 3.6. Let A ⊂ M be a diffuse von Neumann subalgebra and let (uk)k ⊂ U(A)
be a sequence which converges weakly to 0. Denote B = A′ ∩M .

Put tn = 1/2n, for every n ≥ 1. By Lemma 3.7 we can find a subsequence (vn)n of (uk)k such
that limn→∞ ∥EM (αtn(vn))∥2 = 0. By letting ξn = αtn(vn)− EM (αtn(vn)), we claim that

(3.2) lim
n→∞

∥[x, ξn]∥2 = 0, for every x ∈ B,

(3.3) lim
n→∞

⟨xξn, ξn⟩ = τ(x), for every x ∈ M̃ .

To prove (3.2), note that for any x ∈ B we have ∥[x,EM (αtn(vn))]∥2 ≤ 2∥x∥∥EM (αtn(vn))∥2
and

∥[x, αtn(vn)]∥2 = ∥[α−tn(x), vn]∥2 = ∥[α−tn(x)− x, vn]∥2 ≤ ∥α−tn(x)− x∥2.

To prove (3.3), note that limn→∞ ∥EM (αtn(vn))∥2 = 0 implies that for every x ∈ M̃ , we have

lim
n→∞

⟨xξn, ξn⟩ = lim
n→∞

⟨xαtn(vn), αtn(vn)⟩ = τ(x).

Combining (3.2) and (3.3) it follows that the trivial B-bimodule is weakly contained in the

B-bimodule L2(M̃)⊖ L2(M). Hence, by Lemma 3.8 it follows that B is amenable. ■
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4. Wreath-like Products and Wreath-like von Neumann Algebras

For further use, we recall in this section the main result of our very recent work [CDI22]. This
asserts that property (T) II1 factors form an embedding universal family, i.e., every separable
tracial von Neumann algebra embeds into a property (T) II1 factor, see [CDI22, Theorem A].
This result is proved using the so-called wreath-like product von Neumann algebras. In turn,
these are built from wreath-like product groups which were introduced and studied in [CIOS21]
through the lenses of geometric group theory. To provide some context we first recall these
notions along with some of their basic properties.

4.1. Wreath-like product groups. Following [CIOS21] let A and B be countable groups.
Then G is a regular wreath-like product of A and B if it can be realized as a group extension

(4.1) 1 →
⊕
b∈B

Ab ↪→ G
ε
↠ B → 1

which satisfies the following properties:

a) Ab
∼= A for all b ∈ B, and

b) the conjugation action of G on
⊕

b∈B Ab permutes the direct summands according to
the rule

gAbg
−1 = Aε(g)b, for all g ∈ G, b ∈ B.

The class of all such wreath-like groups is denoted by WR(A,B). When the extension (4.1)
splits, G is the classical wreath product of A and B, G = A ≀B.

Next we recall the concept of a cocycle semidirect product group; see [Br82, pages 104-105].

Definition 4.1. A cocycle action of a group B on a group A is a pair (α, v) consisting of two
maps α : B → Aut(A) and v : B ×B → A which satisfy the following

(1) αbαc = Ad(vb,c)αbc, for every b, c ∈ B,
(2) vb,cvbc,d = αb(vc,d)vb,cd, for every b, c, d ∈ B, and
(3) vb,1 = v1,b = 1, for every b ∈ B.

Definition 4.2. Let (α, v) be a cocycle action of a group B on group A. Then the set A × B
endowed with the unit 1 = (1, 1) and the multiplication operation (x, b) · (y, c) = (xαb(y)vb,c, bc)
is a group, denoted A ⋊α,v B, and called the cocycle semidirect product group. Moreover, we

have a short exact sequence 1 → A
i−→ A⋊α,v B

γ−→ B → 1, where i(a) = (a, 1) and γ(a, b) = b.

Remark 4.3. It is not hard to prove that a group G belongs to WR(A,B) if and only if it is

isomorphic to A(B) ⋊α,v B, for a cocycle action (α, v) on B on A(B) such that αb(Ac) = Abc, for
every b, c ∈ B; see [CDI22, Corollary 2.11].

Wreath-like product groups admit a special cocycle semidirect product decomposition. Let σ be
the shift action of B on AB =

∏
b∈B A given by σb(x) = (xb−1c)c∈B, for every x = (xc)c∈B ∈ AB

and b ∈ B. Note that σ leaves invariant the normal subgroup A(B) =
⊕

b∈B A of AB. The
following result has been established in [CIOS21]; see [CDI22, Lemmas 2.12 and 2.13] for proofs.

Proposition 4.4. [CIOS21, CDI22] Let A,B be groups. Then G ∈ WR(A,B) if and only

if there is a function ρ : B → AB such that setting vb,c := ρbσb(ρc)ρ
−1
bc ∈ A(B), for every

b, c ∈ B, and ρ1 = 1, and letting αb := Ad(ρb)σb ∈ Aut(A(B)), for every b ∈ B, we have that

G ∼= A(B) ⋊α,v B.
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4.2. Tracial wreath-like product von Neumann algebras. By analogy with wreath-like
product groups there is a notion of wreath-like product for tracial von Neumann algebras. First
we need to briefly recall the notion of tracial cocycle crossed product von Neumann algebra.

Definition 4.5. A cocycle action of a group B on a tracial von Neumann (M, τ) is a pair (β,w)
consisting of two maps β : B → Aut(M) and w : B ×B → U (M) which satisfy the following

(1) βbβc = Ad(wb,c)βbc, for every b, c ∈ B,
(2) wb,cwbc,d = βb(wc,d)wb,cd, for every b, c, d ∈ B, and
(3) wb,1 = w1,b = 1, for every b ∈ B.

Definition 4.6. Let (β,w) be a cocycle action of a group B on a tracial von Neumann algebra
(M, τ). The cocycle crossed product von Neumann algebra M ⋊β,w B is a tracial von Neumann
algebra which is generated by a copy of M and unitary elements {ub}b∈B such that ubxu

∗
b =

βb(x), ubuc = wb,cubc and τ(xub) = τ(x)δb,1, for every b, c ∈ B and x ∈M .

Definition 4.7. Let (M, τ) be a tracial von Neumann algebra and B be a group. A tracial
von Neumann algebra N is said to be a wreath-like product of M and B if it is isomorphic to
MB ⋊β,w B, where (β,w) is a cocycle action of B on MB such that βb(M

c) = M bc, for every
b, c ∈ B. We denote by WR(M,B) the class of all wreath-like products of M and B.

Example 4.8. If G ∈ WR(A,B), then L(G) ∈ WR(L(A), B); see [CDI22, Example 3.2].

Notation 4.9. Let (M, τ) be a tracial von Neumann algebra and B be a group. We denote by

(1) γ : U (M)(B) → U (MB) the homomorphism given by γ((xb)b∈B) = ⊗b∈Bxb.
(2) η : U (M)B → Aut(MB) the homomorphism given by η((yb)b∈B) = ⊗b∈BAd(yb).

(3) B ↷σ U (M)B the shift action of B (which preserves the subgroup U (M)(B) < U (M)B).
(4) B ↷λ MB the Bernoulli shift action given by λb(x) = ⊗c∈Bxb−1c, for x = ⊗c∈Bxc ∈MB.

With this notation, we have:

Lemma 4.10. Let (M, τ) be a tracial von Neumann algebra and B a group. Let ξ : B → U (M)B

be a map such that ξbσb(ξc)ξ
−1
bc ∈ U (M)(B), for every b, c ∈ B. Define βb = η(ξb)λb ∈ Aut(MB)

and wb,c = γ(ξbσb(ξc)ξ
−1
bc ) ∈ U (MB), for every b, c ∈ B. Then (β,w) is a cocycle action of B

on MB and MB ⋊β,w B ∈ WR(M,B).

Using this lemma in combination with Proposition 4.4 it was shown in [CDI22] that given
G ∈ WR(A,B), any homomorphism π : A → U (M), where (M, τ) is a tracial von Neumann
algera, extends to a homomorphism π̃ : G→ U (N), for some N ∈ WR(M,B).

More precisely, using Proposition 4.4, we write G = A(B)⋊α,vB, where (α, v) is a cocycle action

of B on A(B) given by αb = Ad(ρb)σb and vb,c = ρbσb(ρc)ρ
−1
bc , for some map ρ : B → AB. Then

we have the following:

Proposition 4.11. Let π : A → U (M) be a homomorphism, where (M, τ) is a tracial von
Neumann algebra. Define ξ := πB(ρb) ∈ U (M)B, for every b ∈ B. Then ξbσb(ξc)ξ

−1
bc ∈

U (M)(B), for every b, c ∈ M . Define βb = η(ξb)λb ∈ Aut(MB) and wb,c = γ(ξbσb(ξc)ξ
−1
bc ) ∈

U (MB), for every b, c ∈ B. Then (β,w) is a cocycle action of B on MB, N := MB ⋊β,w

B ∈ WR(M,B) and there is a homomorphism π̃ : G → U (N) given by π̃(x) = γ(πB(x)) =

⊗b∈Bπ(xb) and π̃(e, c) = uc, for every x = (xb)b∈B ∈ A(B) and c ∈ B.

Finally, using Propositions 4.4 and 4.11 and the fact that any acylindrically hyperbolic group
has plenty of wreath-like quotients (see [CIOS21, Theorems 4.20]) and that there exist plenty
of property (T) wreath-like product groups (see [CIOS21, Theorems 6.9]), the following result
was shown in [CDI22, Theorem A].
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Theorem 4.12. Let (M, τ) be any separable von Neumann algebra. Then the following hold:

(1) For every acylindrically hyperbolic group H, M embeds into a II1 factor N which is
generated by a representation π : H → U (N). Thus, if H has property (T), then N has
property (T).

(2) M embeds into a property (T), wreath-like product II1 factor P ∈ WR(Q,B) where B is
a hyperbolic property (T) group, Out(P ) = 1, and F(P ) = {1}. More precisely, Q can
be taken to be Q = (M ∗ L(F2))⊗R, where R is the hyperfinite II1 factor.

We now explain the terminology used in the theorem. The class of acylindrically hyperbolic
groups includes all non-elementary hyperbolic and relatively hyperbolic groups, mapping class
groups of closed surfaces of non-zero genus and Out(Fn), for n ≥ 2. We refer the reader
to [CIOS21, Section 3.2] and to the survey [Osi18] for the precise definition of acylindrically
hyperbolic groups and for more details.

For a II1 factor P , we denote by Out(P ) = Aut(P )/Inn(P ) the outer automorphism group of
P and by F(P ) = {τ(e)/τ(f) | e, f ∈ P projections, ePe ∼= fPf} the fundamental group of
P [MvN43].

To this end we make several remarks regarding the previous theorem. Part (1) in Theorem
4.12 should be viewed as a von Neumann algebraic analogue of the SQ-universality property
for (acylindrically) hyperbolic groups established be Olshanskii, [Ol95], Delaznt [De96], and
Dahmani-Guirardel-Osin [DGO11]. Recall that a countable group H is called SQ-universal if
every countable group embeds into a quotient of H. Since property (T) passes to quotients,
by taking H to be a hyperbolic group with property (T) it follows that every countable group
embeds into a countable group with property (T). Therefore, Theorem 4.12 provides an analogue
of this fact for II1 factors.

Part (1) applies in particular to icc cocompact lattices H in any rank one simple real Lie group
with finite center (e.g. Sp(n, 1), n ≥ 2), as such H are hyperbolic. Hence, Theorem 4.12(1)
implies that the family of II1 factors generated by representations of H is embedding universal.
This is in sharp contrast with the higher rank case since the work of Peterson [Pe14] (see
also [Be06,BH19]) shows that if G is any icc lattice in higher rank simple real Lie group with
finite center (e.g. SLm(R), m ≥ 3), then L(G) is the only II1 factor generated by a representation
of G.

To put Theorem 4.12(2) into a better perspective, note that the first examples of II1 factors P
with F(P ) = {1} have been obtained by Popa in [Po01] and the first examples of II1 factors
P with Out(P ) = {e} and F(P ) = {1} were obtained in [IPP05]. Note that none of these
II1 factors have property (T), although Popa’s strengthening of Connes’ rigidity conjecture
(see [Po07, Section 3]) predicts that Out(L(G)) = {e} and F(L(G)) = {1}, whenever G is
an icc property (T) group with Out(G) = {e} and no characters. This conjecture has been
confirmed for an uncountable class of groups in [CIOS21, Corollary 2.7] and thus showing that
the class T of all II1 factors P with property (T) which satisfy Out(P ) = {e} and F(P ) = {1}
is uncountable. Theorem 4.12(2) shows that T is in fact embedding universal.

5. Primeness Results for Wreath-like Product von Neumann Algebras

In this section we show that many of the wreath-like product von Neumann algebras introduced
in the prior section are (virtually) prime; see Definition 5.5 and Theorem 5.6.

We start with two preliminary results on intertwining von Neumann subalgebras in cocycle
crossed product von Neumann algebras. These are modest extensions of prior results from
[CIK13,CIOS21], but we include detailed proofs for the readers’ convenience.
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Notation 5.1. Let G↷σ,α (Q, τ) be a trace preserving cocycle action on a tracial von Neumann
algebra (Q, τ). Let π : G→ H be a group epimorphism. Let M = Q⋊σ,αG. Following [CIK13,

Section 2], we consider the ∗-embedding ∆π : M ↪→ M⊗L(H) =: M̃ given by ∆π(aug) =
aug⊗vπ(g) for every a ∈M and g ∈ G. Here we have denoted by (vh)h∈H ⊂ L(H) the canonical
group unitaries. When G = H and π = id, we denote ∆π simply by ∆.

Our first result is a straightforward extension of [CIK13, Proposition 3.4].

Proposition 5.2. [CIK13] Assume the Notation 5.1 and let p ∈ M be a projection. Then
for any subgroup K < H and any von Neumann subalgebra P ⊆ pMp satisfying ∆π(P ) ≺M̃

M⊗L(K), we have that P ≺M Q⋊σ,α π
−1(K).

Proof. Since ∆π(P ) ≺M̃ M⊗L(K), using Theorem 2.4 and ∥ · ∥2-approximations one can find
group elements g1, . . . gn, h1 . . . , hn ∈ H and a scalar C > 0 such that for all x ∈ U (P ) we have

(5.1)
n∑

i=1

∥EM⊗L(K)((1⊗ vgi)∆
π(x)(1⊗ vhi

))∥2 ≥ C.

Now pick elements ki, li ∈ G satisfying π(ki) = gi and π(li) = hi, for all i ∈ 1, n. Using this,
together with the relation EM⊗L(K) ◦∆π = ∆π ◦ EQ⋊σ,απ−1(K), we can see that

EM⊗L(K)((1⊗ vgi)∆
π(x)(1⊗ vhi

)) = EM⊗L(K)((uk−1
i

⊗ 1)∆π(ukixuli)(ul−1
i

⊗ 1))

= (uk−1
i

⊗ 1)EM⊗L(K)(∆
π(ukixuli))(ul−1

i
⊗ 1)

= (uk−1
i

⊗ 1)∆π(EQ⋊σ,απ−1(K)(ukixuli))(ul−1
i

⊗ 1).

In particular, this shows that ∥EM⊗L(K)((1⊗ vgi)∆
π(x)(1⊗ vhi

))∥2 = ∥EQ⋊σ,απ−1(K)(ukixuli)∥2
and in combination with (5.1) we obtain

∑n
i=1 ∥EQ⋊σ,απ−1(K)(ukixuli)∥2 ≥ C, for all x ∈ U (P ).

Then Theorem 2.4 yields P ≺M Q⋊σ,α π
−1(K), as desired. □

In preparation for our second preliminary result we recall a deep result of Popa-Vaes from [PV12]
regarding the classification of normalizers of amenable subalgebras in various crossed products
von Neumann algebras. Since we need this theorem only for tensor products we will state it in
this form.

Theorem 5.3 ( [PV12, Theorem 1.4]). Let Γ be a group that is biexact [BO08] and weakly
amenable [Oz08]. Let P be a tracial von Neumann algebra and denote by M = P⊗L(Γ). Let
q ∈M be a projection and let Q ⊂ qMq be a von Neumann subalgebra that is amenable relative
to P inside M . Then one of the following must hold:

(1) Q ≺M P ;
(2) NqMq(Q)′′ is amenable relative to P inside M .

We note that when Γ is amenable then for any von Neumann subalgebras Q ⊆ qMq we automat-
ically have that both Q and NqMq(Q)′′ are amenable relative to P insideM , [OP07, Proposition
2.4]. Thus in this case the result does not provide any meaningful information, and thus when
using this result we are interested only in the case when Γ is non-amenable. Theorem 5.3 cov-
ers a variety of groups Γ which are very important to the structural study of von Neumann
algebras. Next we highlight only one such class that is relevant for our results. Ozawa estab-
lished that all hyperbolic groups are bi-exact [Oz03,BO08] and weakly amenable [Oz08]. Since
both these properties are hereditary, they are satisfied by all subgroups of hyperbolic groups.
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Using the strong Tits alternative for hyperbolic groups [Gr87] it follows that every amenable
subgroup of a hyperbolic group is elementary2; thus, Theorem 5.3 is meaningful and applies to
all non-elementary subgroups of a given hyperbolic group.

Our second preliminary result is a straightforward extension of [CIOS21, Theorem 6.15]. The
proof is almost identical with the one presented there.

Theorem 5.4. [CIOS21] Let G be a non-elementary subgroup of a hyperbolic group, and let
G↷σ,α (Q, τ) be a trace preserving cocycle action on a tracial von Neumann algebra (Q, τ). Let
M = Q⋊σ,α G and let p ∈M be a projection. Then the following hold:

1. Let P ⊂ pMp be a von Neumann subalgebra which is amenable relative to Q inside M ,
and let N = NpMp(P )

′′. If there is a von Neumann subalgebra S ⊆ N with the relative
property (T) such that S ⊀M Q, then P ≺s

M Q.
2. Let A,B ⊂ pMp be commuting von Neumann subalgebras and let N = NpMp(A ∨ B)′′.

If there is a von Neumann algebra S ⊆ N with the relative property (T) and such that
S ⊀M Q, then A ≺M Q or B ≺M Q.

Proof. 1. Throughout the proof we use freely the Notation 5.1. Assuming the conclusion is false,
by Lemma 2.5(1) we find a nonzero projection z ∈ N ′ ∩ pMp such that Pz ⊀M Q. Since P is

amenable relative to Q insideM , we get that ∆(P ) is amenable relative to M⊗1 inside M̃ . This

follows from ∆(Q) = Q⊗ 1 ⊂M ⊗ 1 and ∆(P ) being amenable relative to ∆(Q) inside M̃ (see
also [OP07, Proposition 2.4(3)]). Since G is a non-elementary subgroup of a hyperbolic group,
applying Theorem 5.3 in the special case of tensor product to ∆(Pz) ⊂ M⊗L(G) gives that
either a) ∆(Pz) ≺M⊗L(G) M⊗1 or b) ∆(Nz) is amenable relative to M⊗1 inside M⊗L(G).

If a) holds, then by Proposition 5.2 we have that Pz ≺M Q, which is a contradiction. In what
follows we will use the L2 and L1 spaces of a semifinite von Neumann algebras (specifically the
basic construction) introduced in Remark 4.25 in Ioana’s article. If b) holds, then there is a

sequence ηn ∈ L2(∆(z)⟨M⊗L(G),M⊗1⟩∆(z))
⊕

∞ such that ∥⟨·ηn, ηn⟩ − τ(·)∥ → 0, ∥⟨ηn·, ηn⟩ −
τ(·)∥ → 0, and ∥yηn−ηny∥2 → 0, for every y ∈ ∆(Nz) (see [CIOS21, Remark 7.1]). Since S ⊂ N
has the relative property (T), by [Po01, Proposition 4.7], so does ∆(Sz) ⊂ ∆(Nz). Hence, there
is a nonzero η ∈ L2(∆(z)⟨M⊗L(G),M⊗1⟩∆(z)) such that yη = ηy, for every y ∈ ∆(Sz).
Then ζ = η∗η ∈ L1(∆(z)⟨M⊗L(G),M⊗1⟩∆(z)) is nonzero and satisfies ζ ≥ 0 and yζ = ζy,
for every y ∈ ∆(Sz). Let t > 0 such the spectral projection a = 1[t,∞)(ζ) of ζ is nonzero.

Then a ∈ ∆(Sz)′ ∩∆(z)⟨M⊗L(G),M⊗1⟩∆(z). As ta ≤ ζ, we get that Tr(a) ≤ Tr(ζ)/t < ∞.
Theorem 2.4 implies that ∆(Sz) ≺M⊗L(G) M⊗1. Applying Proposition 5.2 again, we get that
Sz ≺M Q and hence S ≺M Q, a contradiction.

2. Let X ⊂ ∆(A) be an arbitrary amenable von Neumann subalgebra. Since X and ∆(B)
commute, by Theorem 5.3 we have that either a) X ≺M⊗L(G) M⊗1 or b) ∆(B) is amenable

relative to M⊗1 inside M⊗L(G). If a) holds for all such X, then [BO08, Corollary F.14]
implies that c) ∆(A) ≺M⊗L(G) M⊗1. If b) holds, by applying Theorem 5.3 we get that either

d) ∆(B) ≺M⊗L(G) M⊗1 or e) ∆(A ∨ B) is amenable relative to M⊗1 inside M⊗L(G). If e)

holds then applying Theorem 5.3 again we further obtain either f) ∆(A ∨ B) ≺M⊗L(G) M⊗1

or g) ∆(N) is amenable relative to M⊗1 inside M⊗L(G). By Proposition 5.2, d) implies that
B ≺M Q while c) and f) imply A ≺M Q. So it remains to treat g). If g) holds, then by arguing
as in part 1. we get that S ≺M Q, which is a contradiction. □

For our results we need a strengthening of the notion of primeness for von Neumann algebras.

2A group is called elementary if it contains a cyclic subgroup of finite index.
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Definition 5.5. A von Neumann algebraM is called s-prime if it satisfies the following property:
given any non-zero projection p ∈M , if A,B ⊆ pMp are commuting von Neumann subalgebras
such that A ∨B ⊆ pMp has finite index, then either A or B is finite dimensional.

From the definition, it is clear that s-primeness implies primeness. The converse however, does
not hold true in general. Constructing such examples is typically involved technically and exceeds
the purpose of this paper. However, to give the reader a flavor on the presentation of such factors,
we highlight an example below that arises from [DHI16] (see also [CD19]). Consider any action
by outer automorphisms K ↷ρ F2 of a finite group K on the free group with two generators,
F2. Now let K ↷ρ̃ F2 × F2 be the canonical diagonal action and let K = (F2 × F2)⋊ρ̃K be the
corresponding semidirect product group. [DHI16, Theorem C] yields that L(K) is a prime factor.
However, one can easily see that L(K) is not s-prime as it contains the finite index non-prime
subfactor, L(F2 × F2) = L(F2)⊗L(F2). Additional examples of prime factors associated with
fibered products and other groups have been constructed in [DHI16,CD19,Dr22].

Using our preliminary results together with standard technology on wreath product von Neu-
mann algebras from [Po03,Io06, IPV10] we now derive the main primeness result of the section.

Theorem 5.6. Let Q be any non-trivial tracial von Neumann algebra and let Γ be any icc
subgroup of a hyperbolic group. Then any property (T) wreath-like product factor M ∈ WR(Q,Γ)
is s-prime.

Proof. Fix a projection 0 ̸= p ∈M and two commuting von Neumann subalgebras A,B ⊆ pMp
such that [pMp : A ∨ B] < ∞. Since M is a factor, we can apply Lemma 2.1(3) to obtain that
Z(A∨B) is completely atomic. Hence, we may assume that A∨B is a factor, up to replacing p by
a smaller projection. This implies that both A and B are factors, and thus A∨B = A⊗B. Since
M has property (T), so does pMp. Since [pMp : A ∨ B] < ∞, then using [Po01, Proposition
5.7.1) and Proposition 4.6.1)], we get that both A and B have property (T).

Now assume by contradiction that neither A nor B are finite dimensional. This implies that
both A and B are diffuse von Neumann algebras.

Denote P = ⊗ΓQ ⊂M . Notice that since [pMp : A∨B] <∞ and Γ is infinite then using Lemma
2.7 and part 5) in Lemma 2.5 we have that A ∨ B ⊀M P . Thus using part 2) in Theorem 5.4
(for R = A ∨ B) we have either A ≺M P or B ≺M P . Due to symmetry we may assume that
A ≺M P .

Next we argue there exists a finite subset F ⊂ Γ such that

(5.2) A ≺M ⊗FQ.

As A ≺M P one can find nonzero projections a0 ∈ A, b0 ∈ P , a partial isometry w ∈ b0Ma0,
and a ∗-isomorphism onto its image ψ : a0Aa0 → ψ(a0Aa0) =: P0 ⊆ b0Pb0 such that

(5.3) ψ(x)w = wx for all x ∈ a0Aa0.

Next we show that one can find a finite subset F ⊂ Γ such that

(5.4) P0 ≺P ⊗FQ.

Towards this note that since A has property (T) then so does a0Aa0. Therefore P0 has property
(T) as well. Now fix an exhaustion Fn ↗ Γ by a sequence of increasing finite subsets, where
n ≥ 1. Thus, if Pn := ⊗FnQ we notice that (Pn)n ⊂ P forms an increasing sequence of von

Neumann algebras such that ∪nPn
wot

= P . Hence, letting EPn be the conditional expectation
from P onto Pn we have that EPn → Id, ∥ · ∥2-pointwise on P . As P0 has property (T) it
follows that for every ε > 0 there is nε ∈ N such that ∥EPn(x)− x∥2 < ε for all x ∈ U (P0) and
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n ≥ nε. Picking ε ≤ 2−1τ(b0)
1/2, and using the triangle inequality above we have ∥EPn(x)∥2 ≥

∥x∥2 − ∥x − EPn(x)∥2 ≥ ∥x∥2 − ε ≥ 2−1τ(b0)
1/2 > 0, for all x ∈ U (P0). Then using Theorem

2.4 we get the intertwining (5.4), as desired.

Finally, the intertwinings 5.4 and 5.3 together with the transitivity property from [IPP05, Lemma
1.4.5] (see also [Va08, Remark 3.8]) yield the intertwining (5.2).

Consequently, letting S = ⊗FQ, one can find nonzero projections a ∈ A, r ∈ S, a nonzero
partial isometry v ∈ rMa and a ∗-isomorphism onto its image ϕ : aAa → ϕ(aAa) =: D ⊆ rSr
such that

(5.5) ϕ(x)v = vx for all x ∈ aAa.

The intertwining relation also implies that vv∗ ∈ D′ ∩ rMr and v∗v ∈ (A′ ∩ pMp)a.

Next we prove the following:

Claim 5.7. There exists a finite set K ⊂ Γ such that D′ ∩ rMr ⊆ PK.

Proof of the claim. Fix y ∈ D′∩rMr with ∥y∥∞ ≤ 1. Let y =
∑

g ygug be its Fourier expansion,
where yg ∈ rP for all g ∈ Γ. Since xy = yx for all x ∈ D ⊂ P we get that

(5.6) xyg = ygσg(x) for all x ∈ D, g ∈ Γ.

Let K = F−1F and notice that for every g ∈ Γ \K we have that gF ∩ F = ∅.

Next, we prove that yg = 0 for all g ∈ Γ \ K which will conclude the proof of the claim. Fix
ε > 0. Since the Fourier coefficients satisfy ∥yg∥∞ ≤ ∥y∥∞ ≤ 1 one can pick a1, ..., ak ∈ rS and
b1, ..., bk ∈ ⊗Γ\FQ such that

∥
k∑

i=1

ai ⊗ bi∥∞ ≤ 1, and(5.7)

∥yg −
k∑

i=1

ai ⊗ bi∥2 ≤ ε.(5.8)

Using the intertwining relation (5.6) then inequalities (5.8), (5.7), and (5.8) again, basic calcu-
lations show that for every unitary x ∈ D we have

∥ES(ygy
∗
g)∥2 = ∥xES(ygy

∗
g)∥2 = ∥ES(ygσg(x)y

∗
g)∥2

≤ ε+ ∥ES((
k∑

i=1

ai ⊗ bi)σg(x)y
∗
g)∥2

≤ 2ε+ ∥ES((

k∑
i=1

ai ⊗ bi)σg(x)(

k∑
j=1

a∗j ⊗ b∗j ))∥2

= 2ε+ ∥ES(

k∑
i,j=1

(aia
∗
j )⊗ (biσg(x)b

∗
j ))∥2.

(5.9)
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Using that aia
∗
j ∈ S, the S-bimodularity of the expectation, ES(x) = τ(x)1 for all x ∈ ⊗Γ\KQ,

and the triangle inequality we can also see that

∥ES(
k∑

i,j=1

(aia
∗
j )⊗ (biσg(x)b

∗
j ))∥2 = ∥

k∑
i,j=1

(aia
∗
j )⊗ ES(biσg(x)b

∗
j )∥2

= ∥
k∑

i,j=1

τ(σg(x)b
∗
jbi)aia

∗
j∥2

≤
k∑

i,j=1

|τ(xσg−1(b∗jbi))|∥aia∗j∥2.

(5.10)

Since A is diffuse, so is D, and thus one can find a sequence (xn)n ⊂ U (D) such that xn → 0
weakly, as n → ∞. In particular, we have that limn→∞ |τ(xnσg−1(b∗jbi))| = 0, for all i, j ∈ 1, k.

Therefore, applying inequalities (5.9) and (5.10) to x = xn and taking the limit as n → ∞ we
get that ∥ES(ygy

∗
g)∥2 ≤ 2ε. Since ε > 0 was arbitrary we get ES(ygy

∗
g) = 0 and hence yg = 0,

as desired. ■

Now, fix z ∈ A′ ∩ pMp. Using relation (5.5) twice we can see that for all x ∈ aAa we have
ϕ(x)vzv∗ = vxzv∗ = vzxv∗ = vzv∗ϕ(x) and therefore vzv∗ ∈ D′ ∩ rMr. Thus v(A′ ∩ pMp)v∗ ⊆
D′ ∩ rMr. From (5.5) we also have that vAv∗ = Dvv∗ where vv∗ ∈ D′ ∩ rMr. Combining these
with the Claim 5.7 we can see that

v((A)(A′ ∩ pMp))v∗ = vAv∗v(A′ ∩ pMp)v∗ ⊂ D(D′ ∩ rMr) ⊆ PK.

This implies that

(5.11) v(A ∨ (A′ ∩ pMp))v∗ ⊆ PK.

Let PPK be the orthogonal projection from L2(M) onto the ∥ · ∥2-closure of span{xug : x ∈
P, g ∈ K}. One can check for every x ∈M we have

(5.12) PPK(x) =
∑
g∈K

EP (xug−1)ug.

By (5.11), for all x ∈ v(A ∨ (A′ ∩ pMp))v∗ we have that PPK(x) = x. Using this together with
formula (5.12) and basic calculations, for all unitaries u ∈ v∗v(A ∨ (A′ ∩ pMp)v∗v we have

0 < τ(v∗v) = ∥u∥22 = ∥vuv∗∥22 = ∥PPK(x)∥22 =
∑
g∈K

∥EP (vuv
∗ug−1)∥22.

Using Theorem 2.4(3), this implies that A ∨ (A′ ∩ pMp) ≺M P . By Lemma 2.5(2) there is a
non-zero projection z ∈ Z(A′ ∩ pMp) such that

(5.13) (A ∨ (A′ ∩ pMp))z ≺s
M P.

Using that A ∨ B ⊆ pMp has finite index and A ∨ B ⊆ A ∨ (A′ ∩ pMp), it follows that
A ∨ (A′ ∩ pMp) ⊆ pMp also has finite index. By Lemma 2.6(2) we deduce that pMp ≺pMp

(A ∨ (A′ ∩ pMp))z. In combination with (5.13) we can apply Lemma 2.5(4) and deduce that
pMp ≺M P , which by Lemma 2.7 entails that Γ is finite, a contradiction. □
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6. A Class of Existentially Closed II1 Factors

A group G is called existentially closed if every finite set of equations and inequalities defined
over G and is soluble in an extension of G is actually soluble in G. Existentially closed groups
actually coincide with the class of non-trivial algebraically closed groups. These groups display
remarkable structural properties and have been intensively studied over the years; the reader
may consult [HS88] for a comprehensive account on this direction.

More recently, in the field of continuous model theory, Farah-Goldbring-Hart-Sherman [FGHS16]
introduced a natural von Neumann algebraic counterpart of these objects. Roughly speaking,
a von Neumann algebra M is called existentially closed if whenever a system of equations with
coefficients in M has a solution in an extension of M , then it has an approximate solution in M .
In more rigorous terms, let M ⊆ N be an inclusion of separable tracial von Neumann algebras.
Following [FGHS16], one says that M is existentially closed in N if there exists an embedding
j : N ↪→ Mω, whose restriction on N is the diagonal embedding M ⊂ Mω. A separable tracial
von Neumann algebra M is called existentially closed if it is existentially closed in any separable
extension,M ⊆ N . As in [Go20,AGKE20], to avoid any set-theoretic subtleties, in the remaining
part of the paper we assume the Continuum Hypothesis.

Next, we recall several fundamental facts of existentially closed von Neumann algebras that
will be used freely throughout this paper. The first three are well-known and were proved
in [GHS13,FGHS16], the fourth item follows directly from definitions, while the last has been
established in [Go18].

Theorem 6.1. [GHS13,FGHS16,Go18] The following hold true:

(1) Every existentially closed tracial von Neumann algebra is a II1 factor satisfying McDuff’s
property;

(2) Every separable tracial von Neumann algebra embeds into a separable existentially closed
factor;

(3) Every separable tracial von Neumann algebra embeds into any ultrapower Mω of any
existentially closed factor M ;

(4) If M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · · is a chain of existentially closed factors, then their union

M = ∪nMn
wot

is also existentially closed;
(5) If M is an existentially closed factor, then for any property (T) subfactor N ⊂ M , its

double coummutant satisfies (N ′ ∩M)′ ∩M = N .

Throughout the paper we will denote by E the class of all existentially closed factors.

Next, we highlight a family of existentially closed factors which in spirit resembles the inductive
limit factors considered in [Po09] and occurs naturally by combining the aforementioned model
theoretic properties with the more recent von Neumann algebraic techniques from [CDI22]. In
fact, a very similar construction has been already considered in [CDI22] and various structural
results have been obtained there; the interested reader may consult [CDI22, Section 6].

Henceforth we will denote by ET the class of all existentially closed factors that can be presented
as inductive limits

Q =
⋃
n∈N

Nn

wot

,

where (Nn)n∈N is an increasing sequence of property (T) s-prime II1 factors satisfying that for
every n there is r > n such that Nn ⊂ Nr has infinite Jones index.
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This family of factors is quite vast. In fact, using the results in Sections 4-5 and the facts stated
in Theorem 6.1 along with the interlacing argument from the proof of [CDI22, Proposition 8.1]
we obtain the following.

Theorem 6.2. The class ET is embedding universal, i.e., every separable II1 factor embeds into
an element of ET . In particular, ET is uncountable.

Proof. Fix P a separable von Neumann algebra. Then pick Q1 ∈ E such that P ⊂ Q1. Using
Theorem 4.12(2) and Theorem 5.6 one can find a property (T), s-prime II1 factor N1 such that
Q1 ⊂ N1. Since E is embedding universal there exists a separable II1 factor Q2 ∈ E such that
N1 ⊂ Q2. Since Q2 is existentially closed then by part (1) in Theorem 6.1 it is McDuff; in
particular, they do not have property (T). Since property (T) passes to finite index suprafactors
and N has property (T) it follows that the inclusion N1 ⊂ Q2 has infinite index. Continuing
on this fashion, by induction, one can find an increasing sequence (Nn)n∈N of property (T), s-
prime II1 factors and an increasing sequence (Qn)n∈N of separable existentially closed II1 factors
satisfying

(6.1) P ⊂ Q1 ⊂ N1 ⊂ Q2 ⊂ N2 ⊂ · · · ⊂ Qn ⊂ Nn ⊂ · · ·
LetM be the inductive limit II1 factor arising from the sequence (6.1). By construction we have

M = ∪nNn
wot

= ∪nQn
wot

. Since Qn ∈ E for all n ∈ N, then using part 4) in Theorem 6.1 we
get that M ∈ E . Since in our construction Nn ⊂ Qn+1 has infinite index then so is Nn ⊂ Nn+1,
for all n ∈ N.
Thus ET is embedding universal and using [Oz02, Corollary 3] we conclude that ET is uncount-
able. □

We conclude this section by recalling the class of infinitely generic II1 factors introduced in
[FGHS16, Propositions 5.7, 5.10 and 5.14] (see also [AGKE20, Fact 6.3.14]).

Proposition 6.3. [FGHS16] There is a class of separable II1 factors G satisfying the following:

(1) G is embedding universal,
(2) any embedding π : Q1 ↪→ Q2, for some Q1, Q2 ∈ G is elementary, i.e., it extends to an

isomorphism Qω
1
∼= Qω

2 , and
(3) G is the maximum class with properties (1) and (2).

The elements of G are called infinitely generic II1 factors.

Remark 6.4. The proof of Theorem 6.2 can be used to construct inductive limits of property
(T) factors within any family G of existentially closed factors that is both embedding universal
and closed under inductive limits. For example, by [FGHS16], this applies when G is the family
of all infinitely generic factors.

7. Tensor Indecomposability Results for Factors in Class ET

It is well-known that existentially closed groups display strong structural properties, e.g., they
are simple [HS88, Theorem 1.8]. Therefore, they do not admit any nontrivial direct or semi-
direct product decompositions. Since existentially closed factors are von Neuman algebraic
counterparts of these objects it is reasonable to expect that they share similar indecomposability
properties. To stimulate the development of new technology to tackle such properties, it would be
natural to first understand if there are certain types of tensor decompositions that existentially
closed factors cannot have.
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In this direction, by combining [IS18, Corollary 2.6] with a result from [AGKE20] (see for
instance [AGKE20, Proposition 6.2.11 and Proposition 6.3.2]), one can see that existentially
closed factors P do not admit any diffuse tensor decompositions of the form P = R⊗B,
where R is the hyperfinite II1 factor and B is an arbitrary full II1 factor; in other words, P
is not strongly McDuff. However, besides this tensor indecomposability result, little is known
regarding the possible tensor decompositions of existentially closed factors.

In this section we make new progress on this problem by showing that the existentially closed
factors in the class ET satisfy an even stronger tensor product indecomposability statement.
Specifically, using a mélange of methods which combines spectral gap arguments and various
intertwining techniques from [Po02,Po09, Io11,CIK13,CKP14,Go18,CIOS21,CDI22] we obtain
the following.

Theorem 7.1. For any P ∈ ET , we have that P ≇ A⊗B, for all II1 factors A and B, with B
full.

Proof. Suppose that P = ∪nNn
wot

where (Nn)n is an increasing sequence of property (T), s-
prime II1 factors satisfying that for every n there is r > n such that Nn ⊂ Nr has infinite
index.

Now assume by contradiction that P = A⊗B is a decomposition into II1 factors with B full.
By applying [AGKE20, Proposition 6.2.11] we get that A is non-amenable.

As B is a full factor, by [Co76] we can find b1, ..., bk ∈ U (B) and C > 0 such that for every
x ∈ P we have

(7.1)

k∑
i=1

∥xbi − bix∥2 ≥ C∥x− EA(x)∥2.

Fix 0 < ε < 1. Since bi ∈ P = ∪nNn
wot

one can find n ∈ N and p1, ..., pk ∈ Nn such that

(7.2) ∥bi − pi∥2 ≤
εC

k
for all i = 1, k.

Fix y ∈ (N ′
n ∩ P )1. Using inequalities (7.1), (7.2) along with relations ypi = piy for all i = 1, k

we get

∥y − EA(y)∥2 ≤
1

C

k∑
i=1

∥ybi − biy∥2 ≤ ε.

Using the triangle inequality this further implies for all unitaries y ∈ N ′
n∩P we have ∥EA(y)∥2 ≥

1− ε > 0. Thus part (3) in Theorem 2.4 shows that N ′
n ∩ P ≺M A.

Since Nn has property (T), it has w-spectral gap in the sense of [Po09] in any extension (in fact
this characterizes property (T), see [Ta22]). As P is existentially closed, by Theorem 6.1(5) we
get that (N ′

n ∩ P )′ ∩ P = Nn. Hence, by passing to relative commutants using Lemma 2.5(3)
that

(7.3) B ≺P Nn.

In the rest of the proof we show that (7.3) will lead to a contradiction.

For simplicity, denote Q := Nn. As B ≺P Q, using [CKP14, Proposition 2.4] and its proof,
one can find projections b ∈ B, q ∈ Q, a nonzero partial isometry v ∈ qPb , a von Neumann
subalgebra D ⊆ qQq, and a ∗-isomorphism onto its image ϕ : bBb→ D satisfying the following
relations:
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(1) D ∨ (D′ ∩ qQq) ⊆ qQq has finite index;

(2) ϕ(x)v = vx for all x ∈ bBb;

(3) vv∗ ∈ D′ ∩ qPq and p := v∗v = a⊗ b for some projection a ∈ A.

Since Q is s-prime, relation (1) implies that D′∩qQq is finite dimensional. Fix 0 ̸= z ∈ D′∩qQq,
a minimal central projection. Thus one can find n ∈ N such that (D′∩qOq)z ∼=Mn(C). Since Dz
is a factor commuting with (D′∩qQq)z this further implies the index [(D∨D′∩qQq)z : Dz] <∞.
Lemma 2.1 and relation (1) also imply the index [zQz : (D ∨ (D′ ∩ qQq))z] < ∞. Using the
transitivity property of finite index inclusions, these relations yield that Dz ⊂ zQz is a finite
index inclusion of II1 factors. Moreover, replacing q by qz, D by Dz, v by vz and ϕ(·) by ϕ(·)z,
relations (2) and (3) still hold and furthermore, instead of (1) we actually have

(1’) D ⊆ qQq is a finite index inclusion of II1 factors.

Choosing u ∈ U (P ) such that v = up, then relation (2) entails that

(7.4) Dvv∗ = vBv∗ = u(pBp)u∗.

Passing to relative commutants above and using (3), we also have

(7.5) vv∗(D′ ∩ qPq)vv∗ = u(pAp)u∗.

Altogether, relations (7.4)-(7.5) show that vv∗(D ∨ (D′ ∩ qPq))vv∗ = upPpu∗. If t denotes the
central support of vv∗ in D ∨ (D′ ∩ qPq), this further implies that

(7.6) (D ∨ (D′ ∩ qPq))t = tP t.

Using relation (1’), Lemma 2.2 and Proposition 2.1(1) we deduce that (qQq′∩qPq)t ⊆ (D′∩qPq)t
has finite index. Since Dt is a factor and commutes with (D′ ∩ qPq)t, then it is in tensor
position with respect to (D′∩ qPq)t and (qQq′∩ qPq)t; thus, using Lemma 2.1(4) it follows that
(D∨(qQ′q∩qPq))t ⊆ (D∨(D′∩qPq))t = tP t has finite index as well. By Lemma 2.6 we deduce
that P ≺P D ∨ (qQq′ ∩ qPq) and since D ⊆ qQq we further have P ≺P qQq ∨ (qQq′ ∩ qPq) =
q(Q∨(Q′∩P ))q. Since (Q′∩P )′∩P = Q, we get that Q∨(Q′∩P ) has trivial relative commutant
inside P . Hence, by [CD18, Proposition 2.3] we further derive that

(7.7) Nn ∨ (N ′
n ∩ P ) ⊆ P is a finite index inclusion of II1 factors.

Now, fix r > n such that Nn ⊂ Nr has infinite index. Let ENr : P → Nr be the canonical
conditional expectation and denote by S = ENr(N

′
n ∩ P )′′ the von Neumann algebra generated

by the image of N ′
n ∩ P under the expectation ENr inside Nr. Using the Nr-bimodularity of

ENr , we can see that ENr(N
′
n ∩ P ) ⊂ N ′

n ∩Nr. In particular, S commutes with Nn.

Denote also T = ENr(Nn ∨ (N ′
n ∩ P ))′′. Since for every x ∈ Nn and y ∈ N ′

n ∩ P we have that
ENr(xy) = xENr(y) one can see that T = Nn ∨ S.
Finally, notice that (7.7) and Lemma 2.3 (for M = Nn ∨ (N ′

n ∩ P ) and N = Nr) imply that
Nn ∨ S = T ⊆ Nr has finite index. Since Nr is s-prime it follows that S is finite dimensional.
Thus, Nn ⊂ Nr has finite index, which is a contradiction. □

Remark 7.2. The above proof applies verbatim to any existentially closed factor of the form

P = ∪nNn
wot

, where Nn are s-prime factors that do not necessarily have property (T) but
satisfy the bicommutant property (N ′

n ∩ P )′ ∩ P = Nn, for all n ∈ N. It would be interesting to
determine if there are such existentially closed factors P when Nn are free products. Tackling
this case requires significant development of new technology—e.g. finding suitable replacements
for the spectral gap property along with the embedding results from [CDI22] which were used
in an essential way in the current approach.
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Next, we record some immediate consequences of Theorem 7.1. First, we observe that while fac-
tors in class ET are inner asymptotically central (see [AGKE20, Definition 6.2.8 and Proposition
6.3.2]), they cannot be written as infinite tensor products of full factors (see also [AGKE20, Ques-
tion 6.4.1]).

Corollary 7.3. For any P ∈ ET , we have that P ≇ ⊗n∈NPn for any infinite collection of
{Pn : n ∈ N} of full II1 factors.

The second application concerns the structure of the central sequence algebra of a certain class
of existentially closed factors. A factor P is called super McDuff if its central sequence algebra
P ′∩Pω is a II1 factor. In [AGKE20, Question 6.3.1] it was asked whether all existentially closed
factors are super McDuff. In [CDI22, Theorem 6.4] this question was answered positively for all
infinitely generic factors. Using Theorem 7.1, we can moreover show that if P is an infinitely
generic factor which is also in class ET , then all of its tensor factors are super McDuff.

Corollary 7.4. Let P ∈ ET be an infinitely generic factor. Then for any diffuse tensor decom-
position P = A⊗B, both factors A and B are super McDuff.

Proof. Since P is infinitely generic, it follows from [CDI22, Theorem 6.4] that P is super McDuff.
Let P = A⊗B be a diffuse tensor decomposition. Using Theorem 7.1 it follows that A and
B have property Gamma. Hence, their central sequence algebras A′ ∩ Aω and B′ ∩ Bω are
diffuse [MD69b]. In addition, as P ′ ∩ Pω is a factor, [Ma17, Theorem F] further implies that
A′ ∩Aω and B′ ∩Bω are also factors, which yields the desired conclusion. □

We believe that in fact all existentially closed factors satisfy the statement of Theorem 7.1 and
thus conjecture the following:

Conjecture 7.5. For any P ∈ E , we have that P ≇ A⊗B, for all II1 factors A and B with B
full.

At the time of writing, we do not have an approach for this conjecture in its full generality.
However, we would like to mention that the conjecture holds true if one assumes in addition
that B is a group von Neumann algebra arising from a non-inner amenable group; for the
definition, see Exercise 6.20 in Ioana’s article in this volume. In fact, we have the following more
general indecomposability result.

Theorem 7.6. If Q ∈ E, then Q ≇ A⋊σ,αΓ for any trace-preserving cocycle action Γ ↷σ,α (A, τ)
of a non-inner amenable group Γ.

Proof. Assume by contradiction that Q = A ⋊σ,α Γ for some cocycle action Γ ↷ (A, τ). As
Γ is non-inner amenable, then using a generalization of Exercise 6.20 in Ioana’s article in this
volume, one can find g1, . . . , gk ∈ Γ and C > 0 such that for every x ∈ Q we have

(7.8)

k∑
i=1

∥xugi − ugix∥2 ≥ C∥x− EA(x)∥2.

In particular, this implies that Q′ ∩Qω ⊆ Aω. On the other hand, since Q is existentially closed
then there exists a unitary (vn)n = v ∈ Qω such that vQv∗ ⊆ Q′ ∩Qω (see [AGKE20, Definition
6.2.8 and Proposition 6.3.2]). Altogether, these relations imply that for every g ∈ Γ there exists
a sequence (cn(g))n ∈ U(A) such that limn→ω ∥vnugv∗n − cn(g)∥2 = 0. This further shows that

(7.9) lim
n→ω

∥vn − cn(g)vnug−1∥2 = 0.
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To this end let vn =
∑

g v
n
g ug with vng ∈ A be its Fourier expansion. Using this relation together

with the triangle inequality and the fact that cn(g) and α(h, g) are unitaries, we can see that

∥vn − cn(g)vnug−1∥22 =
∑
h

∥vnhg−1 − cn(g)v
n
hα(h, g

−1)∥22

≥
∑
h

(
∥vnhg−1∥2 − ∥cn(g)vnhα(h, g−1)∥2

)2

=
∑
h

(
∥vnhg−1∥2 − ∥vnh∥2

)2
.

(7.10)

Letting ξn(g) := ∥vng ∥2 for all g ∈ Γ one can see that ξn ∈ ℓ2Γ with ∥ξn∥2 = 1. Moreover, relations
(7.9)-(7.10) show that limn→ω ∥ρg(ξn)− ξn∥2 = 0, where ρ is the right regular representation of
Γ. This implies that Γ is amenable, a contradiction. □

We continue with a few basic observations that rule out other particular types of tensor product
decompositions for existentially closed factors. It is possible that some of the results could also
shed some light towards a possible approach to Conjecture 7.5.

Using embedding results into von Neumann algebraic HHN extensions, as in the group situation,
we show that any existentially closed factorM does not decompose asM = A⊗B for any factors
A and B that contain isomorphic copies of a given non-amenable factor.

Theorem 7.7. If P ∈ E, then P ≇ A⊗B for any factors A, B that both contain isomorphic
copies of a given non-amenable factor.

Proof. Assume by contradiction that P = A⊗B such that there exist isomorphic non-amenable
subfactors S ⊆ A, T ⊆ B. Fix a ∗-isomorphism ϕ : S → T . Following an idea from the proof
of [Go21, Theorem 4], we consider the HNN extension Q = HNN(P, ϕ) associated to ϕ [Ue05]
and obtain that P ⊂ Q is an inclusion of tracial von Neumann algebras together with a unitary
w ∈ Q such that wϕ(x)w∗ = x, for any x ∈ S (see also [FV10, Section 3]). Since P is existentially
closed and w ∈ Q ⊃ P , it follows that we can represent w = (un)n ∈ Pω, and hence,

(7.11) lim
n→ω

⟨xun, un⟩ = τ(x) and lim
n→ω

∥unϕ(x)− xun∥2 = 0, for any x ∈ S.

Consider the Hilbert space L2(P ) and endow it with the S-bimodular structure given by x·ξ ·y =
(x⊗1)ξ(1⊗ϕ(y)) for every x, y ∈ S and ξ ∈ L2(P ). Then L2(P ) is isomorphic to a sub-bimodule

of a multiple of the coarse S-bimodule,
(
L2(S)⊗L2(S)

)⊕∞
. This follows from P = A⊗̄B and the

fact that any left (respectively, right) S-module is contained in L2(S)⊕∞ as a left (respectively,
right) S-module (see, for instance, [AP22, Proposition 8.2.3]). Hence, we derive from (7.11) that
there exists a sequence of vectors (ξn)n≥1 ⊂ L2(S)⊗ L2(S) such that

lim
n→∞

⟨xξn, ξn⟩ = τ(x) and lim
n→∞

∥xξn − ξnx∥2 = 0 for all x ∈ S.

Therefore, using Section 2.4 relation (7.11) implies that S is amenable, which is a contradiction.
□

A well-known conjecture in the theory of von Neumann algebras predicts that the following
version of von Neumann’s problem in group theory holds true:

Conjecture 7.8. Every nonamenable II1 factor contains a copy of L(F2).
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A positive answer to this conjecture combined with Theorem 7.7 would rule out the existence
of tensor product decomposition into non-amenable factors for all existentially closed factors.
Unfortunately, this conjecture is wide open at this time and very difficult to establish in full
generality. However, since existentially closed factors are highly rich objects, one expects that
they all verify Conjecture 7.8. Such a result would lead to new advances regarding Conjecture
7.5. Indeed, we first notice the following elementary result.

Theorem 7.9. If Q ∈ E and Q = A⊗B with B a full factor, then A ∈ E.

Proof. First observe that since B is full and Q = A⊗B then the spectral gap condition (7.1)
implies that the inclusion B ⊂ Q has w-spectral gap, i.e.

(7.12) B′ ∩Qω = (B′ ∩Q)ω.

Now let A ⊆ C be any extension. Thus Q = A⊗B ⊆ C⊗B. Since Q = A⊗B is existentially
closed we have that Q ⊆ C⊗B ⊆ Qω. However we have that C ⊆ B′ ∩Qω and using (7.12) we
get A ⊆ C ⊆ B′ ∩Qω = Aω. □

The recent refutation of the Connes Embedding Conjecture from [JNVWY20] implies in partic-
ular that the hyperfinite II1 factor is not existentially closed. Thus Conjecture 7.8 could poten-
tially hold true for all existentially closed factors. (We point out the corresponding statement
for groups holds true as every group with solvable word problem embeds into every existentially
closed group.) If this is the case, then combining Theorems 7.7 and 7.9 we would obtain that for
any existentially closed factor P we have that P ≇ A⊗B where B is any full factor containing
a copy of L(F2).

We end this section with one last conjecture on tensor decompositions of existentially closed
factors. To this end, we first recall some terminology and provide some context.

If P is a McDuff factor then P ∼= P⊗R, where R is the hyperfinite factor. We say that P admits
only the canonical McDuff decomposition if the following holds: for any tensor decomposition
P = Q⊗R, Q is isomorphic to P .

Currently, only a few classes of McDuff factors admitting only the canonical McDuff decompo-
sition are known. These include:

(1) All infinite tensor products ⊗n∈NPn of full factors Pn [Po09]; see also [Ma17, Corollary
G] for an alternative shorter proof.

(2) All McDuff’s group factors L(T0(Γ)) for any nontrivial icc group Γ, where T0(Γ) are
McDuff’s groups introduced in [MD69a]; this is the main result in [CS22].

We believe that existentially closed factors also have this property.

Conjecture 7.10. Any factor P ∈ E admits only the canonical McDuff tensor decomposition.

8. Open Problems and Final Comments on the Structure of Existentially
Closed Factors

In this section we propose several additional open problems regarding the structure of existen-
tially closed factors.

Much of the technology developed within the framework of Popa’s deformation/rigidity theory
is tailored for analyzing von Neumann algebras that are built from countable groups and their
actions on von Neumann algebras. In order to understand if these methods can be applied to the
study of existentially closed factors, one first needs to understand if existentially closed factors
arise from countable groups or their actions. The following fundamental question is wide open:
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Open Problem 8.1. Are there any group II1 factors in the class E?

A possible approach for this problem, using model theoretic forcing, has been suggested in
Goldbring’s article in this volume.

If the answer to Problem 8.1 is positive, then we can further ask if it is possible to describe
the groups Γ satisfying L(Γ) ∈ E? If this is too much to ask for, could one at least identify
some properties such groups enjoy? It would be natural to investigate if these groups share
any properties with existentially closed groups. Obviously, since existentially closed factors
are McDuff, such groups Γ might not be simple but is it at least true that they are infinitely
generated? Do they always contain free groups?

In the opposite direction, constructing existentially closed factors that do not arise from groups
also seems challenging.

Open Problem 8.2. Are there any examples of existentially closed factors that are not group
factors?

We believe that most existentially closed factors are not group factors. The idea would be
to exploit the embeddings group factors (e.g., the comultiplication ∆ : L(Γ) → L(Γ)⊗L(Γ))
possess. However, thus far, we were not able to construct existentially closed factors which are
not group factors. We notice that, even by abstract means, so far we do not know the existence
of even a single existentially closed group factor.

We end with another open problem regarding indecomposability properties of existentially closed
factors. Theorem 7.6 implies that existentially closed factors do not appear as group measure
space von Neumann algebras L∞(X)⋊Γ associated with probability measure preserving actions
Γ ↷ (X,µ) on diffuse probability spaces, where Γ is a non-inner amenable group. We believe
that much more should be true and conjecture the following:

Conjecture 8.3. There is no factor P ∈ E which has a Cartan subalgebra.
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References

[AP22] C. Anantharaman and S. Popa: An introduction to II1 factors, book in preparation, available on Sorin
Popa’s website: https://www.math.ucla.edu/ popa/Books/IIunV15.pdf.

[AGKE20] S. Atkinson, I. Goldbring, S. Kunawalkam-Elyavalli: Factorial relative commutants and the generalized
Jung property for II1 factors, Adv. Math. 396 (2022), Paper No. 108107, 53 pp.

[Be06] B. Bekka: Operator-algebraic superridigity for SLn(Z), n ≥ 3, Invent. Math. 169 (2007), 401-425
[Br82] K.S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87. Springer-Verlag, New York-

Berlin, 1982. x+306 pp.
[Bo12] R. Boutonnet, On solid ergodicity for Gaussian actions, J. Funct. Anal. 263 (2012), no. 4, 1040-1063.
[BIP18] R. Boutonnet, A. Ioana, J. Peterson: Properly proximal groups and their von Neumann algebras, Ann.

Sci. Ec. Norm. Super. (4) 54 (2021), no. 2, 445-482.
[BH19] R. Boutonnet, C. Houdayer: Stationary characters on lattices of semisimple Lie groups, Publ. Math.

Inst. Hautes Études Sci. 133 (2021), 1-46.
[BO08] N. P. Brown, N. Ozawa, C∗-algebras and finite-dimensional approximations, Graduate Studies in Math-

ematics, vol. 88, AMS, Providence, RI.
[CD18] I. Chifan, S. Das, A remark on the ultrapower algebra of the hyperfinite factor, Proc. Amer. Math. Soc.

(to appear), arXiv:1802.06628.
[CD19] I. Chifan, S. Das, Primeness results for II1 factors associated with fibered product groups, Preprint 2019.



26 I. CHIFAN, D. DRIMBE, AND A. IOANA

[CDI22] I. Chifan, D. Drimbe, A. Ioana Embedding universality of property T factors, Adv. Math. 417 (2023),
Paper no. 108934, 24pp.

[CdSS17] I. Chifan, R. de Santiago, W. Sucpikarnon: Tensor product decompositions of II1 factors arising from
extensions of amalgamated free product groups, Comm. Math. Physics 364 (2018), 1163-1194.

[CI08] I. Chifan, A. Ioana: Ergodic subequivalence relations induced by a Bernoulli action, Geom. Funct. Anal.
20 (2010), no. 1, 53-67.

[CIK13] I. Chifan, A. Ioana and Y. Kida, W ∗-superrigidity for arbitrary actions of central quotients of braid
groups, Math. Ann. 361 (2015), 563-582.

[CIOS21] I. Chifan, A. Ioana, D. Osin, B. Sun: Wreath-like product groups and rigidity of their von Neumann
algebras, Preprint 2021, arXiv:2111.04708.

[CH08] I. Chifan, C. Houdayer: Bass-Serre rigidity results in von Neumann algebras, Duke Math. J. 153 (2010),
no. 1, 23-54.

[CJ85] A. Connes, V. F. R. Jones: Property (T) for von Neumann algebras, Bull. Lond. Math. Soc. 17 (1985),
57-62.

[CKP14] I. Chifan, Y. Kida and S. Pant, Primeness results for von Neumann algebras associated with surface
braid groups, Int. Math. Res. Not. IMRN, 16 (2016), 4807–4848.

[CS22] I. Chifan and W. Suckpikarnon, Tensor product decompositions of McDuff’s factors, Preprint 2020.
[Co76] A. Connes: Classification of injective factors, Ann. Math. 104 (1976) 73-115.
[De96] T. Delzant: Sous-groupes distingués et quotients des groupes hyperboliques. (French) (Distinguished

subgroups and quotients of hyperbolic groups), Duke Math. J. 83 (1996), no. 3, 661-682.
[DGO11] F. Dahmani, V. Guirardel, D. Osin: Hyperbolically embedded subgroups and rotating families in groups

acting on hyperbolic spaces, Memoirs Amer. Math. Soc. 245 (2017), no. 1156.
[DHI16] D. Drimbe, D. Hoff, and A. Ioana, Prime II1 factors arising from irreducible lattices in products of rank

one simple Lie groups, J. Reine Angew. Math. 757 (2019), 197–246.
[DI12] Y. Dabrowski, A. Ioana: Unbounded derivations, free dilations, and indecomposability results for II1

factors, Trans. Amer. Math. Soc. 368 (2016), no. 7, 4525-4560.
[Dr19a] D. Drimbe: Prime II1 factors arising from actions of product groups, J. Funct. Anal. 278 (2020), no. 5,

108366.
[Dr19b] D. Drimbe: Orbit equivalence rigidity for product actions, Comm. Math. Phys. 379 (2020), 41–59.
[Dr22] D. Drimbe: Measure equivalence rigidity via s-malleable deformations, Preprint 2022.
[FGHS16] I. Farah, I. Goldbring, B. Hart, and D. Sherman: Existentially closed II1 factors, Fund. Math. 233

(2016), 173-196.
[FV10] P.Fima, S. Vaes: HNN extensions and unique group measure space decomposition of II1 factors, Trans.

Amer. Math. Soc. 364 (2012), 2601-2617.
[Ge96] L. Ge: Applications of free entropy to finite von Neumann algebras, II. Ann. of Math. 147 (1998),

143-157.
[GHS13] I. Goldbring, B. Hart, and T. Sinclair. The theory of tracial von Neumann algebras does not have a

model companion, J. Symbolic Logic, 78 (2013), 1000-1004.
[Go18] I. Goldbring: Spectral gap and definability, Beyond First-order Model Theory, Volume 2, (to appear),

arXiv:1805.02752.
[Go20] I. Goldbring: On Popa’s factorial commutant theorem, Proc. Amer. Math. Soc. 148 (2020), 5007-5012.
[Go21] I. Goldbring: Non-embeddable II1 factors resembling the hyperfinite II1 factor, J. Noncommutative

Geom. (to appear), arXiv:2101.10467.
[Gr87] M. Gromov, Hyperbolic Groups. In Gersten, S.M. (ed.). Essays in Group Theory. Mathematical Sciences

Research Institute Publications, vol 8. New York, NY: Springer, (1987) pp. 75–263.
[Ha79] U. Haagerup: An example of a non-nuclear C∗-algebra, which has the metric approximation property,

Invent. Math. 50 (1978/79), 279-293.
[Ho15] D. Hoff: Von Neumann algebras of equivalence relations with nontrivial one-cohomology, J. Funct. Anal.

270 (2016), no. 4, 1501-1536.
[HS88] G. Higman, E. Scott: Existentially closed groups, (London Mathematical Society Monographs (New

series) No. 3 Oxford University Press, 1988), 170 pp., 0 19 853543 0, £25. Proceedings of the Edinburgh
Mathematical Society, 33(1), 168-168.

[HV12] C. Houdayer, S. Vaes: Type III factors with unique Cartan decomposition, J. Mathematiques Pures et
Appliquees 100 (2013), 564-590.

[Io06] A. Ioana: Rigidity results for wreath product II1 factors, J. Funct. Anal. 252 (2007), no. 2, 763-791.
[Io08] A. Ioana: Cocycle Superrigidity for Profinite Actions of Property (T) Groups, Duke Math. J. 157 (2011),

no. 2, 337–367.



TENSOR PRODUCT INDECOMPOSABILITY RESULTS FOR EXISTENTIALLY CLOSED FACTORS 27

[Io11] A. Ioana: Uniqueness of the group measure space decomposition for Popa’s HT factors, Geom. Funct.
Anal. 22 (2012), no. 3, 699-732.

[Io12] A. Ioana: Classification and rigidity for von Neumann algebras, European Congress of Mathematics,
EMS (2013), 601-625.

[Io17] A. Ioana: Rigidity for von Neumann algebras, Proceedings of ICM, 2018, Rio de Janeiro, Vol. 2 (1635-
1668).

[IM19] Y. Isono, A. Marrakchi: Tensor product decompositions and rigidity of full factors, To appear in Ann.
Sci. Ec. Norm. Super.

[IPP05] A. Ioana, J. Peterson, S. Popa: Amalgamated free products of weakly rigid factors and calculation of
their symmetry groups, Acta Math. 200 (2008), no. 1, 85-153.

[IPV10] A. Ioana, S. Popa, and S. Vaes, A class of superrigid group von Neumann algebras, Ann. of Math. (2)
178 (2013), no. 1, 231-286.

[IS18] A. Ioana, P. Spaas: A class of II1 factors with a unique McDuff decomposition, Math. Ann. 375 (2019),
no. 1-2, 177-212.

[JNVWY20] Z. Ji, A. Natarajan, T. Vidick, J. Wright and H. Yuen, MIP∗ = RE, preprint. arxiv 2001.04383
[Jo81] V.F.R. Jones: Index for subfactors, Invent. Math. 72 (1983), 1-25.
[Ma17] A. Marrakchi, Stability of products of equivalence relations, Compos. Math. 154 (2017), no. 9, 2005-2019.
[MD69a] D. McDuff: A countable infinity of II1 factors, Ann. of Math. 90 (1969), 361-371.
[MD69b] D. McDuff: Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461.
[MvN43] F. J. Murray, J. von Neumann: Rings of operators IV. Ann. of Math. 44 (1943), 716-808.
[Ol95] A. Yu. Olshanskii: SQ-universality of hyperbolic groups. (Russian) Mat. Sb. 186 (1995), no. 8, 119-132;

translation in Sb. Math. 186 (1995), no. 8, 1199-1211.
[OP07] N. Ozawa, S. Popa: On a class of II1 factors with at most one Cartan subalgebra, Ann. of Math. (2)

172 (2010), no. 1, 713-749.
[Os18] D. Osin: Groups acting acylindrically on hyperbolic spaces, Proc. Int. Cong. of Math. 2018, Rio de

Janeiro, Vol. 2, 919-940.
[Oz02] N. Ozawa: There is no separable universal II1 factor, Proc. Amer. Math. Soc., 132 (2004), 487-490.
[Oz03] N. Ozawa: Solid von Neumann algebras, Acta Math. 192 (2004), no. 1, 111-117.
[Oz04] N. Ozawa: A Kurosh type theorem for type II1 factors, Int. Math. Res. Not. (2006), Art. ID 97560, 21

pp.
[Oz08] N. Ozawa: Weak amenability of hyperbolic groups, Groups Geom. Dyn. 2 (2008), 271–280.
[Pe06] J. Peterson: L2-rigidity in von Neumann algebras, Invent. Math. 175 (2009), no. 2, 417-433.
[Pe14] J. Peterson: Character rigidity for lattices in higher-rank groups, preprint 2014.
[Po83] S. Popa: Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983),

no. 2, 253-268.
[Po86] S. Popa: Correspondences, INCREST Preprint, 56/1986.
[Po95] S. Popa: Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in

Mathematics, vol. 86, Published for the Conference Board of the Mathematical Sciences, Washington,
DC; by the American Mathematical Society, Providence, RI, 1995.

[Po01] S. Popa: On a class of type II1 factors with Betti numbers invariants, Ann. of Math. 163b(2006), no.
3, 809-899.

[Po02] S. Popa, Universal construction of subfactors. J. Reine Angew. Math. 543 (2002), 39-81.
[Po03] S. Popa: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I., Invent. Math.

165 (2006), no. 2, 369-408.
[Po05] S. Popa: Some rigidity results for non-commutative Bernoulii shifts, Journal of Functional Analysis 230

(2005), 1-56.
[Po06a] S. Popa: On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008),

981-1000.
[Po06b] S. Popa: On Ozawa’s property for free group factors, Int. Math. Res. Not. 2007, no. 11, Art. ID rnm036,

10 pp.
[Po07] S. Popa: Deformation and rigidity for group actions and von Neumann algebras, International Congress

of Mathematicians. Vol. I, 445-477, Eur. Math. Soc., Zürich, 2007.
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