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Abstract:

Representational geometry and connectivity-based
studies offer complementary insights into neural
information processing, but it is unclear how
representations and networks interact to generate neural
information. Using a multi-task fMRI dataset, we
investigate the role of intrinsic connectivity in shaping
diverse representational geometries across the human
cortex. Activity flow modeling, which generates neural
activity based on connectivity-weighted propagation
from other regions, successfully recreated similarity
structure and a compression-then-expansion pattern of
task representation dimensionality. We introduce a novel
measure, convergence, quantifying the degree to which
connectivity converges onto target regions. As
hypothesized, @ convergence corresponded  with
compression of representations and helped explain the
observed compression-then-expansion pattern of task
representation dimensionality along the cortical
hierarchy. These results underscore the generative role
of intrinsic connectivity in sculpting representational
geometries and suggest that structured connectivity
properties, such as convergence, contribute to
representational transformations. By bridging
representational geometry and connectivity-based
frameworks, this work offers a more unified
understanding of neural information processing and the
computational relevance of brain architecture.
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Introduction

Representational geometry offers a framework to
understand the contribution of neural representations to
computational (cognitive) goals. For example,
untangling of manifold structure along the regions of the
primate ventral visual stream provides insight into the
transformations necessary for object recognition from
early inputs (DiCarlo & Cox, 2007). Although
informative, studies under this framework are limited in
that they are unable to provide a mechanistic- or
connectivity-based account of how  those
representational transformations occur. On the other
hand, studies based on connectivity between brain
regions have underscored the computational relevance

of connectivity architecture in a variety of behavioral
and computational phenomena (lto et al., 2020, Kohn et
al., 2020). Here we investigate the role of intrinsic
connectivity architecture and its contribution to the
diverse representational geometries observed across
the human cortex.

We focus here on using activity flow modeling to
generate neural activity patterns, allowing inferences
regarding the generation of brain regions’
representational geometries across stimuli and tasks.
We hypothesized that high values of convergence (an
increase in the vertex-wise degree between the sources
and the target) correspond with high levels of relative
compression of representations from sources to target
regions.

Methods

Dataset

We used the multi-domain task battery fMRI dataset
(King et al.,, 2019) given the diverse set of tasks
employed. Dataset and preprocessing details were
previously described in detail in King et al. (2019) and
Ito et al. (2023), respectively. In brief, 18 subjects
performed 24 tasks (96 active task conditions) over two
identical sessions, each spanning eight fMRI runs.

Activity and connectivity estimation

We derived activity estimates (betas) for the 96 active
task conditions (alongside nuisance regressors) by
fitting the timeseries during each run using a general
linear model with ridge regularization. Functional
connectivity (FC) between vertices was estimated from
rest dataset using a two-step procedure: connectivity
between 360 Glasser parcels was first estimated using
regularized partial correlation with graphical lasso.
Principal components regression was then performed
on the parcel-level FC scaffold to obtain vertex-wise FC
estimates.
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Representational geometry measures

Cosine similarity between observed activity patterns
corresponding to 96 task conditions was computed
among all pairs of tasks resulting in 96x96 sized RSMs
in each brain region. Dimensionality was estimated
from the cross-validated RSMs by computing the
participation ratio of the eigen spectrum of each RSM
(Figure 1B).

Activity flow modeling

Activity flow modeling (ActFlow) was used to predict
activity (Ito et al. 2020). Briefly, predicted betas in a
target region’s vertices were obtained by the dot
product of source regions’ vertices (pooled together)
and vertex-wise FC between source regions’ vertices
and target region’s vertices (Figure 1A).

Convergence

Convergence C between sources and a target region
is defined as mean degree of a target region’s vertices
subtracted from the mean degree of vertices of all of the
source regions:

i 1<
C(T,8(T)) = - > Wi - - > W
i=1 j=1

where Wi is the absolute value of FC weight matrix
between a target region T (with t vertices) and its
sources S(T) (with s vertices, pooled among sources).

Results and Discussion

Significant correspondence was detected between
observed and ActFlow-predicted activity patterns and
activity profiles in all brain regions, replicating previous
results. Predicted and observed shared task
representations (RSMs, Figure 2A) and the
dimensionality of task representations (Figure 2B) also
correspond with one another in all brain regions.

A previously reported (lto et al., 2023) compression-
then-expansion pattern was seen in both observed
(Figure 2C) and predicted (Figure 2D) dimensionality.
This was also observed with double cross-validated
RSMs (Figure 2E). This reflects that activity flow
modeling can recreate multitask representational
geometrical properties, suggesting intrinsic connectivity
contributes to the geometrical properties of task
representations in a generative manner.

Further, as hypothesized, we observed that the pattern
of convergence conferred by the intrinsic connectivity
between brain regions likely plays a role in generating
representational compression (rho=0.16, p<0.00001).

The average convergence across subjects follows an
inverted-U shaped pattern along the sensorimotor FC
gradient, complementing the dimensionality pattern
(p<0.00001).
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Figure 1: (A) Activity flow mapping procedure. (B)
Activity patterns (observed and ActFlow-predicted)
were used to create RSMs cross-validated between
sessions in each brain region. A;is the ith eigen value of
RSM. m is total number of eigen values (96).
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Figure 2: (A) Spearman r between observed and
predicted RSMs displayed across cortical regions
(cross-subject average), (B) Observed vs. predicted
dimensionality (cross-subject average), (C) Quadratic
pattern of dimensionality from observed, predicted and
cross-validated RSMs along sensorimotor FC gradient.
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