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ABSTRACT

Machine learning approaches relying on such criteria as adversarial robustness
or multi-agent settings have raised the need for solving game-theoretic equilib-
rium problems. Of particular relevance to these applications are methods target-
ing finite-sum structure, which generically arises in empirical variants of learn-
ing problems in these contexts. Further, methods with computable approxima-
tion errors are highly desirable, as they provide verifiable exit criteria. Motivated
by these applications, we study finite-sum monotone inclusion problems, which
model broad classes of equilibrium problems. Our main contributions are vari-
ants of the classical Halpern iteration that employ variance reduction to obtain
improved complexity guarantees in which n component operators in the finite
sum are on average either cocoercive or Lipschitz continuous and monotone, with
parameter L. The resulting oracle complexity of our methods, which provide
guarantees for the last iterate and for the (computable) operator norm residual, is
O(n + y/nLe~'), improving upon existing methods by a factor up to /7. This
constitutes the first variance reduction-type result for general finite-sum mono-
tone inclusions and for specific problems as convex-concave optimization when
operator norm residual is the optimality measure. We further argue that, up to
poly-logarithmic factors, this complexity is unimprovable in the monotone Lips-
chitz setting; i.e., the provided result is near-optimal.

1 INTRODUCTION

We study finite-sum monotone inclusion problems, where the goal is to find u,, € R? such that
0 € F(u.) + G(u,), (MI)

and where F(u): R? — R? is monotone and Lipschitz, and G(u): R? = R? is maximally mono-
tone and possibly multi-valued. We consider the finite-sum structure, i.e., F(u) = 2 37" | F;(u).

As is standard, we assume access to (i) the resolvent of nG for > 0, meaning that for any u we
can find u such that u — u € nG(u) (generalizing the proximal operator); and (i) evaluations of
component operators F;. We measure oracle complexity of an algorithm in terms of evaluations of
component operators F; and the resolvent operator of nG.

The considered finite-sum settings are widespread in machine learning; see e.g., Johnson & Zhang
(2013); Defazio et al. (2014); Schmidt et al. (2017); Gower et al. (2020). While finite-sum mini-
mization problems are well-studied, recent applications in areas such as generative adversarial net-
works (Goodfellow et al., 2014), robust machine learning (Madry et al., 2018), and multi-agent re-
inforcement learning (Zhang et al., 2021) require solving more general equilibrium problems. Such
tasks are neatly unified under the umbrella of monotone inclusion (MI), which has a rich history
within optimization theory and operations research (Facchinei & Pang, 2003).

An important special case of (MI) is the variational inequality (VI) problem defined as below, where
G is the subdifferential of the indicator function of a closed convex set C' C R¢:

Find u, € C such that (F(u,),u—u,) >0 Yue C. (VD)
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A more specialized template that results in interesting examples of VI and monotone inclusion prob-
lems is min-max optimization miny maxy f(x) — g(y) + ®(x,y), where ® is convex-concave with
Lipschitz gradients and f, g are proper convex lower semicontinuous (1.s.c.). This maps to (MI) by

setting u = (;), F(u) = (7%%?&2)), and G(u) = (ggé;‘g)

Optimality measures. A standard optimality measure for solving (VI) problems is the duality
gap (Facchinei & Pang, 2003), defined as

Gap(u) = meaé((F(v), u-—v). (Gap)

However, (Gap) has significant drawbacks especially when the domain C' is unbounded, which is
often the case. A common way to get around this is to use the restricted duality gap (Nesterov,
2007), which requires the identification of a compact set including the iterates. However, such a
set generally affects the constants in the convergence bounds, and the restricted duality gap is not
as interpretable as the duality gap. Additional drawbacks are that (i) neither of these measures is
efficiently computable in general, (ii) the guarantees for these measures are typically obtained for an
average or the best iterate, and (iii) such duality gap guarantees are generally not possible to obtain
outside of monotone operator (convex-concave in the case of min-max optimization) settings.

An alternative optimality measure, which we focus on in this paper and argue to be more general
than the duality gap, is the residual defined as

Respig(u) = [[F(a) + g(uw)]l, (Res)
where g(u) € G(u) and hence dist(F(u) + G(u),0) = ( r)nig( : |IF(u) 4+ g(u)]] < Respig(u).
g(u)eG(u

The complexity results for (Res) can be translated to duality gap, but not vice versa (see, e.g., Di-
akonikolas (2020, Section 1.2)). Moreover, this measure is in most cases computable since the
algorithms typically have access to F'(u) + g(u), which will become clearer in the sequel. Further,
all our results are for the last iterate and the residual error guarantees are possible even for some
classes of structured non-monotone operators.

Context. When restricted to the complexity results in terms of the duality gap, there exist optimal
algorithms for finite-sum monotone VIs (Palaniappan & Bach, 2016; Carmon et al., 2019; Alacaoglu
& Malitsky, 2022). These works show how to take advantage of the finite-sum structure with vari-
ance reduction techniques to improve the complexity compared to deterministic algorithms such as
the extragradient method. However, as described earlier, these results do not translate to guarantees
on the residual. Even more, we cannot expect these existing variance reduced algorithms to have op-
timal rates for the residual, since in the deterministic case they reduce to algorithms that are known
to be suboptimal for residual guarantees (Golowich et al., 2020).

On the other hand, even in the deterministic case, algorithms that are optimal for the residual error
(in terms of oracle/iteration complexity) were obtained only recently (Diakonikolas, 2020; Yoon &
Ryu, 2021). These results are based on variants of the classical Halpern iteration (Halpern, 1967)
developed for solving fixed point equations with nonexpansive maps. Despite further developments
relaxing the initial assumptions on F' and G (Tran-Dinh & Luo, 2021; Lee & Kim, 2021; Cai et al.,
2022b; Cai & Zheng, 2023; Kovalev & Gasnikov, 2022) and addressing stochastic approximation
settings (Cai et al., 2022a; Chen & Luo, 2022), none of the existing results consider the finite-sum
structure nor lead to the /n improvements expected from variance reduction approaches in such
settings.

Our contributions. We obtain the first variance-reduced complexity results for standard classes of
(MI) problems that could lead to a y/n improvement compared to methods without variance reduc-
tion, in line with similar results obtained for the less general minimization and min-max problems
(focusing only on the duality gap guarantees) in prior work; see Table 1 in App. A. In particular:

* When F satisfies average %-cocoercivity (see Assumption 3), we obtain an algorithm with oracle

complexity O(n + y/nLe~1). To obtain this result, we incorporate recursive variance reduc-
tion (Li et al., 2021) into constrained one-step Halpern iteration. While a similar strategy has been
employed in Cai et al. (2022a) to address stochastic approximation (infinite sum) settings, their
analysis is more complicated and their oracle complexity is strictly worse than ours whenever n is
not too large (roughly, when n = o(1/%)).
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* When F' is monotone and L-Lipschitz in expectation (see Assumption 2), we obtain an algorithm

with oracle complexity O(n + y/nLe ™). This result is enabled by a variant of Halpern iteration
employing inexact resolvent evaluations of n(F + G) for n > 0. While this strategy is similar to
the approach taken in Diakonikolas (2020) to address corresponding settings without the finite-
sum considerations, unlike their work, our result is enabled by employing a stochastic variance
reduced algorithm from Alacaoglu & Malitsky (2022). A critical difference is that we carry out
a stochastic error analysis with a new inexactness criterion, due to the randomized nature of the
inner algorithm. To obtain our result, we generalize the analysis for strongly monotone inclusion
from Alacaoglu & Malitsky (2022) to the composite form (MI) with a maximal monotone G.

The complexity results presented above are for the expected residual in view of (Res). Due to the
computability of the residual, our results can also be easily translated to hold in high probability with
logarithmic dependence on confidence parameter. See the discussion after Remark 4.4 for details.

Further related work. Monotone inclusion and fixed point problems with finite-sum cocoercive
operators have been the focus of study in several recent papers. Davis (2023) presented a possible
speedup with variance reduction for root-finding problems with average cocoercivity only w.r.t. the
solution point, but requiring additional quasi strong monotonicity assumption. Loizou et al. (2021);
Gorbunov et al. (2022); Beznosikov et al. (2023) used similar assumptions to solve the VI problems
and provided convergence results for stochastic gradient descent-ascent methods. A more general
expected residual assumption was considered in Choudhury et al. (2023), but this work only proved
O(e~*) complexity for residual norm guarantees in our setting, which is suboptimal for finite-sum
monotone problems when n = o(¢~*). Similar less desirable O(¢~2) complexity on the residual
norm was also obtained in Morin & Giselsson (2022) with component cocoercivity. Tran-Dinh &
Luo (2023) considered random coordinate methods for root finding problems with cocoercivity,
which is a different setting that does not improve upon the overall complexity over deterministic
algorithms. For the finite-sum monotone Lipschitz setting, Johnstone et al. (2024) obtained O(c~%)
complexity for a generalized version of the residual and left open the problem of obtaining a better
complexity for the residual norm by a stochastic method in this setting, which our results address.

2 PRELIMINARIES

We denote as || - || the £2 norm. We say that an operator 7: R? — RY is (i) monotone if for
Yu,v € R%: (T(u) — T(v),u —v) > 0; (ii) Lp-Lipschitz if for Vu,v € R | T(u) — T(v)|| <
Lr|u = vl|; (iii) +-cocoercive if for Vu,v € R%: (T(u) = T(v),u—v) > +||T(u) — T(v)|>
Monotonicity can be defined in the standard way for a multi-valued operator 7': R? = R?. Note that
%-cocoercivity implies monotonicity and L-Lipschitzness, but not vice versa. Maximal monotone
operators are those whose graph is not properly contained in the graph of any other monotone oper-
ator where graph is defined in the standard way for an operator T as gral = {(x,y):y € T(x)}.
Common examples for this class include subdifferentials of proper convex l.s.c. functions. For fur-
ther discussion on these properties, see Bauschke & Combettes (2011).

Given an operator T', its resolvent is defined as J,r = (Id + nT) ™! for some n > 0, i.e.,
1
a€ Jyr(u) <= —(u—u) e T(a).
n

Important instances of resolvents include the proximal operator obtained when T' = dg for a convex
function g and projection Pg obtained when 7' = 0d¢ for the indicator function d¢ of a closed
convex set C'. An important and useful property of the resolvent operator J, 7 is that it is single
valued and nonexpansive (1-Lipschitz) when 7" is maximally monotone.

Our work leverages the classical Halpern iteration (Halpern, 1967), commonly used for solving fixed
point equations x = T'(x) with nonexpansive operators 7. Halpern iteration is defined by

U1 = /\kUQ + (1 — /\k)T(uk), (Hal)

where Ay is a step parameter typically set to be of the order—%. To address (MI), several vari-
ants of (Hal) have been proposed, with different choices of the nonexpansive operator 7. Notable

examples most relevant to our work include 7' = J,¢ o (Id — nF) for cocoercive settings and



Published as a conference paper at ICLR 2024

T = Jyr+ca) for monotone Lipschitz settings (Diakonikolas, 2020). We defer other background
information about the techniques used in the paper to Appendix A, due to space constraints.

We start with the common standard assumption that we require in all of the results.

Assumption 1. The operator F': R? — R? is monotone and L p-Lipschitz, and the operator
G': R = R? is maximally monotone. Their solution set is nonempty, i.e., (F' + G)~1(0) # 0.

The next two assumptions characterize the two separate settings we consider in the sequel.

Assumption 2. The operator F': RY — R? is L-Lipschitz in expectation, meaning that given an
oracle F¢ and distribution @ such that E¢..q[F¢(u)] = F(u), we have for any u,v € RY,

Eenql|Fe(u) = Fe(v)|I* < L|lu —v]*.

This is the main requirement used in Section 4. This assumption holds, for example, when each F;
is Lipschitz-continuous, and is standard for analyzing variance reduced algorithms (see e.g., Pala-
niappan & Bach (2016); Carmon et al. (2019); Alacaoglu & Malitsky (2022) and also Table 1).

Alternatively, in Section 3 we assume that F' is cocoercive on average, which can be regarded as
cocoercivity in expectation with uniform sampling.

Assumption 3. The operator F': R — R is 1 -cocoercive on average, i.e., for any u, v € R¢

(F(u) = F(v),u—v) > 20 30, [|Fi(u) = Fi(v)|*

This assumption holds, for example, when each Fj is cocoercive. In the minimization case, this
corresponds to the smoothness of component functions, which is standard in variance reduction
literature (Allen-Zhu, 2017; Nguyen et al., 2017). In the case of fixed point problems, it is implied
by the nonexpansiveness of component operators. An example of this case is given as a convex
feasibility problem in Malitsky (2019, Section 5.2). Similar assumptions also arise in Davis (2023);
Morin & Giselsson (2022); Tran-Dinh & Luo (2023); Loizou et al. (2021).

Oracle complexity. As the standard convention for finite-sum problems (Palaniappan & Bach,
2016; Carmon et al., 2019; Alacaoglu & Malitsky, 2022), we measure the oracle complexity of an
algorithm by the number of calls to F; to make an optimality measure small (the number of calls to
the resolvent of G for > 0 is of the same order). Since our variance reduced estimators compute
the full operator values with some probability, per-iteration costs are random and our complexity
results are on the expected number of calls to F;. This is also a standard way to measure complexity
with single-loop variance reduced algorithms (Li et al., 2021; Kovalev et al., 2020). It is possible
to obtain deterministic per iteration costs by exchanging to multi-loop algorithms (Carmon et al.,
2019; Alacaoglu & Malitsky, 2022), which we avoid for simplicity.

3 ALGORITHM AND ANALYSIS IN THE COCOERCIVE CASE

In this section, we work under Assumption 3. The main reason that we study this case separately is
because we can provide a simpler single-loop algorithm under cocoercivity. We use the following
stochastic variant of the constrained Halpern iteration

Ugpy1 = JnG (/\kuo + (1 — )\k)uk — nﬁ(uk)), (3.1

where F is the variance-reduced PAGE estimator (Li et al., 2021). We summarize our approach in
Alg. 1, and defer the details of the PAGE estimator to Appendix A, due to space constraints.

A similar constrained Halpern iteration scheme has been analyzed in Cai et al. (2022b); Kovalev &
Gasnikov (2022) with an extrapolation step, but only for deterministic settings. For the stochastic
counterpart, Alg. 1 can be seen as a simpler constrained version of Cai et al. (2022a), with a single
parameter for the constant batch size that (unlike in the algorithm of Cai et al. (2022a)), independent
of the accuracy ¢, the component variance, the norm of iterate differences, and a stage-wise choice
of pr. The reason we are able to simplify the batch size selection comes from our focus on the
finite-sum problems, whereas Cai et al. (2022a) considered infinite-sum problems.
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Algorithm 1 Halpern iteration with variance reduction

Input: ug € RY, step size n = ﬁ, batch size b = [\/n], \1 = %

up :J&G(uo—%F(uo)), F(ul) :F(ul)

fork=1,2,...do
4
—= Vk <
e = oq0 Phi1 = {k+5 <vn

) 4
k44 NGRS Yk > \/ﬁ
W1 = Jya(Asuo + (1 — Ap)ug — nF'(ug))
Sample S1 C {1,...,n} without replacement and uniformly at random with |Sy1| = b

Flugs,) F(upq) W.D. Dht1,
- Flup) + § Xics,,, (Filarrn) = F(ug))  wp. 1 —pryr.

The key technical ingredient in our analysis is the following lemma, which shows that, in expec-
tation, in each iteration k£ we can reduce a potential function by a factor (1 — ;). This potential
reduction, in turn, can be translated into the residual error decay at rate A, = O(1/k), as shown in
Theorem 3.2 below. Due to space constraints, the proofs are deferred to Appendix B.

Lemma 3.1. Let Assumptions 1 and 3 hold. Then, for the iterates uy of Algorithm 1 and the
potential function Cy, defined by

Ce = 51 (0 e+ (Flue) + e — w) +cxl|Flw) = Fw) |, (32

we have that E[Ci41] < (1—Ag)E[Ck] for k > 1, where gi41 =
(Vn+2)(k+4)
L :

(Aktto + (1= e )u —n F (uy,) -

1
n
llk+1) € G(ug41) and ¢, =

Our potential function in (3.2) allows us to go beyond the deterministic setting analyzed in Kovalev
& Gasnikov (2022), by handling the variance of the estimator F’, which also helps us avoid the more
complicated induction-based argument in Cai et al. (2022a). Another important aspect in the above
bound is that ¢; can be of the order of y/n. Hence, to make sure that we do not introduce spurious
dependence on n, it is critical that the first two iterations of the algorithm evaluate the full operator.

The following theorem states our main convergence result for this section.
Theorem 3.2. Let Assumptions 1 and 3 hold. Then, for the iterates uy of Algorithm I, we have

16L||lug — u.
E[Respi(ur)] < (]E[Resiwc(uk)])l/? < %

In particular, given accuracy € > 0, to return a point ug such that E[Respic(ug)] < e, the
. . . . A vnL|lug—u.||

stochastic oracle complexity of Algorithm 1 is O(n + f)

Observe that we use a large batch size |Si| = /n to obtain our improvement from the employed
variance reduction strategy, which is a common practice for stochastic algorithms with residual
guarantees (Cai et al., 2022a; Lee & Kim, 2021). Prior work (Pethick et al., 2023) that avoids a large
batch size requires O(¢~%) complexity and only provides residual guarantees on the best iterate. We
also argue that in the finite-sum case, there is no inherent disadvantage of using O(y/n) samples in
every iteration since we provably show that this leads to a better dependence on n in the final oracle
complexity compared to deterministic algorithms, which would use n samples every iteration.

To compare with prior results, we first note that deterministic Halpern iteration for constrained

VIs with cocoercive operators yields O(nLre~') complexity (Diakonikolas, 2020), for which our
result in Theorem 3.2 replaces nL g with \/nL and can provide improvements up to v/n depending
on the relationship between L and Lp (see examples in Palaniappan & Bach (2016); Carmon et al.
(2019); Alacaoglu & Malitsky (2022)). Moreover, compared to complexity results O(Lre~3) and

O(Lpe~2) for algorithms developed for the infinite-sum stochastic settings in Cai et al. (2022a);
Chen & Luo (2022), we provide improvements in the regime ¢ = o(1/+/n), assuming Ly ~ L.

An important implication of this result on cocoercive inclusions is for finite-sum minimization
where variance reduction has been studied extensively. The state-of-the-art results with direct
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algorithms are due to Lan et al. (2019) and Song et al. (2020), that provide oracle complexity
O(n + vVnLe~1Jug — u,||) for the objective suboptimality. This result can be translated to the
norm of the prox-mapping to get E[Resr ¢ (Uow)] < € with complexity O(n++/nL|jug—u.|e™t)
which is the same as our result when specified to the case F' = V f for a smooth convex function f
and G = Og for a regularizer g. This complexity is not optimal for smooth convex minimization and
has been improved for unconstrained minimization or with indirect algorithms (Zhou et al., 2022;
Allen-Zhu, 2018). Our results provide the best-known guarantees (among direct approaches) with a
single-loop algorithm. Single-loop versions of Katyusha (Allen-Zhu, 2017) were studied in Kovalev
et al. (2020) and Qian et al. (2021), albeit without guarantees for the non-strongly convex case.

4  ALGORITHM AND ANALYSIS IN THE MONOTONE & LIPSCHITZ CASE

In this section, we consider the more standard setting where F' is monotone and L¢-expected Lips-
chitz for an oracle distribution ). We note that our results apply for general sampling distributions
(@ under which Assumption 2 holds; for concrete examples of beneficial non-uniform sampling dis-
tributions, see Remark 4.4. We omit the subscript and denote L. = L for brevity in this section,
since the context is clear. To obtain the desired complexity, we make use of the resolvent opera-
tor Jy, () (u) for some fixed n > 0 (specified later in this section). In particular, we adapt the
stochastic Halpern iteration to the following single-valued and cocoercive operator

P'(u) :=u— Jypice ().

Indeed, for any > 0, finding a point u such that E[|| P7(u)||] < ne is sufficient to approximate (MI)
of F' + (G, as summarized in the following proposition with the proof deferred to Appendix C.

Proposition 4.1. For any fixed n > 0, let P"(u) = u — Jy(pic)(u). If | P"(u)|| < ne for some
€ > 0, then we have Resp (1) < e withu = u — P"(u) = Jypiq)(u).

This standard proposition gives us a simple way to convert the guarantees on || P”(u)|| to the residual
norm (Res) conceptually, and we later provide a computable approximation for u in Cor. 4.3. If P"
can be computed exactly, then (MI) can be solved by the standard, deterministic Halpern iteration,
as P"(u) is nonexpansive. However, the exact evaluation of resolvent operators only happens in
special cases, and even for those cases, the computation is usually prohibitive when 7 is large for the
operator F'. Instead, one can efficiently approximate the resolvent by solving a finite-sum strongly
monotone VI problem, for which we provide more details in Section 4.2.

In the rest of the section, we provide an overview of the analysis and main technical results. Due to
space constraints, the proofs are deferred to Appendix C.

4.1 INEXACT HALPERN ITERATION WITH STOCHASTIC ERROR

Denoting the resolvent approximation by jn( F+@G)» We use the inexact Halpern iteration as follows

Up1 = AgUg + (1 — )\k)Jn(FJrG)(uk) = AgUug + (1 — /\k)(uk — P"(uk)) — (1 — /\k)ek, “4.1)

where e, = Jypia)(ur) — j,](p+c)(uk) is the approximation error. To efficiently compute

Jp(F+@) to a certain accuracy, we use the variance-reduced forward-reflected-backward method
(VR—FoRB, Alg. 3) proposed in Alacaoglu & Malitsky (2022) as our subsolver for each iteration.
We summarize our approach in Alg. 2, and defer our detailed discussion of VR—FoRB to Section 4.2.

Halpern iteration with inexact resolvent computation has been shown to maintain O(1/k) conver-
gence rate for deterministic problems (Diakonikolas, 2020), provided the approximation error ||eg||
is sufficiently small. The critical difference is that we can no longer use the stopping criterion for
the inner algorithm therein, due to the randomized nature of VR—FoRB. Their inexactness criterion
lex]] < Tr7T) for each iteration k requires a pre-fixed accuracy e and also leads to the bound on

the number of inner iterations to depend on J,,(p1¢)(ux) which is not feasible empirically. The
latter is simply because the initial distance to the solution of the subproblem appears in the com-
plexity bound (see, e.g., Theorem 4.6). To overcome these issues, we use a different inexactness
criterion Ey[||ex|?] < %, conditional on the algorithmic randomness up to and including it-

eration k, which is, in fact, related to an old idea of warm-starting (Rockafellar, 1976, eq. (B)). Such
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Algorithm 2 Inexact Halpern iteration with VR—FoRB

Input: uy € R, L = Lg with the distribution Q = {¢;}"_;, n, n = @

for £k =0, 1, 2,...do
Ap = k+2, Mk = [56(n + /n) log(2k + 4)|
Torrc(ug) = VR—FoRB(uy, M, 1d +1(F + G) — uy,, Q)
Uup1 = Ao + (1 — Ap)Jypre) (ur)

a criterion can be guaranteed to hold by setting the number of inner iterations to be a sufficiently
large, yet computable, number depending only on known constants, using the convergence results
of VR—FoRB from Section 4.2. We summarize these results in the following theorem.

Theorem 4.2. Let Assumptions 1 and 2 hold. Then, for the iterates uy, of Algorithm 2, we have that

Ex[llex]?] < % conditional on the algorithm randomness up to iteration k, and

7[[up — vl

B[P (o)) < (BIIP (wo)l2) " < S22

Moreover, given accuracy € > 0, to return a point ug such that E[||P"(uk)||] < ne withn = @,

the stochastic oracle complexity is o (n + M)

The final step is to characterize the precise point at which we have the residual guarantees.
Corollary 4.3. Let Assumptions 1 and 2 hold and let ug be as defined in Theorem 4.2. Then, for
Uout = VR—FoRB(ug, [42(n + v/n) log(19n)],1d + n(F + G) — uk, Q) withn = ‘/ﬁ

E[Respia(Uout)] < 2e.

The total stochastic oracle complexity for producing gy is O (n + w)

Remark 4.4. Non-uniform sampling () can be beneficial in terms of lowering the Lipschitz constant
L¢ and thus the overall algorithm complexity. As a specific example, consider the matrix game

i A my mo
Join - max (Ax,y) +0am (X) +0am(y)

for A € R™2*"1  the simplices A", A™2, where 0 is the indicator function. With u = (;), we

have F'(u) = (’_4 Y) and G(u) = (‘%A""l (x)). Denote the i-th row and the j-th column of A by

90 am2 (y)
A;. and A, respectively. Let || - ||2 be the operator norm for a matrix, and || - || 7 be its Frobenius
norm. Consider the standard importance sampling for @, i.e., we sample £ = (i, j) ~ @ such that
1 _A.v. 2 2
@ “i:Yi - 1) (2 1y _ Azl 2 _ [lAy
Fe(u) = ( % ) Polé = (i,4)] = ¢.Vd'?, ¢V = A 2, 4 = A]!2~
A% 1A%

1
——m AX;
a;

It is easy to verify that E¢.q[F¢(u)] = F(u), and we have Lg = ||A||p while Lp = [|Al|2. Since
it is possible for || A||r and || A]|2 to be of the same order, in those cases the improvement from the

variance reduction approaches (including ours) is of the order ,/ = 27”””2 (order \/m; for square ma-

trices). Similar conclusions can be drawn more generally for hnearly constralned nonsmooth convex
optimization problems; see (Alacaoglu & Malitsky, 2022, Section 4) and App. C.5 for details.

In addition to complexity bounds for the expected residual, our results also have a direct consequence
for high probability guarantees. In particular, since our result clearly implies Respig(uoy) < €
with a constant probability by Markov’s inequality and since the residual is computable, one can run
the algorithm multiple times and monitor the residual, to obtain a high probability guarantee with
logarithmic dependence on the confidence level. See, for example, Zhou et al. (2022); Allen-Zhu
(2018) where such a confidence boosting mechanism is used in a similar context.

A few other remarks are in order here. First, our results imply the gap guarantee results in prior
work (Alacaoglu & Malitsky, 2022; Carmon et al., 2019). On the other hand, the algorithms in these
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works are bound to be suboptimal for the residual since they reduce to the exragradient algorithm
in the case n = 1, which is suboptimal for the residual guarantee (Golowich et al., 2020). Second,
residual guarantees for these variance reduced algorithms are currently unknown. Third, the im-
plication to gap guarantees also ensures the near-optimality of our results since such complexity is
known to be unimprovable for the gap guarantees (Alacaoglu & Malitsky, 2022; Han et al., 2024).

Next, compared to deterministic algorithms with O(nLpe~!) complexity for the residual (Di-
akonikolas, 2020; Yoon & Ryu, 2021), we replace nLp with v/nL. This brings improvements in
important cases discussed in Palaniappan & Bach (2016); Carmon et al. (2019); Alacaoglu & Mal-
itsky (2022), including linearly constrained problems and matrix games discussed in Remark 4.4.
This mirrors the recent improvements for the duality gap guarantees for VIs where Alacaoglu &
Malitsky (2022); Carmon et al. (2019) showed O(n + /nLe~!) complexity instead of O(nLpe~1)
of deterministic methods (Nemirovski, 2004).

Finally, we show the extension to cohypomonotone settings defined by the existence of p > 0 such
that (F(u) — F(v),u—v) > —p||F(u) — F(v)||? in the following corollary for completeness, with
justifications in Appendix C.4. This result provides a better dependence on n compared to previous
results with the drawback of a more restrictive bound for p (roughly, p < I%L%) and using G = 0.

Corollary 4.5. [Cohypomonotone] Assume that F' is maximally p-cohypomonotone and L-expected

Lipschitz and G = 0. Given € > 0, Alg. 2 returns a point ug such that (E[||P”(uK)H2])1/2 < ne

with O ( (n+vn ﬂif; 1)( Huon—su* I+ 1)) stochastic oracle complexity, for any positive 1) such that
F

p < min (g, ﬁ) Withn = @ as before, this corresponds to p < min (f%%’ 2—‘/?)
4.2 RANDOMIZED APPROXIMATION OF THE RESOLVENT

Approximating J,,(p4¢y(ut) forut € R? corresponds to solving the finite-sum MI defined as:
Find @ such that 0 € nF (@) + nG(a) +a—u'. 4.2)
It is immediate that the solution to (4.2) of the operator n(F + G) + Id — u™ corresponds to

Jy(r+c)(ut) by the definition of the resolvent. Note that (/' + G) + Id — u™ can be represented
as a sum of two operators £ (u;ut) and nG(u), where

_ 1 < _ _
F'(u;ut) :==nF(u)+u—ut == E F'(q;ut), F(u;ut):=nFi(u)+u—-u’. 4.3)
n
i=1

It is simple to verify that 77 (u; u') is 1-strongly monotone and (1L + 1)-average Lipschitz w.r.t. u;
we provide a proof in Appendix C.1 for completeness, and G is still maximally monotone as > 0.
Hence below we use a more general notation and will set A(u) = F”(u;u™) and B = nG. As
mentioned before, we use VR—FoRB from (Alacaoglu & Malitsky, 2022, Algorithm 4) to solve (4.2),
which we present as Alg. 3. We now state its convergence result under strong monotonicity.

Algorithm 3 VR—FoRB(u, M, A + B, Q) (Alacaoglu & Malitsky, 2022, Algorithm 4)

Input: vp=wo=w_1=u,p=+,a=1-p =" g(Ll;p), distribution @ = {¢;}!-,
fork=0,1,...,M —1do

Vi =avp + (1 — a)wy

Sample ¢ € {1,...,n} according to @)

Viy1 = Jrp(Vi — T[A(wi) — (ngi) M Ai(Wi—1) + (ngi) " Ai(vi)])

W _ JVk+1 WDP.P
h W wp.1l—p

Theorem 4.6. Let A: RY — R? be monotone and L s-Lipschitz in expectation with A =
% >, A Let B: R? = R? be maximally monotone, and A + B be ji-strongly monotone with

w>0and v, = (A+ B)71(0) # 0. Given & > 0, Alg. 3 returns vy with E[||[va — v.||?] < &2
in [14(n + ‘/EHLA) log ‘/é”vgfv*” iterations and O ((n + ‘/iLA )log Hv“;’*“) oracle queries.
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Figure 1: Comparison of Alg. 1, Alg. 2, deterministic extragradient (EG), extra anchored gradient
(EAG), variance reduced extragradient (VR-EG) on the matrix games and quadratic programming.

We remark that only almost sure convergence was proved for VR—FoRB in Alacaoglu & Malitsky
(2022). We show its non-asymptotic linear convergence which is needed for our main result in
Theorem 4.2. A similar rate is in (Alacaoglu & Malitsky, 2022, Theorem 6) for strongly monotone
VIs, but for a different algorithm — variance reduced extragradient. Our result can be seen as a
“single-call” alternative to this method, for the slightly more general setting of strongly monotone
inclusions. We provide this to keep the generality of our setting and also for possible interest in its
own right, since such algorithms have been popular (Cai & Zheng, 2023; Hsieh et al., 2019).

5 NUMERICAL EXPERIMENTS AND DISCUSSION

We provide preliminary numerical results for our proposed algorithms!. We compare Alg. 1 and
Alg. 2 with existing algorithms on matrix games and a special quadratic program used for lower
bound derivations in Ouyang & Xu (2021). We emphasize that our main contributions are theoret-
ical, while the provided examples are mainly for illustration with two goals in mind: (i) verify our
improved complexity bounds compared to deterministic Halpern-based methods (Cai et al., 2022b),
(if) show benefits of our algorithms compared to prior variance reduced algorithms (Alacaoglu &
Malitsky, 2022) for difficult problem instances used for establishing lower bounds.

We compare our algorithms with extragradient (EG) (Korpelevich, 1977), constrained anchored
extragradient (EAG) (Cai et al., 2022b), and variance-reduced extragradient (VR-EG) (Alacaoglu
& Malitsky, 2022, Alg. 1). First problem is a matrix game with simplex constraints, i.e.,
Milyeam: Maxyeam: (AX,y) with m; = mg = 500. We use the policeman and burglar ma-
trix (Nemirovski, 2013). Second problem we consider is a quadratic program from Ouyang & Xu
(2021) equivalent to the problem minyegm: maxyecgm> 3x' Hx —h'x—(Ax — b,y). This prob-
lem was used in Ouyang & Xu (2021) for establishing lower bounds for min-max optimization and
we use this example with m; = mgy = 200 to show the efficacy of Halpern-type algorithms. We
use uniform sampling for all the algorithms, set M), = [0.05nlog(k + 2)| for Alg. 2, and tune
the stepsizes for each method individually. We implement all the algorithms in Python, and run the
experiments on Google Colab standard CPU backend. We provide further details in App. D.

We summarize our numerical results and plot the operator norm against the number of epochs in
Fig. 1, where one epoch means n individual component operator evaluations. Operator norm stands
for || F'(u)|| for the unconstrained case, and we follow the convention and use the norm of gradient
mapping, i.e., \/[[x — Pami (x — ATy)[2 + |ly — Pam:(y + Ax)|J? for the matrix game (which
our guarantees can be directly translated to, see for example (Cai et al., 2022b, Fact 1)). We observe
that (i) our variance reduced Alg. 1 and Alg. 2 converge faster than deterministic methods in both
cases, validating our complexity results; (i7) VR-EG exhibits slightly faster convergence than our
Halpern-type algorithms in Fig. 1(a) (see similar empirical observations and comments in Park &
Ryu (2022); Tran-Dinh (2023)), however VR-EG suffers stagnation while our algorithms progress
on the difficult worst-case problem, as shown in Fig. 1(b).

Due to space constraints, conclusions and discussions about future directions appear in Appendix E.

!Code is available at https://github.com/zephyr-cai/Finite-Sum-Halpern-Iteration.


https://github.com/zephyr-cai/Finite-Sum-Halpern-Iteration
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Table 1: Comparison of our results with state of the art in the monotone Lipschitz settings, in terms of
stochastic oracle complexity required to output Xoypu With E[Res p4 ¢ (Xoupur)] < €in Column 2 and
E[Gap(Xouput)] < € in Column 3. We refer to Section 1 for the discussion regarding the difference
in optimality measures Resr ¢ and Gap and the importance of getting results on Resp_ .

. . High
Reference f(():rogg;exny C;)g:[é:uty Assumption Probability
L p Result
Kovalev & Gasnikov (2022) O (nLF e ! ) O (an57 B ) Assumption 1 N/A
Nemirovski (2004) O (nL% 572) O (an57 1 ) Assumption 1 N/A
: ; Assumption 1,2, G =0
iet: 2 3y_.—3 2 3y_—3 P! > & _
Cai et al. (2022a) O((e?L + L%)e7?) O((e?L + L*)e™?) B[ Fi(x) — F(x)|? < 02
Assumption I, G = 0
Luo et al. (2021) O(c®e ™+ Lre™')  O(o%e 2+ Lpe?) F= (i -
Ei||Fi(x) = F(x)||” < o?
Assumption 1, 2
Carmon et al. (2019) - O(n+mLe™Y) bo‘(’c“fdesdegos"f‘“ _
in (Carmon et al., 2019))
Assumption 1, 2
. P _1 bounded domain
Palaniappan & Bach (2016) — O(n+ nLe ') (cf. (C) in Sec. 2 _
in (Palaniappan & Bach, 2016))
Assumption 1, 2
Alacaoglu & Malitsky (2022) — (@] (n + v/nLe™ 1) (cf. Assumption 1(iv) —
in (Alacaoglu & Malitsky, 2022))
[Our results, Theorem 4.2] O(n+ nLe ) O(n+/nLe ) Assumption 1, 2 v

A BACKGROUND

We first provide Table 1 for the comparison of our results with the state-of-the-art in the monotone
Lipschitz case.

VI algorithms, extragradient, FB, PP. Two of the most fundamental algorithms for solving
VI problems with monotone operators and monotone inclusions are Forward-Backward (FB) and
proximal-point (PP) algorithms, see for example (Facchinei & Pang, 2003; Rockafellar, 1976). For
problem (MI), FB iterates as

w1 = Jrg(ug — 7F(ug)),
and converges when F' is cocoercive or under other restrictive assumptions such as strong mono-
tonicity of F' 4+ (G. On the other hand, PP, for the same problem, iterates as
W1 = Jrrra)(ur),

and does not require cocoercivity of F'. However, the computation of J(r ) is in general nontriv-
ial even when J. ¢ can be computed efficiently. Hence, the advantage of not requiring cocoercivity
comes at the cost of a more expensive iteration.

Extragradient (EG) (Korpelevich, 1977) is a classical algorithm that gets the best of both worlds
and, for problem (VI), it iterates as

U412 = Po(up — 7F(uy))
Ug41 = Pc(uk — TF(uk+1/2)).

This method converges with L-Lipschitz F' and only uses J,¢ for G = 0d¢. It turns out that PP
and EG have the optimal convergence rates for the gap whereas they are suboptimal for guarantees
on the residual, see Golowich et al. (2020).
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Variance reduction.  The main idea of variance reduction is to use an estimator £’ such that
E||F(u) — F(u)|? gets progressively smaller as we run the algorithm. There are several differ-
ent estimators that are used in minimization such as SVRG (Johnson & Zhang, 2013; Kovalev
et al., 2020), SARAH/SPIDER/PAGE (Nguyen et al., 2017; Fang et al., 2018; Li et al., 2021) or
SAGA (Defazio et al., 2014; Schmidt et al., 2017). For reference, given F' = % >oi, Fi, SVRG
estimator is written as

F(uk) = F(Wk) — Fl(Wk) + Fi(uk),

for a randomly selected index ¢ € {1,...,n} and a suitably selected point wj. A common choice
is to select wy, to be updated only once every couple of epochs. By using this estimator, recent
work Alacaoglu & Malitsky (2022) showed how to obtain variance reduced extragradient algorithms
with optimal complexity for the gap in terms of both the number of operators n and the desired
accuracy €.

Another estimator that is popular for minimization problems is the PAGE estimator (Li et al., 2021),
written for operators as:

F(uy) =1 = (A.1)

7 F(uk)’ W.p. Pk
Fug-1) + 4 Yes, (Fi(ur) = Fi(ug-1)),  w.p.1—ps,

where p; and the mini-batch Sy, with b = |Sy| are the parameters. Even though this estimator has
been shown to have unique benefits for minimization, it has not find much use for operators for finite-
sum case. It was recently used by Cai et al. (2022a) for operators given as an expectation. Here we
introduce a useful result on the variance bound of the PAGE estimator, for our later analysis. Note
that this lemma is a slight modification of (Li et al., 2021, Lemma 3) by using without replacement
sampling.

Lemma A.1. Let the minibatch Sy, be uniformly sampled from [n] without replacement. Then the

variance ofﬁ defined by Eq. (A.1) satisfies the following recursive bound. For all k > 1, it holds
that

E[||F(ur) — F(up)]|?] < (1 - pe)E[| F(ur—1) — F(up—1)|?

RECEDEYN

"1
-1 F |2 IR - Bl a2

i=1

Proof. Let F, denote the filtration that contains all algorithmic randomness up to and including
iteration uy. Using the definition of F in (A.1) where F'(u) = F'(uy) with probability pg, then
conditional on F},, we have for all £ > 1 that

E[I1F (w) = F(ug)|? | 7]

— _pk)E[Hﬁ(uk_l) n % S (Fi(we) = Fiwen)) — F(uk)Hz ‘ fk}
€Sk
[Fuea) + LS (Fi(wy) - Fi(uy1)) — F(uk)Hz}, (A3)

b
1€Sy

= (1 —pi)Es, [

where Eg, denotes the expectation with respect to the randomness of Si. Adding and substracting
F(uj_1) in the quadratic, and noticing Es, [% D ics, (Fi(ug) — Fi(uk_l))] = F(ug)—F(ug-1),
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we have

Es

ﬁ(uk_l) + % Z (Fi(uk) - Fi(Uk—l)) — F(Uk)‘ﬁ
ies

1E€ESE

1
|

Es, [+ 3 (Ftw) — Ftwes) — (Flue) — Fla) ] + 1P o) - P2
1€Sk
+ 2 <F(uk 1) — F(ukfl)aESk [f Z (Fi(uk> — F-(uk,l)) — (F(uk) — F(ukfl))} >
1€Sk
B, [||b 2 (Fiw) — Biwe) - (Flae) - F)|]
1€Sk
+ |F(up—1) — Flug—)|* (A4)

With S sampled without replacement according to the uniform distribution, we have (see for ex-
ample (Lohr, 2021, Section 2.7))

]ESk[ % XS: (Fi(ur) — Fi(ug-1)) — (F(ux) - F(uk_1))H2]
< b((rrlz_bl)) Z %HFi(uk) — Fi(ug—1) — (F(u) = F(ug—1))|?
2 29 S L) - Fw

i=1
where (i) holds because E[|| X — E[X]||?] < E[||X|?] for any random variable X. Using this
estimate on (A.4) and plugging in the result to (A.3) give

E[||F(ue) - F(us) | 7]

< (1= PO (k) = Fla )P 4+ (L pg s 3 S - Filwcyl

Taking expectation with respect to all the randomness and using the tower rule, we conclude. ]

B OMITTED PROOFS FROM SECTION 3 (COCOERCIVE CASE)

We first prove the following lemma on the useful conclusions of our parameter choices, which are
essential in the proof of Lemma 3.1.

Lemma B.1. Fork > 1, let

1 2 (Vi +2)(k +4) ms  VE<yn
= “7 = ) = ) b = ’V —‘7 = i
YA YT ks 4L Vil pen A k>
as in Alg. 1 and Lemma 3.1. Then, for k > 1 it holds that
27 cr1(1 = pri1)
— — — 2 <0 B.1
N cr + 1A, <0, (B.1a)
2 1 1-— —b
L an=pen)—b) (B.1b)

Ak AL b(?’L — 1)(1 — )\k) -

Proof. We start by manipulating the last term on the left-hand side of (B.1b). By the definition of b,
we have b > /n which implies that

1L = prei)(n = 0) _ cpa (L= pega)(n —vn) _ cea (1 = prta)

bin—1)1—=X) —  Van—1)(1-X) (Vn+1)(1 =)
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1

On the one hand, in view of this inequality and np = the following suffices to guarantee

4L
Eq. (B.1b):
1-— 1
cr1(1 — pra1) < Vvn+ . (B2)
1= 2\ L
On the other hand, with the definition of n, Eq. (B.1a) is equivalent to
1 (1 — pry1) 1
T T < — . B.3
[ VI A YV (8-3)
To get the best upper bounds in (B.2) and (B.3), we set ¢, — ﬁ = ‘2/;7:; and obtain ¢, = ‘2//\51:22 R
thus cx41 = 2\/\/:7:22]: Then the inequalities in (B.2) and (B.3) are equivalent to
n+1)(1—A
Ly < WD =)
2AkLeg 4
_ V1 M (- M)
Vn+2 Ak
1k+2
—yatlki? (B.4)
Vn+2k+5
where we plug in the definition of ¢y for the first equality and the definition of \j for the last
equality. When k& < /n, we have ﬁi; > ﬁ—ié, then it suffices to choose pyy1 = ﬁs to ensure
that Eq. (B.4) holds. When k& > \/n, we have Zig > %ﬁ, and it suffices to take py; = ﬁ.
This is the definition of pyy; and the proof is completed. |

Lemma 3.1. Let Assumptions 1 and 3 hold. Then, for the iterates uy, of Algorithm 1 and the
potential function Cy, defined by

Cr = &\\F(uk) + g2+ (F(ug) + gk, up — ug) + || F(ug) — F(ug)]f?, (3.2)

we have that E[Cr41] < (1 —Ag)E[Ck] for k > 1, where gj41 = %()\kuo—i— (1—Xg)ug —nﬁ(uk) —

uk+1) S G(uk;Jr]) and ¢, = Wﬁfw.

Proof. By Assumption 3 on F' and the monotonicity of G, we have for £ > 1

1 n
S IF () = Filwn)l? < (F(uge) + g s — ug) — (F(ug) + gr, weps — w)
i=1

where gr11 € G(ug41) and g € G(uy). Dividing both sides by Ay, we get

— )
ol ; [ Fi(agy1) — Fi(ug)||
1 1
< ™ (F(Ugs1) + 8ht1, W1 — Ug) — " (F(ug) + 8k, Upt1 — Ug) . (B.5)

Recall that by the definition of the resolvent operator and the definition of uy,;, we have for £ > 1
1 ~
Sht+1 = 5(/\1@110 + (1= Ap)ug — nF(ug) — uk+1) € G(ugy1),

which lets us rewrite the algorithm updates as

U1 = Ao + (1 — Ap)ug — n(F(ug) + 8rt1)-

By simple rearrangements on this representation of uy4.1, we have for £ > 1 that

U1 — U = A (ug — ug) — n(F(ug) + grt1) (B.6a)
A _
Wp1 — W = ——(wg — upy) — 7 (F'(ug) + rt1)- (B.6b)
1-— /\k 1- )\k
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Plugging Eq. (B.6b) in the first term in the right-hand side of Eq. (B.5) and Eq. (B.6a) in the second
term in the right-hand side of Eq. (B.5), we obtain

1 n
g O P () = Fi(uo)l?
i=1

"
Ty, VF (W) + i, o = W) W —n) <F(uk+1) + gi+1, F(ug) +gk+1>

—(F(ug) + g, uo — ) + A% <F(uk) g, Fuy) + gk+1> . (B.7)

We next represent the second and fourth inner products in the right-hand side of Eq. (B.7) with
squared norms as

<

/\L?k <F(uk) + g, F(ug) + gk+1>

= o (17 () + el 1 F () g | = 1) + g~ Fle) — i)

< o (17w + el + 1 F () + e ) (B5)
and

- ﬁ <F(uk+1) + gy, F(ug) + gk+1>
"7 ~ ~
= — s (E @) + g 2+ 1F(w0) + g | = 1 (we) = Fuy) ). (B.9)

225(1 — i)

We now estimate the second term on the right-hand side of Eq. (B.9) by Young’s inequality as

" awE 2 n ~ 9
2)\k(1_)\k)|‘F(uk)+gk+1” (2/\ + 20 _)\k)> | F(ug) + grr1ll

— L F(ay) + g ) - IF (Wes1) + 8t |
A )

A1)
+ ﬁ”F(ukH) - ﬁ(uk)nz'

We use this estimation in Eq. (B.9) and combine like terms by also using the definition of Ag, which

gives — oA — Ty = —an - o get
- ﬁ <F(Uk+1) + 8k+1, ﬁ(uk) + gk+1>

. n
2M61(1 — Ag)

+2Z;(cl(1+—/\§1)F(Uk+1)—ﬁ(“k)2
U

22X (1= M)

n ~
IF(upg1) + e ||* — mHF(uk) + g1 |?

’r] ~
1F (wir1) + gign|I* = g 1 () + e

2 & 9 B
+ nTnk ; 1Fi(ups1) — Fi(ae)||* + TZ”F(U’“) — F(ug)||?, (B.10)

where the last step is by Young’s inequality, Jensen’s inequality and % <2

Combining Eq. (B.8) and Eq. (B.10), plugging into Eq. (B.7), joining like terms and rearranging
give

1
IF(Wes1) + 8rgt* + (F(ut1) + Srs1, Upsr — Ug)
1 W 2)\k+

< Sl (we) + gl + (F () + g we — w)

+ <2n)ZF ween) = FiCun)|* + 3P () - Pl
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Adding {55 F(ugq1) — F(ugy1)|2 = || F(ug) — F(uyg)||? to both sides, rearranging, and using
the deﬁmtlon of C;,, we obtain

2 ~
et < Gt 1 F (ki) — Fluen) P+ (;’ — ) 1P () - )

1
v (%—)ZIIF (1) — Pl B.11)

‘We recall the result of Lemma A.1 which states, for k > 1, that
E[|F(ags1) — F(ur1)]?] < (1= pry1)E[[| F(ur) — F(ug)|?]

(1 —prs1)(n—b)
O

1
1— X

n

1
+ Z gHFi(ukJrl) - Fi(uk)|2‘| . (B.12)

i=1

We take the expectation of both sides of (B.11), and then upper bound the resulting second term on
the right-hand side of (B.11) by (B.12). As a result, we have for £ > 1 that

1

o, FCrr]
2 1-— ~
<ien)+ (5 - e+ SR () - Fa)

n

1
> ~lFi(urg1) = Fi(uk)HQ] - (B.13)

=1

2n 1 ck+1(1 — pr41)(n —b)
*(Ak‘m RCERI W )E

By Lemma B.1, we have that the second and third terms on the right-hand side of (B.13) are non-
positive. Hence, we get the result after multiplying both sides by 1 — . ]

Theorem 3.2. Let Assumptions 1 and 3 hold. Then, for the iterates uy of Algorithm 1, we have
16 L||ug — .|
k+4

In particular, given accuracy € > 0, to return a point uk such that E[Respic(uk)] < ¢, the
WLHHU—H*H>
- .

E[Respic(ux)] < (E [RebF+G(uk)])l/2§

stochastic oracle complexity of Algorithm 1 is @(n +

Proof. After iterating the result of Lemma 3.1, we have

ElC] < (H(l - -)) E[Cy).

i=1
Since \; = ﬁ,we have
Iﬁ(l—,\A)_kfli+2_(k+1)!/2!_ 12
4t Uit (k34 (k+2)(k+3)

which leads to
12
(k+2)(k+3)

Next, we bound E[C;], recalling the definition in (3.2). First note that F(u;) = F(u;), we know
that C; does not involve any randomness, i.e., E[C;] = C;, and have

E[Ci] < E[C,]. (B.14)

Cr = Syl Fw) @il + (F(w) + g1, m — o).

Further, by the definition of u;, we have
n n n
= — 7F = — 7F _ — .
Taga (“0 2\ (“°)> gy Flw) —gye
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With this, we obtain

Cr = gy IF () + gl + (F(w) + g1, w1 — w)

= s F )+l = - (Flw) + g1, Fluo) + ).

e
2\
Decomposing the inner product term above, by adding and subtracting F'(u;) in the second argu-
ment, we obtain

Cr = [F(w) + g1 — - [|F(uy) + g1 — —— (F(u) + g1, F(up) — F(uy))
21 21 2

A
Ui

= (F(u1) + g1, F(u1) — F(up)) -

Plugging in the definition g; =

C1= ZL/\l <F(u1) — F(uo) + 27)\1(110 —w), F(u) - F(u0)>

(i)
<0

9

where (i) is by +-cocoercivity of F’ and o = 12 < 1. So we obtain E[C;] < 0in view of (B.14).

Recalling the definition of Cj, and noticing the term ¢y || F(uy,) — F(uy)||? is nonnegative, we have

(k+4)

E | F(ug) + grll® + (F(ug) + g, up — ug) | <O0.

Since u, is a solution to (MI), there exists g, such that g, € G(u,) and F(u.) + g« = 0, then we
have

(F(ug) + gr,up —ug) = (F(ug) + gk, up — uy) + (F(ug) + gr, u. — up)

> (F(ug) + gk, us —ug)

—~
=

A
IV &
=

— [1F(ux) + gelllluo — v,
where we use the monotonicity of F' + G for () and Cauchy-Schwarz inequality for (i4). Noticing

that E[|| F(ug,) + gell] < (E[|| F(ug) + gl ]) by Jensen’s inequality, then we have

n(k +4)
4

Completing the square and then solving for the quadratic gives

E[||F(wy) + g %) < lluo — wal| (B[ F(uy) + gil|?])

16 L||ug — .|

(ElRest, o (ue)]) "/ = (B[ F ) +gel?) " < == 20

Given € > 0, to return a point ug such that (E[||F(ug) + gx ||?]) 12 < ¢, which also guarantees

that E[|| F(uk) + gk ||]] < € by Jensen’s inequality, the total number of iterations required is K =
[M] To obtain the total number of stochastic oracle queries, we let m;, be the number of
individual operator evaluations at iteration k (in which we compute ugy; and F'(ug11) as Alg. 1)

fork > 1,and M = 2n+ Zf:_ll my, be the total number of individual operator evaluations to return
ug . Conditioned on the filtration F}, that contains all algorithm randomness up to and not including
iteration k, we have for k > 1

mEn + 24 [V if k < /n,
A+ 22X [ /n] ik > Vn.

E[mg | F] = pryin + (1 — pry1)2b = {
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Taking expectation w.r.t. all randomness and summing from k£ = 1 to K, we obtain
K—1
E[M] = 2n+E{ Z mk}
k=1
Lv] K—1
=2n+ Y Emi]+ > Elmyl
k=1 k=[v/n]
Wnl
<2n+4 — 42 >+ 6vn(K —
<2n+ n’;k+5+[\/ﬁl+\/ﬁ( V)

96\ /nLllug — w,|  ~ Ll — u.
<4n +4y/n+ 2+ 4nlog(v/n +5) + \/ﬁH;O u”:(’)(n—l—w),

which completes the proof. |

C OMITTED PROOFS FROM SECTION 4 (MONOTONE & LIPSCHITZ CASE)

Proposition 4.1. For any fixed n > 0, let P"(u) = u — Jypiq)(u). If [|[P7(u)| < ne for some
€ > 0, then we have Respg(1) < e withu =u — P"(u) = Jy(pyq)(u).

Proof. By the definition of resolvent operator, we have

u—u € nF(u)+nG(u) < u € u—P"(u)+nF(0a)+nG(a) < 0 € nF(a)+nG(a)—P"(u).
So we have ||[nF'(u) 4+ ng|| < ne, thus |[F(0) +g|| < e, where g = %(u— u)—F(a) e G(n). N
In the rest of this section, for readability, we first provide, in Section C.1, the proofs for the conver-

gence of Alg. 3 from Section 4.2. Then, in Section C.2, we give the proofs for the convergence of
inexact Halpern iteration from Section 4.1.

C.1 APPROXIMATING THE RESOLVENT

Lemma C.1. Let F : R* — R? be monotone and Lq-Lipschitz in expectation as in Assumption 2.
Then for ut € R%, the function u — F"(u;ut) = nF(u) + u — u™ defined in Eq. (4.3) is
1-strongly monotone and (nLq + 1)-Lipschitz in expectation.

Proof. Let L = L, for brevity. For u™ € R4, strong monotonicity clearly follows since for any
u, v € R%, we have

(F"(wu®) = F'(v;u®),u—v) = (F(u) - F(v),u—v) + u—v|* > [lu-v|?,

where we use monotonicity of I for the last inequality. Further, since F' is L-Lipschitz in ex-
pectation with oracle F; as Assumption 2, we have Fg(u; ut) = nFe(u) + u — u' such that

E¢@[F (w;ut)] = nF(u) + u—ut = F7(u;u"). Then for any u,v € R?,
Eevol|Fe (w;u™) — F (viut)|?]
= E¢vqlllnFe(u) — nFe(v) +u—v|?
= n"Eenqll|Fe(w) = Fe(vV)[IP] + [lu = v[[* + 2nEeq[(Fe(u) — Fe(v), u—v)].

Using L-Lipschitzness of F' in expectation and Cauchy-Schwarz inequality for the quantity above,
we obtain

Eevq[|F¢ (w;u®) — F (viut)|?]
< (PL? + 1)|lu = v[]? + 2n]lu — v||[E¢g|| Fe(u) — Fe(v)]]
(%)
< PP+ 200+ 1)[lu—v|? = (nL + 1)*|lu — v|]%.

where (i) is due to E¢q[[| F¢(u) — F¢(v)[[] < L|lu— v| by Assumption 2 and Jensen’s inequality.
Hence, F"(u;u™) is (nL + 1)-Lipschitz in expectation. This finishes the proof. |
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We now move to the convergence proof for VR—FoRB of Alacaoglu & Malitsky (2022) which in-
corporates the loopless SVRG variance reduction technique (Kovalev et al., 2020; Hofmann et al.,
2015) into FoRB method (Malitsky & Tam, 2020).

Theorem 4.6. Let A: R? — R? be monotone and L 4-Lipschitz in expectation with A =
% Yo A Let B: R? = R? be maximally monotone, and A + B be -strongly monotone with

u>0and v, = (A+ B)71(0) # 0. Given g > 0, Alg. 3 returns vy with E[||[vy — v.|?] < &2
in [14(n + \/TLLA) log \/EHVE__V*” iterations and O ((n + ‘/ENLA ) log Hv“gv* ”) oracle queries.

Proof. First, following the proof of (Alacaoglu & Malitsky, 2022, Theorem 22) with the addition
of strong monotonicity of A + B (cf. the equation after Eq. (56) in Alacaoglu & Malitsky (2022)
which had used only monotonicity), and taking expectation w.r.t. all randomness on both sides, we

plug in our parameter choices 7 = - g(LlA_p ) andar =1 — p, and then obtain

(1= p+ 2rE[[Vitr — VulP] + B Wit — vi ] + pE[| Vi1 — wie[|?]
+ 27E[(A(Vi+1) — A(Wk), Vi = Vis)]
< (1= p)E[l[vi — v} + Ell[wi — vi|*] + pE[vie — w1 %]

D ) (C.1)
+ 27B[(A(ve) — A(We_1), Ve = vi] — EE[Ivi — wi ]

1-p
- TE[”VIC—H - vil’].

To simplify the notation, we define

1

e = SB[y~ v.I?],
1—

by = TPE[HW« = Vi’ + Ellwi = vol?] + pE[vi = Wie—1]|?]
+ 27E[(A(vE) — A(Wg—1), Vi — Vi)].

We first note that b, > 0. Indeed, using Young’s inequality, Lipschitzness of A and the definition of
7 in Algorithm 3, we have
127(A(vi) = A(Wi—1), Ve = Vi)| < 27La|lVic = Wi l[|vie = v ||
47‘2L?4 9 1—p
= mllw — Wi [P+ =
1 —
= g”vk —wi|® + Tp\lvzc - v (C.2)

Then we have, by plugging in the definitions of ay, by in Eq. (C.1) and discarding the last term on
the right-hand side, that

Vi = vl [?

(1—p+drp)arsr +bpt1 < (1 —plag + by, — gE[Hvk —wi_1]?]. (C.3)

For a constant ¢ > 0 to be set later, let us write the right-hand side of Eq. (C.3) as

(1= P)ax + b = (1= p)(L+ ar + (1= )by + cE[[we = V. |*] + peE[ve — w1
+ 27cE[{A(vi) — A(Wg—1), Vi — Vg)]. (C.4)
By using the definition of wy, in Algorithm 3 and the tower rule, we have
CE[||wi — vill?] < 2¢E[|[vi — vil[*] + 2¢E[||vi, — wil|’]
= 2eE[|[vic = v |*] + 2¢(1 = p)E[[[vic — wi—1|’]-

Combining this estimate with Eq. (C.2), and using trivial facts that cp < cand 1 — p < 1 to further
manipulate Eq. (C.4) gives

5c Tc
(I =plax +bx < (1= p)(A +c)ar + (1 = )b + S E[|[vi — Ve’ + 5 Elllve — wi 1]

Tc
<(1—p+6c)ag + (1 —c)by + EE[Hvk —wi_1]?]. (C.5)
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We now let % < g and use the estimation Eq. (C.5) in Eq. (C.3) to get
(1 —=p+arp)agsr +bry1 < (1 —p+6c)ar + (1 — c)bg. (C.6)
Let us also set 6¢ < 37 and then
(1 —p+drp)aris +bprr < (1 —p+37p)ay + (1 —c)by

(1o \q— _
—(1 17p+4 )(1 p+4rp)ar + (1 —c)bg

(1 —mln{

where the last step used nonnegativity of by. Let us also define ¢ = min {%, %} By iterating the
inequality and using b, > 0, we have

4 —t }) (1 =p+drp)ag +by),

(1 —p+drp)ar < (1 — min { })k((l —p+4Tp)ag + bo) (C.7

" ,C
1+4ru’

thus

E[||vi — V|| }<2(1—m1n{ c}) ( ﬁb)

Further using vy = wg = w_; (see Alg. 3) and definitions of ay, b, we have

by = 2 !
a —— by = =||vg — Vv«
0 1—p+4r,u0 0 1—p+4rp

l—p
(=52 Ivo = vl + llvo = v-II?)
® )

< (G310 velr = = Livo—v.

where we use 1 — p + 47 > 1 — p for (¢). So we obtain

TH })k4 2p

o2
Ltdrp V) 1= Ilvo = v=I*

E[|ve — v.||?] < (1 min {

Given & > 0, we now see the exact number of iterations to guarantee E[|| vy — u. %] < £2. We have

k4 —2
Elllve — vl < (1 —min {7 e} ) 5= Ivo — vl

< 6exp ( — min { c}k) [vo — V.2, (C.8)

TH
1+4ru’

where we use p = % and assume n > 2 without loss of generality, thus

)

4+ drp 1 . L +drp T 2 .
k>2max{+ T“,}l (\fHVO Vally — 5 max { T }1 \f”“’ vl
TTw e

TP TH
using ¢ = min { £, 2 }. Plugging in the choices that p = Landr =Y Z(LlA_p) = QV:EAI , we have
2nL 4 AnL 4 } V6|[vo — v.|

k > 2max n, lo , C.9
> ma {4+ T 7o, o (= (€
For simplicity, we assume without loss of generality that n > 2, then we have 4&% < 7‘/?*‘.
So it suffices to choose k = [14(n + ‘FLA) log f”"” V*”] Further, we notice that Alg. 3 has
constant expected per-lteratlon cost pn + 2 = 3 by p = —, so we have the oracle complexity to be
(- 2t ) .
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C.2 INEXACT HALPERN ITERATION

Lemma C.2. Let F be monotone and Lipschitz, and G be maximally monotone. Assume that

., . . . . n o 2
conditional on the algorithm randomness up to iteration k, we have Ei||lex|?] < % =

_ 2 n
Lo Jg,gi;fg(“k)“ forall k > 1 and E[||leg?] < W. Then the iterates uy, generated by

Alg. 2 satisfy

Ell|ur — u.|*] < 2[jug — u.|? (C.10)

where W, is the solution point such that J,(pyq)(u.) = u,.

Proof. By Eq. (4.1), definition of P" and noticing J,,(r4q)(u«) = ., we have

[ug, — u.||
= [[Ar—1(uo —wi) + (1 = Xe—1) (Jprte) (Mr—1) = Jprre) () — (1 = Ap—1)er—1]|

(1)
< Ae—tluo = wull + (1 = M) [ Tyraa) (e—1) = Jyrye)y (o)l + (1 — Ag—1)l[ex—1]]

(i)
< Ar—tfluo = wel[ + (1= Ae—1) [up—1 — || + (1 = Ae—1)llex—1l,

where we use the triangle inequality for (¢) and (%) is due to nonexpansiveness of resolvent. Iterating
this inequality until £ = 1, we obtain

s = < (e 1+H17 i1 +Z i1 H (1= 25-1)) ) o = .|

J=i+1

T

+§30miuqﬁu—xj1»)

=1

(i)
Tea)
Plugging in \; = H% gives

k . k—1 . k . .
1 i 1 +1 (%) 7 )
= :1 = —_—
Ty k+1+£[1i+1+;i+1k+1 » Ty Ejﬂ k+1

and consequently,

[k — vl < fluo —waf + -—= k+1 Z leiall

Squaring the terms on both sides and taking expectation w.r.t. all randomness on both sides, we
obtain

Ef|lug — w.]|?] < E[|luo — u. }
e — .17 < E g un+k+123m Ll

@ 3 2
< Sl — .+ [}jnalﬂ
(u) 3 k
2 -2 2
< Sy — P+ > Pl

where we use Young’s inequality for (¢) and the fact (Zl 1T )2 <k Zle x? for any z; € R

for (ii). Since Ex[|lex||?] < WzZi‘;’BLH = ““k*"g;ﬁ;g(“k)“ for all £ > 1, and consequently,
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E[IP" (ux)||?]

Efflex[?] < =725 — by tower rule, and Ef|eo||*] < %, we have
k
3 3 E[[|P"(wi-1)[?] | [IP"(uo)]?
E Wl < g — w2 2
lhue = w12 < S — w2+ 2y S ELE )L ol
k-1
3 2, 3 E[[|[P"(u)]?] | [P (uo)|?
< — — U, .
< glluo—u +k+1; G+1° ok+1)

Noticing that P"(u,) = 0 and P" is 2-Lipschitz by nonexpansiveness of the resolvent operator, we
have forallz > 0

1P ()| = (1P (ug) = P (w)||* < 4ffu; — w.

which leads to

k—1

24 12 3 Bl wP] |, 4w — u,
k+1= (i+1)° 9k+1)

&

3
Ef|jup — w.|?] < 5o — . (C.11)

We claim that for all k& > 1:

Efllur — u.*] < 2[juo — .|,
We prove this claim by induction. First, for the base case k£ = 1, we have by Eq. (C.11)
I I < 2]lup — u.*.

3 2
EflJus = w.’] < Sluo = wf* + Fluo — u.

Suppose that E[||u; — u.||?] < 2|lup — u.||? for all i < k — 1, then for the case k > 2, we have by
Eq. (C.11)

k—1

12 E[ ||uz - u»<|| |, 4o — u.?
E —u, 2 < hd . 2
24||u0—u*||2 = 1 4l[ug — u, |2
< —u | — -1+ 0
< gllwo —w+ —= (;iﬁ )+ 9k +1)
(i)
< 2flup —w.?,
where weuse k > 2and ;| + = for (4). So our claim holds. |

Lemma C.3. Let F' be monotone and Lipschitz and let G be maximally monotone. Assume that

]
conditional on the algorithm randomness up to iteration k, we have Ey[||ey||?] < % for all

k> 1and E[||ey]?] < W. Then for the iterates uy, generated by Alg. 2, we have

16||ug — w,|?
E —E < ———F— 12
[Cr41] — E[Ck] < hr2z (C.12)
where
k(k+1

¢ = B0 P 2 4 (k1) (P (). g~ o). c.13)

Proof. By Eq. (4.1) and the definition of e, we have
W1 — wp = A(uo — ug) — (1= Ap) P7(ug) — (1= Ag)ey, (C.14)

A

Ug+1 — Ui = 1 7k>\k (uO — uk+1) — P"(uk) — €. (C.IS)
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Noticing that P7 is %-cocoercive by the nonexpansiveness of the resolvent operator and using the
equations above, we have

1
S 1P () = P (ug)|I” < (P"(ups1) — P7(ug), upqs — ug)

A
=1 _k)\k (P"(ug41),u0 — Ugs1) — (PT(ug41), P"(ug) + ex)

= X (P (g ), w0 — ) + (1= X) (1P () |* + (P (ug), ex) )
In this inequality, expanding || P"(uy41) — P"(uy)||? and rearranging the terms, we obtain
Ak
1— g

1
§||1D"(uk+1)||2 + (P"(Wp41), Upy1 — ug)

< (; - Ak) [P (k) [|2 + Ak (P (ug), up — uo) + (ex, (1 — Ak) P (ur) — P7(ug1)) .

Pluggingin A\ = = +2 and multiplying by (k+1)(k+2) on both sides, we can bound the consecutive

change of Cj, as below

G — € = EEDEE2 by e = HEEL 2
+ (k +2) (P"(ug+1), apq1 — o) — (k + 1) (P7(ug), up — u)
< (k+1)(k+2) <ek7Ziépn(uk)—P7’(uk+1)>. (C.16)

Noticing that P"7(u.) = 0 and P is 2-Lipschitz by nonexpansiveness of the resolvent operator, we
have

k+2 k+2
i) E+1
< 2l (g It = el + fuas — w])

2 2 2
m(”uk —w? + [[up - wd?),
where we use Cauchy-Schwarz inequality, triangle inequality and Lipschitzness of P for (i), and
(i) is due to k+1 < 1 and Young’s inequality. With this and by taking expectation w.r.t. all ran-
domness on both 51des for Eq. (C.16) and using the results from Lemma C.2, we have for k > 1

B[Cisa] — BICH < (5 + 1)k + 208 (e, 13 P(w) — P(ues))]

2
4 2 2 2

<(k+ 1)(1<:+2)E{(k;+2) lex|l” + i ([l — wel* + [lugsr — u| )]

() AE[||[uy, — w,||?] 2 ) ,

< E —u, E —u,

= (k +2)? (k+2)2( [llar = wel*] + Eflugs1 — ul?])

(i) 16] o — u.|*

T (k+22
where (i) is due to Ef|ex||?] < LZ0IE and |[P7(uy)[2 < 4]|ug — > and we use E[Juy, —
u.||?] < 2[jug — u,||? for (ii). -

Theorem 4.2. Let Assumptions 1 and 2 hold. Then, for the iterates uy, of Algorithm 2, we have that

n .. . . .
Ex[llex]?] < W(Dk Jf';fs) I conditional on the algorithm randomness up to iteration k, and

E[|P" ()] < (B[P (wp)|2))"* < M
NG

Moreover, given accuracy € > 0, to return a point ug such that E[||P"(ug)||] < ne withn = -,

the stochastic oracle complexity is O (n + M)
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Proof. We first prove Ex[||ex]|?] < %

er > 0, noticing that || P7(u)|*> = [|ux — Jy(pic)(uk)

by our number of inner iterations in Alg. 2. Given

|2 and using the convergence results in

Theorem 4.6, we have our subsolver Alg. 3 with initial point uy, returns J, 1) (ux) such that
ExlllJorrc)(Ur) — Jy(rsc)(we)]|?] < &2 with number of iterations
V|| P (uy) |

[14(71 +v/n(nL + 1)) log T] )

where we also use that £ is 1-strongly monotone and (nL + 1)-Lipschitz in expectation (see Lem.
C.1). So it suffices to choose My > [56(n + /n(nL + 1)) log (2(k + 2))| to reach the accuracy
e = kanf;f}”-

Then with Assumptions 1 and 2, we have that the assumptions of Lemmas C.2 and C.3 hold. Sum-
ming up Eq. (C.12) in Lemma C.3 fork =1,...,k — 1 gives

k1
1
E[C] < E[C1] + 16]jup — u,]|? Y ——= < E[C1] + 7||uo — w. || C.17
G < Ele + 16 — w3 ol SEEI+ Tl w1
Next, we bound E[C;]. Recall that P" is 3-cocoercive and u; — ug = —3P"(ug) — 2eg by

Eq. (C.14). Then, we have
1
(P7(u1) = P(uo), ur —ug) = 5[|P"(w1) ~ P (uo)|?
— [|[P"(uy)|]* < (P"(uy), P"(ug)) — (eq, P"(u1) — P"(up)),
which leads to
Cr = [P (w)[* + 2 (P"(u), uy — up)
[P (uy)|* = (P"(uy), P"(uo) + eo)
< (eg, P"(ug) — 2P"(uy)) . (C.18)

Note that
(eo, P"(ug) — 2P"(uy)) = 2 (e, P"(ug) — P"(u1)) — (e, P"(uo))

@ 1 , 1
< Blleol” + 517" (wo) — P(ur)[[* + | P"(wo)

(1) 1
< 3lleol|* + 2luo — wi[[* + Z[1P"(wo)|*, (C.19)
where we use Young’s inequality for (7); and (%) is due to P¢ being 2-Lipschitz. For the second

term in the right-hand side of (C.19), we use u; — ug = f%P"(uo) — %eo and Young’s inequality
again, and obtain

1 3 3
2up —wi|* = 2 127 (uo) + eo? < §||eoH2 + ZIIP"(uo)IIQ-
With this, (C.19) becomes

9
(e, P"(ug) — 2P"(u1)) < §||90H2 + || P (uo) ||

Taking expectation w.r.t. all randomness on both sides and noticing that E[||eq]|?] < % and
[|P7(up)||? < 4]|ug — u.||?, we have
E[(eo, P"(uo) — 2P°(u1))] < 5|lug — u.|?,
which, in view of (C.18), leads to
E[C1] < E[{eq, P"(ug) — 2P"(u1))] < 5||ug — ..
As aresult, we obtain in (C.17) that
E[C] < E[C1] + 7[[ug — w.||* < 12]lug — u. || (C.20)
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On the other hand, since P" is monotone and P"(u.) = 0, we have

(PM(ug),ur, —ug) = (P"(ug) — P"(us), up, — ui) + (P"(ug), we — o)
(P"(ug), us — o)
— [P (ag)||[[ao — u.l],

IV IV

where we use Cauchy-Schwarz inequality.

In view of the definition of Cy, on (3.2), the last estimation gives us the bound

k(k + 1)
2

E[Ck] > E[| P (u) 7] = (k + 1)lluo — w. [E[] P (ug) ]

Using this bound in (C.20) gives

k(k+1)
(TEHIP"(%)IIZ] < (k +1)[luo — w[[E[| P" (ug)|[] + 12[uo — u.*.
By Jensen’s inequality, we have
k(k+1 . 1/2
T)E[IIP’( W)IP] < (& + 1)lluo — wl[(E[[ P (ap) 1) 7+ 12[|up — w.f*.

By the larger root of this quadratic inequality w.r.t. (E[||P"(ug)]?]) '/ we obtain for k > 1

1/2 _ [[up — u,| o —u, > | 24fjug — u,|?
(E[IP"(un)IP]) " < p + 2 + k1)
%) 2[jup — u, | n 2v/6]up — .|
k k(k+1)
7l[up — u,|
= k .

where (i) is due to the elementary inequality va + b < v/a + v/b.

Hence, to guarantee that Algorithm 2 returns a point uy such that E[|| P7(ug)||?] < n?e?, which
implies E[|| P"(uk)||] < ne by Jensen’s inequality, we need K = (W] outer iterations.

We now look at the cost of each inner loop to estimate .J,,(p1.)(ug). Notice that for the subsolver

VR—FoRB, we take the number of inner iterations M), = [28 max (n++/n(nL+1)) log (2(k+2))]
with the constant oracle query cost (in expectation) for one iteration of VR—FoRB. Hence, we have
O((n + v/n(nL + 1)) log(k + 2)) oracle queries for k-th inner loop. Then for the total number of
oracle queries, we note that

K

((n+ VAL + 1)) log(k + 2)) = O((n +/n(nL + 1)) K log(K + 2)).
k=1

Plugging in the choice of K and suppressing the logarithm terms, we obtain @((n + /n(nL +

\F

1))(““”;%“ + 1)) oracle complexity. Taking 7 = ¥, we have the claimed result. [ |

C.3 ESTIMATION OF THE OUTPUT

Corollary 4.3. Let Assumptions 1 and 2 hold and let ug be as defined in Theorem 4.2. Then, for
Uout = VR—FoRB(ug, [42(n + /n)log(19n)],1d + n(F + G) — uk, Q) withn = ‘F

E[Respig(uout)] < 2e.

The total stochastic oracle complexity for producing Uqyy is o (n + M)

Proof. We combine Lemma C.4 and Theorem 4.2. |
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Lemma C.4. Let Assumptions 1 and 2 hold and uy, be such that (E[||P"(u,)|?))/? < ne with
n= % Then, for Vo outputted by VR—FoRB(uy, M, Id + n(F + G) — uy), we have that

E[Respia(Vou)] < 2e, (C.21)
where M = [42(n + v/n)log(19n)] and complexity of this step is O (nlogn).

Proof. Letusdenote uj, = J,(r4c)(up), ie., (E[|P7(u)|?])/? = (E[[lux—uj|[?])'/? < ne, and
consider the uniform sampling for brevity. Note that we have in this case A(u) = nF(u) 4+ u — uy,
A;(u) = nF;(u) + u— u; and B = nG. By the update rule of VR—FoRB (where we use the index
t for the inner loop to prevent confusion), we have & = 1 — p and then for ¢ > 1

Vip1 +TB(Vit1) 3 (1 —p)vi + pwy — TA(vy)

= AWen) + B(Via1) 3~ (Vi = Vear) + 2 (Wi = Verr) + A(vier) = A(ve),

where fl(vt) = A(wy) — A;j(wi—1) + A;(v:) and we also have the implicit definition ng;; =
(1-p) vi+ Bwy — /I(vt) — %vt_H € B(viy1) = nG(vyy1) since B = nG.

T

By using the definitions A(u) = nF(u) + u—uy, A;(u) = nF;(u) + u—uy, A(v,) = nF(w,) +
w; —ug — nFj(wi_1) — wy_1 + nF;(v¢) + v¢ and rearranging we get

NF(Vig1) + 181 = Tp(vt —Viy1) + g(wt — Vig1)
+nF (Vig1) — nF(wy)
+nFi(wi—1) = nFi(ve)

+ (up — vi) + (W1 — wy).

Note that we have E[||w; —v¢||] = (1 —p)E[||wi—1 — v¢||] and E[||w; —w;_1]|] = pE[||ve —wi_1]]]
by Alg. 3 and the tower rule. As a result, triangle inequalities and Lipschitzness of F' give

1-p

nE[Respic(vit1)] < Ellve = via |l + (g +nLp)E[[viir — we]
+nLE[[|[ve = wia[l] + Eflve — g ||] + E[]lux — ugl]

+ E[flwi — wi—1]]]

IN

1
(= +nLr + 1)E[[|vi — viral]

T

1 —
+ (% +(1—=pnLr +nL +p)E[||vt —wi_1]|]
+ E[flvitr — ugll] + Ef[fux — ugll]
< (2771 +3nL +3) £ + ne, (C.22)

where the last step is because Ly < L and given accuracy € > 0, the output of VR—FoRB gives for
t=M

Elllver —upl?] < &% Ellvees — vell?] &%, Eflve — wea ] < &2 (C.23)
We now bound the oracle complexity and the number of iterations to get these bounds in (C.23).
Denote by Ej the expectation conditioned on all the randomness up to and including ug. Recall

that A is (nL + 1)-Lipschitz in expectation and A + B is 1-strongly monotone, and we have our

parameters tobe p = L, = % and Ty = ¥ (f] (Ll;f)) = an(f}gil) < 5. Then following the same

derivation from Eq. (C.1) to Eq. (C.5) in the proof of Theorem 4.6, we first do not discard the last
term on the right-hand side of Eq. (C.1), and obtain (cf. (C.3))

(I —p+arp)ar + by < (1 —plag + by
I—p
2

— LEllve = Wi |2 = =P Erllver —vil?. (€24
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Further, without using p < 1 in (C.4), we have (cf. (C.5))

3c
(1= P+ < (1= p+ 6 + (1= b+ (52 4 2 Bullvs = weea )

2

3p° + 4pE
14

where the last line used ¢ < £ =. Combining with (C.24) gives (cf. (C.6))

<(1—p+6c)ar+ (1 —c)b + klllve — wi_1|?],

(I—p4+drp)ar1 +by1 < (1 —p+6¢)a; + (1 — )by

3p(1 —
- P v, — w7 2 PR vean — vl
(C.25)
With the same derivation as obtaining (C.8), we have after using 47 > 0 and 47 < 2p
1-— 3p(1 — 1— N
2By ves — el + PP g v, w24+ P Bl - ui )

5 *
§§exp< mln{1+4 }(t—l—l))”vo_ukH?

where we also use that the solution of the inner subproblem is uj,. Unrolling the expectation and
using that VR—FoRB is initialized as vy = ug, we have

3p(1 — .
‘ﬂiH@@me—WWHWMW—meﬂ+MWHrﬂmﬂ)
5 *
< g exp (= min {7 e+ D) Bl — ui )
< > exp ( — min { cht+ 1))77252 (C.26)
=9 1 4 1w ’

where the last step is by E[||ux — J,(rrq)(ue)|]?] = E[[luy — uj|/?] < n?c2. Hence, as in the

end of Theorem 4.6, we have that (C.23) holds in [7 (n + \/n(nL + 1)) log(%ﬂ iterations

and with complexity O(n log(%)) as 7 = % In particular, we choose £ = % =

4nL(f+1f+3 Tz Oon (C.22) we get (C.21), and also have £ < 10y/nL +6L. Plugging in this value
V(-1 Vi

gives the number of iterations as [42(n + /1) log(19n)] and overall complexity as O(nlogn). W

C.4 PROOF FOR THE COHYPOMONOTONE EXTENSION

Corollary 4.5. [Cohypomonotone] Assume that F' is maximally p-cohypomonotone and L-expected
Lipschitz and G = 0. Given £ > 0, Alg. 2 returns a point uy such that (IE[||]:’"(uK)H2])1/2 <mne

with O ( (n + \/>1 "i:Ll ) ( |\u07u* Iy 1)) stochastic oracle complexity, for any positive n such that

p < min (g, ) Withn = f as before, this corresponds to p < min (ﬁ, 2—‘/?)
F

Proof. By definition, we have that nF' is maximally E—COhypomonotone When ” < 1 we have that

Jn Fis smgle -valued and nonexpansive (Bauschke et al., 2021, Prop. 3.7, Thm. 2 17). Subproblem
in this case is finding u such that

0 € (Id + nF)(a) — uy.
Since F' is p-cohypomonotone and L p-Lipschitz, we have that
(F(u) — F(v),u—v) > —pL¥[u— vl

As aresult, our subproblem is (1 — pnL%) strongly monotone and (1L + 1)-Lipschitz in expectation
(see Lem. C.1).
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In summary, to ensure that the resolvent is nonexpansive, single-valued and the subproblem is
strongly monotone, we require

and an% <1,

I I
N |

<

f

Of course, these bounds are optimized with n = I , which leads to the requirement p <

1
\/iL'F ’
However, this choice of 1 does not give the best oracle complexity with finite-sum form. In partic-
ular, by using a standard deterministic extragradient algorithm as subsolver in our framework (see

e.g., (Diakonikolas, 2020, App A.3) for a proof for extragradient, with additional adaptivity that

one can drop for simplicity), this would give complexity 9] (”L E (m) ) Using a variance

€

reduced solver with = L—\/g does not improve this.

Hence, we pick n = % as before. We can then use the same estimations as in the proof of

Theorem 4.2 by only changing the strong monotonicity parameter for the inner subproblem which
affects the complexity of the inner subsolver and hence the final complexity. ]

C.5 DETAILS ABOUT REMARK 4.4

We now derive the bounds for L and L, for this important special case covering matrix games and
linearly constrained convex optimization.

It is straightforward from the definition F'(u) = (f;g’() that

Lr = A2
Following Carmon et al. (2019) and Alacaoglu & Malitsky (2022), we derive for any u = (;),
ma
1
Eeol Fe()3 = af” x (1) zyluﬁzq —a= 1413
=1 (¢;)? )
mo 1
= Z ﬁHAz‘:Yz'Hg + Z @HA:J'XJ‘Hg
i=1 4; j=14;
mao 1 ma 1
= Z ﬁHAz‘:H%(yZ‘)Z + Z W”A:j\@(xj)z
i=1 4 j=14;
mo
= | Al% Z (y:) +Z (x;)”
= [ Al%[ul3.
In view of this derivation, linearity of F; and Assumption 2, we conclude that
Lg = ||AllF. (C.27)

As aresult, we have in this case that L < y/rank(A)Lp.

In our analyses of this section, we use the simplified assumption that computation of F; is n times
cheaper than F' = % >, F; which gave the choice p = % This is the most natural assumption
given a generic F'. This was the setting also in previous works such as Carmon et al. (2019); Ala-
caoglu & Malitsky (2022) when dealing with a general F' with a finite sum form. On the other hand,
our bounds could have been also written in terms of p (the probability for full operator evaluations
for w1 in Alg. 3), as in Alacaoglu & Malitsky (2022). In this case, the general form for p in terms

of the costs of F' and F;, denoted for simplicity as Cost(F’) and Cost(F;) would be p = (é(:):t((?)) .

However, for spemﬁc examples such as matrix games or linearly constrained optimization, we would
use p = g;}q 7’:2 given a dense matrix A. We refer to Carmon et al. (2019); Palaniappan & Bach
(2016); Alacaoglu & Malitsky (2022) for more details about this representation. This choice gives
rise to the claimed complexity improvements in Remark 4.4 in view of the derivation of Ly and Lq

provided above.
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D EXPERIMENT DETAILS

In this section, we provide further details about our experiment setup. For the matrix game case
(also mentioned in Remark 4.4), we solve the problem

‘ A Sam Sam
Join - max (AX,y) +0am (x) + dama (y)

for A € R™ ™2 the simplices A™, A™2, where § is the indicator function. We use the policeman
and burglar matrix from Nemirovski (2013) with m; = ma = 500, where the entries are given by
Aij = zi(1 — exp(—0|i — j])) with # = 0.8 and z ~ N (0, I,;,, ). For the computation of .J,¢,
which corresponds to projection onto the simplex in this case, we use (Condat, 2016, Algorithm 1).

For the test case of Lagrangian of a quadratic program, we use the saddle function from Ouyang &
Xu (2021) as follows

1
min max —x' Hx—h'x— (Ax—b,y),
x€ER™1 yeR™2 2

where m; = mq = 200, H =2AT A and

-1 1 1

A=- —1 1 EleX"L?’ b==1|--- Ele, h==-|---| e Rm™,
4 4 4

—_
o o

|
—_
—
— =
— o

Also, for Alg. 2, we directly measure the residual on its output point ug, without doing another
approximation step as in Corollary 4.3 for simplicity. This is guaranteed by E[|P"(u)|]] =
E[[[ug —Jyr+e) (ug)|l]] = O(1/k), and uy, can be a good empirical approximation of J;,(r4.c)(ux)
as the algorithm proceeds.

E FURTHER DISCUSSION AND PERSPECTIVES

We showed complexity guarantees for variance reduced algorithms that improve the best-known re-
sults for minimizing the residual in finite-sum monotone inclusions. Our improvements mirror those
that were shown for the duality gap for finite-sum VIs in the recent literature; see e.g., Palaniappan
& Bach (2016); Carmon et al. (2019); Alacaoglu & Malitsky (2022).

Our result for the cocoercive case is with a direct algorithm whereas for the Lipschitz monotone
case, we have an indirect algorithm. In particular, our algorithm in the latter case works by solving
randomized approximations to the resolvent, which can be seen as an inexact Halpern iteration (Di-
akonikolas, 2020). An important related open question is the development of direct algorithms that
achieve the same complexity guarantee that we showed for the Lipschitz monotone case, which is
optimal up to log factors.

It is worth pointing out that our results and this open question closely resemble the recent develop-
ment of improved duality gap guarantees for finite-sum monotone VIs with variance reduction. In
particular, it was the work of Palaniappan & Bach (2016) that provided the first variance reduced
variational inequality algorithm which was an indirect procedure based on the Catalyst proximal
point framework and forward-backward algorithm. This work already showed the benefit of variance
reduction compared to deterministic algorithms for strongly monotone inclusions and monotone VIs
with bounded domains by using standard reductions using regularization.

A direct algorithm for the important special case of matrix games was provided by Carmon et al.
(2019). At the same time, this work also handled the general monotone VI case with an indirect
approach. Other direct algorithms, given in Chavdarova et al. (2019) for the strongly monotone case
and in Alacaoglu et al. (2021) for the monotone case, were simple but did not improve the com-
plexity bounds compared to deterministic algorithms. The work of Alacaoglu & Malitsky (2022)
obtained direct and single-loop algorithms with complexity improvements for general monotone
VIs, nearly five years after the indirect result of Palaniappan & Bach (2016). An alternative direct
approach focusing on finite-sum saddle point problems was also studied in Yazdandoost Hamedani
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& Jalilzadeh (2023). Soon after the direct algorithms, matching lower bounds for the duality gap
were also provided for finite-sum monotone VIs (Han et al., 2024).

In this context, our results for the monotone Lipschitz case provided the first improvement with vari-
ance reduction for residual guarantees. This can be seen as corresponding to the results of Palaniap-
pan & Bach (2016); Carmon et al. (2019) that had indirect algorithms with complexity improvements
for the duality gap for monotone VIs. What remains to be done to complete the picture for finite-
sum monotone inclusions and monotone VIs is developing direct algorithms with tight complexity
guarantees for the residual, similar to the process that we have seen for duality gap guarantees.
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