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We improve the understanding of the golden ratio algorithm, which solves monotone
variational inequalities (VI) and convex-concave min-max problems via the distinctive
feature of adapting the step sizes to the local Lipschitz constants. Adaptive step sizes not
only eliminate the need to pick hyperparameters, but they also remove the necessity of
global Lipschitz continuity and can increase from one iteration to the next.

We first establish the equivalence of this algorithm with popular VI methods such as reflected
gradient, Popov or optimistic gradient descent-ascent (OGDA) in the unconstrained case
with constant step sizes. We then move on to the constrained setting and introduce a new
analysis that allows to use larger step sizes, to complete the bridge between the golden ratio
algorithm and the existing algorithms in the literature. Doing so, we actually eliminate the

link between the golden ratio

1+v5

2

and the algorithm. Moreover, we improve the adaptive

version of the algorithm, first by removing the maximum step size hyperparameter (an
artifact from the analysis), and secondly, by adjusting it to nonmonotone problems with

weak Minty solutions, with superior empirical performance.

Keywords: min-max, variational inequality, adaptive step size, nonmonotone

1. Introduction

With the increasing focus on min-max problems in applications, variational inequality (VI)
algorithms have gained significant attention in machine learning. These algorithms focus on

the following VI problem

find z* € C such that (F(z*),z—2z") >0, for all z € C, (1)
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for a monotone and Lipschitz operator F': C' — R? and a convex closed set C C R?. The
link between this template and convex-concave min-max problems such as

min max f(xy)

is well-known and follows by setting

) e () e

Many algorithms, dating back to 1970s, exist for solving (1), such as the extragradi-
ent method (Korpelevich, 1976), Popov’s algorithm (Popov, 1980), forward-backward-
forward (Tseng, 2000), reflected gradient (Malitsky, 2015; Malitsky and Tam, 2020), optimistic
gradient descent-ascent (OGDA) (Daskalakis et al., 2018), dual extrapolation (Nesterov,
2007). The algorithm we focus in this paper is the golden ratio algorithm (GRAAL) due
to (Malitsky, 2020), which iterates for k > 0 as

=07 e Lok
¢ ¢ (aGRAAL)

2" = Po(z* — ap F(2Y)).

with parameter ¢ > 1 to be defined and a step size sequence «j. The nonadaptive version of
this algorithm uses oy, = % where L is the global Lipschitz constant of F' (Malitsky, 2020,
Theorem 1).

However, what really separates (aGRAAL) from all the other VI algorithms listed above
is the ability to provably use nonmonotone step sizes adapting to local Lipschitzness of F,
with the adaptive rule

2 k k—1)12
qb ”Z —Zz || >’ (3)

G <”O"“‘1’ day_ |[F(2F) — F(z- 12"

with y < 3 + L €[1,2) and ¢ € (1, 15/3]. Higher ¢

?
not only gives a larger maximum step size as per (3),
but also makes z* closer to the most recent iterate ; *EG
z" instead of zF¥~!. The first argument in (3) allows R onmaL
aGRAAL

increasing step sizes between iterations and the sec-
ond estimates a local Lipschitz constant of F. The
last argument & is required for theoretical reasons
in (Malitsky, 2020) and generally picked as a large
value in practice so that it will not be effective (see
also Section 4). o
Compared to the constant step sizes such as %, the 0 perator e uations 1000
adaptive step sizes make GRAAL highly competitive
in practice, in addition to relaxing the assumption
of global Lipschitzness of F. Along with its unique Figure 1: Policeman&Burglar matrix
empirical performance and generality, GRAAL keeps game example from (Nemirovski, 2013).
the good theoretical properties of nonadaptive algo-
rithms: convergence of the sequence to a solution and O(1/k) rate with monotonicity. A
representative plot for the benefit of using step sizes as (3) is in Fig. 1.
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1.1 Motivation and contributions.

This paper starts the formal study on understanding the peculiarity of GRAAL among the
large sea of VI algorithms. Towards this goal, we contribute the following results for situating
this algorithm in the literature and enhancing its theoretical understanding and practical
merit:

1. In the unconstrained setting with a constant step size, GRAAL is equivalent to Popov’s
algorithm, OGDA and reflected gradient, when ¢ = 2. This shows the convergence of
GRAAL with ¢ = 2 for free.

2. With constraints and a constant step size, the established connection is not sufficient
and we introduce a novel analysis to prove the convergence of GRAAL with ¢ = 2.

3. We improve the complexity of adaptive GRAAL from a quadratic dependence on the
Lipschitz constant to a linear one, by eliminating the hyperparameter &.

4. We show that adaptive GRAAL has convergence guarantees for nonmonotone problems
with weak Minty solutions and show that it reliably converges for some hard instances,
even when no other method does so.

1.2 Notation and preliminaries.

We say that an operator F' is monotone if (F'(x) — F(y),x—y) > 0 for any x,y and Lipschitz
if |[F(x) — F(y)|| < L||x — y||. We denote the projection as Pc(z) = arg minyec |[u — z||%.
We denote the golden ratio as ¢ = # The (restricted) dual gap function (see (Facchinei
and Pang, 2003; Nesterov, 2007)) is a standard notion of suboptimality for VIs and is defined
as

Gaps(7) = max(F(z), 7 — 7), (4)

where S is a compact set. It is shown in (Nesterov, 2007, Lemma 1) that this is a valid
suboptimality measure, since we will prove that the iterates of the algorithm remain in a
compact set.

Assumption 1 (i) The operator F: C — R? is monotone, (ii) F is L-Lipschitz, (iii) the
set C is conver and closed, (iv) the set of solutions to (1) is nonempty.

2. Connection of GRAAL and other VI algorithms

In this section, we assume that the operator F' is monotone and L-Lipschitz. It is well-known
that for such operators, resulting for example from min-max problems via (2), a naive forward

evaluation
2"l = Po (2" — aF(2")) (FB)

will not converge even for simple bilinear problems with any fixed step size — a property
which makes even monotone VIs arguably more difficult to solve than the computation of
stationary points in nonconvex minimization.

Having a nonconvergent scheme (FB), it is tempting to find a simple modification that
will ensure convergence. There are two principal approaches to do so: one can try to change
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either the argument z* or the forward evaluation F(z*) in (FB). Most algorithms opt for
the latter option, whereas GRAAL opts for the former as we will see soon.
A strikingly simple, yet extremely powerful change is to replace F(z*) by F(z**1), which
leads to
2"t = Po(2F — aF (25T1)), (PP)

which is known as the proximal point algorithm (Rockafellar, 1970). While this algorithm
has great theoretical properties — for instance, it converges for any a > 0 — it is an implicit
method. Computing 2**1 is not a simple matter and usually each iteration of (PP) requires
a call to another subsolver.

One of the earliest, and arguably most popular schemes, is the extragradient method (EG)
which dates back to (Korpelevich, 1976). It relies on the change of the forward evaluation
from F(z*) to F(Pc(z* — aF(z"))). Alternatively we can write the method as

7" = Po(z" — aF(z%); 2" = Po(2" — aF(2Y)). (EG)

Interestingly, (Mokhtari et al., 2020; Nemirovski, 2004) showed that EG can be viewed as
an approximation of (PP). Naturally, however, due to the explicit structure, the method
requires an upper bound on the (constant) step size: a < % The point z* is commonly
referred to as the extrapolated point.

By using an old evaluation of the operator to compute the extrapolated point instead of
a new one, we could expect the quality of the iterates not to suffer much, leading to

z' = Po(z" —aF(z"7Y)); 2" = Po(2 — aF (")), (Popov)

This strategy, proposed by (Popov, 1980), has similar guarantees as (EG) by requiring a
single evaluation of the operator F. This comes at the cost of the need to reduce the step
size, leading to the requirement a < ﬁ (Hsieh et al., 2019).

About two decades after Popov (1980), Tseng (2000) proposed to modify EG to only
require a single projection:

7" = Po(2" — aF(2"); 2" =7F — a(F(Z")-F (")), (FBF)

leading to the forward-backward-forward method, with the same requirement for o as EG:
a< 1.

As observed in (Bohm et al., 2022), applying Popov’s idea to (FBF) and replacing F(z*)
by F(z"~'), the obtained method can be conveniently written in one line

7zt = Po(z" — a(2F(Z") — F(z")))), (FoRB)

where the bound o < i is imposed. This method was in greater generality (nonconstant

step sizes) studied in (Malitsky and Tam, 2020) under the name forward-reflected-backward
(FoRB), but is more widely known in the unconstrained setting as the optimistic-gradient-
descent-ascent (OGDA) (Daskalakis et al., 2018). Again, (FoRB) can be seen as (FB) where
F(z*) is changed to 2F(z*) — F(zF1).

Another method proposed in (Malitsky, 2015) is projected reflected gradient method
(PRG), which solves VI by requiring only one evaluation of F' and iterates as

7" = Po(z" — aF (22" — ZF71)). (PRG)
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It is easy to see that the (PRG) method is equivalent to (FoRB) if the operator F' is linear.

The analysis of (PRG) in (Malitsky, 2015) requires a < ‘/ﬁL_l, which according to the above
consideration is not tight when F' is linear. Regarding the (FB) interpretation, we only need
to change F(z*) to F(2z% — z¥71).

A related method, relying on a very similar correction step as the one used in (FoRB),
but applied after the projection, was proposed in (Csetnek et al., 2019) and is given by

= po(z* — aF(Z")) — a(F(z") — F(Z"Y)). (shadow-DR)

In the unconstrained case this method is equivalent to (FoRB). The analysis in (Csetnek et al.,
2019), however, requires the more restrictive a < 3% and even provides a counterexample to
show that this dependence is tight. It is not clear where this more conservative dependence
on the Lipschitz constant comes from.

Last but not least, our main method of interest is the golden ratio algorithm (GRAAL),
introduced in (Malitsky, 2020), given by

Zk:¢;1zk

with the initialization z~

+ =zt M = po(EF - aF(2Y)), (GRAAL)

0. Initially, the (nonadaptive) analysis in (Malitsky, 2020)

+

requires choosing ¢ < go = 2 (hence the name with golden ratio), together with a bound
on the step size a < 57. In the following we will show that this bound can be relaxed, in
which case we can recover some of the other methods mentioned in this section. Evidently,

(GRAAL) can be seen as a modification of (FB) with the change z* to z*.

2.1 GRAAL is averaged PRG
From the first line of (GRAAL) we can rewrite
1 1
Zk:¢flzk_¢_1zk—1zzk+¢_l(Zk_zk 1) (5)

Hence instead of viewing z* as a sequence of averaged iterates we can interpret z* as a
sequence of extrapolated iterates. Plugging (5) into the second line of (GRAAL) yields the
identity claimed in the title, which gives forp=2a l-{:wemged version of (PRG):

1
zhtl = 52 7" + PC (z - aF(2z k_l)) ) (6)

If the problem is unconstrained, GRAAL’s z* sequence corresponds to the one generated
by (PRG), but with scaled step size.

2.2 GRAAL is FoRB/OGDA /Popov in the unconstrained case

While (GRAAL) seems fundamentally different from methods such as (FoRB)/OGDA /(Popov)
or (shadow-DR), which rely on previous evaluations of the operator F, they do turn out
to be equivalent in the unconstrained setting, where z*~1 = z* + aF (zk_l), via the simple
identity:
p—1, 1 k ko« k k-1
28+ 7" —aF(z :z——<¢Fz — F(z )
5 5 (z") 5 (%) = F(z")

zk+1 — Zk o OéF(Zk) _
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To be precise, the equivalence to OGDA and others holds with ¢ = 2 and for general
¢, (GRAAL) is equivalent to the generalized version of OGDA, see (Ryu et al., 2019; Bohm,
2023), where 2 is replaced by ¢ and an appropriate scaling of the step size.

2.3 Summary

In the unconstrained setting, all the methods above collapse to two classes. On one hand, there

s (EG)/(FBF), relying on two gradient evaluations per iteration and a step size constrained
by % On the other, there is the zoo of Popovesque methods: (GRAAL), (shadow-DR),
(PRG), (FoRB), (Popov), and OGDA requiring only one call to F' but paying the price of a
smaller step size.

The established equivalences give us a proof of convergence for GRAAL with ¢ = 2 in
the unconstrained case since it reduces to known methods. However, these relationships are
not useful to show the convergence of GRAAL with ¢ = 2 in the constrained case which
is much more common with min-max problems. It turns out that standard techniques are
not sufficient for such a result, which motivates the next section, dedicated to proving this
conclusion.

3. GRAAL with ¢ = 2 for constrained problems
3.1 Dissection of GRAAL’s analysis

We sketch the existing analysis of GRAAL in (Malitsky, 2020) and point out to the reason
for the restrictive upper bound on ¢. Then we see high level ideas on how to tighten this
analysis en route to ¢ = 2. For convenience, let us define

Folat el + Sl -2 (0
The former is important for showing the rate on the gap function since taking the maximum
gives (4) for which we will show the O(1/k) rate. The latter will serve as a Lyapunov (or
energy) function.

The analysis of (Malitsky, 2020), given in Lemma 13 in the Appendix for convenience,
results in the following key inequality for k& > 1:

G(z*,z) = 20(F(z),2" —z) and &(z) =

G(z’%z>+sk+1<z>§ek<z>+(as—l ¢) 254 - - Sl -2 (9

Golden ratio appears to make ¢ — 1 — é = 0. The analysis in (Malitsky, 2020) discards the
good term —%sz — 7" 1|2 in the right-hand side to use a telescoping argument, common to
methods described in Section 2.

We see that this good term is one index away from the main error term ||z
However, it is not one index forward, but instead backward, hence it is not immediate how
to use it to relax the requirement of ¢. This intuition can be formalized by summing the

inequality and using the definition of £;41(z) which results in

k
> Gl < E1(z) - D)t - ’“HQ+Z [( —1—;) 21 = 2 - ]t - )P

=1

k+1 _ikH2'
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We focus here on the main error term

2+ k|r2+§j[( —1—¢) e R Al O

If this unwieldy expression is bounded, the convergence rate of the gap follows immediately.
It is easy to see that if ¢ = 2, then (9) reduces to

1
_sz+1 _ZkH2+7 |Zk+1 _ZkH2_7 1 _ZOH27 (10)

] ||
z
2 2
which is not necessarily bounded due to the second term. In fact, a naive approach can be

used for values slightly larger than the golden ratio. We know by Young’s inequality that for
any 7 >0

—[|2" = 2P > — (1 )| = 2P - (117 |2 - 2

It is tedious but straightforward to properly adjust ¢ and 7 so that the error term involving
|zF*+1 — Z*||? is cancelled by using the negative terms in (10). However, this approach is
definitely not tight due to spurious use of Young’s inequality and only gives ¢ values up to
1.77, whereas we expect ¢ = 2 to be tight, due to the connection with existing methods such
as OGDA.

Another obvious remedy would be to simply assume that the term ||z
bounded, for example, by assuming the sequence (zk) is bounded. However, this is not
realistic since boundedness of C' is a strong assumption, not holding for many min-max
problems in practice. A prevalent example is constrained optimization where neither the
primal nor the dual domain is bounded.

k+1 _ ZkHZ is

In the next section, we prove that the sequence (z*) is bounded with ¢ = 2, which will
help us get convergence and rate results. Instead of the naive approach described above
which tries to cancel the error in (10) by other terms and loose inequalities such as Young’s,
we will analyze the boundedness of the sequence by a novel induction argument on the tight
inequality in (9).

3.2 GRAAL beyond the golden ratio

A standard way to prove boundedness of iterates is to identify a Lyapunov function (non-
negative and nonincreasing) including terms such as ||z*¥ — z||2. An example is £ in (7).
While this can be done with ¢ < ¢, it is unclear if it is possible with ¢ = 2, due to the
issue described in Section 3.1. To go around this difficulty, we have to use nonstandard tools
and forgo the Lyapunov function argument and analyze boundedness of (z*) directly via
induction on the key inequality (8).

Theorem 1 Let Assumption 1 hold and let ¢ =2, o < 1 in (GRAAL). Then we have that
(z%) and (2") are bounded sequences. In particular, we have

12" —2*||* < 4 (|lz' —2"|* + [|2° — 2*|*) < 12]]2° — 27|
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While we provide a formal proof for the case ¢ = 2 here for simplicity, we also supply a
computer aided proof via semi-definite programming, see Appendix A, which in addition
covers the case for ¢ < 2 and provides a better constant for ¢ = 2.

Proof In (8), we set z = z* and use G(z*,z*) > 0 by (1). Next, we sum (8) with ¢ = 2
which gives us

1 1
2Hik+1 - Z*HQ + sz‘-‘rl _ ZkHZ < QHZl _ Z*HZ + §HZ1 _ ZOHQ + §HZ/€+1 _ ZkHQ

1
=lz' =2 + |12 = 27* + Sl =27, (1)

where we used z° = z°. Define R? = ||z — z*||? + ||z° — z*||2. For the inductive step, assume
that ||z° — z*|| < 2R for all i < k.
We will transform the error term %||z“+* — 2| in (11) so that the other terms in the

left-hand side of (11) can be used for (partial) cancellation. By the paralellogram law and

definition z* = %zk + %Z’“fl, we have

1

5 ||Zk:+1 _ Zk||2

1
= R g g — g — Sl — 20+ 2

_ ||Zk+1 o ZkH2 + sz: o zk”2 o 2sz+1 o Zk||2.

Plugging in this equality to (11) and using the definition of z* gives us

1
2||ik+1 _ Z*HQ + 2||2k+1 _ Zk||2 < RQ + sz _ ZkHQ — RQ + Z”Zk _ 2k—1||2. (12)

The left-hand side is in a suitable form to apply another paralellogram law and obtain

2
i1 72" + 7k

2HZI€+1 . Z*H2 +2”zk+1 . ZkHZ — sz - Z*HZ +4‘ 5

After combining this equality with (12), it follows that

2

* k
1
2k+1 o m S R2 + ZHZkz _ ik_le. (13)

k *(12
— +4

We are now at the most critical point of the proof. For induction, we will combine the
second term in the right-hand side of (13) with the terms in the left-hand side to obtain
|z"=" — z*||2. Now continue with the following identity which can be verified by simple
expansion of quadratics

21

+ g”zkfl . Z*HQ‘

3
k Z*HQ __ 2

4

4 1
Zk — gz* + 721671

k sk—1 2
— — 7 —

4Hz A

Even though it is difficult to see the significance of this identity, a high level intuition is

noticing that z — 1|z — 2712 — ||z — z*||? is maximized at z = %z* — 3z"~1. We can then
rewrite (13) as
k _ % sk—1 _ % 2 * k2 1
NI 2z L2 . z +4‘Zk+1_z';z SRQ—i—gHZkfl—z*Hz. (14)
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Let a = z¥ — z*, b = zZ"~! — z*. Then using this notation in (14), taking square root of both
sides, using triangle inequality and the inductive assumption (||b]] < 2R) implies that

2 2 2
R 1, ., 1 Rz 1 1 VT+1
< — 4= = = </ =4+ b2+ = < )
< 5 +glol sllall </ +gloll? + ¢l < —5—R

On the other hand, (14) along with inductive assumption gives us

We can now combine the last two estimations with triangle inequality to complete the
induction

1 1

2 R
<4

-4 12

* k
_ zZ° +z
ZkJrl_
2

2

TR?
<

=k—1 *(12
_ .
|z z’|” = <\ 13

* k * k * k 1
H2k+1_z*H < Zk+1_z —gz z 'gz — 7| = ZkJrl_z —;Z +§sz—z*H
7 7T+1
< 12-R+f3+ "R <?2R. (15)

Hence, by induction we proved that (z*) is bounded. The definition z* = 2z* — z*¥~! shows
that (z*) is also bounded. The final inequality uses R? < 3||z° — z*||?, which is shown in
Lemma 14 in Appendix A. |

Corollary 2 Let Assumption 1 hold, ¢ =2, o = 135 for any € € (0,1) in (GRAAL) and
yARS %Zle z'. Then (z*) converges to a solution of (1) and

32L .
m”zo —Z ”2,

where S = {z € C: ||z — z*||? < 18||z° — z*||?}.

Gapg (Zk) <

Proof We begin by proving the first part of the corollary. By the boundedness of the iterates,
proved in Theorem 1, we have that (z*) has a convergent subsequence, say (z*) and for some
z € C, we have that z* — Z. We next show that z is a solution of (1). For this, first notice
that by summing the result of Lemma 13 with z = z*, ¢ = 2 and using the boundedness of

|zE+1 — 2*||? derived in Theorem 1, we have that

(o]
D Iz = 2F? < oo
k=0

Young’s inequality gives

3
l2* — 2*||* < 3)|2" — 271 + T ||z* — 2"

2
1
< —5”Zk . ZkfIHZ + z”ikil _ ZkleZ7
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where the second inequality is by the definition z¥ = %zk + %ikil. Rearranging and summing
this inequality gives

o0 o
D ol =22 <Y 15)2F — 2P < o
k=0 k=0

where we used z7! = z~! for getting the first inequality.

As a result, we have that z*+! k k

k;

—zF = 0 and zF — zF — 0 and hence zF¥ — z and

zFt1 5 7. We can take the limit in the prox-inequality
<zk+1 —zF 4+ aF(zk), z — zk“) >0

and use continuity of F' to get that z is a solution. For simplicity, set z = z*, where z* is an
arbitrary solution.
The result of Lemma 13 also gives the following inequality after using ¢ = 2 and z = z*:

1
sz—i-l_ZkHQ < 2||ik—z*||2—|-HZk—Zk_1||2—*

5 k—ik_IHQ.

1
2H2k+1—Z*||2—|—||Zk+1—zk”2—* ||Z

2

Since ||zF*! — z*||? is bounded, the sequence on the left-hand side of the inequality is lower

bounded and nonincreasing, hence convergent. In summary, we have that

exists.

sk+1 Z*HQ + HZkJrl . Zk||2 _ 5

1
lim 2||z 251 — 7))
k—o0

As ||zt — 2F||2 — 0 and ||z"! — 2¥||? = 42" ! — 25712 — 0, we further deduce that

lim [|z"T1 — 2*||? exists.
(e.e]

Since we previously showed that z¥ —z* — 0 for an arbitrary z*, we conclude that z* —z* — 0.

It is easy to see that z* — z* — 0 as well because z* — z*¥ — 0.

Now we turn our attention to the convergence rate. We start by collecting some estimations
from Theorem 1. In particular, the main conclusion of the theorem was that

2% — 2*||> < 4R? = 122° — z*||%. (16)
Moreover, from (13), we have that
1
”Zk _ Z*HQ < R2 + Zsz _ Zk71||2
<R2 1 k%2 lfkfl_*Q
S R+ gllz" =277 + Sl z’|".
2 2
which together with (16) implies

|2* — 2*||? < 6R? = 18]|2° — z*|°. (17)

This implies that the set S contains all iterates, which enables us to apply (Nesterov, 2007,
Lemma 1) for the gap function.

10
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We set ¢ = 2 in Lemma 13, sum this inequality, divide by k, and take maximum over S
to obtain

1 1 1
Gaps(2) < 5. (max2lal ol + gla' — 2P+ 1t~ 21?).

where the 5= factor on the right-hand side is because of G(z*,z) = 2a(F(z),z* — z) (see (7)).
By using z' = %zl + %ZO due to z¥ = zo, we get

1 1
Gaps(2") < 5 (max(lal ol + [ alP) + 314 - 22). )

We will now use (16) and (17) to get

1
llZ =282 < 2 =2 2 - 2 < 30]|2° - 27 (19)

Moreover, we have for any ¢ > 0 that

max(||z' — 2| + ||2° - z|*) < max2(1 + )|z — 2°||* + (1 + 1/¢)(||z" — 2"||* + [|2° — 2"[|*)
zeS z€S

< (36(14¢)+3(1+1/c)|2° — z*|?, (20)

where we used Young’s inequality for the first inquality and Lemma 14 in the second one.
We apply (19) and (20) in (18) and pick ¢ to minimize the corresponding term, to obtain
the result. |

Increasing ¢ from the golden ratio to 2 for the fixed step size regime not only emphasizes
an interesting connection to OGDA, but also consistently improves empirical performance
for monotone problems, see Fig. 2. Even though the adaptive version of GRAAL is typically
superior in practice as per the experiments of Malitsky (2020), we want to point out that
with constant step sizes, the need to pick ¢ < ¢ < 2 caused GRAAL to perform worse than
methods such as OGDA. The main merit of our result is showing that this is not the case.

100 ©0GDA ©0GDA 1000 ©0GDA
GRAAL §=2 100 GRAAL ¢=2 GRAAL §=2
+GRAAL $=0 +GRAAL $=¢ +GRAAL $=0

o
1)

squared operator norm
squared operator norm

squared operator norm

=
)

0 5000 10000 0 500 1000 [ 5000 10000
operator evaluations operator evaluations operator evaluations

Figure 2: Left: The linearly constrained QP in (Yoon and Ryu, 2021). Middle: Test matrix given
in (Nemirovski et al., 2009). Right: Randomly generated matrix game. Interestingly, even with
constraints, GRAAL and OGDA perform almost identically.
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4. Adaptive GRAAL: Removing hyperparameters and improving
complexity

We first recall aGRAAL, proposed in (Malitsky, 2020):

-1
7 ¢

1
k sk—1
=—2 + —Z
¢ ¢ (aGRAAL)
2" = Po(z" — ap F (")),

where ay, is picked as in (3) and ¢ € <1, 1+2‘/‘?’>. As mentioned in (Malitsky, 2020), the

hyperparameter & in (3) is only for theoretical purposes and the suggested choice in practice
is taking & very large so that it will be ineffective in (3). However, there are two sides to
this coin from a complexity point of view as we see now. Recall that (Malitsky, 2020) proved
that the iterates remain in a bounded region and established the following worst case rate
for the ergodic iterates

420 o 0
k) < 1 o2, % 0 2
Gaps (1) < 2 o (S0 et =l + 10 - ) (21)

=D

where L denotes the (unknown) Lipschitz constant of F' over this bounded region, S is any
compact set containing this region, and 6y > 1. On one hand, taking & too large could
make this rate vacuous. On the other, taking @ small may prevent taking large step sizes
in (3). Another aspect of this bound is that the dependence on L is suboptimal, since most
VI methods including nonadaptive GRAAL result in the rate O(L/k). Obtaining linear
dependence on L suggests taking @& as a large multiple of +, which not only requires the
knowledge of L, but also could make the constant of the rate large as per the discussion
above. This suboptimal worst-case complexity result may be seen as the cost of adaptivity.
To avoid this conflict regarding the choice of & in practice and the resulting complexity, we
propose to remove @ in (3) and provide an analysis with the simpler step size rule

¢2 sz — Zkil”Q ) , (22)

= <”O"“‘“ dag_ ||F(2F) — F(ZF 1|2

with v = é + # to complement the empirical success of the algorithm in the experiments
of (Malitsky, 2020) with the choice (22). This rule not only removes the hyperparameter &
but as we show in the next theorem, it also results in the rate O(L/k) which is only a small
constant times worse than the rate of the nonadaptive method (see Remark 6 for a precise
statement). As a result, this is a much smaller cost to pay for the worst-case complexity
with adaptivity. With the proposed change, we obtain Alg. 1.

12
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Algorithm 1 aGRAAL
Require: 2’ =20 ¢ C, ¢ € (1,1+72\/5), v E (1,%4—#}, ag > 0, 0y = ¢.

1: 2! = Po(2° — aogF(2?)) possibly by linesearch
2: for k> 1do

: — mi POp—1 __|lz"—2""1|

3: Qf = 11N (’Yak—lv 4oy [F(zF)—F(zF-1)|]2
. zk _ ¢—1_k 1-k—1

4: z" =7+ 4z

: 2" = Po(zF — oy F(2F))
6: 0 = =k

Q1

We will start with the one iteration analysis from (Malitsky, 2020) which does not need
any modification, so we state the result with a very brief proof to make the connection easy
to follow. Note that the spurious @ term is not used in the analysis of (Malitsky, 2020,
Theorem 2) in this result.

Lemma 3 (Consequence of (Malitsky, 2020, Theorem 2)) Let Assumption 1 (i, iii, iv) hold
and F be locally Lipschitz. Let ¢ € (1, 1+\/g)7 v < % + # and ZF = %Zfﬂ a;z’.

2 )
i=1 %

Then the iterates (z*) of Alg. 1 are bounded and we have

D
Gapg(ZF) < ———— VE>1. (23)

2 Zf:l Qg

Proof In (Malitsky, 2020, Theorem 2) inequality (35) is only valid for k& > 2. However due
to our definition of z' and since z° = z°, it already holds for k£ > 1. Then we can unroll the
recursion another step until iteration k& = 1 instead of k = 2. |

4.1 Lower bounding the sum of step sizes

Looking at the bound in (23), we notice that in order to derive a complexity result, we
require a lower bound for the sum of the step sizes. In the original proof in (Malitsky, 2020)
such a bound is ensured by enforcing each «; to be lower bounded by using & to derive a
O(1/k) rate.

For aGRAAL the consecutive step sizes also depend on the initial . Since the method
is entirely adaptive and we do not assume any a priori knowledge about F', we want to
make sure that «q is not too small and not too large. To this end, for the initialization, we

recommend to use the linesearch procedure described below.

ky__ k—
For brevity, we will write Ly = % Also, let L be the Lipschitz constant of

F over the set conv{z",z!, ...}, which is bounded due to Lemma 3. It trivially holds that
L > Ly for all k. Without loss of generality, we assume that L > 1.

13
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Let us choose o via linesearch as follows: set g to the largest number in {y~: i =
0,1,...} (note here the use of v given in Alg. 1) such that

z' = Po(2° — agF(2"))

24
ol F(a) ~ ()] < 2t — 0], .

The second equation gives the upper bound for agp: ap < % Note that the linesearch
always terminates because F' is locally Lipschitz, and we can immediately obtain the following
statements, which we will use later in Lemma 4. We have either ag =7y % =1 > % > 2%
or that yag = v -y~ violates the inequality above, that is

¢
Yool F(2') = F(2")] > 5 |l2" = 2"

which also implies that ag > % > 2% Moreover, from the algorithm’s update for oy we
have either a; = vag > % or
®bo ¢?

" dapLl?  dagL?}’

aq

which implies that a; + ag > 2\/a1ag > L% Using the upper bound for ag, we deduce that

o > % > a. To conclude, the suggested choice of ag in (24) ensures that

oy > % and o1 > ag.
The following lemma is our main technical contribution in Section 4, which will lead to
Theorem 5 when combined with the previous lemma.

,mel_l

. Then we have
v—1

Lemma 4 Let ag satisfy (24) and ¢ = min,,>2 %

As mentioned in the beginning of this section, we can no longer rely on a lower bound for
every individual step size but want to use their structure to lower bound their sum directly.
Specifically, whenever option two is active for a; (meaning that the second component in (22)
attains the minimum), then we can easily show that a;_o + o; > % On the other hand,
if option two is not present for a long time, then we will have a geometric progression
o, 047y, a2, . . ., whose sum is also easy to bound. These are two main ingredients, however
combining the two requires an intricate technical argument.

Proof We call ap = vay_1 and ai = %ZLZ as the first and second options that the step
- k

4
size ay can take respectively.

-

Claim 1. If oy satisfies the second option, for k > 2, then ay_o + oy > L% >
This follows directly from a + b > 2+/ab.

14
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Claim 2. 0<c¢c< %

The first inequality follows from v > 1 and limy, % 7”;111_1 = 00. The second one
follows from setting m = 2 in the definition of ¢ = min,,>2 % 7”;7_11_ L

We wish to show that

[

If there does not exist an «; smaller than 7, then we are done. So assume that such an «;

exists.

For s > 1, let us call by a tail a maximal subsequence of consecutive elements g1, .. ., Cstm
such that it starts from agq1 > % and the rest of the elements are all smaller:

c
aj < — forall j=s+2,...,s+m and oasymy1 >

L

~Io

Notice that for every such a tail, cg12 < asy1, which means that the second option for g9
is active. By Claim 1, this implies that as > 7. We call this element o as a head. Thus, for
every tail ag41, ..., asrm there is a preceding element «ay that is a head. This was the case
when s > 1. If we have a tail with s = 0, we call this sequence aq, ..., a,, the initial tail.
Note that the initial tail lacks a head (i.e. ag is not part of (23)), which is the reason why
we will have to consider this case separately.

As a result, we can partition (a;)¥_; into a non-overlapping sequence of (4) the initial
(¢

tail (possibly empty), (ii) head-tail pairs, and (iii) elements larger than 7. It is sufficient to
show the bound for each part in our partition.

Head-tail sequence. For a head-tail sequence ag, as11, ..., Qs+m, we will show that

s+m )

ZO( m—i—l
i =

2 > ¢2
4a5L§+2 = 4oL2
Qs1d4, - - -, Qg only the first option can occur, since otherwise there will be a contradiction
with Claim 1. For agy3, however, both options are possible:

. For elements

As we have already mentioned, for asys we have that agyo =

V¢’ ¢ ¢?

Q13 = YOg1 9 > ———= OI Qg3 = > .
SH8 TG = g 12 T Gagn L2, © dag L2

15



ALACAOGLU, BOHM AND MALITSKY

2
If asp3 = yasys > &%, then

st+m 2 2 m—2 12
Yo "9
;> -
ZZ_; @i 2 Qs+ st 4o L2 + 4o L2 Tt 4o L2
¢2
= Qg41 a5+ Tor L2 (1 + - +7m72)
_ ¢2 ,ym—l -1
—a5+1+as+4asL2 S -1
¢ [y 1-1
> R O
> Q541+ I y— 1
¢c me  ce(m+1)
> = = 25
— L + L L ’ (25)

where the last inequality follows from asy1 > ¥ and our choice of constant c.

2
If the second option is active for a3, that is agy3 > mﬁﬁv we have a similar estimation
o (25):
— ¢ V¢ "3
o 2 Qg+ Qg1 + Qgpo + + e e
iZ; PE e TR T O Jaen L2 dagy L2 dovgy 1 L2

2

4Oés+1L2

2 ,ym—2 -1

40[s-‘rl-LQ v—1

= (a5+a5+2)+(15+1 + (1+...+7m—3)

= (as + as+2) + asq1 +

¢ ,ym 2_1
Z (045 + 045+2) L N —
2¢ e¢(m—=1) c¢(m+ 1)
> 2 = 26
> T+ T (26)

where the last inequality follows from oy + g2 > % > % and the definition of c.
Hence, in both cases the desired bound holds.

Initial tail. For an empty initial tail there is nothing to prove. For a non-empty tail
Q1. .., Qy, we will show that

L

dogl2 = 4agLl?”

First of all, note that for m = 1 the desired inequality obviously holds: ZZ 1o > 0. For
= 2, we have by Claim 2

Since a1 > ¢ > 7, the first option cannot be active for ap. Hence, ap =

¢2
4(10[/2

-

Zai2a0+a2=ao+
=1

> -2

I
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Thus, for the rest of the proof we suppose that m > 3.

For steps ay, ..., a,, only the first option can be active (by Claim 1). For a3 we have
two cases:

1. The first option for ag is active, that is ag = yag. Then similarly to (25) we have

m
Zai > o1 4o +yaz+ -+ 9" 2ay
i=1

¢2 ,ym—l -1
4ogl? v -1

¢2 ,}/m—l -1
0o+

dopgl? ~—1

> a1+

>«

Vv

\Y]

(27)

2

2
2. The second option for ag is active, that is ag = 40?;7]:2 > 4;379'
3

Then similarly to (26)
we have

m
Zai=a1+a2+a3+’ya3+~--+’ym_3a3
i=1

=1 +agtag(l+-+79"7)
2 m—2_1

Y
> o1+ o+
= 2T den 2 -1
¢ [ym 2 -1
> R
> o+ I -1
c(m —1)
> - 28
> A (25)
where we used that as > 0.
Let us summarize what we have proved:
e the sequence «q,...,ar can be divided into an initial part aq,...qa,,, some non-

overlapping head-tails, and the remaining elements;

e(m+1).
L )

e for every head-tail ag, ..., asiy we showed that Zﬁo Qgti >

e for the initial tail we showed that > ", a; > C(mL_l);

e the remaining elements in oy, ..., ) are always greater or equal than 7.
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Hence, for each subsequence of length [, the sum of its elements is at least c(lgl). This allows
us to conclude that

ZQ@.EM‘

Theorem 5 Let Assumption 1 (i, i, iv) hold and F' be locally Lipschitz. Let ¢ € (1, +2 ),

N = é + #, ¢ = ming,>2 % 1L S0, and ZF = —L Zle a;zt. Then Alg. 1 with ag

’Y_l i=1 Qi
as in (24) has the rate
LD

Gapg (Zk) < m

Proof The result follows b(y using the definition of Z* on the result of Lemma 3 and the
lower bound of 3% ay > %Dc derived in Lemma 4. ]

The last thing left to understand is the value of ¢. The next remark shows that it is large
enough for a meaningful choice of parameters.

Remark 6 Setting ¢ = 1.5 as in the experiments of (Malitsky, 2020) direct calculation gives
c>0.5.

By proving a novel lower bound on the sum of the step sizes, we are able to prove a (’)(%)
convergence rate without requiring an artificial upper bound @ on each individual step. Not
only does this simplify the aGRAAL method, but also removes the spurious L? dependence
from (Malitsky, 2020), showing that there is basically no extra cost of adaptivity.

5. Nonmonotone problems with weak Minty solutions

In Section 3, for monotone problems, we observed empirically that increasing ¢ leads to a
certain speed-up, as in Fig. 2. In this section, we turn to a special class of nonmonotone
problems and show that in some cases smaller ¢ can be also favorable.

In particular, we consider the class of unconstrained problems F(z*) = 0 exhibiting a
weak Minty solution, which is given by a point z* such that

(F(z),2 —2") > —g||F(z)||2 Vz € RY. (WM)

This notion was recently introduced in (Diakonikolas et al., 2021) in the context of von
Neumann ratio games — a nonconvex-nonconcave min-max problem — and further inves-
tigated in (Lee and Kim, 2021b; Pethick et al., 2022; Bohm, 2023). While it is difficult
to verify the existence of such solutions in practice, the template simultaneously captures
different generalizations of monotonicity like the existence of a Minty solution (Malitsky, 2020;
Mertikopoulos et al., 2019) and negative comonotonicity (Lee and Kim, 2021a; Bauschke
et al., 2020) in order to study nonconvex-nonconcave min-max problems. See (Lee and Kim,
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2021a) for the implications between these different monotonicity concepts and (Gorbunov
et al., 2022) for a comparison in terms of last iterate convergence. To our knowledge, we
give the first adaptive algorithm for this setting that does not require a linesearch at every
iteration and only relies on local Lipschitz continuity.

5.1 Constant step size

We first show the convergence of unconstrained GRAAL with a constant step size. Note
that the discussion below will therefore also hold for the generalized version of OGDA, as
observed in Section 2.2.

Theorem 7 Let F be L-Lipschitz and fulfill Assumption (WM), with p < % Let ¢ > 1
be such that § = % —p> 0. Let (zF) and (z*) be the iterates generated (GRAAL) with
a= % Then

. k112 Ld) =1 * (12 2 1 012
i, PP < 20 (P 4 21t 202,

In the limiting case when ¢ is close to 1 we can allow for p < % in Theorem 7, which is

precisely the best possible dependence for the (adaptive) EG+ method proven in (Pethick

et al., 2022). For a more moderate choice, for example ¢ = ¢ = @, the bound on p

tightens to p < ﬁ See also Fig. 3 for empirical evidence of the need to reduce ¢ for problems
with weak Minty solution.

*OGDA o iRl EN * *| ®0GDA
1000 GRAAL ¢=2 . = . : GRAAL ¢=2
oo ——o———{+GRAAL $= 101> v =

*| +GRAAL ¢=¢

S

squared operator norm
=)

1078

1020

0 500 1000 1500 2000 15 Ale vy vww v 2 -
operator evaluations -15 -1.0 -0.5 0.0 0.5 1.0 15

Figure 3: A special parametrization of the Polar Game example from (Pethick et al., 2022) (see
Section 5.3.2 for details), showing the need to reduce ¢ for nonmonotone problems with weak Minty
solutions.

Theorem 7 has the drawback of requiring knowledge of the weak Minty parameter p to
set ¢ such that § > 0. In (Pethick et al., 2022) a similar problem was partially circumvented
by an elaborate way to choose the corresponding parameter adaptively. Whether something
similar can be done here is an open question. In practice, one can use a simple approach:
run GRAAL with certain value of ¢; if it does not converge, decrease and try again.

5.2 Adaptive step size

We continue with the guarantees of unconstrained aGRAAL under Assumption (WM).
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Theorem 8 Let I be locally Lipschitz and fulfill Assumption (WM), and let (z*) be the
sequence generated by (aGRAAL). As long as 0 := infy, oy (1 + é — 7(;5) — p >0 we have

. ; D cL.D
minF&)|P < 75— < :
i=1,...,k+1 6Z7j:1 1e% ko

where ¢ denotes the constant given in Lemma 4.

Remark 9 In particular, picking ¢ = 1.1 and v = 1.1 gives the condition p < 0.69cy. As
¢ and ~y get closer to 1, we can allow for p < ag, which would precisely be the dependence
between p and the step size proven in (Pethick et al., 2022) for CurvatureEG+, a version of
EG with linesearch.

Corollary 10 In the setting of Theorem 8, if the iterates happen to remain bounded, we
only require

. Qf41
inf —~t

1
) +ar(14=-96) = p>0,

¢

to deduce a similar convergence statement, but with modified constant.

Remark 11 The condition in Corollary 10 between the step sizes and the weak Minty
parameter p reduces, in the limiting case ¢,y — 1, to ag4+1 + ax > p. This corresponds to
doubling of the range of p presented in Remark 9.

Remark 12 (Lower bounding «ay.) In this section we relazed the condition between the
Lipschitz constant L and parameter p in (WM) to a condition between oy and p. We do
so in the hope that aGRAAL 1is able to take larger steps, since they are based on the local
Lipschitz constants. Unfortunately, we cannot give a good lower bound on any individual oy
in general. We see from the experiments that the step size sometimes does become lower than
the one chosen by linesearch (see Fig. 4). This seems to, however, not harm the performance
of the algorithm.

5.3 Experiments

As discussed in the main section of the paper, in order to solve weak Minty problems, for all
known methods two things are important: (i) the method needs to be modified in a way
that could be interpreted as making it more “conservative”; (ii) step sizes should be large.

In the case of the golden ratio algorithm, the former means averaging with more of the
(old) z*~1 iterate, i.e. decreasing ¢, see Fig. 4. For EG this means reducing the step size in
the update of the z* sequence, as proposed in (Diakonikolas et al., 2021; Pethick et al., 2022).
For the constant step size methods in question it seems like this is all we can do. However,
by choosing the step sizes adaptively, be it via linesearch as for the CurvatureEG+ method
from (Pethick et al., 2022), or by (3) in the case of (aGRAAL), we can hope to take steps
larger than the global Lipschitz constant would allow.
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5.3.1 FORSAKEN
In Fig. 4 the following problem formulation is used, which originated in (Hsieh et al., 2021,

Example 5.2) as a particularly difficult instance of min-max under the name of “Forsaken”:

Egﬁ%léﬁ“”(y 0.45) + f(z) — f(v),

where f(z) = 222 — 22% 4+ 125. This problem exhibits a solution at (z*,y*) =~ (0.08,0.4), but
also two limit cycles not contammg any critical point of the objective function.

100] g | ®aGRAAL ¢=1.4 ©aGRAAL ¢=1.4 15 * aGRAAL ¢=1.4
aGRAAL $=1.5 aGRAAL ¢=1.5 ; . . aGRAAL ¢=1.5
+ CurvatureEG+ 1.0 .|+ CurvatureEG+ 1 + CurvatureEG+
T =1/l
.

squared operator norm

107

0 100 200 300 400 . = . - R 0 100 200 300 400
operator evaluations -1.5 -1.0 -0.5 0.0 0.5 1.0 15 operator evaluations

Figure 4: The “Forsaken” example of (Hsieh et al., 2021, Example 5.2), which is further explored
n (Pethick et al., 2022). If ¢ is too large in aGRAAL, the method gets stuck in the limit cycle. Only
for small ¢ the method converges, and does so rapidly.

5.3.2 PoLAR GAME

Fig. 3 and 5 display results on the so-called Polar Game introduced in (Pethick et al., 2022,
Example 3) using the following parametrization for a > 0

F(xvy) = (w(%y) - y,"%b(y,x) +LIZ‘),

where ¢(z,y) = atz(—1+ 2% + y?)(—1 + 42® + 4y?). The problem exhibits a limit cycle
attracting solutlons away from the solution in the center.

™ *GRAAL $=1.3 /| ® GRAAL ¢=1.3 * GRAAL $=1.3

10° L +aGRAAL ¢=1.3 R 3 -+ aGRAAL ¢=1.3 . aGRAAL $=1.3
\ +aGRAAL ¢=1.4 109+ ) +aGRAAL ¢=1.4 1.0 . + + aGRAAL ¢=1.4
\ = CurvatureEG+ R = CurvatureEG+ * | - curvatureEG+

2

step size

squared operator norm
5
o
S

107 \ e A = ot > 0.0

0 500 1000 Y ol < . NETSNNN . 500 1000
operator evaluations -15 -1.0 -0.5 0.0 0.5 1.0 15 operator evaluations

Figure 5: A different parametrization of the Polar Game, a = 3, showing the importance of adaptive
step sizes. We observe that (aGRAAL) is the only method able to converge.

Fig. 5 shows that reducing ¢ alone will not be enough for problems where p > % is not
satisfied (the blue line does not converge). One has to choose larger step sizes.
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5.3.3 A LOWER BOUND (PETHICK ET AL., 2022, EXAMPLE 5)

In Pethick et al. (2022) it was shown that EG+ (with arbitrary small second step size) may
diverge if p > % via the following unconstrained min-max problems

. b, o o
min max azy + —(z° —
z€R yeR yt 2( v,

for a > 0 and b < 0. The associated operator F' is simply given by
F(z,y) = (ay + bz, by — ax)

and is Lipschitz continuous with constant L = v/a? + b? and (0, 0) is a weak Minty solution

with constant p = —%.

©aGRAAL ¢=1.14 y=1.6
+aGRAAL ¢=1.14 y=1.1
+aGRAAL $=1.06 y=1.1
. |=CurvatureEG+

B nnnnnn o aGRAAL ¢=1.14 y=1.6
* aGRAAL ¢=1.14 y=1.1
4] Tt . AGRAAL $-1.06 y=1.1
-C

- 1L

squared operator norm

0 5.00x10° 1.00x10* 1.50x10* 2.00x10*
operator evaluations

0 5.00x10° 1.00x10* 1.50x10* 2.00x10*
operator evaluations

Figure 6: A special parametrization (a®> = 3.7,b = —1) of (Pethick et al., 2022, Example 5),
illustrating the fact that sometimes v does indeed need to be chosen smaller as predicted by theory.

In Fig. 6 we see that, as predicted by Theorem 8 and Corollary 10, not only reducing ¢
but also decreasing -y can prevent divergence. At first glance, this is somewhat surprising
as larger ~ allows for a faster increase of the step size from one iteration to the next, and
we have already seen that larger step sizes are important for convergence for this class of
problems. We suspect this to be rooted in the special step size rule of aGRAAL, see (3),
where one large step can lead to decrease in the step size of the next iteration.
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Appendix A. Details on Section 3

For convenience, we give a full description of the algorithm

Algorithm 2 GRAAL
Require: z7! =2° € C, ¢ € (1,2].
1: for k> 0 do

3: 2" = Po(z" — aF(2%))

A.1 Proof of Corollary 2

We start with the following lemma which essentially summarizes the existing result of (Malit-
sky, 2020) for one iteration of the algorithm. Letting ¢ = 2 and € = 0 in this lemma gives (8)
which is the starting point of Theorem 1.

Lemma 13 (based on Theorem 2 in (Malitsky, 2020)) Let Assumption 1 hold and

o= ¢2_L26 for any € € [0,¢/2) in (GRAAL). Then for any z € C

k Skl o2y Pyl k2 DN i kg2
G(z ,z)+—¢_1\lz z||” + 2Hz z'||” + (d’ 1 ¢) |z z"||
¢

PRy
§¢ Iz (¢ — 2¢) sz_zk—1H2_l

k 2
Z VA +

Proof [of Lemma 13] By applying prox-inequality to the definition of z*+!
z € C that

”Zk _ik_1H2'

, we have for any

(2" — ZF + aF(2%),2 — 2" > 0. (29)

Similarly, with the definition of z*, we have

(zF — z2"7 1 4 aF(2F71), 28 — 2F) > 0. (30)
Since zF — zF 1 = %(zk —zF) = ¢(z* — z¥), we can rewrite (30) as
(p(z* — 2F) + aF(z"1), 2" — 2F) > 0. (31)

Summing up (29) and (31) yields

<Zk+1 _ Zk, z — Zk+1> + (Z)<Zk _ ik,zk+1 _ Zk> + oz(F(zk), 7 Zk:>

+ a(F(2F) — F(z"1), 28 — 21y > 0. (32)

Expressing the first two terms in (32) by norms and using the definition of G(z*,z) from (7),
we deduce

G(a*,2) + 2" — 2| < ||2* — 2> — |2 — 2% + 20(F (") - F(z*"), 2" — 257)

+ o2 =27 — (|2 = 2P — 12 - 2F)?). (33)
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The definition of z* gives

¢

k+1 2 P ik 2 Lok 2 Sktl k|2
|z — | —g”z —z| —¢_1HZ — z| +WHZ -z
¢ o 1 _
= ﬁ”zkﬂ ] ﬁ”zk -z + g”zkﬂ —z"|)%, (34)

where the second equality used z*+1 — zF = %(z”“r1 —zF).

Additionally, from a = ¢2_ L2€ and Young’s inequality, we have

20(F(2") — F(z"1),2" —2") < (¢ — 2¢)||F (") — F(z")||]z""" — 2"
< ?sz—i-l _ ZkH2 + (¢ - 2€)2 sz o Zk_1H2' (35)

2¢

Using (34), (35), and ¢?||z* — z*||? = ||z* — 2¥71||? on (33) gives the desired conclusion. W

Lemma 14 (Upper bound of R? used in Theorem 1) Let Assumption 1 hold. Then
for the first iteration of Alg. 2, we have that

R? = |z' — 2| + ||2° — 2*||* < 3||=" — 2"||*.

Proof Recall that z! = Po(z° — aF(2z°)) and z* = Po(z* — aF(z*)). The former is because

z" = z° by the initialization in Alg. 2. The latter follows by the definition of z* as a solution

of (1). By firm-nonexpansiveness of Pr, we have
lz* — 2> < ||(2° — aF (2°)) — (2" — aF(2"))|* - ||2° — aF(2°) — 2" + aF(z")|*.
Expanding the terms in the right-hand side we have that

2" —2°[|* < [l2° — 2*|* — ||2' — 2°* + 20(F(2") - F(2"),2° — 2)

—20(F(2°) — F(z*),2° — z*). (36)
By monotonicity, we have (F(2z°) — F(z*),2° — z*) > 0. By using a < 1, we have
20(F(2) - F(z"),20 - 2) < 202 — 2|12 — 21| < 2 — 2|2 + [12° — ||
Combining the last two estimates for the inner products in (36), we have
lz* —2*|* < 2)}z° — 2*|]%,

which gives the result. |
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A.2 Alternative proof of Theorem 1 via SDP

The proof of boundedness of (z*) presented in the main part was not very standard. In this
section, we provide an alternative proof of that fact which is based on a semidefinite program
combined with induction. This approach is easily generalizable to the case of ¢ < 2 even
though we give it for ¢ = 2 for simplicity.

As before, we assume that ||Z° — z*||? < 2R? for all i = 1,..., k and we must show that
|zF*! — z*||? < 2R2. Our main tool will be inequality (11) which holds for all £ > 1 and
which we recall here

22" — 2?4 |2 — 2P| < ||z — 27?4 ||2° — 277 + %HZ'““ -2"2 (37)
Without loss of generality, we assume that z* = 0 and that R? = ||z! —z*||? + ||2° — z*||> < 1.
The first assumption is valid because we can always redefine sequences as z* := z* — z* and

z" := z¥ — z*, while the second — because we can rescale the norm || - || by any positive
number.
Using these two assumptions and that z* = 2z¥ — z¥~! we can rewrite (37) as

1
2||zk+1H2 + H22k+1 _ Zk _ 22’“ + Zk—IHQ <1+ §||22k+1 _ Zk _ ZkHQ,
or
2”219—1—1”2 + ||22k+1 _ 3Zk + zk;—1||2 <14+ 2||Zk+1 _ Zk||2. (38)

k+1 Zk

The latter inequality is quadratic in z ,z"1. Hence, after expanding the norms, we

can rewrite it in a matrix notation as

,Z

tr(G-M) < 1,
where G is a Gram matrix
<Zk+1, Zk+1> <Zk‘-i-17 zk‘> <zk}+1’ zk’—1> 4 _4 2
G=| (zFz"*Y @k Z) (@ EE) and M= |-4 7 -3
<Zk_1, Zk+1> <ZI€—17 zk‘> <z]€—17 zk’—1> 2 _3 1

By induction assumption we have that Goo < 2 and Gg3z < 2 and we must show that G < 2.
Consider the following semidefinite program

mgx G111  subject to
G:=0
tr(G-M) <1
Goy <2
Ggz <2

If we can show that its optimal value is less than 2, then we are done: it will automatically
imply that ||z¥+1||? < 2. Now, by solving it, we obtain G1; ~ 1.49259.
Therefore, we have proved that for all &, ||z* — z*||> < 2R2.

Remark 15 The semidefinite program actually allows us to show a slightly tighter bound:
|z¥ — z*||? < 1.2R2, but we kept the constant 2 for consistency with the previous approach.
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Appendix B. Details for Section 4
B.1 Implementation of the linesearch

In (24) we outline a very particular linesearch which decreases «g by ~ in every step. Since
the canonical choice of ¢ proposed in (Malitsky, 2020) yields the small v = 1.1 this could
result in many backtracking iterations if our initial guess is bad. For practical implementation,
therefore, it is better to use first a coarse reduction of «p, say with a factor of 10 and only at
the end to switch to a fine factor ~.

Appendix C. Weak Minty proofs

C.1 Constant step size

By following the line of reasoning as in the monotone case one can only derive p < ﬁ We
do not present the proof here but it is only a simple modification similar to the one we show
later for the adaptive step size. In order to derive the p < % bound (matching EG) one has
to take a completely different approach. The high-level reason is that the monotone analysis
requires o < % This is counter intuitive as a smaller ¢ makes (GRAAL) more conservative
since the iterates are more anchored to z*, and at the same time requires a smaller step size.
A more conservative averaging of the iterates should allow for a more aggressive step size,
which is precisely the behavior we observe here. For convenience let g = F(z*).

Lemma 16 Let F be L-Lipschitz and fulfill Assumption (WM). Let (z*) and (z*) be the
iterates generated (GRAAL). Then

-1 4
I — 2| < 3 - o)+ S S e =)
3— “(p+1
o e e G o i D CD

Proof First we observe simply from the definition of the iterates
2

apllg®|? +

-1 1
”Zk—i-l_z*”2: QS Zk—H—I——Zk—Z*
o o
1 1 2
_ (" — agh) + -2F — 2*
¢
2
=k ¢_1 k *
= ———ag’ -z
o
6=1 o le=1 4
ZHZ’“—Z*H2—27a<g’“7 P+ 3 ag” (40)
> ¢—1 ¢—1 _ p—1 |
< ||z* —z*|)* + ap|gh|]® — 2——a(g", 2" — 2") + | ——ag"
¢ o) o
2
ka2, 91 k2 o®—1 1 4y ‘éb—l k
=z —-z" "+ —ap|g"||" - 2——a(g", —ag + || ——ag
| I 3 [f= 3 ( 3 ) 3
ka2, 91 k2 9—1 2<k2k—1 ¢—1 k>
=z" -z + ——apllg"|" - ——a"(g", g ———8&" ),
| I 5 [f=l 5 5 5
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where we used (WM) to deduce the inequality. Now we want to prove the following equality

_ ¢;1a2 <gk’ ;gk—l B ¢;1gk> _ ¢(¢4_ 1)a<gk gkl gk _ gk
3— 1
R e Y

We can verify this by expanding all iterates in terms of operators. Observe first that

1 1 1 —1
2" gk = gF _agh gk = 2 (zF1_gF)_agh = gagkq_agk — - (g1 —gh)— aLgk

¢ ¢
(42)
Now we use this to deduce
1, . -1 |
_sz+1_zk”2:_a2 5(gk 1_gk)_ ¢ k
a? 6—1 _ 6—1\2
e R G N X &

2
k- —1 o
—gllg —g"|I* + T o’(gh 28" -

2
o _ ¢o—1 _
=l g 1H?+72 o? (g", 26" — (9 + 1)g").

Therefore, by multiplying both sides by ¢ we get

3—¢ 3—¢a? _ 3—¢ _
Sl P = S e - g S R (g2 - (o gt) . (43)
Again, by going to g everywhere we have

2

o _ o 1 .
7<gk:_gk l,Zk k+1> <gk_gk l’gk_ggk 1)

¢ ¢
2
- e 1 —1 1, &
— -8 g - g +(1--)g
o2
k-1 k2, @1 K 1
Eﬂ@ g "+ o (g",8"—g" ),
and therefore by multiplying both sides by ﬁ
4 « _ 4 o2 4
gl e A ) = Tl g et gt et ()
By combining (44) and (43) we deduce
¢—1 2 .., ¢—1 4 B
T B e T g e e

3— 3-¢a> 4 o
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We can deduce (41) by simplifying the above equation. The statement of the lemma is
obtained by combining (41) and (40). [ |

Proof |of Theorem 7| We deduce from (42)

¢ — a? _ 2a _
92 2||gk\|2 m”gk—gk 1||2+m<gk l—gk7Zk—zk+1>+ﬁ|fzk—zk+1”2-
(45)
Adding (45) to (39) gives
= * ¢ -1 o = * 2 —
12 — 2| + 7@(5 = p)lgh|? < llz* — 2" + Wfﬂgk —ght2h -2
2—¢ a’o
- ﬁ”zkﬂ —2"|” - 26— )Hg —g"* (46)
By Young’s inequality we deduce
2 _ al
ma@k —g gt -2 < ¢(¢ 1)L Hg —g" P+ m”zkﬂ —2"|%. (47)

Combining (47) and (46) yields

-1 (a _
[ 5 \g7 lg"* < llz* — 2"

(2o ok k1l _ k2 < « % ) ko k—1y2

Therefore, in order to telescope we require

20 — ¢* — aL > oL — o*L? (48)
and 2¢ — ¢ > aL for the last term to be nonnegative. The condition (48) can be simplified

to 5
%Za

and the nonnegativity condition becomes redundant. We observe that, if p < ¢, then we can
pick p close enough to one such that 2-¢ > p. The final bound we obtain by

@ _ O‘2¢> ko k=12 <04L _042L2>k_k_12
(o5~ o) I 8 = (o i) 1=

where

N _¢—2—(¢—2)2_3¢—¢2—2¢§1 20-2 2
plo—1) dlo—-1)  ¢(p—1) g —1) T gle—1) ¢

(49)
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C.2 Adaptive step size

The analysis of (aGRAAL) relies on a similar energy function as before. So with slight abuse
of notation we (re-)define for the purpose of this section

0
(&HZlﬁ-l _ Z||2 + —ksz—H _ Zk||2.
Proof [of Theorem 8| The first few steps of our analysis follow the one presented in (Malitsky,

2020) so we do not reproduce them here. We continue from (34) in (Malitsky, 2020), which
reads

Ert1(z) =

Eri1(2) < Exlz) + (06— 1 - ;>ai\|F(zk)H2 — Oz — 2| — 204 (F(2"), 2" — 7).

By choosing z = z* and using the weak Minty property (WM) this reduces to
1 _
Een(a) < 6u(a) o ( (0= 1= )t o) IFGIIE - Bl ~ 22 G0

Note that

2
Orog_y

¢2

Q10

¢

_ Ok ke - _
Oz — 2" = EHZk —z" 2 = 1F (1)1 = IFE DI (51)
Plugging (51) into (50) yields

Een(a) + o (SHIFE D+ (o (145 - 00) o) IFEHI) < Euta). (52)

ap (ak(l—i-;—@k) —p) >0,

which can be ensured, by the fact that 0 < v¢, if

If for all &

ak<1—|—;—7¢)—p>0, (53)

holds, then after telescoping, where we unroll the recursion until £ = 1 as argued in the proof
of Lemma 3, to obtain

k

S o ((1 2 =) - p> @) + Exn (") < Ex(2").

=1

Remark 17 Note that in order to guarantee just liminfy, | F(z*)|| = 0 it is sufficient to ask

for

k
1
> <(1+ — —P)y —p> — o0,
i=1 ¢
meaning that we can allow for arbitrarily many step size to not fulfill the condition § > 0,
but for the sequence on average.
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In the presence of bounded iterates we were able to relax the conditions of Theorem 8.
Let M denote the diameter of the ball containing the iterates.
Proof |of Corollary 10| After telescoping (52) we get

k

Een() + s (S (14 5 - ) = o) PP < 6167 + % P
=1

(54)

|2 can be guaranteed

Let us first observe that the nonnegativity of the factor in front of || F(z*)
via

al;ﬂ +ak<1+;_0k> > CU:;rl +ak(1+;_7¢>’

since 0 < v¢. Also, the last term on the right hand side of (54) can be bounded via

AL41 _ _
o[ P22 < TR 42 < - g2

Thus we obtain

k
=1

where the last term on the right remains bounded due to the assumed boundedness of the
iterates. To deduce the precise constant we observe

9
3-1 q_ﬁ Clz' =2 + 5°||z1 — 2| + %Hz’“+1 — 7P| < 2M? 4+ 2M? 4 2M2.
Thus,
. 6
min [Pz < —0—— M2,
i=1,...,k 527;:1 ;

Appendix D. Details on experiments
D.1 Monotone problems

For the left plot in Fig. 2 we use the Lagrangian formulation of a linearly constrained
quadratic program

1
L(x,y) = ixTHx —hle — (Az —b,y),
where z,y,h,b € R4, A € R with d = 100. We use the parametrization proposed
in (Ouyang and Xu, 2021) and further studied in (Yoon and Ryu, 2021) which provides a

particularly difficult instance. The middle and right plot in Fig. 2 are special instances of
bilinear matrix games of the form

min max z’ Ay,
rzeAd yecAd

where A? denotes the d-dimensional unit simplex {z € R% : 2 >0, Y>¢  2; = 1}. For our
experiments we used d = 50.
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D.2 Weak minty experiments
D.2.1 ALGORITHMS

For (aGRAAL) ¢ is usually given in the legend, except for Fig. 1 where we used the default
¢ = 1.5. If 7 is not given in the legend we use the theoretical upper bound 1/¢ + 1/¢°.

For CurvatureEG+ we use a backtracking linesearch initialized with v||JF(z*)| !, where
we use v = 0.99 and JF' denotes the Jacobian of F. We ignore the extra cost of this
initialization but do count the extra gradient evaluations from the backtracking, where in
every step the step size is decreased by 7 = 0.9.

D.2.2 PoLAR GAME

The unique solution for this problem is in the origin. The Lipschitz constant L and the
weak Minty parameter p we approximate numerically, via a grid search on the interval
[-1.1,1.1] x [-1.1,1.1]. In Fig. 3 the value a = 1/3 is used whereas in Fig. 5 is given by
a=3.7. For a=1/3 we get L ~ 6.94 and p ~ 0.09, whereas for a = 3 we compute L ~ 61.4
and p = 0.72. In the latter case we observe from the result of the linesearch, see Fig. 5, that
these global estimates are quite pessimistic but even locally the necessary condition p < oy
is not satisfied for CurvatureEG+, which is why we observe its divergence.
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