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a b s t r a c t

We study the aggregation phenomenon in lyotropic chromonic liquid crystals as the
molecular concentration changes and condensing agents are added into the system.
Using properties of the critical points of the Oseen–Frank energy of a nematic liquid
crystal, combined with the geometric constraints of the hexagonal columnar chromonic
phases, we show that the minimizers of the total energy are topologically equivalent to
tori, in agreement with available experimental evidence on chromonic liquid crystals and
DNA condensates, in viral capsids as well as in free solution. We model the system as
bi-phasic, consisting of liquid crystal molecules and water, and postulate the total energy
as the sum of the Flory–Huggins energy of mixing together with the bending and surface
tension contributions of the liquid crystal. Two types of problems are considered, one
related to finding the optimal shape of a torus, once the phase separation has occurred,
and the second one that models the conditions leading to molecular aggregation. This
work follows recent experimental investigations, but without addressing the topological
properties of the toroidal nuclei observed and focusing on how the liquid crystal order
competes with the aggregation phenomenon.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Lyotropic chromonic liquid crystals (LCLCs) consist of disk-like molecules that form columnar aggregates in water,
nd whose axes tend to align along a preferred direction, constituting the nematic phase. The length of the columnar
ggregates and their orientational order increase with the molecular concentration. Upon reaching a high concentration
hreshold, the increased packing density of the columns leads to a cross sectional lattice structure, with the new phase
eing dubbed columnar or hexagonal. Chromonic liquid crystals distinguish themselves from the thermotropic calamitic
lass made of rod-like molecules, that achieve increasingly ordered configurations upon lowering the temperature. These
re the liquid crystals usually found in display devices. In the chromonic models, the axis of the cylinders corresponds
o the molecular direction of rod-like molecules of calamitic liquid crystals, whose average gives rise to the unit director
ield n of the macroscopic theory. In this paper, we aim at modeling the experimentally observed reorganization and
ggregation phenomena that occur upon adding osmolite molecules in the columnar phase of the material. The initial
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disruption of the columnar structure observed upon adding the osmolite, disodium cromoglycate (DSCG) in our case,
gives rise to a reorganization of the material into toroidal clusters, presenting topological features such as corners and
facets [1]. Alternatively, in the presence of concentrating agents such as polyethylene glycol (PEG) or spermine, the system
also changes structure forming toroidal clusters embedded in their own isotropic media. It is worth noting that such
phenomenon is not unique to material at the microscale, but rather extends to the nanoscale. DNA in condensed states also
form columnar hexagonal chromonic liquid crystal phases [2–4] and give rise to toroidal-type aggregates [5,6]. Aggregate
states can be found in free solution with condensing agents as well as in bacteriophage viruses, those that infect bacteria
([7] and references therein).

The present work involves two main modeling components: prediction of the size and geometry of smooth toroids and
study of the aggregation process, from the molecular components in water to the aggregates. The latter makes use of the
lory–Huggins theory combined with the Oseen–Frank model of nematics, taking into account the range of parameters
f the chromonic phase.
Relevant to our work is how phases coexist in chromonic liquid crystals. A detailed phase diagram is presented in [8]

see Fig. 1). It shows that when cooling down the material from the isotropic phase (I), the nucleation of the nematic
hase (N) is observed. This regime is characterized by the formation of tactoid domains, where regions of the isotropic
hase appear in the nematic bulk [9]. The coexistence I+N region transforms into the homogeneous N phase around room
emperature. Polarizing microscopy textures suggest that addition of PEG to 0.34 mol/kg of DSCG causes the appearance
f the C phase in coexistence with the I phase. (In 0.34 mol/kg DSCG without any PEG, the C phase does not form.) At
round 46◦C, the I+C coexistence region is narrow, less than 5◦C for a 0.49 mol/kg DSCG solution, but expands as the
oncentration of DSCG increases (see Fig. 1, right). This work focuses on the I+C coexistence region, for concentration
alues of DSCG and PEG close to the ones shown in Fig. 1.

Fig. 1. Phase coexistence for several PEG concentrations mixed with 0.34 mol/Kg DSCG (left). Phase coexistence for several DSCG concentrations in
mol/Kg (right). We look for toroidal clusters in the regions of I+C coexistence.
Source: Figures are reprinted from [8].

Since defects do not play a direct role in the phenomena that we study, we model the nematic liquid crystal according
o the Oseen–Frank energy, quadratic on gradients of the director field n. This energy together with the elastic energy of
he crystalline cross section form the total energy of the columnar hexagonal liquid crystal, subject to relevant geometric
onstraints; in the case that we model a free boundary aggregate, the surface energy of such a domain is also taken into
ccount. The latter, together with the elastic cross-sectional energy, provide the material with the necessary cohesion to
ustain the columnar hexagonal phase. However, in modeling nematic clusters, one often neglects the elastic energy of the
ross section [10,11]. The observation of the experimentally obtained toroidal shapes motivates the following modeling
ssumptions. The aggregates present edges and corners, that, in related work, are accounted for by the anisotropy of
he surface tension [12]. Here, we consider the surface energy to be isotropic leading to smooth domains. Also, the
bserved domains are not simply connected, otherwise a defect core, with a large energy penalty, would be present. This
s consistent with minimizing the energy within a class of tori. Furthermore, the fact that the liquid crystal molecules
re found to be tangent to the surface of the aggregate, motivates us to assume that the latter is a domain enveloping
amilies of curves with tangent field n. These considerations, together with the conclusions of Marris theorem on the
ritical points of the Oseen–Frank energy [13], determine two types of critical points as relevant to the optimal shapes:
arranged either in straight lines or in concentric circles (Theorem 2).
In our analysis, we scale the experimental domain to a subdomain B containing a single torus. We assume that B

ontains a binary mixture of water and DSCG molecules. We assign to B a total energy consisting of the Flory–Huggins
nergy of mixing together with the previously described chromonic energy of the toroidal domain [14–19]. The first
nergy involves the entropic contributions of each separate component and their energy of interaction, whose strength
s represented by the Flory parameter χ . The torus aggregate forms in the phase separation regime of such an energy.
2
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However, a scaling analysis reveals several orders of magnitude of dominance of the Flory–Huggins energy with respect
to the Oseen–Frank and surface energy terms, in the case that the liquid crystal bending constant κ3 is taken to be that of
he liquid crystal DSCG [8]. In order to solve such a dilemma, we observe that, in order for the cylinders to close into tori,
t is essential to take into account the energy of interaction of the cylindrical basis. The latter is not accounted for in the
otal energy as previously described. Rather than explicitly incorporating it into the combined Flory–Huggins and liquid
rystal energy form, we treat its contribution as that of an intrinsic bending, allowing us to replace κ3 with its effective
alue (Section 3.1).
Motivated by the experiments exhibiting toroidal droplets [1], we perform two types of analysis. The first one

orresponds to the case with no PEG added to the system, where increasing the DSCG concentration resulted in observing
arger toroidal aggregates. Such a system can be effectively studied through a total energy comprising only of the Oseen–
rank and surface energy terms. Our semi-analytical and numerical results of the minimization of this energy show
greement with the observations of enlarged aggregates corresponding to higher chromonic concentration. The second
ype of analysis considers the addition of PEG to the system, where increasing the PEG concentration while fixing the
SCG concentration appears to favor similar clustering to the previous case. For this case, the mixing energy of Flory–
uggins is added to the total energy, and our numerical minimization of this total energy shows consistency with toroidal
bservations.
This article is organized as follows. In Section 2, we present a survey on chromonic liquid crystals, the energy forms

sed in their analysis, justifying our focus on the toroidal shapes. In Section 3, we introduce our mathematical model
ncluding the assumptions on the geometry, the scaling analysis, and the parameters needed for the model. Section 4 is
evoted to finding the optimal torus shape that minimizes the combination of bending and surface energy. An outcome
f the analysis is finding the dependence of the energy constant ratios on the concentration of DSCG. This approach
s consistent with assuming that phase separation has already taken place and so we neglect the forces causing it. In
ection 5, the phase separation is analyzed by including the Flory–Huggins energy of binary systems. This reveals the
elevant role of the anisotropic interaction between chromonic molecules and the dependence of the Flory parameter χ

n PEG concentration emerges. In Section 6, we present our conclusions.
We conclude the introduction by recalling the Oseen–Frank energy of nematic liquid crystals. Let n ∈ S2 denote the

unit vector field. The total energy of a nematic liquid crystal occupying a domain U ⊂ R3 is given by

E(n) =

∫
U
WOF(n, ∇n) dx (1)

with

2WOF(n, ∇n) = κ1(∇ · n)2 + κ2(n · ∇ × n + τ )2 + κ3|n × ∇ × n|
2
+ (κ2 + κ4)

(
tr(∇n)2 − (∇ · n)2

)
, (2)

where the Frank elasticity constants κ1, κ2, κ3, and κ4 satisfy the inequalities

κ1 > 0, κ2 > 0, κ3 > 0, κ2 ≥ |κ4|, 2κ1 ≥ κ2 + κ4. (3)

When working with the Oseen–Frank energy, as a simplification, we assume that the saddle-splay constant, κ2 + κ4,
s zero. The importance of this constant in similar settings, however, has been recently underscored [20]. For example,
large saddle-splay, along with the right boundary conditions on cylinders with chromonic liquid crystals, would lead

o a double-twist configuration [21]. We keep our assumption since no twists, or other defects, are observed for the
xperiments we study.

. Modeling the hexagonal or columnar phase

Formation of cylindrical aggregates, with the axial direction corresponding to that of molecular rigid rods in calamitic
iquid crystals, is prompted by the fact that DSCG molecules are hydrophobic on their broad side and hydrophilic on the
ateral surface. At a threshold concentration, these cylinders from the nematic phase aggregate in groups of six, leading
o the columnar or hexagonal phase, with two-dimensional crystal order on planes perpendicular to the axial direction.
hese then tend to cluster producing toroidal shapes. Additionally, the presence of concentrating agents, such as PEG and
alt, within specific concentration regimes produces toroidal-type clustering. The competition between surface and bulk
nergy, mostly associated with bending, determines the shape of the clusters. These show an overall lengthening of the
orus as a remedy to defray the energy cost of bending as the inner torus region closes down to reduce surface energy.
ypical cluster dimensions are in the order of 30 to 100 µm [1].
We now present several approaches for the modeling of the columnar chromonic phase. First, we note that the

eometry of the hexagonal phase is represented by a triple of orthonormal vectors {n,m, p}, with n describing the average
lignment of the axes of the columnar molecular aggregates, the liquid direction, and m and p the lattice vectors of
he plane solid lattice. The energy density consists of the sum of the Oseen–Frank energy of the nematic liquid crystal
appropriate to problems where defects do not play a main role) and that of a two-dimensional crystal, together with the
equired geometric constraints. The two-dimensional crystal energy penalizes deformation of the cross section resulting
n a cohesive effect on the material.
3
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Letting Ω ⊂ R3 denote the region occupied by the hexagonal chromonic liquid crystal, the total energy is

Echr =

∫
Ω

{WOF(n, ∇n) + WHex(∇u)} dx, (4)

subject to ∇ · n = 0 in Ω, where u := u(x)m + v(x)p,

ith u denoting displacements of the cross section. Dirichlet (or weak anchoring) boundary conditions on n and u
lso need to be prescribed. Well-known forms of WHex can be found in the works by de Gennes and Kléman [22,23],
ppropriate to small displacements and bending deformations, followed by the nonlinear elastic expressions by Oswald
nd Pieransky [24]. The role of WHex becomes more prominent in applications to DNA clustering. For example, a form of
Hex is proposed in [7], that takes into account the elastic material being made of filaments. In this case, it is assumed

hat

WHex(n,m, p) = B|∇(m − p)|2 + C |∇(m + p)|2, (5)

with m = n × p, n · p = 0, |m| = |n| = |p| = 1, (6)

here the constants B > 0 and C > 0 represent shear and compressible moduli, respectively. An alternate free energy
xpression to account for the cohesiveness of the columnar phase has been used in studies of DNA packing in [25].
Alternatively, in studies of free boundary structures, such as the tori clusters addressed in this work, the hexagonal

nergy is replaced by a surface tension aimed at penalizing any increases in area and hence providing an adhesive role.
uppose now that the domain Ω has a free boundary ∂Ω . In this case, we set up the total energy as

Echr =

∫
Ω

WOF(n, ∇n)dx + σArea(∂Ω), (7)

subject to |n| = 1, ∇ · n = 0 in Ω, n · ∇ × n = 0 in Ω,

n · ν = 0 on ∂Ω, Vol(Ω) = V0,

ith V0 constant. The positive constant σ denotes the surface tension modulus, and ν denotes the unit vector field
erpendicular to ∂Ω .
The role of the constraints, ∇ ·n = 0 and n ·∇×n = 0, is to express the large resistance to splay and twist deformation

f the molecules, respectively. Assuming dislocations do not occur, the same number of columns entering a cross section
hould also exit it. This leads to the assumption that splay is zero, that is, ∇ · n = 0, since in the case of the hexagonal
olumnar phase, nonzero splay would allow for deviations from the lattice structure. On the other hand, it is assumed that
here is no internal twist because of its incompatibility with the two-dimensional lattice order in planes perpendicular
o the director. This results in setting n · ∇ × n = 0. An approximation to this constraint model can also be achieved
hrough relaxation. That is, alternatively, one can take into account the dominance of the splay and twist constants over
he bending one by requiring

κ1, κ2 ≫ κ3. (8)

owever, in our work, we assume the above constraints instead of the relaxation.

In order to guarantee the existence of minimizers, we recall a fundamental result in the analysis of energy minimization
f nematic liquid crystals.

heorem 1 ([26]). Let U ⊂ R3 be an open and bounded set, with Lipschitz boundary ∂U . Suppose that the Frank constants
atisfy the inequalities (3). Let the admissible set

A(n0) = {n ∈ H1(U, S2) : trace of n = n0}

e nonempty. Then, for any Lipschitz function n0 : ∂U → S2, the functional E(n) =
∫
U WOF(n, ∇n) dx admits a minimizer in

(n0). Furthermore, if n is a minimizer of E(·), then n is analytic on U/Z for some relatively closed subset Z of U which has
ne dimensional Hausdorff measure zero.

Note that the inequalities (3) are needed to guarantee the coercivity of E(n). In the case of E(n) =
∫
U {WOF(n, ∇n) +

Hex(∇m, ∇p)} dx, steps analogous to those that lead to the conclusion of Theorem 1, in the case that p is a prescribed
onstant vector, also prove existence and partial regularity of minimizers of the energy E(n) in the admissible set
(n0,m0) = {n, ∈ H1(U, S2) : trace ofn = n0, trace ofm = m0, subject to (6)}, for a given pair of unit vector fields,
0,n0 ∈ H1(U), satisfying m0 · n0 = 0.

.1. Critical points of the Oseen–Frank energy

These fields, known as universal solutions, were first reported by Ericksen [27], for a general class of nematic
ree energy densities W (n, ∇n) satisfying the properties of frame-indifference and invariance with respect to the
ransformation n → −n. These solutions consist of families of vector lines, including either parallel straight lines, or

ines arranged in a uniform twist along an axis with constant directions on the perpendicular planes, lines orthogonal

4
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q

to a family of concentric spheres, or coaxial cylinders. Furthermore, for the Oseen–Frank energy, Marris classifies all the
critical points in the following theorem:

Theorem 2 ([13]). The only possible universal equilibrium configurations for liquid crystals in the nematic state, with W
uadratic in gradn, are the following:

1. The (straight) vector-lines of n that (also) comprise the rectilinear uniplanar field n = (sin τ z, cos τ z, 0), with τ constant.
2. The vector-lines of n are the orthogonal trajectories of a family of parallel planes, a family of concentric spheres, and a

family of concentric circular cylinders.
3. The vector-lines of n are either concentric circles or a family of circles capable of being intersected orthogonally by the

members of a second family of circles.

2.2. Free boundary minimizers of the chromonic energy (7)

Although the previous theorem gives the full list of critical points in the bulk, we are looking for energy minimizers
in three-dimensional, not simply connected domains of prescribed volume, bounded by (smooth) developable surfaces,
that is, with zero Gaussian curvature. Moreover, we will ignore the edges and corners shown in the experimental shapes.
The optimal shapes, both in the case of chromonic liquid crystals and DNA clusters, are shown to be toroidal. It is well
known that the torus has a metric under which it is developable, which can be embedded in the three-dimensional space
by the Nash embedding theorem [28]. Furthermore, we restrict ourselves to the case when the material is nonchiral (that
is, when τ = 0), and, accordingly, look for minimizers in axisymmetric domains. With these observations, we proceed to
the construction of free boundary minimizers of the energy (7).

Let us consider three-dimensional domains, with prescribed volume V0, bounded by smooth or piecewise smooth
surfaces that are envelops of either family of vector fields, within the class of critical points given in Theorem 2:

Class 1. Straight lines (that without loss of generality, can be taken along the z-axis) contained in a cylinder of volume
V0.

Class 2. Concentric circles filling a torus of volume V0.
Determining the optimal shapes and the corresponding estimates on the coefficients of the energy is done in Section 4.

Motivated by the experimental observations reported in [1] which are relevant to our current study, our focus is on the
second class of critical points obtained above. In Section 4.4, we calculate the energy needed for a cylinder to rearrange
itself into a torus.

3. Mathematical model

There are two main approaches to the problem of finding the optimal torus. In the simpler approach, given an unknown
torus domain, one looks for the optimal shape that minimizes the combined bending and surface energies. The second
approach addresses how a toroidal domain nucleates from the isotropic phase of the material. In such a case, in addition to
the energy needed to produce the phase separation, with the resulting clustered domain being in the hexagonal columnar
phase (C), it is also necessary to account for the bending energy required to rearrange the column structures into a torus,
while subject to a surface energy penalty.

Following the second approach, we set up the total energy of the system consisting of the bending and the surface
energies, together with the Flory–Huggins energy of mixing. The latter, originally developed for mixtures of polymers
and solvents, is used in modeling binary systems where the entropy of the components competes with their chemical
interactions. Let B ⊂ R3, a sphere of radius R0, denote a domain encompassing a single torus Ω . We will take R0 to be
a quantity of the same order of magnitude as the experimentally observed torus. The variables of the problem consist of
the unit director field n of the nematic liquid crystal and the volume fraction φ of chromonic molecules, in addition to
the geometrical dimensions of the torus. We assume that the system is saturated, that is, it contains only liquid crystal
molecules and water, the volume fraction of the latter being then 1 − φ.

In order to simplify the presentation of our mathematical model, we will make explicit the dependence of the volume
fraction φ on x, and write φ(x), x ∈ B, to denote the volume fraction of chromonic molecules at that point. Consequently,
1 − φ(x) denotes the volume fraction of water at that same point.

The total energy of the system consists of the Flory–Huggins energy of mixing [29] together with the bending and
surface energies of a torus, which we represent by Ω ⊂ R3:

E(n, φ, Ω) = Eb(n, φ, Ω) + Es(Ω) + EFH (φ, Ω), (9)

where

Eb =

∫
Ω

φ
(
κ3|(∇ × n) × n|

2) dx, (10)

Es =

∫
σ0ds, and (11)
∂Ω

5
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EFH =
RT
Vm

∫
B

[
1
N1

φ ln (φ) +
1
N2

(1 − φ) ln (1 − φ) + χφ (1 − φ)

]
dx

:=

∫
B
WFH(φ(x)) dx, (12)

with κ3 being the bending Frank elastic constant of the torus, σ0 the surface tension coefficient, R the ideal gas constant, T
the absolute temperature, and Vm the molar volume of water. The parameters N1 and N2 denote the number of lattice sites
occupied by the solute (liquid crystal) and solvent respectively, and χ is the dimensionless Flory interaction parameter.
In our case, N1 ≫ N2 = 1, since basic chromonic units in the isotropic phase are formed by stacking a few hundred
individual molecules (see end of Section 3.1 for an explanation of the specific N1 value we take).

We note that in our definition of the bending energy, (10), we remove the dependency of the Frank constant on the
volume fraction, φ, since φ is one of our model variables. Our choice is based on [30], where the authors show that the
bending elastic constant for chromonic liquid crystals is proportional to φ. So, in our calculations from now on, we obtain
our bending constant κ3 through dividing by φ (see Table 1).

The bending energy (10) of an individual torus follows from the Oseen–Frank energy of a nematic liquid crystal subject
to the constraints:

1. The director n is a unit vector, |n| = 1.
2. ∇ · n = 0.
3. (∇ × n) · n = 0.

The latter two constraints express the fact that the Oseen–Frank energy of the chromonic liquid crystals is bending-
dominated, as discussed before. In addition, we have a constraint representing the conservation of the total amount of
liquid crystal molecules, that, given a fixed density, is expressed in terms of their volume c as∫

B
φ dx = c. (13)

The goal of our work is to minimize the total energy (9)–(12) subject to the constraint (13), in the case that Ω is a torus,
and n is a prescribed unit director field corresponding to the domain geometry, i.e., n = eθ , the azimuthal vector of the
cylindrical coordinate system.

3.1. Scaling, dimensional analysis and effective Frank constants

Let R0 denote a characteristic length at the microscopic scale, that is, a quantity of the order of magnitude of the size
of an experimentally observed torus, in the order of 10µm. We first identify the energy scales associated with each of
he energy components of (9). We have

Eb = κ3R0

∫
Ω̃

φ
(
|(∇ × n) × n|

2) dx̄, (14)

Es = σ0R2
0

∫
∂Ω̃

ds̄, and (15)

EFH =
4
3
πR3

0
RT
Vm

∫
B̄

[
1
N1

φ ln (φ) +
1
N2

(1 − φ) ln (1 − φ) + χφ (1 − φ)

]
dx̄, (16)

here B̄ denotes the sphere of radius 1. Note that the coefficients of each of the previous integrals have the dimensions
f an energy. Let us denote the energy scales by

K = κ3R0, S = σ0R2
0, F =

4
3
πR3

0
RT
Vm

:=

(
4
3
πR3

0

)
ν. (17)

aking parameter values from Table 1 gives

K = 2.175 · 10−15 J, ν = 1.261 · 108 J/m3, F = 2.282 · 10−7 J.

o take into account that the liquid phase of the binary mixture is not pure water, but rather the isotropic phase of the
ixture, we introduce an effective value for Flory energy scale νeff = RT/Veff, where Veff is taken to be the mean of

Vm and Vml, the molar volume of DSCG. This yields Veff = 1.7416 · 10−4 m3, νeff = 1.303 · 107 J/m3 and consequently
Feff = 5.458 · 10−8 J.

We now focus on the gap in order of magnitude between K and Feff, that is
Feff
K

= 2.509 · 107. (18)

This is an indication that the bending modulus of the DSCG is not sufficient to provide enough energy to bend columnar
rods and form tori. That is, with the bending energy being a small perturbation of the total energy, dominated by Flory–
Huggins, only light disruptions of cylindrical shapes could be expected. In order to account for this apparent energy gap,
we take into account two additional contributions to bending:
6
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Table 1
Parameter list of our energy model along with their typical values in the context of chromonic liquid crystals.
Parameter Label Unit Dim. Value (SI) Reference/Formula

Characteristic length R0 m [L] 10−5 [1]

Elastic constant κ3 J/m [F ] 25 · 10−12/0.115 [30], φ = 0.115

Ideal gas constant R J/(K mol)
[F ]

[K ][mol]
8.314462 [31]

Absolute temperature T K [K ] 273 [31]

Boltzmann constant KB J/K
[F ]

[K ]
1.38 · 10−23 [31]

Molar volume of water Vm m3/mol
[L]3

[mol]
1.8 · 10−5 18 · 10−3/103

Molar mass of DSCG Mml Kg/mol
[M]

[mol]
0.512 [8]

Density of DSCG ρ Kg/m3 [M]

[L]3
1.55 · 103 [8]

Molar volume of DSCG Vml m3/mol
[L]3

[mol]
3.3032 · 10−4 Mml/ρ

FH-energy coeff. water phase ν J/m3 [F ]

[L]3
1.261 · 108 RT/Vm

FH-energy coeff. iso. phase νeff J/m3 [F ]

[L]3
1.303 · 107 RT/Veff

No. solvent mol. units/lattice site N2 1

No. DSCG mol. units/lattice site N1 100 [30]

1. The elastic energy density WHex of the columnar cross section of the hexagonal phase (6). Adding its corresponding
energy to the total energy (9), and setting n = eθ , it is found that WHex provides a contribution as in (14). In
particular, this results in an enhanced effective bending modulus κ3, that is, the sum of the DSCG bending constant
plus the transverse elasticity modulus of WHex. This is found by the same calculation as in [7] for the columnar
phase of viral DNA. In that case, the effective κ3 turns out to be 100–1000 times the original bending modulus. In
the present case, lacking information to evaluate the contribution of the transverse elasticity, and also taking into
account the likely smaller elasticity modulus of the columnar DSCG phase compared to the (polymer-like) DNA one,
we assign to it an order of magnitude of 10. This would result into the estimate

Feff
K

= 2.509 · 106. (19)

2. The hydrophobic energy of the bases of the cylindrical aggregates forming the hexagonal phase have not, so far,
been taken into account. It is this hydrophobic energy that causes a cylinder to close down into a torus. In order
to quantify this effect, we interpret it as an intrinsic bending contribution, that, in particular, would result into an
effective bending modulus. Although we lack the appropriate information to quantify such a contribution, we use
it as a motivation to allow the effective order of magnitude take values

Feff
Keff

= O(1), . . . ,O(103). (20)

In addition to the hydrophobic energy, which is the cost of keeping the open ends of the cylinder open, another
type of energy affects the bending modulus, to a lesser degree, and that is the scission energy (the energy needed
to cut an aggregate into two). It is the balance of this energy and the entropy gained by producing more open
ends that results in the formation of columnar aggregates in the first place. The effect of the scission energy is,
in fact, direct on the bending modulus in the following way: κ3 is directly proportional to the persistence length
λp, the length over which the unit vectors tangential to the aggregates lose their correlations [30,32]. Monte Carlo
simulations [33] showed that λp depends on the scission energy E in a linear fashion; λp ∝ 5.07 + 2.14E/KBT .
Therefore, an increase in the scission energy implies an increase in κ3. The value of the scission energy for DSCG
in the nematic phase has been approximated to be in the range (8− 14)KBT [30], though, counterintuitively, lower
values of 3.5KBT have been calculated for columnar phases [34].
Other factors that play important roles in the aggregation process itself are [34]: enthalpy forces based on π − π

interactions between the aromatic cores, inter-aggregate interactions controlled by the excluded volume effect,
electrostatic repulsion between ionic groups, etc., though these are not unique to the columnar phase which is the
one we work with here.
7
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3. An increased (effective) bending modulus would result in tori with greater radius R1, and therefore, larger surface
areas. This motivates us to also consider an effective surface tension σeff so that the quotient satisfies

Seff
Keff

=
S
K

. (21)

We end this subsection by discussing the value of N1, the number of lattice sites occupied by the DSCG molecules
per lattice site. This number is deduced from the aggregate contour length, which is several factors greater than the
persistence length λp mentioned above. This is due to the presence of molecular shift junctions, such as the c- and y-type
junctions [30]. Both lengths vary with temperature, concentration, and presence of the condensing agent. The contour
length for DSCG is estimated to be in the range 20–270 nm [30], which is equivalent to 60–810 molecules, assuming that
the ‘‘thickness’’ of the chromonic molecule is around 0.34 nm [35]. This allows us to consider N1 to be on the order of
hundreds, which is the value we use in our numerical simulations in Section 5.

4. Optimal torus shape

Guided by experimental observations of tori, we simplify the geometry of the aggregates accordingly. We assume that
Ω denotes a torus with unknown inner and outer radii, R1 and R2, respectively. Furthermore, we assume that the mixture
ccupies a spherical bath of radius R0. These assumptions on the resulting shape and the bath introduce two geometrical

constraints: 0 < R1 < R2 and R1 + R2 < R0, illustrated in Fig. 2.

Fig. 2. Simplified geometry of the toroidal droplet: a torus with inner radius R1 and outer radius R2 contained in a virtual sphere of typical radius
0 .

With this geometrical setup, at any point (x, y, z) inside the torus, the director field is tangential to the columnar rings
nd thus can be written as n = ⟨

−y
√

x2+y2
, x√

x2+y2
, 0⟩. This guarantees that the first three constraints are satisfied. We

assume that DSCG is uniformly mixed inside the torus, with volume fraction φin, and outside the torus, with volume
raction φout . With these assumptions, we are able to integrate the bending energy density using spherical coordinates.

This casts our problem as a minimization problem of the following energy(
R1, R2, φ

in, φout)
= 4π2κ3φ

in
(
R2 −

√
R2
2 − R2

1

)
+ 4π2σ0R1R2 (22)

+ ν

[
1
N1

φin ln
(
φin)

+
1
N2

(
1 − φin) ln (1 − φin)

+ χφin (1 − φin)] (2π2R2
1R2
)

+ ν

[
1
N1

φout ln
(
φout)

+
1
N2

(
1 − φout) ln (1 − φout)

+ χφout (1 − φout)](4
3
πR3

0 − 2π2R2
1R2

)
,

ubject to the constraints

c = φin (2π2R2
1R2
)
+ φout

[
4
3
πR3

0 − 2π2R2
1R2

]
, (23)

0 ≤ φin, φout
≤ 1, 0 < R1 < R2, and R1 + R2 < R0. (24)

o render our energy non-dimensional, we let

R̃1 =
R1

R0
, R̃2 =

R2

R0
, γ̃ =

σ0R0

κ3
, η̃ =

νR2
0

κ3
and c̃ =

c
2π2R3

0
. (25)

Dropping the tilde for better notation and dividing the energy by the constant 2π2κ3R0, we get

E
(
R1, R2, φ

in, φout)
= 2φin

(
R2 −

√
R2
2 − R2

1

)
+ 2γ R1R2 (26)
8
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+ η

[
1
N1

φin ln
(
φin)

+
1
N2

(
1 − φin) ln (1 − φin)

+ χφin (1 − φin)] R2
1R2

+ η

[
1
N1

φout ln
(
φout)

+
1
N2

(
1 − φout) ln (1 − φout)

+ χφout (1 − φout)]( 2
3π

− R2
1R2

)
,

ubject to

c = φinR2
1R2 + φout

[
2
3π

− R2
1R2

]
, (27)

0 ≤ φin, φout
≤ 1, 0 < R1 < R2, and R1 + R2 < 1. (28)

4.1. Bending and surface tension effects

To understand how bending and surface energies compete, and to highlight the contributions of the Flory–Huggins
energy, we first consider a reduced model where φin

→ 1 and φout
→ 0. That is, we assume that all the DSCG material

occupies all the space inside the torus. For easier notation, we let x := R1 and y := R2. We arrive to a simpler minimization
roblem of the energy

E (x, y) = y −

√
y2 − x2 + γ xy, (29)

subject to

c = x2y, (30)

0 < x < y, and (31)

x + y < 1. (32)

ote that E(x, y) > 0 for all x, y since y >
√
y2 − x2 and γ > 0.

We first consider the minimization problem without the geometrical constraint (32).

heorem 3. For any c, γ > 0, E(x, y), subject to the constraints (30) and (31), attains a unique non-zero minimum over the
nterval (0, 3

√
c ) × ( 3

√
c, 1).

Remark. The above theorem implies that, ideally, a torus forms for any amount of DSCG added to the bath and any elastic
coefficients considered.

Proof. We replace y from (30) in (29), assuming that x ̸= 0. Then,

E(x) =
c
x2

−

√
c2 − x6

x2
+

γ c
x

. (33)

o find the critical points, we need to study E ′(x) = 0.

E ′(x) =
1
x3

[
−2c − γ cx +

x6 + 2c2
√
c2 − x6

]
.

o solve E ′(x) = 0, it is sufficient to solve(
x3/c

)2
+ 2√

1 −
(
x3/c

)2 = 2 + γ x.

We let s :=
x3
c , with the condition that 0 < s < 1 (from (31)). Finding critical points now reduces to finding the point(s)

of intersection, if any, of the two curves

f (s) =
s2 + 2

√
1 − s2

and g(s) = 2 + γ 3√c 3√s,

over the interval [0, 1). Note that

f ′(s) =
s(2 − s)(2 + s)

2(1 − s2)
, f ′′(s) =

2(s4 + s2 + 4)
4(1 − s2)2

,

g ′(s) =
γ 3

√
c

3( 3
√
s)2

, and g ′′(s) = −
2γ 3

√
c

9( 3
√
s)5

.

9
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The function f has the following properties:

◦ f (0) = 2,
◦ lims→1 f (s) = +∞,
◦ f ′(s) > 0 for 0 < s < 1, so f is increasing,
◦ f ′′(s) > 0 so f is concave up,
◦ f ′(0) = 0, that is, f has a horizontal tangent line at s = 0,

and the function g has the following properties:

◦ g(0) = 2,
◦ g(1) = 2 + γ 3

√
c ,

◦ g ′(s) > 0 for s ̸= 0, so g is increasing,
◦ g ′′(s) < 0 for 0 < s < 1 so g is concave down,
◦ lims→0 g ′(s) = +∞.

Fig. 3. Intersection of f (s) and g(s) for c = 0.0005 (left) and c = 0.1 (right), and γ = 15.

Both functions are continuous over (0,1), f has a horizontal tangent line at (0, 2), while g has a vertical tangent line at
hat point. Both are increasing over that interval, with opposite concavities, and f has a vertical asymptote at s = 1. This
mplies that, for any c, γ > 0, there is always an intersection point over the interval (0, 1), other than at s = 0. Hence,
′(x) = 0 has one solution over the interval (0, 3

√
c), for any c, γ > 0. Since y = c/x2, then y ∈ ( 3

√
c, 1). To determine if

the critical point is indeed a minimum, we calculate the second derivative.

E ′′(x) =
6c
x4

+
2γ c
x3

+
3x5[3c2 + (c2 − x6)]

(c2 − x6)
√
c2 − x6

.

We have c, γ , x > 0 and since x3 < c , then c2 − x6 > 0. So E ′′(x) > 0 for all x > 0. In particular, E ′′(x1) > 0, where x1 is a
non-zero critical point. Hence, any non-zero critical point is a minimum. □

Since the proof of Theorem 3 was constructive, we can numerically calculate the minimum of (29) subject to (30) and
(31) (see Fig. 3). We can then deduce the values of (x, y) for different values of c and γ .

To solve the minimization problem (29) subject to (30)–(32), we still need to enforce the geometric constraint (32):
x + y < 1. If we replace y by c/x2, we get the inequality x3 − x2 + c < 0. We prove the following result about this cubic
inequality.

Fig. 4. Enforcing the geometric constraint (32): x3 − x2 + c < 0.

Lemma 1. If 0 < c < 4/27, then x3 − x2 + c < 0 when x2 < x < x3, where x2 and x3 are the two positive roots of
x3 − x2 + c = 0.
10
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Proof. Rewrite the inequality x3 − x2 + c < 0 as l(x) < k(x), where l(x) = x3 − x2 and k(x) = −c . The cubic function
(x) has a local minimum at 2/3 with l(2/3) = −4/27. Assume 0 < c < 4/27 and let x2 and x3 be the positive points of
ntersection of the cubic function with the horizontal line k(x) = −c. Note that x2 and x3 are also the positive roots of
3
− x2 + c = 0. Then, x3 − x2 + c is negative whenever x2 < x < x3. (See Fig. 4). □

The following minimization result then follows from Lemma 1 and Theorem 3.

orollary 1. Suppose (x, c/x2) minimizes (29) subject to (30) and (31). If x2 < x < min(x3, 3
√
c), then (x, c/x2) is the unique

inimum of (29) subject to (30)–(32).

4.2. Experimental setup and physical constants

We turn now to applying our minimization result in Corollary 1 in order to simulate the experimental data we
estimated from [1]. We manually extracted the data from relevant figures using grabit, a Matlab GUI [36]. The experiments
were performed in rectangular glass capillaries of width 4 mm and thickness 0.2 mm. The mixture of DSCG in water
is cooled down from the isotropic phase, and within 20 minutes after cooling, toroidal structures tend to stabilize.
Measurements reported in [8] identify this phenomenon with the I+C phase separation, that is, nucleation of columnar
hexagonal structures on their own isotropic liquid. Samples with different concentrations of DSCG were tested in six
experiments in this case. The values of the concentrations are shown in Table 2, along with the average inner and outer
radii observed. To compare our results to the experimental observations, we non-dimensionalize the values observed by
assuming a typical length R0 = 100 µm. Fig. 5 visualizes the tori with their non-dimensionalized radii.

Table 2
Average experimental data for pure DSCG, obtained from figure 1(b) in [1].
Experiment cDSCG R1 R2

(in mol/Kg) (in µm) (in µm)

1 0.47 8.68 20.75
2 0.51 15.70 23.61
3 0.57 22.12 27.49
4 0.6 22.61 31.79
5 0.62 26.58 29.61
6 0.8 36.40 36.40

We note that the authors in [1] consider a numerical model that captures the faceted shapes of the toroids and half-
toroids for the same set of experiments. The difference in our work, other than considering different terms of the energy
density and emphasizing a different set of parameters, is that we do not seek a topological description of the observations
but rather we aim to identify how the liquid crystal order competes with the aggregation phenomena.

Fig. 5. Non-dimensionalized average experimental data with pure DSCG. cD is the concentration of DSCG in mol/Kg.

We now turn to calculate the energy ratio of surface tension to bending, non-dimensionalized as the γ parameter in
our notation, in Table 3 from a relationship between R1, R2, and γ that can be obtained from E ′(R1) = 0, namely,

(R1/R2)
2
+ 2√

2
= 2 + γ R1. (34)
1 − (R1/R2)

11
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Table 3
Deduced γ values from average experimental data.
Experiment 1 2 3 4 5 6

γ 4.5456 8.0886 11.1165 6.9204 16.4303 large

We discuss this energy ratio further in Section 4.3 but for the sake of these simulations, we simply take the average
of γ from the first five experiments, γavg = 9.42. Note that the last value is large because R1 ≈ R2, so we exclude it from
the average. For the parameter c , we use the values of experR2

1experR2. Applying the methods outlined in Theorem 3 and
orollary 1, we then calculate the values of compR1 and compR2. The results are in Table 4 and Fig. 6. Note that the errors
re smaller when the value of γ is closer to the experimental value.

Table 4
Average experimental versus computed non-dimensional data for pure DSCG experiments.
Experiment experR1 experR2 experVol compR1 compR2 errorR1 errorR2

1 0.0868 0.2075 0.0016 0.0983 0.1654 0.0115 0.0421
2 0.1570 0.2361 0.0058 0.1597 0.2274 0.0027 0.0087
3 0.2212 0.2749 0.0135 0.2182 0.2836 0.0030 0.0087
4 0.2261 0.3179 0.0163 0.2337 0.2983 0.0076 0.0196
5 0.2658 0.2961 0.0209 0.2558 0.3195 0.0100 0.0234
6 0.3640 0.3641 0.0482 – – – –

Fig. 6. Experimental versus computed data with an average γ approximation, when taking into account only bending and surface tension effects.
Since the value of γ from the last experiment is too large compared to all other values, it is excluded from the computations.

4.3. Values of surface to bending energy ratio

It is evident that the calculated value of γ̃ affects the quality of the simulated results, so we explore this further and
compare our results to experimental data. Replacing γ̃ by its definition σ0R0/κ3 in (34), leads to

σ0

κ3
=

(R1/R2)
2
+ 2

R1

√
1 − (R1/R2)

2
−

2
R1

. (35)

ote that R1 and R2 here are the lengths of the radii in µm. Thus, Eq. (35) allows us to calculate σ0/κ3 directly from the
ori dimensions. If the ratio R1/R2 is small, the ratio can be estimated by

σ0

κ3
=

2 + 2 (R1/R2)
2

R1
−

2
R1

= 2
R1

R2
2
. (36)

ortora et al. [11] give a formula to calculate σ0/κ3. Theirs is a formula based on minimizing bending and surface energy
ensities subject to a volume constraint. The difference in our work is that we have an exact formula for the bending
nergy, whereas they approximate it by κ3V/R3

2. Their expression for a torus is

R1

R2
=

1
(2π2)1/5

(
σ0

κ3

)3/5

V 1/5
=

1
(2π2)1/5β3/5 ,

here β =
κ3 is a dimensionless parameter.
σ0V 1/3

12
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Table 5
Average experimental data of σ0/κ3 in case of pure DSCG.
Exper cDSCG V β σ0/κ3 = 1/(βV 1/3)

(in mol/Kg) (in µm3) (in 1/µm)

1 0.47 49166 1.3250 0.02060
2 0.51 231330 0.7806 0.02087
3 0.57 503517 0.5951 0.02112
4 0.6 985269 0.4671 0.02152
5 0.62 1394959 0.4162 0.02150
6 0.8 2474051 0.3369 0.02195

Table 5 shows the experimental values of σ0/κ3 for experiments with pure DSCG [1]. Note that the values of β given
in figure 3(b) therein correspond to measurements taken for half tori. Since we are considering full tori, we calculate our
value of β using the formula βfull = βhalf/21/3 since Vfull = 2Vhalf. We also remark that the volume in the experiments is
calculated using the formula πR2A, where A is found experimentally. Table 6 compares the experimental values of σ0/κ3
to the exact and estimated values using Eqs. (35) and (36), respectively.

Table 6
Experimental versus calculated values of σ0/κ3 .
Experiment cDSCG exper(σ0/κ3) σ0/κ3 est(σ0/κ3)

(in mol/Kg) (in 1/µm) (in 1/µm) (in 1/µm)

1 0.47 0.02060 0.0455 0.0403
2 0.51 0.02087 0.0809 0.0563
3 0.57 0.02112 0.1112 0.0585
4 0.6 0.02152 0.0692 0.0447
5 0.62 0.02150 0.1643 0.0606
6 0.8 0.02195 large 0.0549

4.4. Cylinder rearranged as a torus

We conclude this section estimating the threshold value of the surface energy on the circular bases of a cylinder of
olume V0, with the director field arranged parallel to the axis, so that it will adopt a torus form in order to reduce energy.
his is the result of the hydrophobic nature of the broad face of the disk-like molecules. A simple calculation shows that
he total energy of a cylinder of height H = 2πR2 is

E cyl = 4π2σ0R1R2 + 2σ1πR2
1 = 2σ0

V0

R1
+ 2σ1πR2

1, (37)

here σ1 is the surface tension coefficient of the circular base of the cylinder. This energy equates that of a torus with
adius R1 and R2, with prescribed volume V0 as in the previous section, when

σ1

κ3
R2
1 = 2π

(
V0

2π2R2
1

−

√
V 2
0

4π4R4
1

− R2
1

)
. (38)

oreover, R1 in the previous relation should be taken as the optimal value previously computed. The above relation gives
n estimate of the value of σ1 needed for a cylinder of volume V0, enveloping a family of straight vector lines, to rearrange

itself into a torus.

5. Flory–Huggins energy: phase separating regime

In this section, we are concerned with the Flory–Huggins energy in the phase separating regime. Note that the
logarithmic terms in the function combine to produce a minimum for values of φ well inside the interval (0, 1), so such
erms contribute to the mixing of both species. However, the χ term is positive in the interior of the interval and vanishes
at the ends, φ = 0, 1. That is, such a term is representative of the repulsive mechanism that tends to keep the phase
separated. Hence, χ has a primary role in controlling the convexity of the Flory–Huggins energy function that occurs, as
will be shown below.

Recall the nondimensional Flory–Huggins energy density in (16),

EFH = ν

∫
B
H(φ)dx,

where

H(φ) :=
1

φ ln (φ) +
1

(1 − φ) ln (1 − φ) + χφ (1 − φ) .

N1 N2

13
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Phase separation into two phases occurs if the stability criterion H ′′(φ) > 0 is not satisfied for some values of φ. At the
ritical value of Flory parameter, χc , the second derivative of H(φ) is positive everywhere except at the critical volume
raction φc where it is zero [37]. So the critical point corresponds to the minimum of H ′′(φ) and is determined by

H ′′(φ) = H ′′′(φ) = 0.

Therefore, φc and χc satisfy the system⎧⎪⎨⎪⎩
H ′′(φ) =

1
N1φ

+
1

N2(1 − φ)
− 2χ = 0,

H ′′′(φ) = −
1

N1φ2 +
1

N2(1 − φ)2
= 0.

Solving the above system, we get

φc =

√
N2

√
N1 +

√
N2

, χc =
1
2

[
1

√
N1

+
1

√
N2

]2
.

We can prove that phase separation occurs when χ > χc . Assume χ > χc and calculate H ′′(φc).

H ′′(φc) =
1

N1φc
+

1
N2(1 − φc)

− 2χ = 2χc − 2χ = −2(χ − χc),

hich is negative since χ > χc . Away from 0 and 1, H ′′(φ) is a continuous function so there exists an interval Ic containing
c over which H ′′ is negative.

Table 7
Values of χc , φc , and χAPP for different values of N1 .
N1 N2 χc φc χAPP

1 1 2 0.5 1.5
50 1 0.6514 0.1239 0.641
100 1 0.6050 0.0909 0.6
250 1 0.5652 0.0595 0.5632

Table 7 lists some critical values of χ and φ corresponding to specific values of N1. The graph of the Flory–Huggins
nergy density is shown in Fig. 7 with values corresponding to χc and several other values lower and higher than it, for
he cases N1 = N2 = 1 and N1 = 100,N2 = 1.

Fig. 7. Flory–Huggins energy density plots for N1 = 1,N2 = 1, χc = 2 along with several values close to χc (left) and for N1 = 100,N2 = 1, χc = 0.605
long with several values close to χc (right).

We are interested in the case where N2 = 1 and N1 = N ≫ 1. We approximate the critical value of χ , χc =

1
2

[
1

√
N

+ 1
]2

=
1
2 +

1
√
N

+
1
2N , to get

χAPP =
1
2

+
1

√
N

,

in agreement with the value found by de Gennes [29]. The last column of Table 7 shows that this approximate value, χAPP,
is a good estimate starting from N = 100.
1
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5.1. Full model simulation including the condensing agent PEG

The average experimental data of six experiments with PEG [1] are shown in Table 8. The DSCG concentration is fixed
t 0.34 mol/Kg. For each concentration of PEG, the inner and outer radii are given in µm. Fig. 8 visualizes the tori with
heir non-dimensionalized radii.

Table 8
Average experimental data for DSCG with PEG, obtained from figure 1(g) in [1].
Experiment cPEG R1 R2

(in mol/Kg) (in µm) (in µm)

1 0.011 12.3 27.9
2 0.012 13.67 36.78
3 0.014 18.29 32.3
4 0.015 20.55 35.53
5 0.016 23.29 39.33
6 0.019 34.15 40.47

To find numerical solutions to the full model (26) subject to (27) and (28), we will use the Particle Swarm Optimization
(PSO) method [38]. This method solves a minimization problem, taking into account its constraints, by evaluating a
population of candidate solutions (‘‘particles’’, i.e., points in the n-dimensional space of variables) and updating the particle
ositions iteratively according to a simple formula. Each particle’s movement is influenced by its local best known position
i.e., the one yielding the minimum function value so far), but is also guided toward the global best position of the swarm,
hich is updated as better positions are found by other particles. This moves the swarm toward the best solution to the
inimization problem. Although conceptually simple, such a population-based approach offers several advantages over
radient-based methods, including not requiring derivative information, ease of handling of constraints, and a higher
robability of converging to the global minimum due to the spread of the swarm.

Fig. 8. Non-dimensionalized average experimental data of DSCG with PEG. cP is the concentration of PEG in mol/Kg.

Recall that the four variables for the full model are R1, R2, φin, and φout . We fix the following parameters

γ = 2.8956, N1 = 100, N2 = 1, η = 1000.

Note that γ value is approximated from the experimental values, with PEG, as in Section 4.3. We consider values of χ

greater than the critical value 1/2 + 1/
√
N1, and then find numerical solutions over an interval of the parameter c. The

oal is to find the value of χ that captures the experiments with PEG most closely.
To compare to the experimental data, and since we do not have experimental values of φin and φout , we calculate the

alues of c using the formula in (27), where we use experimental values for R1 and R2 and average values of the computed
in and φout . Using the particle swarm optimization method, we search within the intervals [0.1, 0.5], [0.2, 0.7], [0.5, 0.7],

and [0, 0.1] for R1, R2, φ
in, and φout , respectively. In addition to the constraint (27), we enforce the last two geometric

constraints in (28). We use 1000 particles and 50 generations for each simulation. Fig. 9 visualizes the computed versus
experimental solutions for specific values of χ greater than the critical value.

We conclude by listing a few observations from the simulations.

◦ For any value of χ , the computation of R seems to be more accurate than that of R , as in the reduced model.
1 2
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◦ For any value of χ , the value of φout is negligible and the value of φin is almost constant.
◦ The range of values of χ that seem to work best is χAPP + [0.31, 0.37], which means that χ ranges between 0.91

and 0.97.

Fig. 9. Computed vs. experimental values of the torus radii, R1 and R2 , as well as the volume fractions φin and φout , for χ = χAPP + 0.32 = 0.92
left) and χ = χAPP + 0.355 = 0.955 (right). Other parameters are taken to be constant: γ = 2.8956, N1 = 100, N2 = 1, η = 1000.

. Conclusions

We have studied the aggregation phenomena in lyotropic chromonic liquid crystals, justifying toroidal shapes observed
nd simulating torus sizes for different types of experiments. Follow-up work would address some of the simplifying
ssumptions made in the present paper. First of all, including chirality in the Oseen–Frank energy will allow modeling
f cholesteric shapes, providing a better tool to study DNA aggregates. The work would also benefit from considering
hapes more general than the torus, by generalizing the free boundary problem allowing for axisymmetric domains (in
he non-chiral case) and helicoid shapes in the cholesteric one. Finally, studying the time evolution of the clusters to
quilibrium would shed some light on the metastable features of the phenomena.
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