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A MATHEMATICAL JUSTIFICATION FOR NONLINEAR

CONSTITUTIVE RELATIONS BETWEEN STRESS AND

LINEARIZED STRAIN

K. R. RAJAGOPAL AND C. RODRIGUEZ

Abstract. We present an asymptotic framework that rigorously generates
nonlinear constitutive relations between stress and linearized strain for elas-
tic bodies. Each of these relations arises as the leading order relationship
satisfied by a one-parameter family of nonlinear constitutive relations be-
tween stress and nonlinear strain. The asymptotic parameter limits the overall
range of strains that satisfy the corresponding constitutive relation in the one-
parameter family while the stresses can remain large (relative to a fixed stress
scale). This differs from classical linearized elasticity where a fixed consti-
tutive relation is assumed, and the magnitude of the displacement gradient
serves as the asymptotic parameter. Also unlike classical approaches, the
constitutive relations in our framework are expressed as implicit relationships
between stress and strain rather than requiring stress explicitly expressed as
a function of strain, adding conceptual simplicity and versatility. We demon-
strate that our framework rigorously justifies nonlinear constitutive relations
between stress and linearized strain including those with density-dependent
Young’s moduli or derived from strain energies beyond quadratic forms.

1. Introduction

1.1. Nonlinear constitutive relations between stress and linearized strain.
The celebrated eponymous constitutive relation to describe the response of elastic
solids subject to “small strains” remains a cornerstone of solid mechanics.1 Hooke
did not have a clear grasp of the applicability of the empirical constitutive relation
he was proposing in his immortal treatise “Lectures de potential restitutiva, or of
Spring, Explaining the Power of Springy Bodies”. He erroneously supposed that
the constitutive relation was equally applicable to gases and thereby confused his
constitutive relation with the one proposed by Boyle (see [12] for a discussion of
the relevant issues). Moyer [12] remarks:

While it is a simple and straightforward matter to extract from
the early pages of De potentia restitutiva the modern statement of
‘Hooke’s law’ for elastic solids, F = −kx, one must first suppress
or ignore Hooke’s ‘trial’ involving ‘a body of Air.’ That is, in
modern terms, he inappropriately associated ‘Hooke’s law’-a direct
proportionality between displacement and force-with ‘Boyle’s law’-
an inverse proportionality between the volume of an ideal gas at
constant temperature and the pressure to which it is subjected (or,

1Referring to it as “Hooke’s law” is clearly unwarranted as it is merely a constitutive relation
that holds for a small subset of bodies in an approximate sense while we expect a “law” to have
more universal validity. Unfortunately, most people that use the constitutive relation, including
experts in the field, are unaware that Hooke did not limit the use of the relation to solids.
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for a gas in a cylinder with a uniform cross-sectional area, between
the length of the column of gas and the force on it).

In fact, Moyer [12] points out that Hooke’s theoretical explanation of his empiri-
cal relation F = −kx is consistent with Boyle’s relation for gases but is inconsistent
with Hooke’s linear relation for solids. Indeed, assuming that a spring has natural
length of 1 unit, Hooke proposed that the force due to the spring’s particles’ “en-
deavor of receding from each other” is inversely proportional to its stretched length
d [12]. As a consequence of balance of forces, Moyer [12] observes:

. . .realizing that the stretched length d is equal to the original
length 1 unit plus some increment distance x, we obtain a relation
between the force on a spring due to an external macroscopic agent
and the spring’s change in length:

Fe = k(1− [1/(1 + x)]),

which is also equal to k[x/(1 + x)] . . .In other words, for slight
changes in length, Hooke’s model does lead approximately to his
empirical law.

In his authoritative article in the Handbuch der Physik, Bell [1] devotes a sig-
nificant amount of discussion to the work by illustrious contemporaries of Hooke
on nonlinear constitutive relations between stress and linearized strain.2 According
to Bell, many of them did not believe that Hooke’s empirical constitutive relation
was appropriate, even for elastic solids undergoing small displacement gradients.3

Concerning the data that James Bernoulli had sent him, Leibniz observed that it
seems to be fitted best by a hyperbola. Later, James Bernoulli himself proposed a
parabolic relation, namely

t = kxm,

where t is the applied force and x is the elongation. Bullfinger [2] proposed the
value m = 3/2.

Wertheim [35] carried out extensive and systematic experiments on a miscellany
of biological materials. He carried out experiments on a variety of bones (femur,
fibula), tendons (big toe flexor, small plantar), sartorial muscles, nerves, femoral
arteries, veins, for both males and females. With the exception of bones, all his
experiments could be fitted to the nonlinear constitutive relation

ǫ2 = Aσ2 + Bσ,

where ǫ denotes the strain, σ the stress, and A and B are constants. This led
Bell [1] to remark:

2A great deal of care has to be exercised in analyzing the discussion in Bell [1] as some of the
works, while concerned with small strains, are suffering inelastic response. As no unloading data
is provided, it is possible that during the reported experiments, some or many of the specimens
might have undergone inelastic response.

3Of course, it depends on what one means by small displacement gradients. Here, it means
the use of linearized strain wherein the nonlinear part of the strain is ignored and merely the

symmetric part of the displacement gradient is used, or put differently, wherein the square of
the norm of the displacement gradient is negligible compared to the norm of the displacement
gradient. For example, it would be reasonable to say the displacement gradient is small if its
Frobenius norm is less than 10−2. See [24] for more on this point.
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The experiments of 280 years have demonstrated amply for ev-
ery solid substance examined with sufficient care, that the strain
resulting from applied stress is not a linear function thereof.

The above observation of Bell remains true today with regard to a large class of
solid bodies.

Numerous recent works study a variety of materials wherein one observes non-
linear response even when the body is subject to sufficiently small strains, regimes
where the linearized constitutive relation due to Hooke seems reasonable. It is
now well established that the response of the trabecular bone is nonlinear, even for
small strains, and more importantly such bones respond differently in tension and
compression (see, e.g., [11] and [7]). It is interesting to note that the title of [11]
is Nonlinear behavior of trabecular bone at small strains, emphasizing that even
in the small strain range where the linearized constitutive relation due to Hooke
is usually thought to be valid, the response is nonlinear.4 There is considerable
experimental evidence for a large class of metallic alloys wherein the response is
nonlinear in the small strain regime. For the case of Gum metal and titanium
alloys, see [5, 8, 27–29, 32, 36, 37]. Once again, we quote few of remarks from the
papers which emphasize the fact that the response is nonlinear even though the
strain is small. Talling et al. [32] remark: “As the elastic regions of the microscopic
stress–strain curves are nonlinear in Figure 3, the moduli were calculated from the
lowest stress portion of the curve, before deviation from linearity.”. The first sen-
tence of the abstract of Zhang et al. [37] reads “We report the fatigue endurance of
a multifunctional b type titanium alloy exhibiting nonlinear elastic deformation be-
havior”. Finally, Withey et al. [36] demarcate the nonlinear response region which is
in the small strain regime. Interestingly, even traditional materials such as concrete
and rocks exhibit nonlinear behavior in the small strain regime. Grasley et al. [4]
show that concrete subject to simple uniaxial compression test starts to respond
nonlinearly even at a very low strain of 2 × 10−3, where one would unhesitatingly
apply the classical linearized constitutive relation.

Thus, it is necessary to put into place a framework wherein the linearized strain is
a nonlinear function of the stress, or wherein the linearized strain and the stress are
implicitly related as an approximation. Moreover, such an approximation should
stem rigorously from a proper constitutive relation that meets the basic require-
ments such as frame-indifference and appropriate material symmetry.

1.2. Implicit constitutive theory. We now discuss modern advances in constitu-
tive theory that inspired this study’s proposed asymptotic foundation for rigorously
generating nonlinear constitutive relations between stress and linearized strain.

Cauchy’s classical theory of elasticity is founded upon a functional relation be-
tween the Cauchy stress tensor T and left Cauchy-Green strain tensor B = FF T

4If the strain is sufficiently small and one assumes that the stress as a function of strain

is sufficiently smooth that one can use a Taylor series expansion, there will be a small interval
containing the origin wherein the linear relationship will hold. However, this might be a absurdly
small range of strains. The point being made here is that even in the range wherein one usually
applies the linearized approximation, many materials exhibit nonlinear response.
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for a given deformation,5

T = g(B). (1.1)

Here and throughout our study, we omit the dependence of various quantities on
current points in the body, that is, we assume the body to be homogeneous. Al-
ternatively, a functional relationship between the symmetric Piola-Kirchhoff stress
tensor S̄ and the Green-St. Venant strain tensor E = 1

2 (F
TF − I) is given,

S̄ = f (E). (1.2)

Classic linearized elasticity is obtained from (1.2) or (1.1) in the asymptotic limit
of infinitesimal strains. More precisely, if |F − I| = δ0 ≪ 1, f(0) = 0, and f is
twice continuously differentiable, then (1.2) implies that

σ = C[ǫ] +O(δ20), (1.3)

where C = DEf (0) is the elasticity tensor, ǫ = 1
2 (F + F T ) − I is the linearized

strain, and σ has replaced S̄ as the stress variable.6

In a series of papers [19–22], the first author put into place an implicit framework
for the response of elastic bodies,

g(B,T ) = 0, (1.4)

with a simpler subclass taking the form

B = g(ρ/ρR,T ). (1.5)

Inspired by [19–22], Mai and Walton [9, 10] studied constitutive relations of the
form

E = f (S̄). (1.6)

They proved in [9] that for a popular class of isotropic forms of f appearing in the
literature, strong ellipticity for (1.6) holds as long as |S̄| is sufficiently small and
fails for extreme compression. Results of a similar spirit were obtained in [10] for a
form of monotonicity that is strictly weaker than strong ellipticity (and thus applies
when f is not Frechét differentiable). It was shown in [18] that certain relations of
the form (1.5) arise when describing the response of nonlinear elastic solids specified
in terms of Gibbs potentials. For simple choices of the Gibbs potential (see Section
5 of [18]), (1.5) becomes

H = β0(ρ/ρR)(trT )I + β1(ρ/ρR)T ,

where H = 1
2 logB is the Hencky strain. Based on the assumption that the Frobe-

nius norm of the displacement gradient is small, the works [19–22] formally argued
that the implicit relation (1.4) implies g(I + 2ǫ,T ) = 0, up to negligible errors of
size |F − I|2.7

5Here, F = ∇Xχ is the gradient of a smooth, invertible deformation χ : B → χ(B) ⊆ E
3

of a body with reference configuration B in three-dimensional Euclidean space. See Section 2
for more on the definitions of the tensors appearing in this discussion. Throughout this work,
we use standard tensor notation. In particular, if A is a tensor, we denote the Frobenius norm
|A| = [tr (AAT )]1/2.

6We use standard big-oh and little-oh notation. In particular, a tensor A and scalar B satisfy
A = O(B) if there exists a constant C > 0 such that |A| ≤ CB. If C depends on parameters a
and b, we say that the big-oh term O(B) depends on a and b.

7Alternatively, the arguments in [19–22] suggest that the implicit relation f(E, S̄) = 0 implies
f(ǫ, S̄) = 0, up to negligible errors of size |F − I|2.
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However, one may show using the implicit function theorem that if g is continu-
ously differentiable, g(I,0) = 0, and DT g(I,0) is invertible on the linear space of
symmetric tensors, then there exists a function h such that (1.4) is satisfied if and
only if T = h(B), provided |F − I| is sufficiently small. A similar statement holds
for implicit relations of the form

f (E, S̄) = 0. (1.7)

Thus, under the previous assumptions, fixed constitutive relations of the form (1.4)
or (1.7) will always lead to (1.3) as the leading order relation satisfied in the as-
ymptotic limit, δ0 = |F − I| → 0. Instead, our approach is inspired by the theory
discussed in [20,23] wherein strains are limited by the constitutive relation to a range
of size δ ≪ 1 (while the stresses can remain large relative to a fixed stress scale).
Rather than δ0, it is the limiting strain determined by the constitutive relation,
δ, that serves as the asymptotic parameter in our framework. The central thesis
demonstrated in this work, is that “linearization” with respect to δ rigorously leads
to nonlinear relations between stress and linearized strain ǫ while, as discussed
above, “linearization” with respect to δ0 = |F − I| only leads to linear relations
between stress and the linearized strain.8

We illustrate the above discussion and motivate our framework via a simple 1d
example. Consider the relations

E = δa(1 + |aS̄|p)−1/pS̄, S̄ ∈ R, (1.8)

ǫ := −1 + (1 + 2E)1/2, δ0 := |ǫ|, (1.9)

where ǫ is the linearized strain variable, S̄ is the stress variable, and

E = ǫ+
1

2
ǫ2

is the nonlinear strain. Here, we assume that δ, δ0 ≪ 1. By (1.8), for all S̄ ∈ R,
|E| ≤ δ. By (1.9), ǫ = E +O(δ2), and (1.8) yields

ǫ +O(δ2) = δa(1 + |aS̄|p)−1/pS̄.

Thus, linearization with respect to δ yields the nonlinear relation between stress
and linearized strain,

ǫ = δa(1 + |aS̄|p)−1/pS̄. (1.10)

On the other hand, we may invert (1.8), leading to

aS̄ = (1− |E/δ|p)−1/pE/δ. (1.11)

Since ǫ = E + O(δ20), we conclude that aS̄ = ǫ/δ + O(δ20/δ
2). Thus, linearization

with respect to δ0 yields the linear relation

aS̄ = ǫ/δ.

This interplay between inversion and linearization of constitutive relations was first
explored in [25]. We point out that it was quite simple to rigorously arrive at (1.10)
directly from (1.8) when linearizing with respect to δ. However, it is much less clear
how one arrives at aS̄ = (1 − |ǫ/δ|p)−1/pǫ/δ directly from (1.11) when linearizing
with respect to δ.

8Here, our use of “linearization” with respect to a small parameter a means to neglect terms
of order a2 appearing in either the strain variable or constitutive relation.
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1.3. Main results and outline. In this work, we consider implicit constitutive
relations,

E = fδ(E, S̄), (1.12)

with fδ bounded by δ ≪ 1 on its domain. In Section 2 we briefly review the
kinematics and balance laws necessary for this study to be self-contained. Rather
than consider each constitutive relation (1.12) individually, it is mathematically
desirable from the standpoint of asymptotic analysis to view each fδ as a mem-
ber of one-parameter family of strain-limiting functions with limiting small strain

introduced in Section 3. See Definition 3.1.
We discuss several examples in Section 3.2, and we show in Section 3.3 that

within our framework, a nonlinear constitutive relation between stress and lin-
earized strain is the leading-order-in-δ relationship satisfied by the family of strain-
limiting constitutive relations represented by (1.12); informally,

ǫ = fδ(ǫ,σ) +O(δ2).

See Proposition 3.3 and Corollary 3.4 for the precise statements. Our results are
clearly distinct but in similar spirit to the situation in classical linearized elasticity
(1.3). As applications of Proposition 3.3 and Corollary 3.4, we first obtain non-
linear constitutive relations between stress and linearized strain wherein the stress
is derived from a strain energy depending on the linearized strain; see (3.20). In
contrast to classical linearized elasticity, however, our framework allows for strain
energies beyond quadratic forms of the linearized strain. In addition, we also obtain
certain popular nonlinear constitutive relations between stress and linearized strain
having density dependent Young’s moduli; see (3.24), (3.25), (3.26), and (3.27). We
emphasize that the nonlinear constitutive relations between stress and linearized
strain obtained correspond to the leading order relations satisfied by appropriate
families of strain-limiting constitutive relations.

In the concluding Section 4, we speculate on the interesting open question con-
cerning the solvability of the fully nonlinear problem if one can prove the solvability
of the associated “linearized problem”, the body force being kept the same.

Acknowledgments. The authors gratefully acknowledge support provided by NSF
Grant DMS-2307562.

2. Preliminaries

In this brief section, we give necessary definitions for the ensuing discussion and
analysis presented in this work.

Let B ⊆ E
3 be a smooth domain in three-dimensional Euclidean space, the

reference configuration of a body with reference mass density ρR. Let χ : B →
χ(B) ⊆ E

3 be a smooth invertible deformation of B. For a given reference element
X ∈ B, we denote by x = χ(X) its position in the current configuration χ(B).
The deformation gradient of χ is defined by F (X) = ∂χ

∂X (X).
The left and right Cauchy-Green stretch tensor fields are given respectively by

B = FF T , C = F TF ,

and the Green-St. Venant strain is the second order tensor

E =
1

2
(C − I).
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The displacement field is defined by

u = x−X,

and the displacement gradient is given by

∇Xu = F − I.

Then

B = I +
[

∇Xu+ (∇Xu)T
]

+∇Xu(∇Xu)T ,

C = I +
[

∇Xu+ (∇Xu)T
]

+ (∇Xu)T∇Xu.

Assuming that

|∇Xu| = δ0 ≪ 1,

we then have that

B = I + 2ǫ+O(δ20), E = ǫ+O(δ20),

where ǫ is the linearized strain

ǫ =
1

2

[

∇Xu+ (∇Xu)T
]

=
1

2
(F + F T )− I.

In the purely mechanical setting and in the absence of external forces and body
couples, the classical equations expressing conservation of mass, balance of linear
momentum, and balance of angular momentum on the current configuration are
given respectively by:

ρ̇+ ρ div v = 0,

ρv̇ = divT , T T = T .

Here, ˙ = ∂t +
∑3

j=1 vj∂xj
is the material time derivative, ρ is the current mass

density, v is the velocity field, and T is the (symmetric) Cauchy stress tensor. On
the reference configuration, the balance laws can be expressed by:

ρ = (detF )−1ρR,

ρR∂
2
tχ = Div (S), SF T = FST ,

where S is the first Piola-Kirchhoff stress tensor. We denote the second symmetric

Piola-Kirchhoff stress tensor by S̄ = F−1S. We note that if |∇Xu| = δ0 ≪ 1,
then

ρ/ρR = (detB)−1/2 = (detC)−1/2 = [det(I + 2E)]−1/2 = 1− tr ǫ+O(δ20).(2.1)

3. An asymptotic framework for nonlinear relations between stress

and linearized strain

In this section, we introduce a novel asymptotic framework for constitutive rela-
tions. Within this framework, a nonlinear constitutive relation between stress and
linearized strain is the leading-order-in-δ relationship satisfied by a one-parameter
family of strain-limiting constitutive relations E = fδ(E, S̄). These one-parameter
families are given in terms of families of strain-limiting functions with limiting small
strains, f δ, defined in the following subsection.
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3.1. Families of strain-limiting functions with limiting small strains.

Definition 3.1. For small δ̃ > 0, and each δ ∈ (0, δ̃), let Uδ ⊆ B(0, 1/2) and V be
open subsets of Sym.9 We say that a collection of bounded Lipschitz continuous
functions fδ : Uδ × V → Sym indexed by δ ∈ (0, δ̃) is a family of strain-limiting

functions with limiting small strains if there exist C0, C1 > 0 and D0 > 0, indepen-
dent of δ, such that for all δ ∈ (0, δ̃),

∀E, S̄, |f δ(E, S̄)| ≤ C0δ, ∀E1 6= E2, S̄,
|fδ(E2, S̄)− fδ(E1, S̄)|

|E2 −E1|
≤ C1,(3.1)

∀E, S̄1 6= S̄2,
|f δ(E, S̄2)− fδ(E, S̄1)|

|S2 − S1|
≤ D0δ. (3.2)

We note that if E represents a strain variable, S̄ represents a stress variable,
and fδ represents a dimensionless response function, then δ, C0, and C1 are dimen-
sionless and D0 has physical units of (length)2(force)−1. Each individual function
fδ is referred to as a strain-limiting function with limiting small strains on Uδ ×V .

3.2. Examples of families of strain-limiting functions. We now discuss a
series of example families of strain-limiting functions with limiting small strains.
Let f : U × V → Sym be a bounded Lipschitz continuous function satisfying,

∀E, S̄, |f(E, S̄)| ≤ δ1, ∀E1 6= E2, S̄,
|f (E2, S̄)− f (E1, S̄)|

|E2 −E1|
≤ C̃1,

∀E, S̄1 6= S̄2,
|f (E, S̄2)− f(E, S̄1)|

|S2 − S1|
≤ D̃0δ1.

Then

f δ(E, S̄) :=
δ

δ1
f
(δ1
δ
E, S̄

)

, (3.3)

for E ∈ Uδ :=
δ
δ1
U =

{

δ
δ1
Ẽ | Ẽ ∈ U

}

and S̄ ∈ V , defines a family of strain-limiting
functions with limiting small strains satisfying fδ1 = f . Moreover, the constants
appearing in (3.1) and (3.2) satisfy

C0 = 1, C1 = C̃1, D0 = D̃0.

Roughly speaking, this example shows that an arbitrary bounded Lipschitz con-
tinuous function generates a family of strain-limiting functions with limiting small
strains in a natural way.

We now show that if δn → 0, then, up to passing to a subsequence, an arbitrary
family of strain-limiting functions with limiting small strains takes the form (3.3)
to leading order in δn.

Proposition 3.2. Let U, V ⊆ Sym be bounded open sets. For each δ > 0, let

Uδ = δU = {δẼ | Ẽ ∈ U}.
Suppose that {δn}n is a sequence of positive numbers converging to 0, and fδ : Uδ×
V → Sym is a family of strain-limiting functions with limiting small strains. Then

9Here, Sym denotes the set of symmetric tensors on R
3, and B(0, r) =

{

E ∈ Sym | |E| < r
}

.
We note that if E ∈ B(0, 1/2), then it straightforward to see that C = I+2E is positive definite.
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there exists a subsequence {δnm
}m and a bounded Lipschitz continuous function

g : U × V → Sym such that

sup
(E,S̄)∈Uδnm

×V

|f δnm
(E, S̄)− δ−1

nm
g(δ−1

nm
E, S̄)| = o(δnm

),

as m → ∞.

Proof. Define hn : U × V → Sym by

hn(Ẽ, S̄) = δ−1
n fδn(δnẼ, S̄), (Ẽ, S̄) ∈ U × V.

Then by (3.1) and (3.2), for all n,

∀Ẽ, S̄, |hn(Ẽ, S̄)| ≤ C0, ∀Ẽ1 6= Ẽ2, S̄,
|hn(Ẽ2, S̄)− hn(Ẽ1, S̄)|

|Ẽ2 − Ẽ1|
≤ C1,

∀Ẽ, S̄1 6= S̄2,
|hn(Ẽ, S̄2)− hn(Ẽ, S̄1)|

|S2 − S1|
≤ D0.

By the Arzela-Ascoli theorem, there exists a subsequence {hnm
}m and g : U×V →

Sym such that

sup
(Ẽ,S̄)∈U×V

|hnm
(Ẽ, S̄)− g(Ẽ, S̄)| = o(1),

as m → ∞, concluding the proof. �

A simple subclass of the example (3.3) is generated by a Lipschitz continuous
function f1 : V → Sym on an open set V ⊆ Sym satisfying

∀S̄, |f1(S̄)| ≤ 1.

Then

f δ(S̄) = δf1(S̄), (3.4)

is a family of strain-limiting functions on V with limiting small strains. If there
exists a scalar function W ∗ : V → R such that f1 = ∂S̄W

∗, then the relation

E = δf1(S̄) = ∂S̄ [δW
∗(S̄)], S̄ ∈ V, (3.5)

models an elastic solid body with complementary energy δW ∗. If, in addition, V is
convex and W ∗ is a twice continuously differentiable, convex function on V , then
the relation (3.5) can be inverted yielding

S̄ = ∂E [δW
(

δ−1E
)

], E ∈ range(δf1). (3.6)

In (3.6), W is the Legendre transform of W ∗, and (3.6) is the classical constitutive
relation for a Green elastic solid with strain energy δW (δ−1·) (see [33]).

An explicit example of such a family of strain-limiting functions with limiting
small strains, inspired by [9, 10, 21], is generated by

f1(S̄) = a(1 + ap|S̄|p)−1/pS̄, S̄ ∈ Sym,

where a > 0 and p ≥ 1. Then for all E, S̄,

|f1(E, S̄)| ≤ 1. (3.7)

Using the product and chain rules, we compute the Frechét derivative,

DS̄f1(S̄) = a(1 + bp|S̄|p)−1/p
I− a(1 + bp|S̄|p)−1/p−1bp|S̄|p−2S̄ ⊗ S̄,
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where I : Sym → Sym is the identity map. By the triangle inequality, the operator
norm of DS̄f1 satisfies

‖DS̄f1(S̄)‖ ≤ a(1 + bp|S̄|p)−1/p
(

1 + bp(1 + bp|S̄|p)−1|S̄|p
)

≤ 2a. (3.8)

The fundamental theorem of calculus and (3.8) then imply that

|f1(S̄2)− f1(S̄1)| =
∣

∣

∣

ˆ 1

0

DS̄fδ(sS̄2 + (1 − s)S̄1)[S̄2 − S̄1]ds
∣

∣

∣

≤ 2δa|S̄2 − S̄1|. (3.9)

By (3.7) and (3.9), we conclude that fδ = δf1 is a family of strain-limiting functions
with limiting small strains. We leave it to the reader to verify that f1 = ∂S̄W

∗ for
an appropriately chosen twice continuously differentiable, convex function W ∗.

A family of strain-limiting functions with limiting small strains outside of the
scope of our discussion thus far is the following. Let E0 and a be fixed positive
constants. For δ > 0 small, define

Eδ(E) = δ−1E0

[

1 + aδ−1([det(I + 2E)]−1/2 − 1)
]

,

fδ(E, S̄) =
1 + ν

Eδ
S̄ − ν

Eδ
(tr S̄)I, (3.10)

One may interpret the constitutive relation E = fδ(E, S̄) as a generalization of the
classical linear constitutive relation for an isotropic solid with a generalized Young’s
modulus Eδ depending on the density via Eδ = δ−1E0

[

1 + aδ−1(ρ/ρR − 1)
]

(see
(2.1)).

Suppose that b > 0, c > 0 and ab < 1/2. We claim that for all δ sufficiently
small (depending on a and b), (3.10) is a family of strain-limiting functions with
limiting small strains on domains B(0, bδ) × B(0, c). Towards proving our claim,
we observe that if E ∈ B(0, bδ), then for all δ sufficiently small,

∣

∣

∣
[det(I + 2E)]−1/2 − 1

∣

∣

∣
= | − trE + o(|E|)| ≤

√
3|E|+ o(|E|) ≤ 2|E|.

Above we used the fact that by the Cauchy-Schwarz inequality, for any tensor A

we have |trA| = |I ·A| ≤
√
3|A|. By the reverse triangle inequality, we have

Eδ(E) ≥ δ−1E0(1− 2aδ−1|E|) ≥ δ−1E0(1− 2ab) > 0. (3.11)

We conclude that

|f δ(E, S̄)| ≤ 1 + ν

Eδ
|S̄|+ ν

Eδ
|tr S̄||I| ≤ (1 + 4ν)c

E0(1− 2ab)
δ. (3.12)

Let E1,E2 ∈ B(0, bδ) and S̄1, S̄2 ∈ B(0, c). Then

f δ(E2, S̄2)− f δ(E1, S̄1) =
Eδ(E1)− Eδ(E2)

Eδ(E1)Eδ(E2)
[(1 + ν)S̄2 − ν(tr S̄2)I ]

+
1

Eδ(E1)
[(1 + ν)(S̄2 − S̄1)− ν(tr [S̄2 − S̄1])I ]. (3.13)

For all δ sufficiently small, we have,

∀s ∈ [0, 1], |(I + sE1 + (1− s)E2)
−1| ≤ (1 − bδ)−1 ≤ 2,

∀s ∈ [0, 1], | det(I + sE1 + (1− s)E2)| ≥ 1/2.
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By the fundamental theorem of calculus and the chain rule, we have

|Eδ(E1)− Eδ(E2)|

= δ−2E0a
∣

∣

∣

ˆ 1

0

−1

2
[det(I + sE1 + (1− s)E2)]

−1/2

×(I + sE1 + (1 − s)E2)
−1 · (E1 −E2)ds

∣

∣

∣
,

and thus,

|Eδ(E1)− Eδ(E2)| ≤ δ−2E0a
√
2. (3.14)

We also have

|(1 + ν)S̄2 − ν(tr S̄2)I| ≤ (1 + 4ν)|S̄2| ≤ (1 + 4ν)c,

|(1 + ν)(S̄2 − S̄1)− ν(tr [S̄2 − S̄1])I | ≤ (1 + 4ν)|S̄1 − S̄2|.
Using the previous two estimates along with (3.14) and (3.11), we conclude from
(3.13) and repeated use of the triangle inequality that

|fδ(E2, S̄2)− fδ(E1, S̄1)|

≤ (1 + 4ν)ac
√
2

E0(1− 2ab)2
|E2 −E1|+

1 + 4ν

E0(1− 2ab)
δ|S̄2 − S̄1|. (3.15)

By (3.12) and (3.15), we conclude that for all δ sufficiently small (depending on a
and b), (3.10) is a family of strain-limiting functions with limiting small strains.

A final example of a family of strain-limiting functions with limiting small strains
is given in terms of a slightly different form of a density dependent generalized
Young’s modulus:

Eδ = δ−1E0

[

1 + aδ−1([det(I + 2E)]1/2 − 1)
]−1

,

fδ(E, S̄) =
1 + ν

Eδ
S̄ − ν

Eδ
(tr S̄)I, (3.16)

Again, by (2.1), one may interpret the generalized Young’s modulus as depending

on the density via Eδ = δ−1E0

[

1+aδ−1(ρR/ρ−1)
]−1

. We note that both (3.10) and
(3.16) have the physical property that an increase in density, ρ, yields an increase
in the Young’s modulus, Eδ. Arguing as above, one may conclude that (3.16) also
yields a family of strain-limiting functions with limiting small strains on domains
Uδ × V = B(0, b)×B(0, c) for appropriate choices of b and c.

3.3. Nonlinear relations between stress and linearized strain. We now show
that a family of constitutive relations of the form E = fδ(E, S̄), with E interpreted
as the Green-St. Venant strain tensor associated to a deformation and S̄ as the
symmetric Piola-Kirchhoff stress, asymptotically yield nonlinear relations between
stress and the associated linearized strain ǫ, up to a O(δ2) error. Moreover, Corol-
lary 3.4 and the examples discussed thereafter show that in general, the resulting
asymptotic relations between stress and linearized strain can be genuinely nonlinear
to leading order in δ. This stands in contrast to the setting of a fixed constitutive
relation, which under mild differentiability assumptions, always can be asymptot-
ically reduced to a linear relation between stress and linearized strain to leading
order in the displacement gradient |F − I|.
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The preliminary set-up for our result is as follows. For an elementEδ ∈ B(0, 1/2)
and S̄ ∈ Sym, we associate a deformation F δ via

Cδ := (I + 2Eδ)
1/2, F δ := C

1/2
δ , ǫδ :=

1

2
(F δ + F T

δ )− I,

and a stress tensor via

σδ :=
1

2

(

F−1
δ S̄ + S̄F−T

δ

)

.

The tensor σδ can be interpreted as the symmetric part of the associated first
Piola-Kirchhoff stress tensor.

Proposition 3.3. Let fδ : Uδ × V → Sym be a family of strain-limiting functions

with limiting small strains. Let S̄ ∈ V . Assume that there exists r > 0 such that

for each δ > 0 sufficiently small, there exists Eδ ∈ Uδ such that B(Eδ, rδ) ⊆ Uδ

and

Eδ = fδ(Eδ, S̄). (3.17)

Then for all δ sufficiently small, (ǫδ,σδ) ∈ Uδ × V , and as δ → 0,

ǫδ = fδ(ǫδ,σδ) +O(δ2),

where the big-oh term depends on C0, C1, and D0|S̄|.
Proof. For all δ > 0 sufficiently small, we have by (3.17) and (3.1) that

|F δ − I| = |(I + 2Eδ)
1/2 − I| ≤ (1− 2C0δ)

−1/2|Eδ| ≤ (1− 2C0δ)
−1/2C0δ.

Since Cδ = F T
δ F δ and Eδ =

1
2 (Cδ − I), we conclude that

Cδ = I + 2ǫδ +O(δ2), Eδ = ǫδ +O(δ2), (3.18)

and

σδ =
1

2
(I +O(δ))S̄ +

1

2
S̄(I +O(δ)), (3.19)

where the big-oh terms depend only on C0.
Since S̄ ∈ V and V is open, there exists r0 > 0 such that B(S̄, r0) ⊆ V . The

relations (3.18) and (3.19) imply that there exists a constant C depending on C0

such that for all δ sufficiently small,

|Eδ − ǫδ| ≤ Cδ2 < rδ, |σδ − S̄| ≤ Cδ|S̄| < r0,

and thus, (ǫδ, S̄) ∈ B(Eδ, rδ) × B(S̄, r0) ⊆ Uδ × V . Then by (3.17), (3.18), (3.1),
and (3.2),

ǫδ = fδ(Eδ, S̄) + ǫδ −Eδ

= fδ(ǫδ,σδ) + [f δ(ǫδ, S̄)− fδ(ǫδ,σδ) + ǫδ −Eδ + fδ(Eδ, S̄)− fδ(ǫδ, S̄)]

= fδ(ǫδ,σδ) +O(δ2),

as δ → 0, where the big-oh term depends only on C0, C1, and |D0||S̄|. This
concludes the proof. �

Corollary 3.4. In addition to the assumptions of Proposition 3.3, suppose that

there exist an open set U ⊆ Sym, f1 : U × V → Sym, and a constant C2 > 0 such

that

Uδ = δU = {δẼ | Ẽ ∈ U},
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and

∀(E, S̄) ∈ Uδ × V,
∣

∣fδ(E, S̄)− δf1

(

δ−1E, S̄)
∣

∣ ≤ C2δ
2.

Then, in the notation of Proposition 3.3, we have as δ → 0,

ǫδ = δf1(δ
−1ǫδ,σδ) +O(δ2),

where the big-oh term depends on C0, C1, C2 and D0|S̄|.
We now discuss the examples from Section 3.2 within the context of Propo-

sition 3.3 and Corollary 3.4. It is clear that a general family of strain-limiting
functions with limiting small strains given by (3.4) satisfies the hypotheses of both
Proposition 3.3 and Corollary 3.4. In particular, if (3.5) holds with a twice continu-
ously differentiable, convex function W ∗, then Corollary 3.4 implies in the notation
therein that

ǫδ = ∂σδ
[δW ∗(σδ)] +O(δ2), σδ ∈ V.

Omitting the O(δ2) term yields ǫδ = ∂σδ
[δW ∗(σδ)] or, equivalently,

σδ = ∂ǫδ [δW
(

δ−1ǫδ
)

], (3.20)

where W is the Legendre transform of W ∗. The relation (3.20) models a Green
elastic solid, i.e., the stress is derived from a strain energy depending on the lin-
earized strain. In contrast to classical linearized elasticity, however, our framework
allows for strain energies W beyond quadratic forms of the linearized strain.

We now consider the explicit family (3.10). We write fδ(E, S̄) = δgδ(E/δ, S̄)
where

gδ(Ẽ, S̄) =
1 + ν

δEδ(δẼ)
S̄ − ν

δEδ(δẼ)
(tr S̄)I, (Ẽ, S̄) ∈ B(0, b)×B(0, c),

and we note that for all δ̃ and b sufficiently small,

(0, δ̃)×B(0, b) ∋ (δ, Ẽ) 7→ δEδ(δẼ) = E0

[

1 + aδ−1([det(I + 2δẼ)]−1/2 − 1)
]

,

extends smoothly to a function of (δ, Ẽ) ∈ (−δ̃, δ̃)×B(0, b). Moreover, we have for

all Ẽ ∈ B(0, b),

δEδ(δẼ) = E0[1− atr Ẽ +O(ab2δ)]. (3.21)

We observe that E = fδ(E, S̄) if and only if

Ẽ = gδ(Ẽ, S̄), (3.22)

where E = δ · Ẽ, g0(0,0) = 0, and

DẼ

(

Ẽ − gδ(Ẽ, S̄)
)

∣

∣

∣

(δ,Ẽ,S̄)=(0,0,0)
= I.

Thus, by the implicit function theorem and choosing δ̃, b, and c sufficiently small, we
conclude that for each 0 < δ < δ̃ and S̄ ∈ B(0, c), there exists a unique Ẽδ ∈ B(0, b)

satisfying (3.22). Written differently, we have shown that for each 0 < δ < δ̃ and
S̄ ∈ B(0, c), there exists a unique Eδ ∈ B(0, δb) satisfying Eδ = f δ(Eδ, S̄), and
the hypotheses of Proposition 3.3 are satisfied on Uδ × V = B(0, bδ)×B(0, c).

Finally, define

f1(Ẽ, S̄) = g0(Ẽ, S̄) = E−1
0 (1− atr Ẽ)−1

[

(1 + ν)S̄ − ν(tr S̄)I
]

.



14 K. R. RAJAGOPAL AND C. RODRIGUEZ

By (3.21), it follows that for all E ∈ B(0, δb) (with ab < 1/2),
∣

∣

∣

1

Eδ(E)
− δ

E0(1− atr (δ−1E))

∣

∣

∣
=

∣

∣δ−1E0(1− atr (δ−1E))− Eδ(E)
∣

∣

δ−1E0(1− atr (δ−1E))Eδ(E)

≤ a
∣

∣1− [det(I + 2E)]−1/2 − trE
∣

∣

E0(1− 2ab)2

≤ Ca|E|2
E0(1− 2ab)2

≤ Cab2δ2

E0(1− 2ab)2
,

where C is an absolute constant. Thus, for all (E, S̄) ∈ B(0, bδ)×B(0, c),

∣

∣f δ(E, S̄)− δf1

(

δ−1E, S̄)
∣

∣ ≤ Cab2(1 + 4ν)cδ2

E0(1 − 2ab)2
. (3.23)

The estimate (3.23) proves that the hypotheses of Corollary 3.4 are satisfied. In
the notation therein,

ǫδ = δE−1
0

[

1− aδ−1tr (ǫδ)
]−1[

(1 + ν)σδ − ν(trσδ)I
]

+O(δ2), (3.24)

as δ → 0, and omitting the O(δ2) term yields

ǫδ = δE−1
0

[

1− aδ−1tr (ǫδ)
]−1[

(1 + ν)σδ − ν(trσδ)I
]

.

One may similarly show that the hypotheses of Proposition 3.3 and Corollary
3.4 are satisfied for (3.16) on a family of nontrivial open sets Uδ × V with

f1(Ẽ, S̄) = E−1
0 (1 + atr Ẽ)

[

(1 + ν)S̄ − ν(tr S̄)I
]

.

In the notation of Proposition 3.3 and Corollary 3.4, we conclude that

ǫδ = δE−1
0

[

1 + aδ−1tr (ǫδ)
][

(1 + ν)σδ − ν(trσδ)I
]

+O(δ2), (3.25)

as δ → 0, and omitting the O(δ2) term yields

ǫδ = δE−1
0

[

1 + aδ−1tr (ǫδ)
][

(1 + ν)σδ − ν(trσδ)I
]

.

Constitutive relations of the form

ǫ = E−1
ref

[

1− Γtr ǫ
]−1[

(1 + ν)σ − ν(trσ)I
]

, (3.26)

or

ǫ = E−1
ref

[

1 + Γtr ǫ
][

(1 + ν)σ − ν(trσ)I
]

, (3.27)

where σ is the stress variable, have been appeared extensively in the literature; see
e.g. [6, 13–17, 26, 34]. Our framework and the expansions (3.24) and (3.25) place
(3.26) and (3.27) on firm mathematical footing as the asymptotic leading order
relations (in δ) arising from a constitutive theory for finite deformations.

We conclude this section by noting that our results are not restricted solely to
constitutive relations involving the Green-St. Venant strain tensor and the symmet-
ric Piola-Kirchhoff stress tensor. Indeed, analogues of Proposition 3.3 and Corol-
lary 3.4 can be proved in terms of variables H and T representing the Hencky
strain and Cauchy stress. The preliminary set-up is as follows. For an element
(Hδ,T ) ∈ Sym× Sym, we associate a deformation via

F δ := eHδ , ǫδ :=
1

2
(F δ + F T

δ )− I,
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and a stress tensor via

σδ = (detF δ)
1

2

(

TF−T
δ + F−1

δ T
)

.

As before, the tensor σδ can be interpreted as the symmetric part of the associated
first Piola-Kirchhoff stress tensor.

Proposition 3.5. Let fδ : Uδ × V → Sym be a family of strain-limiting functions

with limiting small strains. Let T ∈ V . Assume that there exists r > 0 such that

for each δ > 0 sufficiently small, there exists Hδ ∈ Uδ such that B(Hδ, rδ) ⊆ Uδ

and

Hδ = fδ(Hδ,T ). (3.28)

Then for all δ sufficiently small, (ǫδ,σδ) ∈ Uδ × V , and as δ → 0,

ǫδ = fδ(ǫδ,σδ) +O(δ2),

where the big-oh term depends only on C0, C1, and D0|T |.
Proof. For all δ > 0 sufficiently small, we have by (3.28) and (3.1) that

|F δ − I| = |eHδ − I| ≤ |Hδ|e|Hδ| ≤ C0δe
C0δ ≤ eC0δ.

Since Hδ =
1
2 logF δF

T
δ , we conclude that

Hδ = ǫδ +O(δ2), σδ =
1

2
T (I +O(δ) +

1

2
(I +O(δ))T ,

where the big-oh terms depend only on C0 and C1.
Arguing as in Proposition 3.3, we conclude that for all δ sufficiently small,

(ǫδ,σδ) ∈ Uδ × V , and

ǫδ = fδ(Hδ,T ) + ǫδ −Hδ

= fδ(ǫδ,σδ) + [f δ(ǫδ,T )− fδ(ǫδ,σδ) + ǫδ −Hδ + fδ(Hδ,T )− fδ(ǫδ,T )]

= fδ(ǫδ,σδ) +O(δ2),

as δ → 0, where the big-oh term depends only on C0, C1, andD0|T |. This concludes
the proof. �

4. Conclusion

In this study, we have presented a rigorous asymptotic framework that provides
a mathematical foundation for nonlinear constitutive relations between stress and
linearized strain. Within our framework, we have demonstrated that a nonlinear
constitutive relation between stress and linearized strain emerges as the primary
term of an asymptotic expansion in δ of a family of strain-limiting, nonlinear con-
stitutive relations,

E = f δ(E, S̄)

between stress and nonlinear strain. Here, the dimensionless parameter δ determin-
ing the leading order term is (up to a fixed constant) the limiting small strain of fδ:
∀E, S̄, |fδ(E, S̄)| ≤ δ. Our approach diverges from classical linearized elasticity
where a constitutive relation is fixed and the asymptotic parameter is the size of
the displacement gradient δ0 = |F − I|.

As our results show, strain-limiting constitutive relations E = fδ(E, S̄) are ap-
proximated by ǫ = f δ(ǫ,σ) up to a quadratic error in δ with σ interpreted as
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the symmetric part of the associated first Piola-Kirchhoff stress tensor; however,
a fundamental question remains. In particular, we conjecture that for a fixed ex-
ternal body force b and for all δ sufficiently small, solvability of the “linearized”
equilibrium equations,

0 = DivσL,δ + b, σT
L,δ = σL,δ,

ǫL,δ = fδ(ǫL,δ,σL,δ),

implies solvability of the fully nonlinear equilibrium equations,

0 = DivSδ + b, SδF
T
δ = F δS

T
δ ,

Eδ = f δ(Eδ, S̄δ),

and

Eδ = ǫL,δ +O(δ2), S̄δ = σL,δ +O(δ), Sδ = σL,δ +O(δ),

as δ → 0.10 Such a fundamental result would be unique but in line with analogous
results established for classical linearized elasticity; see, e.g., the classic works of
Stoppelli [30, 31] and the discussion of more recent results by Ciarlet in Chapter 6
of [3].
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