R-cAID: Embedding Root Cause Analysis within Provenance-based Intrusion
Detection

Akul Goyal
Computer Science
University of Illinois at
Urbana-Champaign
akulg? @illinois.edu

Abstract—In modern enterprise security, endpoint detection
products fire an alert when process activity matches known
attack behavior patterns. Human analysts then perform Root
Cause Analysis (RCA) over event logs to determine if the alert
is indicative of an actual attack. Data Provenance can help
to automate RCA by representing event logs as a causal
dependency graphs; in fact, researchers are now examining
whether provenance-based anomaly detection should replace
pattern-based detection altogether. Unfortunately, we observe
that current approaches leverage off-the-shelf graph embed-
ding techniques that are unable to associate events with their
root causes. This shortcoming not only fails to capitalize on the
RCA capabilities of provenance, but also leaves provenance-
based IDS vulnerable to mimicry and evasion attacks.

This work presents the design and implementation of R-
CAID, a novel approach to incorporate RCA into provenance-
based IDS. R-CAID precomputes each node’s root causes during
graph construction, then directly links those nodes to their
root causes during embedding. Further, R-CAID’s classification
model is node/process-level, rather than graph/system-level,
bringing it more in line with the precision of commercial
systems. Under a passive adversary model, we find that R-
CAID consistently outperforms baseline graph neural networks,
sequence-based log IDS, and even a commercial endpoint
detection system. Under a white-box active adversary model,
R-CAID maintains a high level of performance (e.g., for DARPA
Theia, 0.94 AUC adversarial down from (.99 passive). R-
CAID achieves this by associating each system entity with
its immutable and unforgeable root causes, preventing adver-
saries from being able to masquerade as legitimate processes.
This work is thus the first to demonstrate the promise of
provenance-based IDS in a manner that avoids the pitfalls
of mimicry and evasion.

Index Terms—Intrusion detection
1. Introduction
Data provenance is changing how we reason about sys-

tem intrusions. Most of today’s endpoint detection products
are pattern-based, raising an alert when a series of system

Gang Wang
Computer Science
University of Illinois at
Urbana-Champaign
gangw @illinois.edu

Adam Bates
Computer Science
University of Illinois at
Urbana-Champaign
batesa@illinois.edu

Firefox | cert8.db | | libdl-2.15.s0 |

Clone JReV Read

Clone Write
Clone
Send Recv Read
Exec

< Twnire com ==

libtinfo.s0.5.9 |

C Occurring L Activity
| resolv.conf " D | 189.141.204.211
Clone
Clonw Read
Read
12.149.161.245
Wri'17

/e5/dist/sshd-
var/log/ssdlog ‘%-7,/ linux-x64
Write

Figure 1: Provenance of the Drakon attack from a DARPA
Transparent Computing engagement. Processes, files, and
sockets are depicted as ovals, rectangles, and diamonds,
respectively. Benign activity is green, malicious activity red,
and green-to-red represents transfer to attacker control. The
yellow line around process nodes refers to an process with
elevated privileges.

events matches a pre-defined rule about a known attack
behavior (e.g., MITRE ATT&CK techniques [1]). As such,
systems are known to generate a high volume of false alarms
(e.g., [2]-[4]), a human analyst must then examine related
events to find out if the alert is cause for concern. While
traditionally, this has entailed preparing a tedious and error-
prone series of queries over event logs , data provenance has
partially automated this process by iteratively parsing each
event into a causal dependency graph (Fig. 1). As a result,
analysts can perform Root Cause Analysis (RCA) of alerts
with a simple backward graph traversal. Prior work has
demonstrated numerous methods of precisely reconstructing
an attack chain (e.g., [5]-[8]) using provenance.
Provenance’s success in automating investigation tasks
has led many to consider its use in detection tasks as
well [9]-[15] However, we observe that the transition of
provenance analysis from human-in-the-loop investigation to
procedural detection, has come at the cost of an enormous

loss of graph context. To make provenance graphs amenable
to machine learning, current approaches encode the graph
into a concise fixed-length representation using off-the-shelf
commodity graph embedding techniques. These techniques
describe a graph as the “sum of its parts,” aggregating over
many highly localized neighborhood traversals to generate
an embedding causing less-localized graph relationships —
the kind that forms the the basis for RCA — to be omitted.
Perhaps unsurprisingly, this approach leads to rampant op-
portunity for attackers to evade detection — recent results
by Goyal et al. [16] demonstrate that virtually all state-
of-the-art provenance-based IDS are vulnerable to evasion,
reporting evasion rates of 100% on community-standard
evaluation datasets.

Given that commodity off-the-shelf embedding tech-
niques are sacrificing security-relevant graph context, tai-
lored solutions for provenance graph embedding are needed.
In particular, current node embedding schemes lose the con-
nection between suspicious activities and their root causes,
simplifying evasion. An attack’s root causes are particularly
insightful for several reasons. First, an attacker’s behaviors
on a system often contradict our expectations about how de-
scendants of a given root cause should behave. For example,
the root causes of the attack in Figure 1) include Firefox and
www.nhra.com — is it typical for visits to this website
to execute Python scripts and write to SSH files? Second,
an attacker’s initial access point is immutable — while they
may masquerade as legitimate processes after establishing
a presence on the system, they cannot go back in time
to modify their method of entry. Thus, we predict that
preserving root-cause relationships will provide resilience
against mimicry attacks.

To test this hypothesis, we present the design and
implementation of R-CAID, the first Root-Cause Analysis
Intrusion Detection system. The foundation of R-CAID is
a traditional graph neural network (GNN) that performs
process-level classification, bringing provenance-based IDS
in line with the precision of a commercial endpoint detection
models (e.g., [17]-[19]), R-CAID then introduces a novel
and efficient method to incorporate RCA — rather than
attempting to associate every node with its entire provenance
history, which would be both ineffective and prohibitively
costly, R-CAID precomputes every node’s root causes during
graph construction and then directly connects each node to
its root causes during embedding. We also introduce an op-
timization to this procedure that skips over highly connected
root causes (e.g., the GNU C Library) that increase storage
and analysis costs without adding any discriminative power.

In our comprehensive evaluation of R-CAID, we first
compare its performance to numerous baselines including a
Vanilla GNN, several log sequence analyzers [20]-[23], and
VMWare CarbonBlack’s commercial enterprise Endpoint
Detection and Response (EDR) [17]. We demonstrate that
R-CAID can dramatically outperform all of these systems;
its closest competitor, the Vanilla GNN, achieves 0.65 AUC
for the DARPA Trace dataset as compared to R-CAID’ 0.99
AUC. We then test R-CAID against an extremely overpow-
ered adaptive adversary that performs a gradient descent-

based evasion attack with full knowledge of R-CAID’ con-
figuration, training data, and test data. We find that R-
CAID experiences less degradation during adversarial attacks
than the Vanilla GNN and is still able to detect malicious
processes in every attack. In the worst case against DARPA
Trace, R-CAID maintains a 0% FPR while detecting 52%
of the attacker’s processes, while in the best case against
DARPA Theia it maintains 100% TPR with just 10% FPR.
Our paper makes the following contributions:

o Embedding Root Cause Analysis. We demonstrate an
effective and efficient method of incorporating the insights
of RCA in the embedding space. Our root node embedding
technique improves both detection and resilience to adver-
sarial evasion.

e Comprehensive Evaluation. The rigor of our evaluation
significantly raises the bar for Host Intrusion Detection
research. Our baselines include both state-of-the-art graph-
and sequence-based anomaly detectors, and we are also
(to our knowledge) the first work in this space to directly
compare against a commercial pattern-based EDR. Finally,
our adversarial evaluation considers a significantly more
powerful threat model than prior work.

e Reproducible Research. All code and data generated
throughout this study can be found on BitBucket, includ-
ing R-CAID itself, a replication of the ATLAS [5] dataset
with EDR alerts and telemetry, and a precise ground truth
labeling of the DARPA Transparent Computing datasets.

The rest of this paper is organized as follows. In Section
2, we motivate our approach and consider the limitations of
prior work. Section 3 presents the threat model that guides
our design. We present the design of R-CAID in Section
4 and discuss implementation considerations in Section 5.1.
Section 5 presents our passive attacker experiments, adaptive
attacker experiments, and performance results. We revisit re-
lated work in Section 6, consider limitations of our approach
in Section 7, and conclude in Section 8.

2. Motivation

To motivate this work, we consider an example of a
realistic APT attack behavior from DARPA Transparent
Computing Attack Engagement 5, shown in Figure 1. Ini-
tially hijacking a previously trusted website (nhra.com),
the attacker waits for a victim with a vulnerable Firefox
browser to create a connection with the malicious server.
Upon the victim visiting the webpage, the attacker down-
loads a Drakon exploit onto the target system and executes
loaderDrakon within the Firefox process’s memory. As a
result, Firefox connects to an attacker-controlled server at
IP address 189.141.204.211 and awaits attacker com-
mands. Leveraging a previously installed driver, “BinFmt
Elevate”, the adversary elevates privileges on the Firefox
process and gains root access. Finally, the attacker injects
shellcode into the sshd using the Inject2 Process injection
techniques, which results in a file - sshdlog - written to
disk. From here, the attacker can connect to other malicious
web servers to exfiltrate data. A system analyst conducting

root cause analysis of this attack would identify firefox
(top left), www.nhra.com, and 189.141.204.211 as
attack-related root causes.

2.1. Prior Approaches

Using anomaly detection could differentiate many ad-
versary activities from normal system behavior. However,
Provenance-based IDS designers face numerous challenges
when learning a proper representation of system activity.
First, provenance graphs are massive data structures (e.g.,
gigabytes per day on a single machine [24]) that are im-
mutable and append-only. The classifier must be able to
learn a concise, fixed-length representation of this struc-
ture. Second, provenance is a feature-rich property graph
that encodes various forms of system information. These
properties, while rich with useful information, also make
it challenging to produce a generalizable representation;
even repeated executions of the same process may differ
in process identifiers, the relative ordering of system calls
due to non-determinism, differences in files accessed due to
semi-random filenames, etc. Finally, because attacks repre-
sent a vanishingly small proportion of system activity, the
representation must be extremely sensitive to small changes
in the graph.

To address these challenges, Provenance-based IDS de-
signers have borrowed embedding techniques introduced by
the machine learning community. The goal of embedding
algorithms is to transform an input into a real-valued vector
such that similar inputs are closer to one another in the
vector space. When embedding more complex data struc-
tures (e.g., a text document [25]), prior work first embeds
all substructures (e.g., words) and then aggregates these
embeddings to summarize the complex structure. In the
case of graph learning, such as in Graph Neural Networks
(GNNG), all subgraphs are embedded and then aggregated to
represent the entire graph [26]. Returning to our example in
Figure 1, a GNN could model this system by embedding a
1-hop traversal of each node’s local neighborhood, and then
aggregating. Training on the green subgraphs and testing
against the entire graph would lead to significantly different
representations in the embedding space. Such results prove
that describing complex data structures by the “sum of their
parts is safe and effective.”

2.2. The Curse of Locality

Unfortunately, the assumptions made in order to produce
fixed-length, generalizable, and sensitive representations for
anomaly detection are often confounded by an adaptive
adversary. Dating back to the earliest host anomaly de-
tection systems, it was quickly discovered that a “sum of
parts” approach to system modeling created opportunities
for attackers to evade detection. Against the Forrest IDS
[27], which modeled processes according to a fixed N-
length slide window of their system calls, Wagner and Soto,
demonstrated that an adversary could produce useful attack

patterns that did not appear during training but in fact appear
benign when broken down into N length chunks [28].

Unfortunately, even though modern provenance-based
IDS benefit from revolutionary advancements in deep learn-
ing, they still fall prey to the same fundamental vulner-
abilities. Returning to our example, the adversary could
adapt Wager and Soto’s mimicry attack to provenance-
based IDS by having its processes (e.g., red Firefox)
access files commonly accessed by the legitimate appli-
cation (e.g., cert8.db, 1ibdl-2.14.s0). By chang-
ing the embedding of the attacker-controlled process’ local
neighborhood, the attacker could force misclassification of
the aggregated graph embedding. Alternatively, the attacker
could directly attack the aggregation stage repeating the
Commonly-Occurring Legitimate Activity subgraph, causing
the abnormal behaviors to account for a smaller proportion
of the aggregate embedding. Goyal et al. [16] recently
demonstrated such attacks were successfully able to evade
state-of-the-art systems, including Unicorn [12], ProvDetec-
tor [29], and SIGL [10].

We observe that the fundamental problem enabling such
attacks could be seen as a curse of locality. The curse
of locality refers to the loss of context when decompos-
ing a provenance graph into a set of overlapping local
neighborhoods. For example, consider a provenance-based
IDS that describes a given node v by traversing its K -hop
neighborhood. The relationship between v and all nodes
K + 1 or more hops away is lost; even though those
nodes are eventually visited, their relationship to v is not
part of the final embedding. Notably, this also means that
root cause analysis capabilities are also absent in the final
graph embedding. Thus, the curse of locality dramatically
increases attacker degrees of freedom when attempting to
evade detection.

In this work, our key insight is that the most severe
consequence of the curse of locality is the disassociation
between a local event and its root cause(s) within the system.
Returning again to Figure 1, one of the most obvious signs
of compromise in the attack graph is that sshd counts
firefox among root causes. Unfortunately, this depen-
dency would not not appear in sshd’s embedding using
traditional approaches. If the IDS retained this association,
it would dramatically restrict the the attacker’s options for
remaining undetected — they could only engage in behaviors
that the IDS associates with firefox, preventing them
from being able to achieve their objectives covertly.

3. Threat Model

This work considers an “Advanced Persistent Threat”
(APT) adversary attempting to gain covert access to a
victim endpoint system. We broadly define the adversary’s
capabilities based on the MITRE ATT&CK knowledge base
of attacker tactics, techniques, and procedures [1]. To avoid
detection, the attacker may employ Defense Evasion tactics.
These include techniques such as “Exploitation for Defense
Evasion,” exploiting vulnerabilities within existing tools to
bypass security controls, and “Masquerading,” manipulating

features of attacker processes and artifacts to make them
appear legitimate.

We make the following assumptions about the target
system. Similar to most work in the space (e.g., [30]-[35]),
the OS, auditing framework, and EDR (i.e., the provenance-
based IDS) compromise the Trusted Computing Base (TCB)
of the system. We assume these components function cor-
rectly and cannot be manipulated by the attacker. We also
assume that the attacker cannot directly change the contents
of audit logs, which is possible via tamper-evident logging
techniques [36]—[39] that are outside of the scope of this
work. We do not consider attacks that employ implicit flows
(side-channel attacks) that the audit system cannot capture.

That said, we place no further restrictions on the runtime
behaviors of the adversary on the victim machine; in other
words, we conservatively assume that attacker-controlled
and -affected processes may take any action on the system
to confuse the EDR and evade detection.

4. R-cAID Design

We now present the design for R-CAID. First, we de-
scribe the foundation of R-CAID applying GNNs to prove-
nance graphs in §4.1. Next, we extend GNNs to incorporate
RCA capabilities through a novel “Root Node Embedding”
technique, explained in §4.2. Finally, to adapt GNNs to
anomaly detection, we explain our training procedure in
64.3 and our testing procedure in §4.4. Finally, in §4.5,
we present an optimization for R-CAID that exposes a
performance/security trade-off continuum for root node em-
bedding.

4.1. Graph Neural Network

First, we describe a traditional Graph Neural Network
(GNN) and how to apply it to provenance graphs.

Let us define a provenance graph GG by a set of vertices
V = {z)j}ljg1 and edges E = {ej}ljill. Each vertex in V
maps to a system entity, such as a file, process, or network
socket, and each edge e = (v;, v, rel) connects two vertices
by the system call event rel such that for any two given edges
(vi,vj,reli), (vj,vi, rely) : rely # rel;. There exists a path
P between any two nodes P(v,vy) if there occurs a set of
edges such that v,(rels_;)v;,- -, v;(rel;_¢)vq Where each
edge vspe(rel)vgs: can be found within E. A node v;’s K-
hop neighborhood N is the set of ancestors reachable from
v; within K hops; in other words Vv, € NiK : AP (v, v;) €
E. The goal for any GNN is to create a D-dimensional
vector that accurately describes each node v; in G in terms
of v; and its K-hop neighborhood N/€. One possible way
GNNs achieve this is by using a technique called message
passing, where information flows according to the direction
of the edge.

To start, let {h} = {h1, -+ ,hj},hi € RP be a set
of feature vectors corresponding to each node in G where
D is the number of features. A GNN takes in as input
G, {h} where h; initializes each node v; feature vector z?

for the first layer of the GNN. For each subsequent layer [,
a node v;’s new representation z! is an update between its
intermediate representation xé_l and an aggregation of all
the intermediate representations of nodes in N/< such that
zh = U(«!™', A(N;)). During model training, aggregation
A and update U functions are optimized to represent the
node accurately. An example of message passing on a
provenance graph is visualized in Figure 2. Here, we see
the GNN updating process P»’s embedding to h% by first
aggregating P»’s parent’s intermediate representations from
the previous layer (h4, hg) and then concatenating that with
P’s intermediate representation of the prior layer (h7).

A GNN comprised K layers where each layer [in the
network aggregates features from nodes [hops away. ! The
final layer of the GNN outputs an embedding matrix £*
representing every node in G such that £* = RUIVI*E)
where L is the size of an individual embedding. > £* can be
used in downstream tasks like node classification or outlier
detection.

4.2. Root Node Embedding

Given the design of a baseline GNN, we now consider
mitigation to the curse of locality. A naive approach to solv-
ing this problem would be to increase the hop value K to the
point where K = oo. While this would superficially prevent
the loss of dependency context, it would be costly and result
in overfitting and unusable representation; previous work
shows that GNNs with more than 4 layers (i.e., hops) face a
vanishing gradient problem [40], [41]. Instead, we propose
to directly link each node to its root causes, regardless of
the root cause’s distance from the node in the provenance
graph.

Classically, a node v; € V is a root node if there
exists no v; € V for which P(v;,v;) - that is, there are
no inbound edges associated with v;. As such, a GNN
should never update a root node’s embedding under message
passing, as no information flows into the node. In a true
provenance graph, which is acyclic [42], it is straightforward
to maintain this definition of root nodes. However, when
applying provenance to operating systems in practice, cyclic
behaviors between entities (e.g., socket I/O) are allowed,
creating the risk of no root nodes existing within the final
graph. One method to break cycles is to version the graph
[43], [44], wherein every system entity is associated with
one-to-many nodes, and a new version is created each time
information flows into the entity. While this prevents cycles,
it also causes the graph to explode exponentially in size
and is thus more costly to analyze. Alternatively, most
provenance work in the security community tolerates cycles
and resolves the issue by attributing timestamp values to
edges (see Figure 3). Given such a graph, we can redefine

1. Note that we purposely reuse the term K; by design, the depth of the
neighborhood traversal, K hops, is equal to the number of layers in the
neural network.

2. D and L do not need to be equal. The architecture of the GNN defines
these sizes.

@ I H ° IX@+ I>]
\ ’(; I Locul
Neighborhood
R-CAID
I EORGL

Local RooT

Neighborhood Neighborhood

Vanilla GNN

Figure 2: A colored coded visualization of the node em-
bedding procedure. Circles represent provenance nodes, ad-
jacent rectangles denote the feature vector for each node,
with edges marking provenance relationships. P-nodes are
processes, S-nodes are sockets and F-nodes are files. Shown
here is the 1-hop neighborhood for process P;;. In a vanilla
GNN, Process 2 is updated by an weighted summation of
feature vectors (h4, h6) and an aggregation with (h7): Pro-
cess 2 feature vector. In R-CAID, Process 2 is additionally
updated with a weighted summation of its root cause nodes’
feature vectors (hl, h3).

@J@

Psuedo Nodes

Original Graph

Figure 3: A visualization of the pseudo root node concept. In
the figure, node F2 is not a pseudo-root as it had an incoming
edge before an outgoing edge. Conversely, F1 is a pseudo-
root as its outgoing edge occurred before its incoming edge.

a root causes to be a node whose first event timestamp is
on an outbound edge. 3

Prior work has introduced GNNs that support logical
timestamps [45], but these models carry significant com-
putation and memory costs and are specific to a single
architecture. Instead, we provide a solution that avoids these
pitfalls without requiring changes to the GNN’s structure.
pseudo-graph G is an overlay graph on top of G that retains
the initial embeddings of all root nodes in G.

We concretely detail the construction of G as follows: let
V7 be the set of nodes representing files or sockets in G. For
any node vy, € V¢, if its first action within G is an outgoing

3. We define the root node whose first event timestamp is an outbound
edge because the attacker must take some action to initiate an attack chain.

flow e, = (vg,v;, rel), then we identify vy as a root cause.
For example, in Figure 3, node Fj first timestamped edge
is outgoing in G and is therefore considered a root node. In
contrast, node Fy’s first timestamp edge is incoming and, as
such, not a root node.

For each root vy, we first create a new node p;, known
as vy’s pseudo-root and then add pj, to the pseudo-graph G
assigning it the same initial feature vector hy, associated with
vg. After identifying a root cause, we keep track of its de-
scendants defined as any node v; such that a path P (v, v;)
within G exists. For each descendant node v;, we add an
outgoing edge from pj, in G directly connecting p; and v;.
Again, in Figure 3, within G F’s pseudo-root connects to
all of F,’s descendants nodes { Py, Py, F»}. Note, under this
construction, it is impossible for an outbound edge from G
to G to occur. In the end, information can only flow out of
G during message passing, but not into G, thus assuring that
pseudo-root node embeddings are not updated.

Given G as additional input, we can update
the embedding function defined in Section § 4.1,
xg = hg(U(xzX= A(N;))), as follows:
x;t = hg(U(z;, C(A(Ny,), A(R,,)))). Here C' represents
a concatenation function that joins the aggregated
representation of all nodes within NN, and the aggregated
representation over all pseudo-nodes in G that directly
connect into v; represented by R,,. Figure 2 demonstrates
how this new definition affects the embedding of P, on the
lower right side of the image.

Root-Paths: It is possible for us to generalize and extend

root cause embedding to provide ancestral paths of arbitrary
depth (L hop traversals). Given a root node v;, let NF
be v;’s” L-hop neighborhood such that for every node v;
in N, there exists a path P(v;,v;) where the length of
P < L To extend to root cause neighborhoods, pseudo-
graph G would be modified to host pseudo-root paths P
where each node p; in P is a pseudo-node. Like pseudo-
root nodes mirroring root nodes within the provenance graph
G, P would emulate each path of length L in the given
root’s L-hop neighborhood NF. For a given node v; in
a provenance graph G, its embedding utilizing a GNN
would be, ¢; = hg(U(z;, C(A(Ny,), A(P;)))) where P;
are all the pseudo-root paths that indirectly connect with
v, 1.e., there exists a path from the last node in P to
v; in the provenance graph. By enlarging the size of the
overlay pseudo-graph G to include pseudo-root paths P,
more information from the roots can be pulled down to
each child node’s local neighborhood allowing for a more
informed embedding. There is a balance in choosing how
much of the root neighborhood to embed - larger L values
propagate more information and increase the noise at each
node’s neighborhood. Our evaluation considers paths (L=0,
L=1) or pseudo-roots and pseudo-root edges.

4.3. Training Procedure

Traditionally, GNNs are trained in a supervised setting
utilizing each node’s well-defined label to optimize its up-
date U and A aggregation functions. Because a node’s label

signals similarity, a GNN learns to embed nodes such that
nodes with similar labels are close together. However, in
the most conservative and appropriate design for anomaly-
based IDS, a single class is assumed for all nodes in the
training dataset. This way, a model is only trained on
benign activity, preventing it from placing any assumptions
or restrictions on the attacker’s behaviors. In a one-class
learning problem, class labels are only used at test time to
determine if a sample is a member of the class (benign)
or not (malicious). Unfortunately, in the presence of only a
single label during training, a GNN cannot mispredict. As a
result, the GNN cannot optimize its U, A functions or learn
a suitable similarity measure.

One common approach to adapting GNNs to a one-
class setting utilizes self-supervised learning, which uses
the supervisory signals from the data to train the model.
To distinguish between different training samples, we utilize
process tags, where we annotate each process node by its
function - automatically generated by using the associated
file path to its binary executable and extracting the process
name. This strategy quickly allows us to group like-for-like
process nodes regardless of differences in the command line,
environment, or symbolic links. As a result, during training
R-CAID is optimized to embed processes with similar binary
names close together. It is important to note that while
processes are not the only node type within provenance
graphs, we focus on identifying malicious programs because
this is typically the focus of EDR systems. However, since
files and sockets also play an essential role in attacks, it
could be beneficial to tag and test non-process nodes by
following a similar procedure. In Section 5, we evaluate
how including non-process tags impacts the model’s overall
performance.

Using self-supervised learning allows us to approximate
the one-class process anomaly detection model and maintain
the integrity of R-CAID’ training routine as “benign data
only.” In other words, R-CAID does not train on attack
data. Moreover, the process tag is only used for improving
the training of R-CAID- R-CAID does not need the process
tag for testing/detection. Instead, we use the output for R-
CAID final layer to embed processes and identify outliers.
Node Features: In § 4.1, for each node v;, we defined a
corresponding feature vector h; that GNN took in as input
to initialize the intermediate node embedding z¢ for the
first layer. Given the diversity of audit logs and telemetry
data, many options for encoding system entities’ features
are available. To preserve the generality of our approach,
we focus on encoding the system identifiers — filenames
and paths for files and IP addresses for sockets — common
to almost all audit log formats. We consider two methods
for encoding this information, Doc2Vec [25] and one hot
embedding. Given a group of sentences, Doc2Vec learns
a metric that groups similar sentences. Each file path in
the training dataset is considered a single sentence and gets
passed into the Doc2Vec model. The Doc2Vec model then
provides an embedding associated with each file path as an
initial node’s features. One hot embedding provides a single
numerical mapping for each component in the file path.

For example, given the two file paths: /ust/bin/python and
/home/bin/firefox, the resulting embedding would be [1,1,1]
and [2,1,2] with a map {l:{usr: 1, home:2}, 2:{bin:1},
3:{python:1, firefox:2}}. For both approaches, when embed-
ding the node features of a process, we truncate the process
name from the path so that the process tags described above
do not appear in the node features. We compare the perfor-
mance between these two approaches in our evaluation.

4.4. Testing Procedure

R-CAID generates an anomaly score for each process
node in the test set through three steps. First, using a fully
trained GNN, each process node in the training and test
set is embedded into a D-dimensional vector. Next, the IDS
clusters all the node embeddings in the training dataset using
K-Means. To identify the optimal K, we utilize the elbow
method [46], which iteratively samples through a range of
possible K and finds the one that provides the least inter-
and intra-cluster variation. Finally, for the last part of our
testing procedure, each node in the test set is assigned an
anomaly score by calculating the Median Absolute Devia-
tion (MAD). For every node in the test set, MAD generates
the Euclidean distance between the nodes and the median of
its nearest cluster. Then any node whose Euclidean distance
has more than a specific variation, given all the Euclidean
distances of nodes in the test set, is considered abnormal. In
all our experiments, we provide results that show the IDS’s
performance under different variation thresholds.

4.5. Optimization: Prune Highly-Connected Roots

To implement root cause analysis, R-CAID creates an
overlay graph where an edge connects each root node to
all its descendants to allow for more information to be
present during node embedding. A side effect of this is that
the size of the overlay graph exponentially increases with
the size of the provenance graph. For smaller graphs, R-
CAID can retain all edges between pseudo-roots and their
children in memory. However, effectively scale to larger
graphs, R-CAID must reduce the number of root causes
recruited into the pseudo-graph. In our implementation, R-
CAID utilizes a graph attentional operator (GAT) to weigh
each node’s roots based on their importance to the node’s
classification. Root nodes connected to a large portion of the
graph (diverse in many different processes) provide limited
information as they do not offer a strong signal to a given
node’s class (process tag). For this reason, we prune roots
from the pseudo-graph connected to more than a prune
threshold percentage of the provenance graph. Pruned roots,
by definition, connect to a massive number of nodes within
the provenance graph, making it unlikely that an attacker
could abuse this optimization to force suspicious root causes
out of the model.

5. Evaluation

5.1. Implementation

We developed R-CAID using 1956 lines of code in
Python. While are many different out-of-the-box implemen-
tations available for building GNN (e.g., Node2Vec [47],
GraphSage [48], SGC [49]); in this work, we created a
simple 3-layer GAT [50] using Pytorch Geometric [51] as
the building framework. For the update U and aggregation
A function, we used Attention and Multi-Layer Perceptron
(MLP). In the appendix, we provide more details about
these layers and our reasons for using them (). We trained
our model with AMD Threadripper Pro 3995WX CPUs @
2.70 GHz, 1024GB of physical memory, and NVIDIA RTX
A6000 GPU. The model was optimized using the Adam
optimizer [52] with a batch size of 64. We randomly initial-
ized the model’s parameters and set the maximum number
of training epochs to 1000. However, because we employed
early stopping, training never reached 1000 epochs - our
early stopping condition stopped training if the validation
loss did not decrease after five consecutive epochs. We used
the model weights associated with the lowest validation loss
for testing. We also used a dropout [53] with a ratio of
0.5 to prevent overfitting. We employed a hyper-parameter
search over the learning rate ({0.001, 0.0001, 0.00001}) and
the size of the embedding vectors ({32,64, 128}). The pa-
rameters that provided the best performance were a learning
rate of 0.0001 and an embedding vector of size 128.

We also implement provenance graph parsers for each
log format described in §5.2. Our parser supports all pro-
cesses, files, and network activity in these logs. When
translating the resulting provenance graph into an adjacency
matrix for the GNN, note that our GNN implementation
does not support edge attributes such as the system call re-
lationship. Fortunately, this information is implicitly present
in the adjacency matrix as nodes’ types indicate the relation-
ship, e.g., a provenance edge from a process to a file denotes
a read event.

5.2. Datasets and Ground Truth Labeling

We evaluate R-CAID using four different datasets.
Streamspot is an open-source dataset [54] that uses Sys-
temTap [55] to record five benign browsing behaviors (five
benign workloads (video game, YouTube, file downloading,
CNN, email) and one malicious behavior (drive-by down-
load). The attack details a Command and Control (C&C)
scenario where the adversary exploits a Firefox vulnerability
after the victim clicks on an attacker-controlled URL. Once
on the system, the attacker exploits a Flash vulnerability
to gain root access. Streamspot repeats each behavior 100
times, resulting in 600 graphs. On average, each graph in
StreamSpot has a total of 27,792,491 edges and 822,998
nodes.

DARPA Transparent Computer (TC) Engagement 3
describes system activity from multiple hosts over 2 weeks,

during which a professional penetration team utilizes so-
phisticated methods to launch attacks. We use the two
Linux platforms in DARPA TC 3, the Theia and the Trace
datasets, and evaluate against the 2 web-based attacks in
Theia and the 3 web-based attacks in Trace. A complete
description of these attacks is available online [56]. Theia
contains 46,303,154 edges and 3,721,210 nodes, while
Trace contains 771, 554,076 edges and 169, 763, 844 nodes.

ATLAS (v2): To evaluate the ATLAS threat investigation

system [5], Alsaheel et al. prepared ten attack chains (4
single hosts, 6 multi-host) and subsequently released both
the data and attack scripts. We replicated this attack engage-
ment on two Windows VMs instrumented with the Carbon
Black EDR. Two students used the VMs as their primary
workstations for approximately 8 hours a day over a five-day
week. On the final day, the students took turns periodically
launching each of the ten attack chains while continuing
to use the VMs for other work. We then trained R-CAID
using the four days of benign Microsoft Windows Security
Auditing logs.

5.3. Labeling Methodology

While these datasets represent the community standard
for IDS evaluations, unfortunately, there is no standardized
ground truth labeling methodology. Streamspot labels at the
granularity of whole graphs/logs, while ATLAS labels only
a small percentage of entities present in the attack chain,
and the DARPA TC datasets provide no labels at all. This
lack of standardization of ground truth labels creates a risk
for a researcher to bias evaluation results.

We propose the following labeling methodology to im-
prove the transparency and reproducibility of results. For
each dataset, we identified the initial access points of each
attack chain using a combination of available documenta-
tion, provenance graph visualization, and speaking with the
dataset authors. We ensured the correctness of the access
points by matching unique identifiers (file names, time,
etc.) between ground truth documentation and the parsed
audit logs. We then performed a temporal depth-first search
from the initial access points to identify all nodes in the
provenance graph that contained attack dependencies. We
labeled all nodes in this graph as malicious (for node-
level classification), then all edges linked to malicious nodes
were labeled as malicious (for event-level classification).
This strategy overapproximates the true attack graph but
guarantees that all attack entities are labeled malicious. It
also reduces researcher degrees of freedom by minimizing
qualitative judgments in the labeling process. Nonetheless,
three senior graduate students in our group repeated this
procedure independently and then met to confirm the results
and resolve any inconsistencies. Our labels can be found on
BitBucket.

5.4. Hyper-parameter Search

We utilized the StreamSpot dataset to perform a hy-
perparameter tuning on critical parameters in R-CAID. We

1 1
@ 08 o 08
© ©
o o
g os g os
E= £
g o4 & 04
() ()
= 2
E o2 F 02
—R-CAID — R-CAID
L —Path R-CAID L, — Path R-CAID
0 — Vanilla GNN 0 — Vanilla GNN
0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate
(a) Doc2Vec, 2 Layer (b) Doc2Vec, 3 Layer
1 1]
L 08 o 08
© ©
o @
L os 2 06
] £
[e]
o 04 £ 04
S g
= o2 —R-CAID = 02 —R-CAID
, — Path R-CAID ; — Path R-CAID
ot — Vanilla GNN_ 0t — Vanilla GNN
0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate
(c) Doc2Vec, 4 Layer (d) One Hot, 2 Layer
11 1
L 084 L 08
o] 5]
o4 o4
'g 0.6 Ag 0.6
E= £
£ 04 £ o4
[} [}
2 2
F 0.2 F o2
— R-CAID — R-CAID
% — Path R-CAID . — Path R-CAID
0+~ — Vanilla GNN 0 — Vanilla GNN
0 02 04 06 08 1 0 02 04 06 08 1

False Positive Rate

(f) One Hot, 4 Layer

False Positive Rate
(e) One Hot, 3 Layer

Figure 4: Hyper-Parameter tuning of R-CAID on the
StreamSpot dataset.

chose Streamspot for this experiment because its smaller
size made it amenable to repeated testing. Figure 4 visual-
izes the results from our experiments. Each subfigure depicts
a ROC curve that compares the model’s the model’s True
Positive Rate (TPR) to False Positive Rate (FPR) under
different MAD score thresholds. Here, we manipulate three
hyper-parameters: 1) the node feature embedding method
(Doc2Vec, One Hot); 2) the number of layers in the GNN,
which is also the hop size of neighborhoods in message
passing; and 3) whether the GNN embeds the root node
(R-CAID), the root path (Path R-CAID), or no root (Vanilla
GNN).

Comparing Doc2Vec (Fig. 4a-4c) to One Hot (4d-4f),
Doc2Vec is the better method for encoding node features.
Among the Doc2Vec ROC curves, an interesting trend oc-
curs in which R-CAID beats the Vanilla GNN with two or
four layers but slightly underperforms it with three layers.

True Positive Rate

—Process Only Embedding
0 — All Node Emebdding

0 02 04 06 038 1
False Positive Rate

Figure 5: Classification performance of R-CAID on the
Streamspot dataset when classifying only process nodes as
compared to all nodes.

We attribute this dip to the structure of a provenance graph
— because I/O dominates process activity, process nodes are
usually an even number of hops away from other processes
(e.g., process A writes filel, filel read by
process B). Because we trained GNN for process iden-
tification, the odd-numbered hop typically encoded addi-
tional I/O information that added more noise than signal.
While offering similar performance, R-CAID performance
is slightly better with two layers and is much more efficient
to train. Finally, we select the baseline root node embedding
function as the root node, and root path embedding performs
similarly in Doc2Vec, 2 Layer (Figure 4a). Thus, for the
remainder of these experiments, we use use Doc2Vec for
node features, a two-layer GNN, and root node embedding.
Wait, are these results any good?: A skeptical reader
may, at this point, express some doubt about the perfor-
mance of R-CAID - our chosen parameterization observed
a 73% TPR for the Streamspot dataset. To interpret this
result, recall that our classification task attempts to detect
individual malicious processes, not attacks. The 73% TPR
reflects that on average R-CAID identified 8 out of the 12
malicious processes in the attack graphs without flagging
a single benign entity. It is difficult to compare this result
to other provenance-based IDS because past systems have
only performed whole-graph anomaly detection, which is far
more coarse-grained. However, we will soon demonstrate
that R-CAID dramatically outperforms other fine-grained
detection methodologies, such as log sequence analyzers and
commercial pattern-based detectors.

5.4.1. Process vs. All Node Classification. We now
briefly evaluate our design decision to only classify pro-
cess nodes instead of all nodes. We first train R-CAID
on just processes tagged/embedded, then again with all
nodes tagged/embedded. The results are shown in Figure 5.
Process tagging identifies 73% of attack processes without
any false positives. When classifying all nodes, reaching the
same TPR concedes a 37% False Positive Rate. This result

0.81

0.61

0.41

Area Under Curve

0.24

0 02 04 06 08 1
Prune Threshold

(a) AUC Performance

w
=]

N
3

N
o

=
o

Memory Consumed (GB)

o

0 0.2 0.4 0.6 0.8 1
Prune Threshold

(b) Memory Consumption

Figure 6: Performance and Memory comparison of pruning
highly-connected roots using the ATLASv2 dataset.

indicates that classifying non-process nodes is not helpful
and is likely detrimental. GNN still represents non-process
nodes in the final model without being directly embedded
because they appear in the local neighborhood traversals and
the pseudo-node layer.

5.4.2. Pruning Highly-Connected Nodes. Another param-
eter in our design is the pruning optimization, which re-
moves highly-connected root nodes from the pseudo-graph.
Recall that we predicted that highly-connected nodes would
likely contain very little practical information for anomaly
detection. To test this, we evaluated the classification per-
formance and storage costs of R-CAID under various root
pruning thresholds on the ATLASv?2 dataset. Figure 6 visual-
izes the results. Smaller prune thresholds indicate that more
roots are pruned for the pseudo-graph; e.g., at threshold
0.2, any root connected to 20% or more of the provenance
graph is pruned. The difference in AUC from threshold
1.0 to threshold 0.05 was just 2.53%, but led to a 97.6%
decrease in memory consumption. As predicted, pruning
highly-connected roots has a vanishingly small impact on
AUC while potentially significantly reducing the memory
consumption of R-CAID. Nonetheless, for the remainder of
our evaluation, we use the most conservative prune threshold
permitted by the size of the dataset. On our machine, this
meant that the pruning threshold was 1.0 for Streamspot and
ATLASV2 (no pruning, and 0.5 for the DARPA TC datasets.

LSTM TF AE R-CAID

FPR | TPR | FPR | TPR | FPR | TPR FPR TPR
Streamspot | 0.24 1.0 0.25 1.0 0.22 1.0 0.03 0.68
Theia 0.22 1.0 0.34 1.0 0.31 1.0 0.002 1.0
Trace 0.34 1.0 0.37 1.0 0.37 1.0 0.02 1.0

TABLE 1: Comparison of R-CAID performance to state-
of-the-art log sequence analyzers: LSTM [20], [21], TF
(Transformers) [22], and AE (AutoEncoders) [23])

5.5. Comparison to Related Work

Past provenance-based IDS that have appeared in the
literature, such as StreamSpot [57], ProvDetector [14], SIGL
[10], are whole-graph classifiers that are not directly com-
parable to R-CAID. Instead, we continue our experiments by
comparing R-CAID to baselines that can provide similarly
fine-grained classification decisions: the traditional GNN,
a battery of state-of-the-art log sequence analyzers, and a
commercial pattern-based EDR.

5.5.1. Vanilla GNN. Recall that R-CAID is an extension
of a traditional GNN presented in §4.1, hereafter referred
to as “Vanilla GNN.” We compare the performance of
the two GNNs on Streamspot, Theia, and Trace. Figure 7
summarizes our results. R-CAID consistently outperforms
the Vanilla GNN, detecting many more attack processes
before admitting false positives. For Theia and StreamSpot,
R-CAID spotted 94% and 73% of the attack before flagging
any benign behavior. Similarly, for Trace, R-CAID flagged
83.3% of the attack while marking just 0.2% of normal
behavior.

Interestingly, both R-CAID and the GNN’s performance
on the DARPA TC 3 datasets is markedly improved com-
pared to the Streamspot dataset — the AUC for R-CAID and
Vanilla GNN were 0.999 and 0.897, respectively, for Theia,
0.990 and 0.645 for Trace, but drop to 0.619 and 0.469 for
Streamspot. We attribute this to the structural differences
between these datasets. The Streamspot dataset exclusively
describes browsing behaviors, and with our conservative
labeling methodology, it was challenging to detect the more
innocuous Firefox processes in the attack chain. Further,
Streamspot is a smaller dataset with fewer positive samples
(12 malicious processes per graph), causes a more signifi-
cant drop in TPR when a single misclassification occurs.

5.5.2. Log Sequence Analyzers. Although not graph-based,
log sequence analyzers are similar to R-CAID making ex-
tremely fine-grained determinations of abnormal behavior.
Each sequence-based IDS assumes an inherent structure
within the input logs. Given a sliding log event window of
size n, the IDS classifies the nth event based on the previous
n — 1 events. The IDS outputs a binary classification for
each window, indicating whether the nth event is anomalous.
Deeplog [20], LogAnomaly [21], Logsy [22], and AE [23]
are all deep learning-based IDS that utilize sequential system
logs to identify attack behavior. Deeplog and LogAnomaly
use an LSTM backbone to model system activity, while
Logsy uses a Transformer-based alternative. AE uses an
autoencoder to determine anomalous behavior.

0.8

0.6

0.4

True Positive Rate

0.2

. —R-CAID
0 — Vanilla GNN

0.2

0 02 04 “0.6 08 1 0 02 04
False Positive Rate

(a) StreamSpot

(b) Theia

06 0.8 1 0 02 04 06 08 1

(c) Trace

Figure 7: Performance comparison of R-CAID as compared to a Vanilla GNN.

=

] -R-CAID
—Vanilla-GNN
—Carbon-Black

H

True Positive Rate
o o o
~ > o

o
)

0
0 02 04 06 08 1

False Positive Rate

Figure 8: Performance comparison of R-CAID as compared
to a Vanilla GNN and the VMWare CarbonBlack EDR on
the ATLASv2 dataset.

We use the implementations provided by [58] to evaluate
each of these systems using a fixed window size of 10. Chen
et al’s framework does not output a continuous anomaly
score but makes a binary prediction over each log sequence
(benign, malicious). Thus, we report a single TPR and FPR
rate for each system rather than ROC curves. To simplify
the comparison to R-CAID, we report comparable TPR and
FPR for each dataset from Figure 7.

Our results are reported in Table 1. All of the sequence-
based IDS perform admirably at detecting the event win-
dows containing attack steps; however, they do so by admit-
ting far more false positives. Because benign data dominate
these datasets, false alarms would dominate alert streams,
leading to threat alert fatigue [2]. In contrast, R-CAID can
achieve a high TPR with near-zero FPR. Because an analyst
can reconstruct the entire attack from log data given reliably
true alerts, in many ways, low FPR is more critical to the
functional performance of these systems.

5.5.3. Commercial EDR. Commercial EDR products per-
form pattern-based intrusion detection [19], as opposed to
anomaly-based. Analysts define rules that encode known
attacker behaviors matched against a telemetry stream of
system events. While rule-based detection offers many legit-

imate advantages, such as providing built-in explanations as
to why every alert occurred (e.g., MITRE ATT&CK annota-
tions [1]), conventional wisdom also claims that rule-based
products offer better precision (i.e., fewer false alarms)
than anomaly-based solutions. To test if this is universally
the case, we compare the performance of R-CAID to the
VMWare CarbonBlack’s EDR As EDRs do not issue per-
alert scores, we use the severity score of each rule to
generate a ROC curve; the first point on the curve captures
the TPR/FPR for alerts of severity 10, then for alerts of
severity 9 or greater, etc.

Our results for the ATLASv2 dataset are shown in
Figure 8. R-CAID identifies 74.19% of the attack processes
before encountering false positives. While detecting all at-
tack processes with FPR 49.67%. In contrast, at best, the
commercial EDR identifies 22.04% TPR, which it achieves
at an FPR of approximately 45%.* The EDR can detect
at least one process in each of the ten attack chains at
Severity > 3, which incurs a 35.6% FPR.

While this is a valuable point of comparison, we do
not claim to have designed a better threat detection system
than a commercial vendor. Pattern-based detection is signifi-
cantly performance efficient, and at present, our GNN-based
approach could not scale to the millions of endpoints that
need to be supported by commercial products. Commercial
solutions are also multi-modal, leveraging complementary
techniques such as antivirus to detect a broader range of
attacks, which our experiments do not reflect. The quality
of public test data may also bias our results; the ATLASv2
dataset captures just a tiny percentage of the threats against
which a commercial product must defend against, Bearing
in mind these concessions, we are encouraged by the ac-
cumulating evidence of the efficacy of provenance-based
approaches such as R-CAID.

5.6. Performance of R-CAID

We briefly describe the computational and memory over-
head of R-CAID. In Table 2, we see that as any individual

4. Note that the EDR does not reach an FPR of 100%, this is an artifact
of the visualization.

% PT | N(K) | EOM) | REM) | sk TT
StreamSpot | 100 853 | 0.825 5 283 | 26:01
ATLAS 100 454 | 1.08 334 337 | 110:02
THEIA 350 613 | 215 303 330 | 10575
TRACE 50 1030 | 407 373 344 | 128:28

TABLE 2: Performance of R-CAID on different datasets; PT
refers to the pruning threshold, N(K) refers to the number
of nodes within the graph in the thousands. E(M) refers to
the number of edges in the millions, and RE(M) stands for
the number of root edges within the graph in the millions.
s/e is the seconds R-CAID took to run through one epoch.
TT is the total time it took for R-CAID to run.

graph gets bigger, the overall memory overhead of R-CAID
also grows. Note, although StreamSpot has a larger number
of nodes than ATLAS, it has far fewer root edges as it does
not contain a single graph but is instead of a collection
of 600 different provenance graphs. The size of the graph
impacts the amount of time each epoch of R-CAID takes to
run, as there is a more significant number of edges for R-
CAID to process. However, the difference in time between
the different datasets is not extensive because we use early
stopping to dictate when to stop training.

5.7. Adversarial Attack Results

Given the recent discovery that provenance-based IDS
are equally vulnerable to mimicry attacks as prior ap-
proaches [16], it is necessary to consider the resilience of
R-CAID to active evasion. We adopt an extreme adversarial
model in which the attacker is effectively unbounded in
knowledge and ability. In addition to understanding the
underlying model and the training dataset, we assume the
attacker can access the testing dataset. In other words, the
attacker knows the exact attacks used to evaluate the model.
Furthermore, we assume the underlying system places no
constraints on the adversary — that is, any modification to
the graph embedding in the feature space is assumed to be
a valid provenance graph in the problem space. Presuming
such an adversary enables us to approximate a lower bound
on the performance of our model. It also means we can
more easily adopt existing adversarial attacks that otherwise
would not apply to provenance graphs.

5.7.1. Graph-Based Adversarial Attack. For a given ad-
jacency matrix A and GNN f, we can define an adversarial
attack as the following:

f(A) # f(A))
st A# Al 8]
A-A <A

where A’ is defined as A+ Do S. D is an adjacency matrix
representing all the potential edges the adversary can add to
A. S is a binary matrix where 1 indicates the attack adds
the respective edge to the graph. A is a perturbation limit,
or the number of edges the adversary can add to A without
raising an alert, such that sum(S) < A.

The attacker aims to learn the optimal S’ matrix so that
A’ successfully evades classification. We focus on attacks
that utilize gradient descent against the model’s loss function
to discover S. Given that loss functions allow models to
classify input data correctly, the attacker can generate mod-
ifications that will most likely cause the model to mispredict
by maximizing the model’s loss.

However, creating an efficient gradient-based adversarial
attack becomes problematic if the model does not use a loss
function. Our intrusion detection system identifies anoma-
lies by clustering the node embeddings outputted by the
neural model. Clustering does not utilize a loss function the
adversary can invert to induce evasion. Previous work [59]
has constructed attacks against node embedding models, but
these papers assume a secondary neural model downstream.

5.7.2. Adapting Adversarial Attacks To R-CAID. We re-
formulate the current dataset to adapt the adversarial attack
to R-CAID. Given that the attacker has complete knowledge
of the training and testing dataset, we assume the attacker la-
bels each node benign or malicious. The adversary can then
use this dataset to train a node classification in a supervised
fashion and define a loss function. This loss function can
then be later employed to construct gradient-based adversar-
ial attacks. [60] defines a gradient-based adversarial attack
which globally reduces the node classification performance
of the model as:

msln(maxz fl(saAa-rzayl)) (2)
eV
fz(SvAvxmyz) = maX{Zyi - I;laXI(ZCi) - H} (3)
CiFY—

Zy,, Z., represent the probability of node i being clas-
sified as class y and c respectively. Equation 2 optimizes
for the smallest number of edges added while maximizing
the sum of classification probability of the incorrect over
all nodes. In short, Equation 2 maximizes the likelihood of
misclassifying all attack nodes with the smallest amount of
change possible. To ensure a convex hull, S is a continuous
matrix. However, in Equation 1, S is a discrete binary
matrix. [60] resolves this by normalizing S to represent a
probability matrix and then sampling A edges.

On the StreamSpot dataset, given the smaller size of the
attack graph, generating and storing a matrix that holds the
probabilities for all possible edge addition is possible. How-
ever, maintaining a similar probability matrix for Theia and
Trace is computationally infeasible because their attack is
part of a larger graph. Therefore, we modify the adversarial
strategy to be more memory efficient by greedily perturbing
the input graph. For each edge addition, the adversarial
attack only considers nodes directly part of the attack or
nodes directly connected to the attack nodes. The attack
graph gets updated with the optimal edge addition at the
end of each iteration. Under this strategy, the number of
potential edges grows slowly, allowing the adversarial attack
to occur within the memory constraints. While these graphs
are not globally optimal, at each iteration, they produce the
locally optimal edge for that iteration.

1
L 08
©
04
2 o6
2
a 04
(]
>
F 02
, —R-CAID
0 — Vanilla GNN
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate
(a) StreamSpot (b) Theia (c) Trace

Figure 9: Performance of R-CAID against adversarial samples. In the StreamSpot dataset, R-CAID has a 42% true positive
rate while maintaining 0% false positives, while on Theia, R-CAID achieves a 100% true positive rate with 10% false
positive rate. On Trace R-CAID identifies 52% of attack nodes with a 0% false positive.

5.7.3. Adversarial Attack Results. We perform the above
procedure for two different systems, R-CAID with root node
embedding and the Vanilla GNN. We generate adversarial
attacks against all three datasets (for StreamSpot, we gen-
erate 100 evasion graphs). Figure 9 shows the ROC curves
for the adversarial attacks, which we contrast to the results
in Figure 7. For the Streamspot dataset, R-CAID’s AUC
lowers from 0.672 to 0.619 (7.8% decrease) as compared
to the Vanilla GCN dropping from 0.614 to 0.469 (24%
decrease). For the Theia dataset, R-CAID’s AUC drops from
0.999 to 0.941 (5.81% decrease), compared to the Vanilla
GCN dropping from 0.897 to 0.82 (8.58% decrease). For
the Trace dataset, R-CAID’s AUC drops from 0.990 to 0.660
(33.33% decrease), compared to the Vanilla GCN dropping
from 0.645 to 0.541 (16.124% decrease).

Although an attacker can impact R-CAID’s performance,
we still see a highly favorable TPR/FPR tradeoffs on the
ROC curve. On Streamspot’s dataset, R-CAID identifies 42%
of malicious processes with 0% FPR or 60% of malicious
processes with near-0% FPR. In the Theia dataset, R-CAID
is still able to identify 100% of the malicious processes
with a 10% FPR rate. In Trace, R-CcAID’s TPR at near-
0% FPR was previously 100%, whereas its TPR at exactly
0% is now 56.2%; interestingly, this is an increase from
its previous value of 33.8% in the passive model. While
anecdotal, we suspect this deviation in behavior between
Theia and Trace to artifacts from the attack engagement.
Trace’s workload generator operated uniformly throughout
Engagement 3, while through inspecting the logs, we iden-
tified that the Theia performers faced several outages during
the engagement and appeared to modify their workload
generator between outages. It may be that the highly well-
formed nature of Trace’s benign data caused R-CAID to
place greater weight on graph attributes than the adversarial
the attack was able to leverage a minority of the process
embeddings.

Overall, R-CAID experiences less degradation during the
adversarial attack due to the power of root note embed-
ding. We examined several successful evasion attempts to

understand the general strategy identified through gradient
descent. Broadly, the adversarial sample introduced edges
that connected the attack entities to benign nodes in the
graph. In Theia, shell is spawned off by the attacker
after running privilege escalation. During the adversarial
attack, the attacker connects shell to benign nodes that
usually spawn it, making the entire behavior appear more
normal. However, because R-CAID links shell back to
its immutable root causes, which includes an external IP
address, the model can still correlate the anomalousness of
the activity back to shell.

6. Related Work

Host Intrusion Detection utilizes information from the

host system to predict whether an anomaly is occurring.
Past works explore different avenues of information to
use when detecting an intrusion. Such works includes ar-
gument dataflows [61], call stack information [62], and
process configuration and environment [63]. System calls
(syscalls) are predominately used by HIDS [27], [61],
[64]-[70]. Previous techniques syscall anomaly detection
proposed include hidden Markov models [71], finite state
automaton [68], rule induction [64], sequence learning [27],
[65], and policy specification [72], [73]. Additional work
considers related information such as the appropriate length
for syscall sequences [66], [69], ensemble and randomized
classifiers [67], [74], [75], false positive reduction [76],
multi-log analysis [77], and alert correlation [70], [78], [79].
Log Sequence Based IDS are a form of Host IDS that

have received near-continuous attention since Stephanie For-
rest [27], with modern systems incorporating notions of
deep learning. Deeplog [20] and LogAnomaly [21] monitor
each system call based on a sliding window LSTM model.
Logsy [22] performs a similar function via transformers,
while AE [23] instead opts for autoencoders. Log2Vec [80]
is a word2vec-based model that uses graph embedding;
however, its graphs are not causal provenance graphs but
instead encode temporal log dependencies much like other

sequence-based IDS. We are not aware of an open-source
implementation of [80], so we refrain from commenting on
its performance relative to R-CAID.

Provenance Graphs are a graphical representation of sys-
tem call activity. Previous work in Provenance provenance-
based IDS look for anomalous behavior within the graphical
structure. StreamSpot [9] and Unicorn [11], [12] gener-
ate a vector summarizing the graphs K-hop neighborhood
while ProvDetector [7], [14] and Pagoda [15] vectorize the
provenance graph through all its paths. SIGL [10] uses an
autoencoder to learn normal behavior and spots anomalous
program installation. All of the above systems perform
whole-graph classification tasks, and [16] shows all systems
were systemically vulnerable to mimicry attacks. It is in-
teresting to consider how R-CAID’s root cause embedding
technique might be adapted to these systems and improve
their resilience to evasion.

Attack Reconstruction systems attempt to automate the
threat investigation process using data provenance. Such
systems assume that a point of interest (i.e., a true alert)
in the graph has already been identified, making this task
fundamentally different than intrusion detection. Hercule
[81] performs clustering over heterogeneous log streams to
identify neighborhoods of related activity. Holmes [13] and
RapSheet [82] identify related alerts in the provenance graph
using heuristics based on the MITRE ATT&CK frame-
work [1]. ATLAS [83] performs supervised learning over
attack and benign sequences to learn generalized attack
patterns. DEPIMPACT [6] leverages heuristics, including
data flow, temporal locality, and concentration of connec-
tions, to identify related attack events. Given its ability to
identify multiple malicious processes in an attack chain with
consistency, R-CAID provides rich “points of interest” for
attack reconstruction, which in turn can leverage heuristics
to identify any attack process missed by the detection stage.
Graph Neural Networks (GNN) are machine learning
models that learn based on graphical data. Our IDS uses
a GAT [50] where the model provides attention weights to
each of the roots and all the nodes in the graph. There are a
variety of other different GNN models: convolutional [84],
heterogeneous [85], and temporal [45]. These GNN models
can be adapted to provenance graphs and interchanged with
the GAT in R-CAID and supply varying performance levels.

7. Discussion

We now consider limitations and threats to the validity
of our approach.
Static Graphs: Any HIDS aims to detect intrusions as
close to real-time as possible. However, to simplify im-
plementation and experimentation, we make use of static
datasets in this work, rather than an online streaming system.
While a static IDS can approximate an online one through
retraining as frequently as possible, R-CAID would benefit
from incorporating notions of streaming detection as have
been demonstrated by StreamSpot [57] and Unicorn [12],
among others. As the mechanisms for transitioning from
static to streaming are well-known and compatible with our

root node embedding function, we leave such optimizations
to future work.

Memory Overhead: R-CAID’s most notable performance
cost Adding new “pseudo” nodes and edges to the existing
provenance graph. Provenance graphs are already known
to be unwieldy in size , and to train a Provenance-based
IDS, the graph must be stored in fast memory, so this cost
is non-trivial. Indeed, our experiments hit a memory wall
when using the larger Theia and Trace datasets. Fortunately,
we demonstrated that by pruning the most highly-connected
root nodes from the pseudo-graph, it was possible to manage
memory costs while maintaining classification performance.
Alternate heuristics could exist to select root nodes for
the pseudo graph to further reduce costs. An alternative
approach is to use existing forensic reduction techniques
(see [86], [87]) to reduce the overall size of the graph.
Adversarial Attack: In 5.7, we limited the number of
perturbations the attacker could create when evaluating R-
CAID'’s robustness against adversarial attackers. As noted by
[16], there is a lack of adversarial attacks that can efficiently
scale to the size of provenance graphs and insert additional
attack behavior to evade detection. We modified an open-
source library to carry out the adversarial attack, and each
attack perturbation took about 1.5-2hrs, exponentially in-
creasing as the attacker inserted additional perturbations.
It may be that an attacker with sufficient resources could
calculate a feasible attack strategy against R-CAID based
on considerable perturbation. While we can not disprove
this possibility, our adversarial evaluation demonstrates that
the cost difference between attacking R-CAID and a regular
GNN makes R-CAID considerably more robust. We leave
it up to future work to further investigate the robustness of
these systems.

Pruning Root Nodes: To reduce the memory overhead of
R-CAID, we introduced a root pruning mechanism to reduce
the number of edges added to the graph. This optimization
creates a possible attack surface wherein an attacker is
able to prune malicious root nodes by causing them to
become connected to a large proportion of system entities.
Our adversarial evaluation did not rule out this possibility
because those experiments assumed that root causes were
immutable, so we discuss it further here. Consider the
prune threshold of 5%, which in Figure 6 minimally im-
pacted R-CAID’s performance while dramatically reducing
memory consumption. In the Theia dataset, a root node
connected to 5% of the graph is connected to 186,061 or
more nodes, while the average attack root node connects to
just 4,156 nodes. The adversary would therefore need to
establish dependencies between existing malicious entities
and 181,905 — 191,478 additional system entities to force
the malicious root causes above the pruning threshold.> The
attacker could achieve this by simply creating new system
entities, or establishing information flows between attack
nodes and existing entities, with the latter minimizing the
transformation size. This behavior is possible and would

5. These numbers assume the pruning threshold is fixed at 186,061
nodes and does not increase as more nodes are added to the graph.

force an attacker’s root causes out of the root node set, but
the attacker would still need to evade the IDS. As shown in
section 5.7, this means calculating an adversarial sample
that, in addition to the base attack, must mask a highly
conspicuous addition of 190k edges. From our experiments,
generating a single-edge modification using an adversarial
attack could take 1.5 — 2 hours, and we would expect this
cost to increase dramatically given the size of the new attack
graph. Further, without the root nodes R-CAID becomes a
Vanilla GNN, which as shown in Figure 9b is still able to
detect a large proportion of the attack with low FPR. Thus,
it is not clear that this is a practical threat; we leave further
exploration to future work.

Omitted Provenance Context: Provenance graphs are so
rich in contextual information that tends to be discarded in
most provenance systems. A notable omission in R-CAID
is edge attributes, including event types and timestamps, as
off-the-shelf GNNs do not support them. While the source
and destination node types imply the event type, timestamps
are an important component of provenance graphs and their
omission may give rise to some future form of adversarial
attack. A promising direction for future Provenance-based
IDS research would be to leverage heterogeneous GNNs
[85] so that the model could harness this important context
during embedding.

Ground Truth Labeling: Work on provenance graph anal-
ysis suffers from a lack of consistency when labeling at-
tack data; strategies range from tagging a small subset of
attack-related data sources [5] to labeling an entire system
graph as malicious [9]. Having precise ground truth was
especially important for R-CAID due to it being the first
node-level Provenance-based IDS. Our labeling procedure,
described in § 5.2, attempts to label every attacker-controlled
or influenced process as malicious. To facilitate community
discussion and review, our labels alongside the R-CAID
source code can be found on BitBucket.

8. Conclusion

This work presents R-CAID, the first Provenance-based
IDS to incorporate root cause analysis. We demonstrate
that R-CAID performs effectively against a passive attacker
in the more challenging node-level (as opposed to whole-
system) classification model, providing improved signal-to-
noise as compared to state-of-the-art systems. We go on
to show that our incorporation of RCA provides intrinsic
resilience to mimicry attacks, even against unrealistically
powerful adversaries. We hope that further incorporation of
principles from the provenance literature will continue to
improve HIDS.

Acknowledgment

We would like to thank the anonymous reviewers for
their helpful feedback to improve the paper. This work
was supported by NSF under contracts CNS-20-55127 and
CNS-20-55233. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the

authors and do not necessarily reflect the views of their
employers or the sponsors.

References

[1] “MITRE ATT&CK,” https://attack.mitre.org, 2019.

[2] FireEye, Inc., “How Many Alerts is Too
Many to Handle?” https://www?2.fireeye.com/
StopTheNoise-IDC-Numbers-Game- Special-Report.html, 2019.

[3] “Automated Incident Response: Respond
to Every Alert,” https://swimlane.com/blog/

automated-incident-response-respond-every-alert/, 2019.

[4] J. Basra and T. Kaushik, “MITRE ATT&CK as a Framework
for Cloud Threat Investigation,” https:/cltc.berkeley.edu/publication/
mitre-attck/, Oct 2020.

[5S] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik,
X. Zhang, and D. Xu, “ATLAS: A sequence-based learning approach
for attack investigation,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
3005-3022. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity2 1/presentation/alsaheel

[6] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F
Ye, Z. Liu, and X. Xiao, “Back-Propagating system dependency
impact for attack investigation,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 2461-2478. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity22/presentation/fang

[71 W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.”

[8] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. N. Venkatakrishnan,
“Propatrol: Attack investigation via extracted high-level tasks,” in
Information Systems Security, V. Ganapathy, T. Jaeger, and R. Shya-
masundar, Eds. Cham: Springer International Publishing, 2018, pp.
107-126.

[9] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-
efficient anomaly detection in streaming heterogeneous graphs,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1035-1044.

[10] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer,
and H. Chen, “{SIGL}: Securing software installations through deep
graph learning,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2345-2362.

[11] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “Frap-
puccino: fault-detection through runtime analysis of provenance,”
in 9th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 17), 2017.

[12] X. Han, T. Pasqueir, A. Bates, J. Mickens, and M. Seltzer, “Uni-
corn: Runtime Provenance-Based Detector for Advanced Persistent
Threats,” in 27th ISOC Network and Distributed System Security
Symposium, ser. NDSS’20, February 2020.

[13] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “Holmes: real-time apt detection through correlation of suspi-
cious information flows,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1137-1152.

[14] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Chen, W. Cheng, C. A. Gunter et al., “You are what you do:
Hunting stealthy malware via data provenance analysis.” in NDSS,
2020.

[15] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A hybrid approach to enable efficient real-time provenance based
intrusion detection in big data environments,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 6, pp. 1283-1296,
2020.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

A. Goyal, X. Han, A. Bates, and G. Wang, “Sometimes, You Aren’t
What You Do: Mimicry Attacks against Provenance Graph Host
Intrusion Detection Systems,” in 30th ISOC Network and Distributed
System Security Symposium, ser. NDSS’23, February 2023.

VMware, “Carbon Black Cloud,” https://www.vmware.com/products/
carbon-black-cloud.html, Last accessed April 2022.

Splunk Inc., “splunk,” https://www.splunk.com, Last accessed August
2018.

“Endpoint Detection and Response Solutions
Market,” https://www.gartner.com/reviews/market/

endpoint-detection-and-response-solutions, 2019.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, 2017, pp. 1285-1298.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,
R. Zhang, S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection
of sequential and quantitative anomalies in unstructured logs.” in
IJCAL vol. 19, no. 7, 2019, pp. 4739-4745.

S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao,
“Self-attentive classification-based anomaly detection in unstructured
logs,” in 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 2020, pp. 1196-1201.

A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly
detection,” ICT Express, vol. 6, no. 3, pp. 229-237, 2020.

S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocatlie,
A. Gehani, V. Yegneswaran, D. Xu, and S. Jha, “Kernel-supported
cost-effective audit logging for causality tracking,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, 2018, pp. 241-254. [Online]. Available:
https://www.usenix.org/conference/atc 18/presentation/ma- shiqing

Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in International conference on machine learning.
PMLR, 2014, pp. 1188-1196.

H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616-1637, 2018.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings 1996 IEEE Symposium
on Security and Privacy, May 1996, pp. 120-128.

D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference

on Computer and Communications Security, ser. CCS ’02. New
York, NY, USA: Association for Computing Machinery, 2002, pp.
255-264. [Online]. Available: https://doi.org/10.1145/586110.586145

Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Zhen, W. Cheng, C. A. Gunter, and H. chen, “You Are What
You Do: Hunting Stealthy Malware via Data Provenance Analysis,”
in 27th ISOC Network and Distributed System Security Symposium,
ser. NDSS’20, February 2020.

K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage Collecting
Audit Log,” in Proceedings of the 2013 ACM SIGSAC conference

on Computer and Communications Security, ser. CCS "13. New
York, NY, USA: ACM, 2013, pp. 1005-1016. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516731

S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Prove-
nance Tracing by Alternating Between Logging and Tainting,” in
Proceedings of NDSS 16, Feb. 2016.

S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple Perspective Attack Investigation with Semantic Aware Ex-
ecution Partitioning,” in 26th USENIX Security Symposium, August
2017.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

W. U. Hassan, N. Aguse, M. Lemay, T. Moyer, and A. Bates, “To-
wards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs,” in Proceedings of the 25th ISOC Network and
Distributed System Security Symposium, ser. NDSS’18, San Diego,
CA, USA, February 2018.

Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie, A. Gehani, and V. Yegneswaran, “Mci:
Modeling-based causality inference in audit logging for attack in-
vestigation,” in Proc. of the 25th Network and Distributed System
Security Symposium (NDSS’18), 2018.

A. Bates, W. U. Hassan, K. R. Butler, A. Dobra, B. Reaves, P. Cable,
T. Moyer, and N. Schear, “Transparent Web Service Auditing via Net-
work Provenance Functions,” in 26th World Wide Web Conference,
ser. WWW’17, Perth, Australia, April 2017.

V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
System Logs With SGX,” in Proceedings of the 2017 ASIA CCS,
ser. ASIA CCS ’17, 2017.

R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. W. Fletcher,
A. Miller, and D. Tian, “Custos: Practical Tamper-Evident Auditing of
Operating Systems Using Trusted Execution,” in 27th ISOC Network
and Distributed System Security Symposium, ser. NDSS’20, February
2020.

R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging
to the danger zone: Race condition attacks and defenses on
system audit frameworks,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 1551-1574. [Online]. Available: https:
//doi.org/10.1145/3372297.3417862

C. Yagemann, M. Noureddine, W. U. Hassan, S. Chung, A. Bates,
and W. Lee, “Validating the integrity of audit logs against execution
repartitioning attacks,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
21, 2021.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph con-
volutional networks for semi-supervised learning,” in Thirty-Second
AAALI conference on artificial intelligence, 2018.

G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gens
go as deep as cnns?” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 9267-9276.

Groth, Paul and Moreau, Luke, ‘“Prov-overview: an overview of the
prov family of documents,” 2013.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware Storage Systems,” in Proceedings of the Annual
Conference on USENIX *06 Annual Technical Conference, ser. Pro-
ceedings of the 2006 Conference on USENIX Annual Technical
Conference, Jun. 2006.

T. F. J. . Pasquier, J. Singh, D. Eyers, and J. Bacon, “Camflow:
Managed data-sharing for cloud services,” IEEE Transactions on
Cloud Computing, vol. 5, no. 3, pp. 472-484, July 2017.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on dy-
namic graphs,” arXiv preprint arXiv:2006.10637, 2020.

R. Thorndike, “Who belongs in the family?” Psychometrika, vol. 18,
no. 4, pp. 267-276, 1953.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855—
864.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Sim-
plifying graph convolutional networks,” in International conference on
machine learning. PMLR, 2019, pp. 6861-6871.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929-1958, 2014.

E. Manzoor, S. M. Milajerdi, and L. Akoglu, “StreamSpot: Detecting
network anomalies in edge streams (Source Code and Data),” https:
//sbustreamspot.github.io/, 2016.

B. Jacob, P. Larson, B. Leitao, and S. Da Silva, “Systemtap: instru-
menting the linux kernel for analyzing performance and functional
problems,” IBM Redbook, vol. 116, 2008.

D. 120, “Transparent computing engagement 5 data release,” https:
//github.com/darpa-i20/Transparent-Computing, 2020.

L. Akoglu, “Online detection of anomalous heterogeneous graphs
with streaming edges,” in 2017 IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE, 2017, pp. 968-968.

Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
deep learning-based system log analysis for anomaly detection,” arXiv
preprint arXiv:2107.05908, 2021.

A. Bojchevski and S. Giinnemann, “Adversarial attacks on node
embeddings via graph poisoning,” in International Conference on
Machine Learning. PMLR, 2019, pp. 695-704.

K. Xu, H. Chen, S. Liu, P-Y. Chen, T.-W. Weng, M. Hong, and
X. Lin, “Topology attack and defense for graph neural networks: An
optimization perspective,” arXiv preprint arXiv:1906.04214, 2019.

S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detec-
tion,” in 2006 IEEE Symposium on Security and Privacy (S P’06),
May 2006, pp. 15 pp.—62.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and Weibo
Gong, “Anomaly detection using call stack information,” in 2003
Symposium on Security and Privacy, 2003., May 2003, pp. 62-75.

J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller, “Environment-
sensitive intrusion detection,” in Recent Advances in Intrusion
Detection, A. Valdes and D. Zamboni, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 185-206.

W. Lee and S. J. Stolfo, “Data mining approaches for intrusion
detection,” in Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, ser. SSYM’98. USA: USENIX Association,
1998, p. 6.

C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions us-
ing system calls: alternative data models,” in Proceedings of the 1999
IEEE Symposium on Security and Privacy (Cat. No.99CB36344),
May 1999, pp. 133-145.

A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using
variable-length audit trail patterns,” in Recent Advances in Intrusion
Detection, H. Debar, L. Mé, and S. F. Wu, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 110-129.

T. Bass, “Intrusion detection systems and multisensor data fusion,”
Commun. ACM, vol. 43, no. 4, pp. 99-105, Apr. 2000. [Online].
Available: http://doi.acm.org/10.1145/332051.332079

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in
Proceedings 2001 IEEE Symposium on Security and Privacy. S P
2001, May 2001, pp. 144-155.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

D. Gao, M. K. Reiter, and D. Song, “On gray-box program tracking
for anomaly detection,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. USA:
USENIX Association, 2004, p. 8.

G. Gu, A. A. Céirdenas, and W. Lee, “Principled reasoning and
practical applications of alert fusion in intrusion detection systems,”
in Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS *08. New
York, NY, USA: ACM, 2008, pp. 136-147. [Online]. Available:
http://doi.acm.org/10.1145/1368310.1368332

K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self:
Probabilistic reasoning of program behaviors for anomaly detection
with context sensitivity,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 2016,
pp. 467-478.

C. Ko, G. Fink, and K. Levitt, “Automated detection of vulnerabilities
in privileged programs by execution monitoring,” in Tenth Annual
Computer Security Applications Conference, Dec 1994, pp. 134—144.

D. Wagner and R. Dean, “Intrusion detection via static analysis,” in
Proceedings 2001 IEEE Symposium on Security and Privacy. S P
2001, May 2001, pp. 156-168.

J. E. Tapiador and J. A. Clark, “Masquerade mimicry attack detection:
A randomised approach,” Computers & Security, vol. 30, no. 5, pp.
297-310, 2011.

W. Khreich, S. S. Murtaza, A. Hamou-Lhadj, and C. Talhi,
“Combining heterogeneous anomaly detectors for improved software
security,” Journal of Systems and Software, vol. 137, pp. 415
— 429, 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121217300420

G. P. Spathoulas and S. K. Katsikas, “Using a fuzzy inference system
to reduce false positives in intrusion detection,” in International
Conference on Systems, Signals and Image Processing, 2009.

T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson,
A. Juels, and E. Kirda, “Beehive: Large-scale log analysis for
detecting suspicious activity in enterprise networks,” in Proceedings
of the 29th Annual Computer Security Applications Conference, ser.
ACSAC ’13. New York, NY, USA: ACM, 2013, pp. 199-208.
[Online]. Available: http://doi.acm.org/10.1145/2523649.2523670

F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Com-
prehensive approach to intrusion detection alert correlation,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 3,
pp. 146-169, July 2004.

A. Sadighian, J. M. Fernandez, A. Lemay, and S. T. Zargar, ONTIDS:
A Highly Flexible Context-Aware and Ontology-Based Alert
Correlation Framework. Cham: Springer International Publishing,
2014, pp. 161-177. [Online]. Available: https://doi.org/10.1007/
978-3-319-05302-8_10

F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng,
“Log2vec: A heterogeneous graph embedding based approach for
detecting cyber threats within enterprise,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS a4€™19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1777a€“1794. [Online]. Available:
https://doi.org/10.1145/3319535.3363224

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via
community discovery on correlated log graph,” in Proceedings of the
32Nd Annual Conference on Computer Security Applications, 2016,
pp. 583-595.

W. U. Hassan, A. Bates, and D. Marino, “Tactical Provenance Anal-
ysis for Endpoint Detection and Response Systems,” in 41st IEEE
Symposium on Security and Privacy (SP), ser. Oakland’20, May 2020.

A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “{ATLAS}: A sequence-based learning approach for
attack investigation,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3005-3022.

[84] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks,
vol. 6, no. 1, pp. 1-23, 2019.

[85] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data
mining, 2019, pp. 793-803.

[86] M. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan, “SoK: History is a Vast Early Warning
System: Auditing the Provenance of System Intrusions,” in 2023
IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 307-325. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00018

[87] M. A. Inam, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan, “FAuST: Striking a Bargain between
Forensic Auditing’s Security and Throughput,” in Proceedings
of the 38th Annual Computer Security Applications Conference,
ser. ACSAC ’22. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 813-826. [Online]. Available:
https://doi.org/10.1145/3564625.3567990

Appendix A.
Graph Neural Network Layers

For our implementation of R-CAID, we used Attention
and Multi-Layer Perceptron (MLP) for the update U and
aggregation A function, respectively.

o Attention learns a weighting such that the essential
features of a node have the most substantial influence on its
classification. In our setting, we can represent Attention in
our aggregation function as follows: A(N;) = Zjvzl xéﬁl *
w’, where w is a learned weight associated with the feature
vector x; of each node in N;.

e An MLP can learn the optimal update for xff and
A(N;). MLP are simple neural network layers that reduce
the dimension such that given an input x! '[|A(NN;)® it
outputs z!. Reducing the dimension forces MLP to learn
the best combination between !, A(NV;) such that 2! is a

good representation for both inputs.

1

We used Attention as our aggregator because it learns
a weight for every incoming edge connection. Provenance
graphs are call graphs representing fine-grained system ac-
tivity and are inherently noisy. For example, within sec-
tion 5.2, the StreamSpot dataset contains 100 provenance
graphs representing the same behavior occurring on the
same system. The largest graph for a user browsing CNN
is 900106 edges, while the size of the smallest graph has
204263 edges. Moreover, inserting additional edges between
the pseudo-provenance graph and base provenance graph
creates additional noise for R-CAID to model. Attention is
helpful to cut through the noise and identify the essential
parts of the underlying data allowing R-CAID to provide a
more accurate embedding for each node concerning anomaly
detection.

6. || denotes concatenation

Appendix B.
Meta-Review

B.1. Summary

This paper proposes an anomaly detector that leverages
a provenance graph of system processes, with the goal of de-
tecting abnormal processes using a root-cause analysis. The
central insight that this paper leverages is that summarizing
the graph into local neighborhoods causes blind spots in
performing anomaly detection with the graph. So, the paper
creates a pseudo-graph that, roughly speaking, essentially
forms the transitive closure of the original graph, so that
local neighborhoods in the pseudo-graph represent more
global neighborhoods in the original graph. Then, graph-
based anomaly detection is performed using the pseudo-
graph.

B.2. Scientific Contributions

e Creates a New Tool to Enable Future Science

e Addresses a Long-Known Issue

« Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This paper does a very good job of introducing the
problem and discussing the issue with the current
approach which is basically that depth of the graph
is proportional to size of the neighborhood that will
be investigated for root cause analysis. This has
the potential to miss paths that are longer than a
certain length. It may be the case that the observed
malicious effect (e.g., sshd writes to a file it’s not
supposed to) is many hops behind the root (e.g.,
firefox clones a process it should not have). The
augmentation of pseudo root information in the
graph embedding is a step forward to addressing
the issue.

2) The experimental results are rich, comprehensively
comparing the accuracy and performance of R-
CAID and baseline, and verifying the experimental
results of parameter selection and adversarial at-
tacks.

B.4. Noteworthy Concerns

The paper is correct to point out that leveraging only
local neighborhoods of events/processes for anomaly de-
tection gives opportunities for mimicry, but this is not the
only one. Nearly any shortcut that an IDS must make to
manage its resource usage is an opportunity for mimicry —
the adversary simply has to find a way to push its behavior
into the part of the space to which the IDS designers have
chosen to blind the IDS, in order to work within the available
resources. The opportunity for mimicry that stood out to

reviewers in this work is one whereby an attacker would
cause its roots to be pruned from the graph by inducing
connections to more than the required threshold number
of nodes; the submitted paper simply described this as
“unlikely”, but it was not entirely clear to reviewers why
that should be the case.

Appendix C.
Response to the Meta-Review

We want to thank the reviewers for their insightful
feedback. In response to the noteworthy concern of an
adversary abusing the root pruning mechanism, we have
extended our discussion section to consider this issue more
fully. To summarize, forcing a malicious root cause to be
omitted would require applying a significant transformation
to the provenance graph, and attempting to do so would
further increase the costs of a successful evasion. This
is because, without root causes, R-CAID is effectively a
standard GNN; we demonstrate the GNN to be modestly
resilient to adversarial perturbation (Figure 9) even prior to
the attacker’s conspicuous attempt to prune malicious root
causes.

	Introduction
	Motivation
	Prior Approaches
	The Curse of Locality

	Threat Model
	R-caid Design
	Graph Neural Network
	Root Node Embedding
	Training Procedure
	Testing Procedure
	Optimization: Prune Highly-Connected Roots

	Evaluation
	Implementation
	Datasets and Ground Truth Labeling
	Labeling Methodology
	Hyper-parameter Search
	Process vs. All Node Classification
	Pruning Highly-Connected Nodes

	Comparison to Related Work
	Vanilla GNN
	Log Sequence Analyzers
	Commercial EDR

	Performance of R-caid
	Adversarial Attack Results
	Graph-Based Adversarial Attack
	Adapting Adversarial Attacks To R-caid
	Adversarial Attack Results

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Graph Neural Network Layers
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix C: Response to the Meta-Review

