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We study equilibrium configurations of double-

stranded DNA in a cylindrical viral capsid. The state

of the encapsidated DNA consists of a disordered

inner core enclosed by an ordered outer region, next to

the capsid wall. The DNA configuration is described

by a unit helical vector field, tangent to an associated

centre curve, passing through properly selected

locations. We postulate an expression for the energy

of the encapsulated DNA based on that of columnar

chromonic liquid crystals. A thorough analysis of the

Euler–Lagrange equations yields multiple solutions.

We demonstrate that there is a trivial, non-helical

solution, together with two solutions with non-zero

helicity of opposite sign. Using bifurcation analysis,

we derive the conditions for local stability and

determine when the preferred coiling state is helical.

2022 The Author(s) Published by the Royal Society. All rights reserved.
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The bifurcation parameters are the ratio of the twist versus the bend moduli of DNA and the

ratio between the sizes of the ordered and the disordered regions.

1. Introduction
In this work, we study the packaging geometry of viral double-stranded (ds) DNA of tailed

bacteriophages in idealized cylindrical capsids. The cylindrical geometry is taken as a coarse

approximation of the actual capsid shapes, including icosahedral and prolate, found in dsDNA

bacteriophage viruses [1–7]. These viruses use a molecular motor to store their genome in the

protein capsid, where the length of the genome is much larger than the characteristic size of

the capsid. We apply data from experimentally characterized viruses, such as the average capsid

size and the genome length, to infer properties of the condensed equilibrium states and their

bifurcations by taking advantage of the explicit calculations allowed only in the cylindrical

geometry. We postpone to future work the treatment of spherical and icosahedral capsids, where

numerical approaches are required. We point out that our study does not address single-stranded,

helical, RNA viruses, with cylindrical capsids, such as the tobacco mosaic virus [8].

Key stages of the bacteriophage cycle are the phage morphogenesis, which includes capsid

assembly and dsDNA packaging, a high pressure quiescent or equilibrium state, and the delivery

and infection of the bacterial host. The well-ordered organization of DNA within a viral capsid is

essential to ensure efficient genome delivery.

There is an extensive and rich body of work on bacteriophage viruses, involving both imaging

techniques and modelling. Leforestier [9] lists three main approaches, the inverse axial spooling

model, the ball of yarn and the liquid crystalline drop models. The latter approach stemmed from

the evidence gained from X-ray diffraction images of bacteriophages obtained during the 1960s,

and later confirmed by cryo-EM microscopy, which provided strong evidence of the hexagonal

packaging of DNA in the capsid. The liquid crystalline drop model exploits the hexagonal crystal

structure locally determined by the points of intersection of the DNA segments on orthogonal

planes as experimentally observed. In this approach, hexagonally crystallized monodomains

entirely fill the capsid volume, separated by defect walls and forming a structure analogous to

the Twist Grain Boundary in a liquid crystal [10,11]. Hexagonal phases have also been observed

in vitro, with highly concentrated DNA arranged in toroidal clusters [12,13].

In the inverse axial spooling approach, the DNA winds from the capsid periphery to the centre

following successive hoops [14,15]. This model and the related DNA arrangement in toroids

has been extensively used for several decades [15,16]. Evidence that supports the so-called spool

structural motif has been provided by the cryo-EM observations of Olson et al. [2]. These show that

the DNA genome of the phage T4 forms a highly condensed series of concentric layers, spaced

about 2.36 nm apart, which tend to follow the contour of the inner wall of the protein capsid.

Along these lines, the data obtained by Cerritelli et al. [1] suggest that the T7 genome is spooled

around the capsid in approximately six coaxial shells in a quasi-crystalline packing. This evidence

combined with previous studies of a series of isometric bacteriophages leads to conclude that the

coiling organization of condensed DNA may apply to most dsDNA bacteriophages [17]. This

underlying model has been used in many different contexts such as the measuring of forces [18]

and packaging by molecular motor [19].

Other approaches include a ball of a string and spooling folded toroid [20–23]. The

corresponding vector field is tangential to the concentric circles centred on the axis of the cylinder

[24,25]. These approaches have been used in the case of spherical-like capsids; in particular,

the ball of yarn packages the DNA as in the axial spooling case but following a spherical

geometry. One important distinction among the different approaches is the modelling of the core.

Information from imaging lacks precision in reference to the structure of the core. In the spooling

approach, mostly associated with cylindrical-shaped capsids, the core is simply left empty or

filled with strands parallel to the capsid axis.
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A common theme in implementing the previous approaches is in that they involve the

optimization of an energy functional, very often using tools from Monte Carlo or Brownian

motion molecular dynamics. An inherent problem to such approaches is their computational cost,

allowing to treat only small genomes. A novel modelling continuum approach is that by Klug &

Ortiz [26] based on the introduction of a unit director field, as in nematic liquid crystals, with a

scalar variable representing the local density of DNA. An additional feature of the model is the

inclusion of a phenomenological cohesive energy that penalizes changes of the (hexagonal) cross

section. The discretization of the energy, along with the application of the gradient flow method

to optimize it, lead to the torsionless toroidal solenoids, as the preferred configuration, having lower

energy than the inverse spooling structure.

In this paper, we consider the previously introduced continuum model that endows condensed

DNA with a structure locally consisting of curvilinear segments (representing the DNA centre

axis) together with their orthogonal cross sections [27]. Assigning these segments an effective

diameter yields a plane hexagonal crystal structure on the intersecting planes. The capsid core

is treated as an isotropic free boundary region representing the disordered state of the DNA.

Accordingly, the energy consists of the nematic Oseen–Frank contribution penalizing changes

of direction of the vector field (and so that of the DNA axis) and the isotropic energy of

the core. Moreover, for the class of helical vector fields (3.3), the former also accounts for the

elastic energy associated with the disruption of the hexagonal cross-sectional structure (remark

2.2 and [27]). Furthermore, since images reveal a sharp transition between the ordered and

disordered regions of the capsid, we include a surface energy term that tends to minimize

the surface area of the interface. One relevant aspect of our approach is that the core is

determined by the competition between the bending energy of the ordered region and the

isotropic penalty of the core. One relevant aspect of our model is that it allows for twist energy

mostly neglected in earlier approaches. Intuitively, it has the effect of releasing bending energy

and so affecting the size of the core. However, it does not account for torsion. Mathematically, a

key signature of our approach is the vector field-filament structure as in models from nuclear

and plasma physics ([28] and the references therein). Although we minimize the energy to

obtain the optimal vector field, subsequent integration provides the centre line filament. This

also solves the connectivity problem affecting the inverse spooling approaches. However, one

drawback to our approach is in that the Oseen–Frank energy does not allow for singularities

in the vector field (except for point defects in three dimensions). This precludes accounting

for the knots often observed in the DNA, an issue that we will address in forthcoming

work.

We also depart from earlier works where the DNA is organized in concentric circles, such as in

the case of the inverse spooling. Instead, we follow the approach developed to study confinement

of semiflexible polymers following helical vector field configurations [29]. In this approach, the

unknown vector field n is parameterized by the azimutal angle ψ . In addition to providing

connectivity, this approach allows us to incorporate twist deformations, as well as cholesteric

effects. The rate of the bending versus twist modulus, α := K3/K2, turns out crucial in determining

how the DNA fills the capsid. Indeed, this parameter provides a quantitative justification for

treating condensed DNA as a liquid crystal, and, in particular, endowing it with the Oseen–Frank

energy. Values of α used in our work stem from the DNA elasticity and viscosity studies found

in [30].

By considering cylindrical capsids of radius R2 and height 2h, we obtain an exact expression

for the critical values of α. Through a bifurcation analysis, we identify the threshold value of α,

below which concentric circles are the optimal organization structure, with helical states above.

This result is reminiscent of that in [19] that simulates the filling of a capsid under the axial

spooling structure, showing a transition between concentric circles organized as tori to such

circles expanding along the capsid axis as the DNA fills the capsid. Our work also admits a

natural extension to the case of spheroidal capsids and other general shapes. However, in such

cases, the optimization can only be done numerically, although similar patterns of behaviour as

for a cylindrical capsid are expected.
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We also perform a stability analysis of the solutions and show that the states of four selected

viruses fall within the stable helical branches, except for the virus T5, with slightly larger capsid

diameter, which is classified within the stable concentric circle branch. The bifurcation structure

between concentric circles and helical configurations extends a renowned result on nematic liquid

crystals placed between coaxial cylinders [31]. In the latter case, the bifurcation occurs between

radial director field configurations and those parallel to the cylindrical axis. From a different

point of view, the coexistence between the ordered and disordered DNA regions in the capsid

follows the analogous tactoid texture phenomenon, observed in small molecule chromonic liquid

crystals [32]. The paper concludes with the filament reconstruction. Choosing a point of entrance

of the DNA into the capsid, we integrate the vector field along helical segments on the surface

of a discrete family of concentric cylinders. The latter are separated by a distance approximately

equal to the pitch of the helix. To connect neighbouring helices, an interpolation curve is required

at the top and bottom, taking the form of a U-turn, heuristically introducing extra bending

energy. In order to avoid the latter, an alternative reconstruction connecting helices of opposite

handedness would have to be considered. However, this is not a continuous solution to the model.

Moreover, the inclusion of the electrostatic energy would be needed for conclusively sorting out

between both such configurations. The construction of both connection curves is presented in

the electronic supplementary material. The idea of alternating handedness is connected with

the helical inversion phenomenon in liquid crystal materials. It has been found, specially in

polymer dispersed liquid crystals, in connection with changes of temperature and radiation

with ultraviolet light [33]. It is also naturally found in biological systems, although scarcely. For

instance, a case remarkably similar to the alternating handedness construction has been reported

in the protective tubular structures of the deep-sea worm, where the sign changes every 180◦

rotation [34]. A comprehensive overview on controlling and understanding the pitch inversion

phenomenon is given in [35]. A recent review of viral growth and form can be found in [36]. Our

work is also related to those on organization of confined polymers, also models as liquid crystals,

both in the achiral and chiral cases [37,38]. Although in the current article we deal with two

types of organization, that is, concentric circles and helices, a richer variety of structures has been

observed in polymers. Specifically, spontaneous domain formation in spherically confined elastic

filaments shows that the ground state of the confined worm-like chain is an ordering mosaic of

multiple homogeneously ordered domains, instead of a single spool [39].

The work is organized as follows. In §2, we present the model to be analysed. The main results

are developed in §3. In §3a, we consider the case that the inner core radius R1 is fixed and neglect

the energy of the core. Section 3b is devoted to studying the Euler–Lagrange equations of the

energy. The zero divergence condition reduces the problem to a nonlinear ordinary differential

equation for the angle of orientation of the director field. In §3c, we perform the bifurcation

analysis and the investigation of the stability of the different solution branches. Elliptic integrals

play a main role in the analysis. In §3d, we treat the core as a free boundary domain and

incorporate the isotropic energy in the total form. The section ends with a discussion of the

parameters of the model, showing that our results are along the line with actual data, for a set

of four sample viruses. Section 4 is devoted to the filament reconstruction for the helices. In §5,

we present conclusions and discuss follow up work.

2. The model
In our approach, the equilibrium states of the DNA packaged inside the capsid are associated with

those of a unit vector field n. The capsid is represented by a bounded, open domain B, consisting

of two subsets Ω and Ω0, whose interiors are disjoint, and such that B = Ω ∪ Ω0. The subset

Ω represents the region where the DNA is ordered whereas Ω0 corresponds to the disordered

one. In terms of the vector field approach, they represent the nematic and isotropic liquid crystal

states, respectively. The unknown fields of the model are the vector field n and the domain Ω0. We

formulate the total energy accordingly, that is, as the sum of the constrained Oseen–Frank energy
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of the nematic plus the isotropic energy of the core region Ω0. i.e.

E =
∫
Ω

(K3|n × ∇ × n|2 + K2(τ + n · ∇ × n)2) dx + Edisorder(Ω0) (2.1)

|n| = 1 in Ω , (2.2)

∇ · n = 0 in Ω , (2.3)

n = n0 on ∂B ∩ ∂Ω (2.4)

and Vol(Ω) + Vol(Ω0) = Vol(B). (2.5)

The positive constants K2 and K3 denote the twist and bending moduli, respectively, and τ is

the chiral pitch. The zero-divergence constraint (2.3) is consistent with the columnar hexagonal

nature of the ordered DNA, indicating that the number of filaments that enter an orthogonal unit

area cross section also exit it. That is, it guarantees that dislocations do not occur. We now recall

a fundamental result in the analysis of the minimization of the Oseen–Frank energy of nematic

liquid crystals, with density given by

WOF = K1(∇ · n)2 + K3|n × ∇ × n|2 + K2(τ + n · ∇ × n)2 + (K2 + K4)(tr(∇n)2 − (∇ · n)2). (2.6)

Here, K1, K2 and K3 represent the splay, twist and bending moduli, which have dimensions of force.

The following inequalities on the Frank constants Ki, guaranteeing the coercivity of the total

energy, play the main role in the analysis:

K1 > 0, K2 > 0, K3 > 0, K2 ≥ |K4|, 2K1 ≥ K2 + K4. (2.7)

Theorem 2.1. [40] Let U ∈ R3 be an open and bounded set, with Lipschitz boundary ∂U . Suppose that

the Frank constants satisfy the inequalities (2.7). The admissible set A(n0) = {n ∈ H1(U ,S2) : n|∂U = n0}
is non-empty. Then for any Lipschitz function n0 : ∂U −→ S2, the functional

EOF(n) :=
∫
U

WOF(n, ∇n) dx (2.8)

admits a minimizer in A(n0). Furthermore, if n is a minimizer of EOF(·), then n is analytic in U/Z for some

relatively closed subset Z of U that has one-dimensional Hausdorff measure zero.

Since the term multiplying (K2 + K4) in (2.6) is a null Lagrangian, and given that the boundary

conditions imposed on the capsid wall are of Dirichlet type, without loss of generality, we set

K4 = 0 and arrive at the expression (§2).

Remark 2.2. The hexagonal columnar phase of chromonic liquid crystals can be characterized

by an orthonormal set of vectors {n, m, p}, the director n, the liquid direction, describing the

average alignment of the columnar axes, and the remaining pair of lattice vectors encoding the

geometry of the crystal orthogonal cross section. In order to account for the distortion of the lattice,

an elastic energy term, WHex(m, p, ∇m, ∇p), should be added to the integrand of the total energy

(2.1). For the class of vector fields n that we consider, including the cross-sectional energy amounts

to replacing the constants K2 and K3 by effective values that account for the shear and bulk elastic

modulus, but it does not otherwise affect the analysis presented here. This simplifying approach

may have to be reconsidered if the goal is to predict the osmotic pressure in the capsid [27].

3. Main results
Henceforth, we will take the capsid to be a cylinder of radius R2 > 0 and height 2h, which in

cylindrical coordinates admits the representation B = {(r, z, θ )|0 ≤ r ≤ R2, 0 ≤ θ < 2π , −h ≤ z ≤ h}.
For 0 ≤ R1 ≤ R2, the region where the DNA is organized is expressed as

Ω = {(r, z, θ )|R1 ≤ r ≤ R2, 0 ≤ θ < 2π , −h ≤ z ≤ h}. (3.1)

The disordered core is taken to be the inner cylinder Ω0 = {(r, z, θ )|0 ≤ r ≤ R1, 0 ≤ θ < 2π , −h ≤
z ≤ h}, where R1, 0 ≤ R1 ≤ R2, is either a prescribed number or an unknown of the problem. In

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

7
 M

ar
ch

 2
0
2
3
 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

478:20220047
..........................................................

the latter case, we associate with it an energy consistent with the isotropic liquid crystal phase.

Specifically, the assigned energy is equal to the sum of two contributions, one proportional to the

inner core volume and the second one proportional to the surface area separating the ordered and

the disordered regions [27],

Edisorder[R1] = 2h(νπR2
1 + 2σπR1). (3.2)

Here, ν > 0 is the isotropic modulus and σ ≥ 0 is the surface tension.

We assume the director field n (later identified with the unit tangent vector to the DNA centre

curve) takes the form,

n = cos ψ · eθ + sin ψ · ez, (3.3)

where ψ(r, θ , z) ∈ [−π/2, π/2] is a scalar function defined in Ω .

(a) Capsid with prescribed inner core: energy of the ordered region

We will first study the case when R1 ≥ 0 is prescribed, neglecting the contribution Edisorder. The

following theorem refers then to the total Oseen–Frank energy (2.8) of the liquid crystal in the

domain Ω , subject to the constraint (2.3).

Theorem 3.1. Consider the total Oseen–Frank energy (2.8) in the cylindrical shell Ω , with the

prescribed inner and outer radii 0 < R1 < R2. Let the Frank constants K2, K3 > 0 also be given. Suppose

that the constraint (2.3) holds and let n be parameterized as in (3.3). Then the critical points of EOF in

H1(Ω) with natural boundary conditions satisfy the following properties:

(i) They are independent of θ and z.

(ii) There exists a smooth (local) energy minimizing configuration ψ(r), r ∈ (R1, R2). Moreover,

for achiral energies, τ = 0, −ψ(r) is also a minimizer with the same energy. The scalar fields,

±ψ , determine helical vector fields of opposite handedness.

(iii) In the case of a chiral material, τ 
= 0, if ψ(r) is a minimizer, then −ψ(r) is also a minimizer of

EOF with the chiral pitch −τ .

Proof. For n of the form (3.3), the Oseen–Frank energy reduces to

EOF =
∫
Ω

⎡

⎣K3

⎛

⎝

(

cos2 ψ

r

)2

+

(

cos2 ψ

r
ψθ +

sin(2ψ)

2
ψz

)2

+
(

sin(2ψ)

2r
ψθ + sin2 ψψz

)2
⎞

⎠

+ K2(
sin(2ψ)

2r
− ψr + τ )2

]

dx. (3.4)

The constraint ∇ · n = 0 becomes

ψz =
tan ψ

r
ψθ . (3.5)

Substituting the latter into the Oseen–Frank energy, it further simplifies to

EOF[ψ(r, θ , z)] =
∫
Ω

⎡

⎣K3

⎛

⎝

(

cos2 ψ

r

)2

+
1

r2 cos2 ψ
ψ2

θ

⎞

⎠ + K2

(

sin(2ψ)

2r
− ψr + τ

)2
⎤

⎦ dx (3.6)

≥
∫
Ω

⎡

⎣K3

(

cos2 ψ

r

)2

+ K2

(

sin(2ψ)

2r
− ψr + τ

)2
⎤

⎦ dx (3.7)

=
∫ h

−h

∫ 2π

0

∫R2

R1

⎡

⎣K3

(

cos2 ψ

r

)2

+ K2

(

sin(2ψ)

2r
− ψr + τ

)2
⎤

⎦ r dr dθ dz (3.8)

� Eorder[ψ(r, θ , z)]. (3.9)
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We point out that a critical point of Eorder[ψ(r, θ , z)], which satisfies δEorder/δψ = 0, where the

symbol δ refers to the total variation of EOF with respect to ψ(r), satisfies

− K2[(rψr)]r +
sin(2ψ)

2r
(K2 cos(2ψ) − 2K3 cos2 ψ) = τ (cos(2ψ) + 1). (3.10)

The boundary conditions also result from setting the first variation of the energy equal to zero,

that is,

2rψr ± sin (2ψ) = 0 or ψ = C, (3.11)

at r = R1 and r = R2, where C is a suitably chosen constant. Here the ‘+’ sign corresponds to

r = R1 and the ‘−’ sign to r = R2. The difference of signs is due to the opposite directions of the

outer normal at two different boundary components.

In general, the solution to (3.10) and (3.11) may depend on (θ , z) as parameters. However, the

solution, which corresponds to the energy minimizer, is independent of θ and z, thus

Eorder[ψ(r, θ , z)] ≥ Eorder[ψ(r)]. (3.12)

We observe the critical points of the energy, that is, solutions of the Euler–Lagrange equation

(3.10), are smooth functions. It follows from standard theory of ordinary differential equations

[41]. �

Remark 3.2. Theorem 3.1 relies on the cylindrical geometry. If we consider the spherical

domain, then the Oseen–Frank energy is minimized with ψ dependent on all three coordinates r,

θ and z.

In view of theorem 3.1, from now on we will only consider axisymmetric solutions ψ(r).

We also note that there exists a constant trivial solution to equation (3.10), which is ψ = π/2. It

describes the configuration of the director field to be parallel straight lines pointing from the

bottom to the top, corresponding to the spiral-fold model [42], which is not discussed in this

paper. If we further assume the chirality τ = 0, then ψ = 0 is also a constant trivial solution, which

describes the director field tangent to concentric circles.

In what follows, we first discuss the case τ = 0; we will return to configurations with non-zero

chirality in later sections. For physical consistency, we impose the natural boundary condition

at R1: 2R1ψr(R1) + sin(2ψ(R1)) = 0, and the Dirichlet condition at R2: ψ(R2) = 0. This set-up

describes a liquid crystal, with the director field circularly anchored to the outer surface and free

on the inner one. The concentric-circle configuration can be viewed as a two-dimensional liquid

crystal structure, while the three-dimensional helical configuration corresponds to non-constant

ψ(r) 
= 0. The transition from the concentric-circle to helical solutions is a type of ‘escape to the

third dimension’ in nematic liquid crystals confined to cylinders [43].

We first study the existence of the helical solution and the stability of, both, the concentric-circle

and helical solutions, under different sets of parameters.

(b) Solution of the Euler–Lagrange equations

We consider the governing equation (3.10), with τ = 0, subject to the boundary conditions

{

2rψr + sin(2ψ) = 0, at r = R1;

ψ = 0, at r = R2.
(3.13)

We observe that the trivial solution ψ(r) = 0 satisfies both boundary conditions, with the

corresponding vector field n being tangent to concentric circles.
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Next, we focus on non-trivial solutions ψ 
= 0, with n tangent to families of helical curves.

For this, we introduce the parameter

α =
K3

K2
, (3.14)

which will turn out to be pivotal in classifying the solutions of the equation. We first note that,

integrating both sides of equation (3.10), after pre-multiplying by ψr, yields the first integral

(rψr)
2 −

α

2
cos(2ψ) −

1 − α

8
cos(4ψ) = C, (3.15)

with C being an arbitrary constant. Using the boundary condition at r = R1, the constant C can be

expressed as

C =
1

4
sin2(2ψ(R1)) −

α

2
cos(2ψ(R1)) −

1 − α

8
cos(4ψ(R1)). (3.16)

Equation (3.15) can be integrated once more.

The solution satisfying the boundary condition ψ(R2) = 0, is given by the elliptic integral

F
(

arcsin
(

√

m2/(1 − m2) tan ψ

)
∣

∣

∣
(m1(1 − m2))/(m2(1 − m1))

)

√

(1 − α)(1 − m1)m2

= ± ln
R2

r
. (3.17)

Here, F(x|m) =
∫x

0

(

dθ/
√

1 − m sin2 θ

)

is the elliptic integral of the first kind, with

m1,2 =
(1 − 2α)/2 ±

√

α2/4 + (1 − α)2/8 − (1 − α)C

1 − α
.

A detailed derivation of (3.17) is given in the electronic supplementary material section.

To determine the constant C or, equivalently, ψ(R1), we need to consider the boundary

condition (3.13) at R1 and solve the resulting equation

F
(

arcsin
(

√

m2/(1 − m2) tan ψ(R1)
)∣

∣

∣
m1(1 − m2)/m2(1 − m1))

√

(1 − α)(1 − m1)m2

= ± ln
R2

R1
� ±M. (3.18)

We note that ψ(R1) depends on R2 through the ratio R2/R1 only, and M � ln(R2/R1) turns out to

be an important parameter in later sections.

We observe that, when R1 → 0 with fixed R2, or when α → 1, equation (3.18) may not be

properly defined. The first case corresponds to the DNA being fully ordered in the whole capsid,

whereas the second one corresponds to the limit of equal twist and bending effects. Next, let us

carefully analyse these two special cases, and then the general situation.

(i) R1 = 0

The energy of the system reduces to

Eorder = 4πhK2

∫R2

0

[

∣

∣

∣

∣

sin(2ψ)

2r
− ψr

∣

∣

∣

∣

2

+ α
cos4 ψ

r2

]

r dr. (3.19)

The boundary condition 2rψr + sin (2ψ) = 0 at r = 0 indicates ψ(0) = 0 or π/2.

If ψ(0) = 0, the first integral becomes

(rψr)
2 = −α sin2(ψ) −

1 − α

4
sin2(2ψ). (3.20)

We point out that, for given K2, K3 > 0, the right-hand side of the previous equation is non-

positive. Thus, only the trivial solution ψ(r) = 0 exists.
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f(
x;

 α
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α = 0.3

α = 0.5

α = 1

α = 2

α = 10

ψ
(r

)

Figure 1. (a) Solutionψ (r) given by equation (3.22), with R1 = 0, R2 = 1, K3 = 1 and different K2. (b) The graph of function

f (x;α) for different values ofα. The curveswithα = 0.5, 1, 2, 10 have a vertical asymptote at x = π/2. The vertical asymptote

forα = 0.3 is x = β(α)< π/2. The curves withα = 0.3, 0.5, 1, 2 are monotonically increasing, while the curve forα = 10

is decreasing then increasing. (Online version in colour.)

Next, we focus on the case that ψ(0) = π/2. The first integral (3.15) and (3.16) becomes

(rψr)
2 = α cos2(ψ) −

1 − α

4
sin2(2ψ). (3.21)

Integrating it once more, we get

1
√

2α − 1
tanh−1

( √
2α − 1 sin(ψ)

√

2α − 1 + (1 − α) cos2 ψ

)

= ± ln
r

R2
, (3.22)

which implicitly defines the function ψ(r). In the special case α = 1, it becomes

ψ = ± arcsin
R2

2 − r2

R2
2 + r2

= ± arccos
2rR2

R2
2 + r2

. (3.23)

Likewise, for α = 1/2, the explicit form of the solution is

ψ = ± arctan

(

ln(R2/r)
√

2

)

. (3.24)

The graphs of ψ(r), for different values of α, are shown in figure 1a.

Remark 3.3. (a) For α < 1/2, equation (3.22) does not have real solutions, indicating that the

boundary conditions in (3.13) fail. Hence only the solutions with n tangent to concentric circles

exist. (b) For α ≥ 1/2, the configurations given by (3.22) have finite energy, Eorder, and it is

independent of R2. (See the electronic supplementary material for the proof.)

(ii) α = 1 with R1 > 0

In this special case, the first integral becomes

(rψr)
2 −

1

2
cos(2ψ) = C. (3.25)

Using the boundary condition at r = R1, then C = (sin2(2ψ(R1))/4) − 1
2 cos(2ψ(R1)), and

rψr = ±
√

C + cos(2ψ)

2
. (3.26)
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Integrating (3.25) again and applying the boundary condition ψ(R2) = 0, we have

1
√

m
F(ψ |

1

m
) = ± ln

r

R2
. (3.27)

Here, m = C + 1
2 = (sin2(2ψ(R1))/4) + sin2(ψ(R1)), and F(x|m) =

∫x
0

(

dθ/
√

1 − m sin2 θ

)

is the

elliptic integral of the first kind.

In order to determine ψ(R1), we need to solve the following equation:

1
√

m
F

(

ψ(R1)|
1

m

)

= ±M. (3.28)

Let us define

f (x) �
2F(x|(4/(sin2(2x) + 4 sin2(x))))

√

sin2(2x) + 4 sin2(x)

=
2x

√

sin2(2x) + 4 sin2(x)

∫ 1

0

du
√

1 − (4 sin2(xu)/(sin2(2x) + 4 sin2(x)))
. (3.29)

This allows us to rewrite equation (3.28) as f (ψ(R1)) = ±M, with M as in (3.18). The results of this

subsection are summarized in the following theorem and the proof can be found in the electronic

supplementary material.

Theorem 3.4. Let α = 1 in equation (3.14). Then there exists a unique positive solution ψ(R1) := c > 0

to equation (3.28) if and only if R2/R1 > eπ/4 ≈ 2.19328. Likewise, ψ(R1) = −c < 0 is the only negative

solution. Furthermore, the functions ψ(r) given by equation (3.27), with ψ(R1) = ±c, are the only two

non-trivial solutions of equation (3.10) satisfying the boundary conditions (3.13).

Remark 3.5. (a) For R2/R1 = eπ/4, we define f (0) = limx→0 f (x) = π/4. Then equation (3.27) has

a solution satisfying ψ(R1) = 0, which corresponds to the trivial solution ψ(r) ≡ 0. (b) When R1 →
0, so that R2/R1 → ∞, the solution ψ(r) satisfies ψ(R1) → π/2. This is consistent with the result

from §i.

(iii) General cases

Now we revisit equation (3.10), and analyse the general case α ≥ 0 and R1 > 0 prescribed. Instead

of formally using the elliptic integral, we start again from the first integral, and consider the

function,

f (x; α) =
∫ x

0

dt
√

(α/2)(cos(2t) − cos(2x)) + ((1 − α)/8)(cos(4t) − cos(4x)) + 1
4 sin2(2x)

=
∫ 1

0

x du
√

(1 − α) sin4(xu) − sin2(xu) + 2 sin2(x) − (2 − α) sin4(x)
. (3.30)

Note that f (x; α = 1) is the same function of x as f (x) in equation (3.29). By definition, and in

analogy with equation (3.28), equation (3.18) can be rewritten as

f (ψ(R1); α) = ±M = ± ln
R2

R1
. (3.31)

The properties of f give us sufficient information on the solution ψ(r). Furthermore, since f (x; α) is

an odd function of x, we only need to consider the positive sign in equation (3.31). Let us define,

G(u, x; α) = (1 − α) sin4(xu) − sin2(xu) + 2 sin2(x) − (2 − α) sin4(x), (3.32)

for x ∈ [0, π/2] and u ∈ [0, 1]. Note that G is continuously differentiable with respect to both x and

u. With x fixed, G(u, x; α) can be viewed as a function of u only. We now discuss the properties of
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G and f , for two distinct ranges of values of α, that is, α ≥ 1
2 and α < 1

2 . The conclusions are based

on calculating the derivative of G with respect to u.

When α ≥ 1/2, there is no interior critical point with respect to u, thus the extreme values of G

can only occur at the end points u = 0 or u = 1. Moreover, it is easy to check that G(0, x; α) > 0 and

G(1, x; α) > 0, for all x ∈ (0, π/2), and so G(u, x; α) > 0 for all x ∈ (0, π/2) and u ∈ [0, 1]. Hence f (x; α)

is properly defined as a real function in 0 < x < π/2. We can further calculate the limit,

lim
x→π/2

f (x; α) = ∞, if α ≥
1

2
. (3.33)

When α < 1/2, there is no interior critical point of G with respect to u, for x ∈ (0, x0], with

x0 = arcsin
(

√

1/(2 − 2α)
)

. Thus the arguments used for the case α ≥ 1
2 still hold; hence f (x; α)

is a real function in (0, x0]. For x ∈ (x0, π/2), there is one interior critical point of G(u, x; α),

that is, u0 = x0/x. Since G(u0(x), x; α) is monotonically decreasing in x ∈ [x0, π/2], G(1, x0; α) > 0

and G(2x0/π , π/2; α) < 0, there must exist one β ∈ (x0, π/2), such that G(u0(x), x; α) < 0 for all

x ∈ (β, π/2) and G(u0(x), x; α) > 0 for all x ∈ (x0, β). When x ∈ (β, π/2), f (x; α) becomes complex

because
√

G(u, x; α) is pure imaginary near u = u0(x). When x ∈ (0, β), f (x; α) is real. For x = β,

since G(x0/β, β; α) = Gu(x0/β, β; α) = 0, the integral
∫

G−1/2 du diverges, thus

lim
x→β

f (x; α) = ∞, if α <
1

2
. (3.34)

In both cases, α ≥ 1/2 and α < 1/2, we get the common limit

lim
x→0

f (x; α) =
∫ 1

0

du
√

2 − u2
=

π

4
. (3.35)

Proceeding with the Taylor expansion of f (x; α) about x = 0, we get higher-order corrections to the

previous limit, i.e.

f (x; α) ∼
∫ 1

0

(

1 −
(1 − α)u4 + u4/3 − 2/3 + (α − 2)

4 − 2u2
x2

)

du
√

2 − u2

=
π

4
− x2

(

2 − π

2
+

3π − 8

8
α

)

. (3.36)

Hence, it follows that f ′(0; α) = 0, and f ′′(0; α) > 0, when α < (4π − 8)/(3π − 8); f ′′(0; α) < 0, when

α > (4π − 8)(3π − 8). The graphs of f (x; α), for different values of α, are shown in figure 1b.

Remark 3.6. Numerical calculations show that f (x; α) is monotonically increasing when α ≤
((4π − 8)/(3π − 8)), and f (x; α) has one local minimum when α > (4π − 8)/(3π − 8).

We point out that, for α small, f (x; α) is monotonically increasing. For α large, f (x; α) has an

interval of decrease followed by one of increase, as x grows. Here, we omit the detailed calculation

of the study of the monotonicity of f (x; α). Since it is very tedious, and instead we refer the reader

to the numerical calculations shown in figure 1. We summarize the previous results as follows:

(i) When 0 ≤ α < 1/2, then f (x; α) is a real, monotonically increasing function in (0, β(α)) ⊂
(0, π/2), whose range is (π/4, ∞). A non-trivial solution to equation (3.31) exists if M >

π/4, and the solution is unique.

(ii) When α ≥ 1/2, then f (x; α) is real in (0, π/2). If f (x; α) is monotonically increasing, then its

range is (π/4, ∞), and a non-trivial solution to equation (3.31) exists if ln(R2/R1) > π/4;

the solution is unique. If f (x; α) is not monotonic, then its range is [a, ∞) for some a < π/4.

A non-trivial solution to equation (3.31) exists if M = ln(R2/R1) > a, and the solution is

not unique if a < M < π/4. We point out that a is the minimum of f (x; α).

(iii) In all cases, the non-trivial solution ψ(r) depends on R2 only through the ratio R2/R1.

Likewise, the dependence on the elasticity constants is solely through the ratio α = K3/K2.
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(c) Stability of solutions

(i) Local stability of the helical solutionψ (r)

We consider a small perturbation δψ(r) ∈ H1
0([R1, R2]) about the helical solution ψ(r). Ignoring the

higher-order terms, it changes the energy by the amount

δEorder = 4πhK2

∫R2

R1

[[cos(2ψ)δψ − rδψr]
2 − [sin(2ψ) − 2rψr] sin(2ψ)(δψ)2

+ 6α cos2 ψ sin2 ψ(δψ)2 − 2α cos4 ψ(δψ)2]
dr

r
.

Let x = ln r − ln R1 and recall that M = ln R2 − ln R1. Then

δEorder = 4πhK2

∫M

0

[

(δψx)2 + [cos(4ψ) +
3α

2
sin2(2ψ) − 2α cos4 ψ](δψ)2

]

dx, (3.37)

≥ 4πK2h

∫M

0

[

cos(4ψ) +
3α

2
sin2(2ψ) − 2α cos4 ψ +

π2

M2

]

(δψ)2 dx. (3.38)

Here, we applied Wirtinger’s inequality. The equality holds when δψ ∝ sin(πx/M). This allows

us to establish the following theorem, whose proof can be found in the electronic supplementary

material.

Theorem 3.7. The helical solution ψ(r) is stable in the following cases:

(i) If 0 ≤ α ≤ 4
5 , when M = ln(R2/R1) ≤ π/

√

1 − α + (α2/8(1 − α));

(ii) If α > 4
5 , when M = ln(R2/R1) ≤ π/

√
2α − 1.

(ii) Local stability of the concentric-circle solutionψ = 0

Let us consider a small perturbation δψ(r) ∈ H1
0([R1, R2]) about the solution ψ(r) = 0. Ignoring the

higher-order terms, the corresponding change in the energy is

δEorder = 4πhK2

∫M

0
[(1 − 2α)(δψ)2 + (δψx)2] dx ≥ 4πhK2

∫M

0

[

1 − 2α +
π2

M2

]

(δψ)2 dx.

We now establish the following theorem, whose proof is given in the electronic supplementary

material.

Theorem 3.8. The concentric-circle solution ψ(r) = 0 has the following properties:

(i) It is stable, provided 0 ≤ α ≤ 1/2; or α > 1/2 and M = ln(R2/R1) < π/
√

2α − 1.

(ii) It is unstable, if α > 1/2 and M = ln(R2/R1) > π/
√

2α − 1.

Remark 3.9. Theorems 3.7 and 3.8 show that both the concentric and helical solutions are stable

when the ordered region has a large radius. Moreover, when bending is relatively weak, the

concentric solution is always stable. In the case that the concentric solution is unstable, we expect

the helical solution to be stable, although it may not satisfy the sufficient (but not necessary)

conditions of theorem 3.7.

(iii) Energy comparison

We now compare the energy of the concentric circle solution with that of the helical one. The

former can be explicitly calculated as

Eorder[ψ(r) = 0] = 4πhK2α

∫R2

R1

1

r
dr = 4πhK2α ln

R2

R1
. (3.39)
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Figure 2. Total energy of the system for different configurations and parameter values. In both graphs, the black line is the

plot of the energy of the concentric circle configuration. The coefficient 4πhK3 is omitted for all the curves. (a) The plot of the

helical configurations forα = 0.3, 0.4, 0.5 and 1. Panel (b) corresponds toα = 10. There are twohelical solutionswith different

positiveψ (R1). The figure shows the energy of both helical configurations. (Online version in colour.)

For the helical solutions, the energy has to be numerically calculated. Notice that the energy only

depends on the ratio R2/R1: figure 2 shows the comparisons between the energies as a function

of M = ln(R2/R1) for different values of α. We set K3 = 1 and let K2 change.

The α values in (a) correspond to the situation when there is only one positive solution ψ(R1)

of (3.31). When α = 0.3, the concentric-circle solution is preferred because it has a lower energy

than the helical configuration.

When α = 0.4, the helical configuration has a lower energy for a limited range of M. These

two curves show that, when M → ∞, the energy diverges faster than that of the concentric-circle

configuration. This is consistent with remark 3.3. When α = 0.5 and 1, the helical solution has a

higher energy for smaller M and becomes preferable for large R2/R1. Moreover, these two curves

become horizontal when M → ∞, which is also consistent with the statement in remark 3.3.

In the figures of panel (b), α is set to be equal to 10. We have shown in figure 1 that there

exist two positive solutions of ψ(R1) for a particular range of a < M < π/4. One is marked as small

ψ(R1) and the other as large ψ(R1). In the case M → a+, the two helical solutions become identical.

When M → (π/4)−, the small ψ(R1) solution degenerates to the trivial concentric-circle solution,

thus the small ψ(R1) branch vanishes when M < a or M > π/4. The solution corresponding to

large ψ(R1) exists for M ≥ a. We note that the helical configuration in this case is always preferred

compared with the concentric-circle configuration. Moreover, the small ψ(R1) branch is preferred

when M is small; the large ψ(R1) branch is preferred when M is large. However, at the (right)

intersection of the two energy curves of the helical configurations, the values of ψ(R1) are distinct.

This suggests that the phase transition between these two helical configurations, as M changes

through the threshold value, is not smooth.

(d) Capsid with core energy: variable R1 with fixed R2
Next, we consider the total energy that consists of the sum of the ordered plus the disordered

contributions, with the unknown fields being ψ = ψ(r) and the real number R1 ≥ 0

Etotal[ψ , R1] = Edisorder[R1] + Eorder[ψ]

= 2πh

[

νR2
1 + 2σR1 + 2

∫R2

R1

(

K2

∣

∣

∣

∣

sin(2ψ)

2r
− ψr + τ

∣

∣

∣

∣

2

+ K3
cos4 ψ

r2

)

rdr

]

. (3.40)
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Note that Eorder[ψ] also depends on R1. The critical points satisfy the equations

δEtotal

δψ
= 0 =

∂Etotal

∂R1
. (3.41)

It follows that the governing equation for ψ(r) and the corresponding boundary conditions are

again given by equations (3.10) and (3.11), respectively. The second equation in (3.41) gives the

relation satisfied by the unknown quantity R1,

νR1 + σ =

[

K2

∣

∣

∣

∣

sin(2ψ(R1))

2R1
− ψr(R1) + τ

∣

∣

∣

∣

2

+ K3
cos4 ψ(R1)

R2
1

]

R1. (3.42)

We will again consider the case τ = 0 and substitute the natural boundary conditions (3.11) into

(3.42) yielding the equation

νR2
2

R1

R2
+ σR2 = g

(

R1

R2

)

� K2
sin2(2ψ(R1))

R1/R2
+ K3

cos4 ψ(R1)

R1/R2
. (3.43)

Here, we used the fact that ψ(R1) only depends on the ratio R1/R2, determined by equation (3.18)

or (3.31). Thus R1/R2 (or equivalently R1) and ψ(R1) could be obtained through a set of algebraic

equations, without solving the boundary value problem (3.10) and (3.11).

Remark 3.10. Before discussing the solvability of equation (3.43), we carry out a simple

calculation that gives insight to the possible structure of solutions, according to the parameter

values. Introducing the variable z = cos2 ψ(R1), we rewrite the former as a quadratic equation

on z,

νR1 + σ = (1/R1)[Nz2 + 4K2z], N := (K3 − 4K2). (3.44)

Solving it provides a relationship between cos2 ψ(R1) and R1, according to the sign of N.

Specifically, (a) there is a single branch relationship between z and R1, provided N ≥ 0

(equivalently, α ≥ 4), and (b) two possible branches otherwise (i.e. α < 4).

(i) Determine the inner core radius R1

We now discuss the numerical solution of equation (3.43). In figure 3, we represent the graphs

of the function g(R1/R2) in equation (3.43), for ψ(R1) corresponding to concentric circle vector

fields as well as to helical ones, and for several choices of the parameter α. These curves illustrate

all possible shapes of g(R1/R2). Solutions of equation (3.43) are then given by intersections of

such curves with the line νR2
2(R1/R2) + σR2. We observe that, given a pair (ν, σ ) for which an

intersection with a graph of g(R1/R2) with negative slope occurs, subsequent increase of σ , with

ν fixed, causes the value of R1 at the intersection to decrease; this is also the case when ν increases

while keeping σ fixed. We also observe that, if on the left of the location of the intersection the

straight line is above the curve of g, the energy increases with increasing R1; otherwise, the energy

decreases with increasing R1.

We now summarize the solvability of equation (3.43) as follows.

For the concentric-circle curve: (1) In the case of no intersection (corresponding to small ν

and σ ), then the stable configuration is R1 = 1, with the full inner capsid region being disordered;

(2) if there is one intersection, then the concentric-circle configuration is stable in R1.

For α = 0.5: (1) if there is an intersection, then the helical configuration is stable in R1; (2) if

there is no intersection, then the stable configuration is determined by the concentric-circle curve.

For α = 1.5: there might be two intersections, (1) the helical configuration with R1 = 0 is stable

in R1; (2) if there is one intersection where the straight line crosses the curve from above, then it is

unstable; (3) if there is one intersection where the straight line crosses the curve from below, then

it is stable in R1.

For α = 3: (1) the helical configuration with R1 = 0 is stable in R1; (2) if there is an intersection,

then the helical configuration is unstable in R1.

For α = 10, there are two branches of curves: (1) the helical configuration with R1 = 0 is stable

in R1; (2) if there is one intersection with the lower curve, then it is unstable. The configuration
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Figure 3. (a) Plot of the function g(R1/R2) of equation (3.43) corresponding to concentric circle vector fields (black line) and

to helical vector fields. The purple curve shows that, for suitable values of ν and σ , two solutions R1 exist for α = 1.5, the

stable one corresponding to the larger value of R1. Note that the plots of g(R1/R2) forα = 10 show the two analytically studied

solution branches. (b) Plot of two helix segments on different cylinders. (Online version in colour.)

where the two branches meet is stable in R1; (3) if there is one intersection with the upper curve,

it is stable in R1.

(ii) Comparison with data from a set of bacteriophages

We start exploring the parameters K2, K3, ν and σ of the model. Following Tzlil et al. [44], we

express

K3 = KBTLpm0, (3.45)

where KB is the Boltzmann constant, T the absolute temperature, m0 represents the linear density

of DNA in the capsid and Lp the persistence length. The quantity m0 represents the linear density

of DNA in the capsid and has dimensions of square inverse of the length. Table 1 lists the value of

m0 for a sample of four viruses. For instance, for T4, we estimate m0 = 1/(π (d0/2)2) = 0.221 nm−2

(d0 ≈ 2.4 nm), and taking T = 300 K gives

K3 = 5 × 10−11 J m−1. (3.46)

In [27], we take guidance from the theory of Onsager for lyotropic liquid crystals, to obtain

expressions for the isotropic modulus ν and the surface tension σ , and assume that they are

functions of the (DNA) molar concentration c [45]. We adopt the expressions

ν = ν0(c)
KBT

R3
2

and σ = σ0(c)
KBT

Lpd0
. (3.47)

Since, to our knowledge, no molecular theory is available to determine the dimensionless

parameters ν0 and σ0, and, likewise, we do not have an expression for K2 either, we proceed

to estimate these three quantities from the data shown in the table. (The analogous approach

followed in [27], and taking the capsid to be a sphere with the DNA arranged in concentric circles,

gives ν0 = 23 and σ0 = 0.388.)

Prior to estimating ν0 and σ0, and taking into account that for DNA α > 1 holds, the stability

properties listed in §3d(i) indicate that the solution R1 in the graphs shown in figure 3 lies

either on the concentric circle branch or on the monotonically decreasing portion corresponding

to α = 10. Moreover, as the experimental values of R1/R2 shown in table 1 indicate, the solutions

for the viruses T4, T7 and ε15 are located in the latter branch, whereas that for T5 belongs to

the concentric circle one. Also, for α = 10, the largest possible value of R1 is where the blue and

red curves meet. The results for α = 10 generalize to the case that α is large: the graph of g(·)
has two branches, with the system having a stable helical configuration corresponding to the
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Table 1. Physical measurements of four different bacteriophages [27]. The symbol Lp denotes the persistence length of a DNA

chain of length L, effective diameter d0, molar concentration c in a sphere-like capsid of radius Rc with a measured radius rc of

the disordered core.m0 represents the linear density. T4 [2,3]; T5 [4]; T7 [1]; ε15 [5].

virus Lp (nm) d0 (nm) c L (nm) R2 (nm) R1/R2 m0 (m
−2)

T4 55.60 2.40 21.37 55047.6 40.00 0.5500 2.21 × 1017
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T5 58.38 2.94 17.85 39423.8 42.00 0.4286 1.47 × 1017
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T7 52.88 2.60 18.17 12932.0 26.05 0.5889 1.88 × 1017
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε15 53.90 2.55 13.98 1284.6 28.37 0.5735 1.96 × 1017
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

largest possible value of R1. On the other hand, if 0 < α is relatively small, such that g(·) has a

single branch, then the stable configuration becomes R1 = 1, with the inner capsid region being

disordered.

In order to fit the curves with the experimental data of R1/R2 shown in table 1, we appeal to a

scaling argument and estimate the value ν0 ∼ 500 so that νR2
2/K3 ∼ 1. With the appropriate choice

of σ0, this yields intersections between the straight line and the graph of g(·), in the stable range

of the helical curves and the concentric-circle curves, at values R1/R2 ≈ 0.4 ∼ 0.6.

4. A filament reconstruction
In the previous sections, we have obtained a vector field n, parameterized by the angle ψ that

forms with the horizontal azimuthal vector eθ (3.3), that minimizes the total energy (3.40). In this

section, we construct a smooth curve, a filament, that starting at a given point at the entrance of the

capsid, remains tangent to n at every point. We recall the invariance property of nematic liquid

crystals to the change ±n that allows us to replace the oriented vector field with the corresponding

line field.

We consider an achiral liquid crystal, with τ = 0, in which case, if ψ(r) is the minimizing angle

−ψ(r) is also an energy minimizer, with the same energy. Moreover, ±ψ represent the right-

and left-handed helices, respectively. The reconstructed filament consists of piece-wise helical

strands over cylinders of radius ri, i = 1, . . . , N, with same or alternate handedness and connected

by interpolating smooth curves.

For a given ε > 0, let the point (r1 = R2 − ε, θ = 0, z = −h) represent the location where the DNA

segment enters the capsid. The number ε is taken to be of the order of the capsid thickness, that we

assume to be comparable with the effective diameter of the DNA filament d0. The reconstruction

of the centre axis of the DNA curve of length L > 0 inside a cylindrical capsid of radius R2 and

height 2h starts with the observation that the sub-filament of length 0 < L1 ≤ L is organized in

piece-wise helices over a discrete collection of cylinders of radius ri,

R1 + ε ≤ ri ≤ R2 − ε, i = 1, 2, . . . , N,

r1 = R2 − ε, r2 = r1 − d(r1), . . . , rN = rN−1 − d(rN−1), (4.1)

where N is a positive integer, and d(r) is the pitch of the helix on the cylinder of radius R1 < r < R2,

both to be determined. We also take the distance between two neighbouring cylinders of radius

r = ri and r = ri+1 to be d(ri), providing the same spacing as that between neighbouring segments

of the helix on r = ri. The core radius R1 > 0, also resulting from the minimization problem, allows

us to calculate N: from (4.1), N is the largest integer so that rN+1 ≤ R1. The length of the ordered

DNA is then

L1 =
N

∑

i=1

Li
1 + O(ε), (4.2)
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where Li
1 is the length of the helix on the cylinder of radius ri. The correction term in the above

sum accounts for the length of the curves connecting the helical segments. The length of the

disordered DNA is then L2 = L − L1.

Remark 4.1. We assume that the full genome is being packed, and it is sufficiently long to fill

the entire capsid. Modelling the packing of a short genome should include the nematic order

parameter that keeps track of the local DNA concentration.

Let s ∈ (0, L1) denote the arc length parameter of the DNA centre curve, r = r(s). We recall that

the vector field representation of a helix on the cylinder of radius r > 0, is given by the vector

equation

r(s) = rer(θ (s)) + z(θ (s))ez, s ∈ [si, si+1], (4.3)

Here, 0 < si < si+1 < L1 represents the arc length values such that z(θ (si) = −h and z(θ (si+1) = h,

in the case that the curve is spooling along the positive z-direction, with the opposite signs

otherwise. Furthermore, we seek r(s) such that, at the point corresponding to the cylindrical

coordinates (ri, θ (s), z(θ (s)) is tangent to the vector field n. That is, we require

dr

ds
= n(θ (s); r) = cos ψ(r)eθ (θ (s)) + sin ψ(r) ez (4.4)

and

s ∈ [si, si+1], r(si) = rier. (4.5)

Calculating
dr

ds
=

dr

dθ

dθ

ds
=

(

reθ +
dz

dθ
ez

)

dθ

ds
, (4.6)

and combining it with (4.5), we obtain

dθ

ds
=

1

r
cos ψ(r) and

dz

dθ

dθ

ds
= sin ψ . (4.7)

Integrating the latter on the surface of cylinder of radius r, R1 < r < R2, we obtain

θ (s) =
s

r
cos ψ(r) + C1 and z(s) = s sin ψ(r) + C1r tan ψ(r) + C2, (4.8)

where C1 and C2 are arbitrary constants.

Remark 4.2. In the special case of R1 = 0, equation (3.23), we get

θ (s) = 2
R2

r2 + R2
2

s and z(s) =
R2

2 − r2

R2
2 + r2

s. (4.9)

Note that, in calculating sin ψ from its cosine, we have chosen the positive sign, this being

consistent with the convention that the curve starts at z = 0 and it spirals towards the positive

z-axis.

Next, with a simple calculation, we get the pitch d of the helix in (4.8). Let us consider a point

of the helix on the cylinder of radius r corresponding to the arc length s > 0, and a second point

on the same helix but at the location s + l, l > 0. We let l > 0 and d > 0 be such that

θ (s + l) = θ (s) + 2π and z(θ (s + l)) = z(θ (s)) + d(r). (4.10)

The latter, together with equations (4.8), gives d(r) = l sin ψ(r) and l = 2πr sec ψ . Hence

d(r) = 2πr tan ψ(r). (4.11)

The plots in figure 1a show that ψ(r) is very small (near 0) for r close to R2. This indicates

that the outer cylindrical layers have a higher filament concentration (since a decrease in d(r)

represents tighter coiling) than the inner ones, as consistently shown in experiments. Also, from

figure 1a, we see that the overall values of ψ decrease as K2 increases, that is the angles are smaller

for higher twist energy penalty, also to be expected.
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We obtain the equation of the centreline curve on subsequent cylindrical layers, located

at r1, r2, . . . , rN , respectively. The independent segments in each cylinder are connected by

interpolating lines, U-turns, mimicking inter-layered spooling curves, resulting in a globally

smooth curve.

The reconstructed DNA centre line is a piece-wise smooth helical curve, consisting of ordered

strands as in (4.6) and (4.8) connected by interpolating segments.

First layer. Assuming that the DNA is spooled counterclockwise from the location r = r1

near the capsid inner wall to the inner core, the first segment corresponds to equations (4.8) subject

to the initial conditions

θ (0) = 0 and z(0) = −h, s0 := 0, (4.12)

i.e.

θ (s) =
s

r1
cos ψ(r1) and z(s) = sin ψ(r1)s − h. (4.13)

We have seen in the previous sections that for the energy minimizing vector field 0 ≤ ψ(r) ≤ (π/2)

for r ∈ [R1, R2], with ψ(r) 
= 0 for r < R2. This guarantees sin ψ(r) 
= 0, for r < R2. Note that the curve

(4.3) and (4.13) reaches the top of the capsid z = h for s such that

s =
2h

sin ψ(r1)
:= s1. (4.14)

We observe that the quantity s1 gives the length of the helix segment, on the surface of the cylinder

r = r1, running from z = −h to z = h. Furthermore, let us denote

θ1 = θ (s1) and P1 := (r1, θ1, h). (4.15)

Second layer. The second layer, the cylinder of radius r2 = r1 − d(r1), is covered by the helix (4.8)

with angle ψ(r2). The initial point is P2 = (r2, θ2, h − d(r1)), with θ2 determined according to the

connection condition established next. So, the helical segment corresponds to the curve (4.8), with

r = r2 and θ ≤ θ2, up to reaching z = −h.

Connecting layer. We construct an interpolating curve that joins the DNA segments on two

consecutive cylinders, from the outer to the inner one. The construction of the connecting layer

segments is shown in the electronic supplementary material section.

5. Conclusion
We have presented a model of packaged DNA in a cylindrical capsid based on the duality of

the vector field and filament approach. We have shown that the model includes fundamental

features, some of them encountered in separate earlier models, such as the hexagonal crystal

structure of DNA cross sections. Our work also generalizes the inverse spooling assumption that

has been key to earlier research and replaces it with fully helical configurations of the vector field

able to sustain both twist and bending.

The main results of the work can be summarized as follows. First of all, by considering a

cylindrical domain, we find that divergence-free solutions of the vector field are axisymmetric,

depending only on the radial coordinate. In the achiral case τ = 0, we study two types of boundary

value problems, one with a fixed inner core of radius R1 ≥ 0 (§3b), and one with an unknown

inner core (§3d). In the latter case, an isotropic energy penalty of the disordered core is included,

leading to a free boundary problem. There exist solutions corresponding to concentric circles and

helical vector fields (with both signs of the director angle, ±ψ(r)). The latter solutions are studied

in §3b and classified according to the value of the parameter α, the ratio between the bending

and twist moduli. Section 3(c) is devoted to the stability analysis of the helical solutions (theorem

3.7), and that of the concentric circles (theorem 3.8). Sufficient conditions for their stability are

formulated in terms of the two main parameter values, α and the ratio R2/R1 of the capsid radius

and that of the fixed inner core. Pairs of helical solutions are also found in the chiral case. The

article concludes with a reconstruction of the filament from the helical vector field.
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The assumption of Dirichlet boundary conditions on the capsid wall may be unreasonably

restrictive and possibly misrepresent the role of the proteins there. In future work, we will relax it

by assigning an anchoring energy to the capsid wall. Furthermore, in the case that such an energy

is anisotropic, it may allow for corners and facets, consistent with the icosahedral geometry

of the capsid. For simplicity, we do not incorporate the scalar order parameter variable of our

earlier work that helps quantify the density of the DNA [24]. The work presented here is purely

mechanical with no electrostatic contributions of the DNA and the environmental ions taken into

account as done in our previous work [25]. The latter issues as well as the extension to capsid

shapes other than cylindrical can be computationally accomplished by numerical techniques.

Finally, we point out the ideal nature of the reconstructed filament in that it does not account

for knots. This issue is the subject of follow up work.
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