

Sensitive detection of triple-negative breast cancer-related microRNAs using pure DNA hydrogel

Mahboobeh Nasiri¹, Reza Zadegan¹

¹ Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA

Abstract

7 Triple-negative breast cancer is the most prevalent breast cancer in women with high
8 invasiveness, recurrent risk, and mortality, as well as poor prognosis. MicroRNAs (miRNAs) play
9 critical roles in cell proliferation, apoptosis, and gene expression regulation and their deregulation
10 would be tumor-suppressive or oncogenic. Therefore, tremendous diagnostic, prognostic, and
11 efficient therapeutic potential exists in understanding and targeting miRNAs in tumorigenesis. The
12 combination of rolling circle amplification (RCA) and multi-primed chain amplification (MCA) was
13 used to form DNA meta-hydrogel for the highly sensitive detection of three miRNAs in a one-pot
14 reaction. miR-16p, a common miRNA expressed in healthy and cancer cells, was selected as a
15 primer to initiate rolling circle amplification with a final concentration of 1.2 μ M for 4 hours. Then,
16 the mimics of miR-18a and miR-10a were added to the long single-stranded products for further
17 amplification for 16 hours. These two miRNAs were added with different concentrations of 100
18 nM to 1 pM, and the intensity of the fluorescent signal was measured by adding the molecular
19 beacon to the final products. Fluorescent miRNA biosensor offers a simple and highly sensitive
20 method with a limit of detection (LOD) as low as 1 pM. The LOD of the present biosensor is
21 comparable with the previous biosensors applied to detect only one miRNA. Therefore, the
22 proposed biosensor offers a novel and effective strategy for the detection of multiple miRNAs
23 using a combination of RCA and MCA. Execution of the parallel reactions in a microfluidic device
24 would enable the detection of multiple miRNAs for highly sensitive, accurate, and early detection
25 of TNBC for better therapeutic decision-making.

26 Acknowledgments

27 This work is supported through NIH award # 1R16GM145671 and NSF Award # MCB 2027738.
28 Joint School of Nanoscience and Nanoengineering (JSNN), is a member of the National
29 Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science
30 Foundation (Grant ECCS-2025462).