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Figure 1. Region-level Attack on a Segment Anything Model (SAM). The left image shows the original clean image—objects are well

segmented when a user clicks on the object region (user clicks are denoted by green stars). The right image shows the attacked image—the

corgi in the yellow box (attack-target region) can no longer be identified by SAM no matter where the user clicks within the box. Note that,

the regions outside of the yellow box in the image are not affected by the attack.

Abstract

Segment Anything Models (SAM) have made significant

advancements in image segmentation, allowing users to

segment target portions of an image with a single click (i.e.,

user prompt). Given its broad applications, the robust-

ness of SAM against adversarial attacks is a critical con-

cern. While recent works have explored adversarial attacks

against a pre-defined prompt/click, their threat model is not

yet realistic: (1) they often assume the user-click position

is known to the attacker (point-based attack), and (2) they

often operate under a white-box setting with limited trans-

ferability. In this paper, we propose a more practical region-

level attack where attackers do not need to know the precise

user prompt. The attack remains effective as the user clicks

on any point on the target object in the image, hiding the

object from SAM. Also, by adapting a spectrum transforma-

tion method, we make the attack more transferable under

a black-box setting. Both control experiments and testing

against real-world SAM services confirm its effectiveness.

*Equal Contribution

1. Introduction

Segment Anything Models (SAM) leverage foundational

models for promtable image segmentation [16], which has

shown outstanding performance. SAM can delineate ob-

jects of interest into masks based on user prompts (e.g.,

point of user clicks). As SAM is used for mission-critical

applications such as healthcare image analysis [22, 24] and

scene understanding for autonomous driving [48], the ro-

bustness of SAM (against adversarial attacks) raises con-

cerns. For example, adversaries may manipulate the im-

ages/videos taken by autonomous vehicles to hide key ob-

jects (e.g., traffic signs, vehicles) from the image segmenta-

tion module, posting threats to driving safety.

While recent work has explored adversarial attacks

against SAM [44, 50], their threat models are not yet real-

istic. For instance, Attack-SAM [44] proposes a white-box

attack to hide an object in the image from being segmented

by SAM. However, Attack-SAM assumes the precise point

location where the user clicks and the model parameters

are both known to the attacker. Sheng et al. [50] investi-

gated another attack (TAA) under a different threat model.

Their goal is to mislead SAM to output a mask of attacker-

specified shape—instead of hiding the object from SAM

(which is our main focus). Their results also show that this

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

194



is a challenging problem: while TAA has some transferabil-

ity, the attack effect is majorly weakened after transferring.

In this paper, we introduce a region-level attack to ex-

plore a more practical threat model (see Fig. 1). The at-

tacker’s goal is to conceal the object within an attacker-

specified region from SAM’s segmentation. In this case,

the attacker does not need to know the precise point of the

click of the user—no matter which point in the region is

clicked by the user, the object cannot be accurately seg-

mented by SAM. In addition, we investigate to improve the

transferability of the attack such that it can operate under

a black-box setting. As shown in Fig. 1, after applying the

adversarial perturbation to the image, clicking on any point

in the yellow box (attacker-specified region) will no longer

separate the corgi from the rest of the image.

Under this threat model, we first develop a Sampling-

based Region Attack (S-RA), a basic method for region-

level adversarial attacks, and then improve its transferabil-

ity with a Transferable Region Attack (T-RA). Our design is

based on two key intuitions. First, sparsely sampled points

in the region can constitute a surrogate target of all pixels in

the region. Second, even when the involved region goes be-

yond a single point, adding perturbations in the frequency

domain when attacking the surrogate model can improve

the transferrability [20]. Therefore, our method first ap-

plies spectrum transformation to the image in order to sim-

ulate the spectrum saliency map [20] of the victim model.

Then it estimates the optimization target with evenly sam-

pled points in the region and conducts the optimization with

a PGD attack [23] to generate adversarial noises.

We evaluated the proposed attacks on multiple SAM

variants including ViT-B, ViT-H and ViT-L [16] and demon-

strated the effectiveness of the attacks under both white-box

and black-box settings. We extensively evaluated the attack

transferability to a variety of SAM architectures including

EfficientSAM (S and Ti) [40], Fast-SAM (S and X)[47],

MobileSAM [43], and HQ-SAM (B, L, and H) [15]. We

also confirm the effectiveness of the attack (optimized with

a local ViT-B) against a real-world SAM service. Our result

highlights the realism of the risk and calls for new defense

methods to improve the robustness of SAM.

Our contributions are summarized as follows.

• We present a region-level attack against SAM, a more

practical threat model where attackers do not need to

know the precise user prompt.

• We designed novel attack methods, Sampling-based Re-

gion Attack (S-RA) and Transferable Region Attack (T-

RA), that undermine SAM’s segmentation ability under

both white-box and black-box settings.

• Extensive experiments demonstrate that S-RA and T-RA

can successfully attack the original SAM and its variants.

2. Related Works

2.1. Adversarial Attacks

Deep neural networks are known to be susceptible to ad-

versarial examples, which are samples that appear indistin-

guishable from genuine ones to the human eye but can mis-

lead models into producing incorrect outputs [2, 31, 51].

Attacks are manifested in two settings: white-box and

black-box. In the white-box setting, attackers can access all

model knowledge, including architecture, parameters, and

gradients. This setting is often used to assess model robust-

ness rather than actual attacks [3, 10, 23]. White-box at-

tacks, such as Fast Gradient Sign Method (FGSM) [10] and

projected gradient descent (PGD) [23], allow full visibil-

ity into the target model to generate adversarial examples.

In contrast, black-box attacks operate under limited knowl-

edge [12, 36, 39, 42]. Notable techniques include updating

gradients with momentum (MI-FGSM) [7], smoothing gra-

dients with a kernel (TI-FGSM) [8], and resizing adversar-

ial examples for input diversity (DI-FGSM) [39]. These

methods are grounded in the principle of the transferabil-

ity of adversarial examples exploiting vulnerabilities inher-

ent across multiple models without specific insights into the

target model’s internals [42, 49].

2.2. Segment Anything Model and Variants

In the domain of image segmentation, major advance-

ment has been made by the “Segment Anything Models”

(SAM) [16]. SAM uses foundational models and capital-

izes on the principles established by prior works, underscor-

ing the importance of multi-scale features and iterative re-

finement for segmentation [1, 28, 46]. SAM’s versatility is

further explored through its application across diverse con-

texts, for example, medical image segmentation [21], de-

tection of camouflaged entities [32], and semantic commu-

nication challenges [33]. SAM has been applied to both 2D

and 3D environments, highlighting its potential in semantic

labeling [4], object tracking [41, 45], and 3D object seg-

mentation [6, 30].

In recent variants of SAM, SEEM [52] allows users

to segment images using various “prompts”, including

points, markers, boxes, scribbles, text, and audio. HQ-

SAM [15] enhances the ability to accurately segment any

object. Semantic-SAM [17] emerges as a universal im-

age segmentation model that enables segmentation and

recognition at any desired granularity. For improved effi-

ciency, MobileSAM [43] introduces object-aware prompt

sampling, replacing the grid-search prompt sampling in the

original SAM, to expedite the segmentation process. Effi-

cientSAM [40] leverages Masked Image Pretraining to im-

prove segmentation efficiency. Fast Segment Anything [47]

speeds up the original SAM model by 50x.

Prior works have assessed the robustness of traditional
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segmentation models against adversarial attacks [9, 14, 26,

35, 38]. More recent works have explored the problem in

the context of SAM [29, 44], using imperceivable adver-

sarial perturbations. Yu et al. [27] introduce an attack that

produces visible image corruptions such as style changes,

occlusions, and local patch attacks. However, as discussed

in Sec. 1, the existing SAM attacks’ threat model is not yet

realistic by assuming knowing precise user prompt (under

a white-box setting), and we aim to improve the realism of

the attack with a region-based attack (black-box setting).

3. Preliminary

Segment Anything Model (SAM). SAM introduces a

novel, promptable segmentation framework to generate pre-

cise masks for a given image and a prompt. While the orig-

inal SAM [16] supports points, text, and boxes as prompts,

in this work, we primarily focus on the point prompt sce-

nario (similar to [44, 50]), leaving other types of prompts

for future exploration. At its core, SAM comprises three

key components: an image encoder, a prompt encoder, and a

mask decoder. The image encoder leverages a Vision Trans-

former (ViT) architecture, pretrained using the Masked Au-

toencoder (MAE) [13], to extract feature representations

from input images. The prompt encoder employs positional

embeddings to encode prompts. The mask decoder synthe-

sizes the outputs from both encoders to predict segmenta-

tion masks, thus determining the segmented object based on

the synergy between the image and the prompt. The mask

prediction process in SAM is defined as follows:

y = SAM(p, x; ¹) (1)

where p and x denote the input prompt and image, respec-

tively, and ¹ symbolizes the model’s parameters. Given an

image x ∈ R
H×W , the output y mirrors the input image’s

dimensions, with H , and W representing the height, and

width, respectively. The pixel coordinates within image x
are denoted by i and j. The mask region is delineated by

the predicted values yij where values exceeding a defined

threshold (e.g., 0) are classified as part of the segmented

object. During inference, the final binary mask is obtained

as follows, where sign denotes the sign function.

Mpred = sign(y) (2)

Projected Gradient Descent Attack. Projected gradient

descent (PGD) attack [23] is a popular adversarial attack

method. It utilizes the first-order gradient and iteratively

finds the solution to the optimization problem within the

allowed perturbation set. The algorithm can be concisely

represented as follows:

x(t+1) = Clipx,ϵ

(

x(t) + ³ · sign(∇xL(¹, x
(t), y))

)

(3)

where x(t) is the adversarial example at iteration t, ³ is the

step size, L is the loss function defined by the specific task,

¹ represents the model parameters, and y is the ground-truth

label. The function Clipx,ϵ ensures that the perturbed im-

age remains within an ϵ-neighborhood of the original im-

age, which means ∥¶∥∞ < ϵ. In other words, ϵ controls the

magnitude of the adversarial perturbation. The method is

untargeted (i.e., the adversarial example aims to obtain any

other labels that are not the ground-truth label y). It serves

as a fundamental building block of our attack method.

4. Method

In this section, we introduce the threat model and our de-

tailed attack method. We start with the basic point-level

attack setting and then build the idea of region-level attacks

on top of it, and then use spectrum transformation to further

improve the transferability.

4.1. Threat Movel and Attack Overview

Point-level Attack. Point-level attack [44] was previ-

ously proposed to attack SAM, assuming the attacker knows

the user prompt (i.e., click point). The goal of the attack

is to conceal a target object, which is formulated as min-

imizing the prediction values of the SAM-generated mask

y. Formally, given an image x and a set of permissible ad-

versarial perturbations, S, constrained by predefined attack

strength parameters, the goal is to compute the adversarial

perturbation ¶ that obliterates the mask when the model is

prompted with a specific point (p). The loss function is de-

fined as:

L(x, p) = ∥Clip (SAM(p, x+ ¶; ¹),

min = Negth)−Negth∥
2
, (4)

where ¹ is the parameters of the target model, and Negth is

a negative hyperparameter threshold used by SAM to seg-

ment an object (see Sec. 3). Following [44], we set Negthto

-10, as the non-mask regions often have values around this

threshold. The point-level threat model is the following op-

timization problem:

¶∗ = argmin
¶∈S

L(x, p) (5)

where ¶∗ represents the optimal value of ¶, which is the per-

turbation that achieves the best adversarial effect. The ap-

plication of the clip function is strategic, preventing the pre-

dictive values from becoming excessively negative, which

could inadvertently impede the optimization process. This

ensures that predicted values, SAM(p, x + ¶), are coerced

towards being less than or equal to Negth, with clipping

applied to maintain values above this threshold.
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Region-level Attack. Region-level attack allows the user

to specify a region R where SAM should fail to segment the

objects regardless of the user prompts. Formally,

¶∗ = argmin
¶∈S

Ep∼uniform(R)[L(x, p)] (6)

which means for a point uniformly sampled from R, we

minimize the expectation of SAM’s segmentation mask’s

area. In this work, we assume that R is a rectangle that

covers the object specified by the attacker.

4.2. Sampling­based Region Attack (S­RA)

First, we discuss a white-box attack. Directly optimizing

Eq. (6) is computationally intensive due to the large num-

ber of pixels in an image. Alternatively, we sample points

in the region and create the substitute loss function. We uni-

formly select points by partitioning the R into a grid where

m points are chosen along the horizontal axis and n points

along the vertical axis, resulting in a total of m × n points.

The loss function for the point set is

LSRA(x, P ) =
1

m× n

∑

p∈P

L(x, p) (7)

Compared with random sampling used in previous

work [50], this structured selection process ensures compre-

hensive coverage of the targeted region. Each point within

this grid is subsequently targeted with the point attack strat-

egy.

In the later experiments (Sec. 5), we will evaluate the at-

tack effectiveness by randomly selecting a point within the

region R as a prompt to examine the segmentation result.

Note that, the newly selected point during testing time is

not necessarily (unlikely) among these sampled points used

for attack optimization, due to the sparsity of sampling.

4.3. Transferable Region Attack (T­RA)

Under the black-box setting, attackers need to compute ad-

versarial perturbations based on a local substitute model

and then apply the perturbation to attack a different target

model. The above sample-based region attack (S-RA) has

shown limited transferability (see Sec. 5), which motivates

us to improve it for black-box attacks. More specifically, we

introduce a transferable region attack (T-RA) by adapting

spectrum transformation (ST) [20]. While spectrum trans-

formation was initially devised to improve adversarial at-

tacks targeting image classifiers, we have discovered that

its effectiveness extends to attacking SAM variants as well.

To improve transferability, model augmentation [19] uti-

lizes loss-preserving transformations on the image to avoid

the adversarial attack overfitting the current model. Spec-

trum Transformation (ST) [20] is a form of model augmen-

tation that perturbs the image in the frequency domain. The

intuition is the following: regions of high and low frequency

Algorithm 1 Transferable Region Attack (T-RA)

Input: SAM model f , image x, sampled points P in the re-

gion, original segmentation y, perturbation limit ϵ, negative

threshold neg th, number of steps N , number of spectrum

transformed samples M , PGD attack step size ³, spectrum

transformation hyperparameters Ä and ¸
Output: Adversarial image x

′

1: procedure T-RA

2: Lbest ←∞
3: x

′ ← x

4: ¶ ← 0
5: for step = 1 To N do

6: ¶sum ← 0
7: for i = 1 To M do

8: x1 ← ST(x, Ä, ¸) + ¶
9: L← LSRA(x1, P )

10: ¶temp ← sign( ∂L
∂x1

) ∗ ³
11: ¶sum ← ¶sum + ¶temp

12: end for

13: ¶ ← ¶sum/M + ¶
14: x′ ← Clip(x+ ¶, x− ϵ, x+ ϵ)
15: end for

16: return x
′

17: end procedure

in the image correspond to areas of significant and minor

pixel variations respectively. High-frequency areas often

represent edges and textures, indicative of rapid pixel inten-

sity changes, while low-frequency areas denote smoother,

homogeneous regions that often encompass entire objects.

Different SAM variants depend on different frequency do-

mains of interest to make predictions. By manipulating the

spectrum of the image, the idea is to simulate and exploit

feature variations of different victim models to enhance the

transferability of adversarial attacks. The Discrete Cosine

Transform (DCT) and inverse Discrete Cosine Transform

(iDCT) are utilized to transform the image back and forth

in the spatial and spectrum space. The transformation is

formalized as follows:

ST (x, Ä, ¸) = iDCT(DCT(x+ ¸)»M(Ä)), (8)

where x denotes the original image, ¸ is a noise vector

drawn from a normal distribution N (0, Ã2
I), and M(Ä) a

mask with elements sampled from a uniform distribution

U(1 − Ä, 1 + Ä). The operation » represents element-wise

multiplication. Note that Ä controls the strength of perturba-

tion. When Ä is too high, the resulting image may not pre-

serve the semantics of the original image; in contrast, when

Ä is too low, the adversarial example loses transferability.

We detail the implementation of our T-RA attack in Al-

gorithm 1. The algorithm takes in a set of parameters in-

cluding the target model f , an original image x, and a pre-
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defined attack region R. The process iterates over a pre-

defined number of steps (N ) and a predefined number of

spectrum-transformed samples (M ), dynamically adjusting

the perturbation ¶ to minimize the loss L, thereby maximiz-

ing the adversarial effect. The parameter ϵ represents the

maximum allowable change for each pixel value in the im-

age, ensuring that the perturbations remain imperceptible

to the human eye. The algorithm applies spectrum simu-

lations, transforming the image x into x1 (line 8), for im-

proving the transferability of the final adversarial example

x
′. Following [44], we use PGD for attack optimization.

5. Evaluation

5.1. Experimental Setup

Our experiments are conducted primarily using two vari-

ants of the SAM models [16]: ViT-B (91M parameters), and

ViT-H (636M parameters). A third ViT-L model (308M pa-

rameters) will be used only for selective experiments. More

specifically, ViT-B will be used for white-box evaluation.

Then for the the black-box evaluation, we run transferred

attacks from the smaller ViT-B model to the larger ViT-

H model. Finally, in Sec. 6, we further explore the attack

transferability to four more SAM variants.

We evaluate both the sample-based region attack (S-RA)

and practical region attack (T-RA). We begin by defining a

target region within the image and then test clean images

with both ViT-B and ViT-H models. We set the width and

height of regions to be one-third of the original image. On

the clean image, we perform click-based segmentation on

a randomly selected point (p) within the predefined region,

resulting in a segmentation mask termed Maskclean. Sub-

sequently, we apply the attack method (either S-RA or T-

RA) to attack the images and retest them at the same point

(p) in both ViT-B and ViT-H models. This attacked image

yields another segmentation mask Maskadv . A compara-

tive analysis of Maskclean and Maskadv is conducted to

assess the efficacy of the attack.

Baseline. Regarding the baseline, given our attack has

a novel threat model, we adapt Attack-SAM [44] to our

threat model. More specifically, we run Attack-SAM to

attack the center of the region, and then during testing

time, the attack is evaluated on a randomly sampled point

in the region (following the same region-level attack pro-

tocol). We acknowledge that Attack-SAM is not designed

for region-level attack—the purpose of the experiment is to

show whether the attack optimized for a pre-defined prompt

can generalize to other (nearby) points in the region.

Dataset. For our evaluation dataset, we randomly select

200 images from the SA-1B dataset [16]. To induce per-

turbations in the images, we constrain the magnitude of ad-

Figure 2. Image segmentation results under different attack meth-

ods on the ViT-B model. The left image is the original clean im-

age. The middle image is attacked by S-RA and the right image is

attached by T-RA. The attack strength is ϵ = 8/255.

ϵ 2/255 4/255 8/255 16/255

AttackSAM [44] 20.56 10.48 4.28 3.69

S-RA 2.99 1.75 1.52 1.27

Table 1. mIoU (%) of the white-box experiment on the ViT-B

model under the S-RA and AttackSAM [44] with varying attack

strengths (ϵ).

versarial perturbation by setting the value of ϵ to four dis-

tinct levels: 2/255, 4/255, 8/255, and 16/255. These val-

ues serve as upper bounds for the perturbation, ensuring

controlled and quantifiable levels of adversarial noise. The

experiments are conducted on NVIDIA A100 GPU to sys-

tematically assess the robustness of the SAM model against

varying degrees of constrained perturbations.

Evaluation Metrics. Following [5, 44], we use the mean

Intersection over Union (mIoU) as our primary evaluation

metric. mloU is a commonly used metric for evaluating

image segmentation. It measures the overlap between the

predicted and the ground-truth segmentation masks. Then

it takes the mean of the loU values across all test samples.

The loU for a single sample is the ratio of the intersection of

the predicted segmentation mask Maskadv and the ground

truth mask Maskclean to their union. Mathematically, the

mloU is expressed as:

mIoU =
1

N

N
∑

i=1

IoU
(

Mask
(i)
adv, Mask

(i)
clean

)

(9)

where N is the total number of samples in the test set. The

value of mIoU ranges from 0 to 1, with a lower value indi-

cating a more effective attack.

5.2. Qualitative and Quantitative Results

We conduct the evaluation under white-box and black-box

settings, respectively. For the white-box setting, we run the

sample-based region attack (S-RA) on the ViT-B model, al-

lowing full access to the model’s architecture and parame-

ters (in comparison with the baseline AttackSAM). We con-

firm the attack is highly successful. As shown in Tab. 1,

a subtle perturbation (ϵ = 2/255) from S-RA can already
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Figure 3. Visualization of white-box and black-box attack results (attack strength ϵ =8/255). The first row shows the original clean images

segmented using the ViT-B model. The second row shows S-RA attack (white-box) trained on ViT-B model and the segmentation results on

the same ViT-B model. The result confirms the effectiveness of S-RA attack under a white-box setting. The third row shows S-RA attack

(black-box) trained on ViT-B model and the segmentation results on a different ViT-H model. The result shows the lack of transferability

of S-RA under a black-box setting. The fourth row shows T-RA attack (black-box) trained on ViT-B model and the segmentation results

on a different ViT-H model. The result shows T-RA transfer well and ViT-H cannot segment correctly under this attack.

effectively remove most of the mask, hiding the target ob-

ject from SAM. This is reflected by the minimal overlap

between the generated mask and the ground-truth mask

(mIoU=2.99%). Comparing with the baseline, we show S-

RA outperforms the adapted AttackSAM [44] across all at-

tack strengths. Fig. 2 shows example attack images from

this experiment.

Next, we evaluate the attacks under the black-box set-

ting: the adversarial examples are first computed with the

ViT-B model and then used to attack a more complicated

ViT-H model. The results are shown in Tab. 2 and exam-

ple images are shown in Fig. 3. The result first confirms

the lack of transferability of the basic S-RA for black-box

attacks (with high mIoU ranging from 31.64% to 46.32%).

Similarly, the baseline AttackSam [44] also does not trans-

fer well. Then we show the improved transferability of the

T-RA strategy with much lower mIoU. For example, when

attack strength is ϵ =8/255, mIoU is below 10%. The result

confirms the effectiveness of T-RA for black-box attacks.

5.3. Ablation Study

ρ of the T-RA. We conduct an ablation study on the Ä pa-

rameter of the T-RA, assessing its impact on the effective-

ness of adversarial attacks (trained on ViT-B; tested on ViT-

H). The study systematically varies Ä across a set of values:

0.01, 0.05, 0.1, 0.2, and 0.3, while maintaining a constant ϵ

ϵ 2/255 4/255 8/255 16/255

AttackSAM [44] 59.58 48.49 43.95 32.47

S-RA 46.32 43.32 40.75 31.64

T-RA (Ä=0.1) 45.01 17.70 9.34 11.43

T-RA (Ä=0.3) 54.91 31.15 9.84 10.16

Table 2. mIoU (%) result of the AttackSAM [44], S-RA and T-RA

on under black-box settings (trained on ViT-B, tested on ViT-H).

For S-RA, the attack is not as strong as the white-box attack (see

Tab. 1). Comparing S-RA and T-RA under the black-box setting,

T-RA has a stronger attack result with an overall lower mIoU under

various settings (especially when Ä = 0.1). This confirms the

effect of spectrum transformation of T-RA.

Ä 0.01 0.05 0.1 0.2 0.3

mIoU (%) 19.32 18.31 17.70 22.98 30.51

Table 3. mIoU of varying the Ä parameter in the T-RA under the

black-box setting (trained on ViT-B; tested on ViT-H), with a fixed

attack strength ϵ = 4/255. The results indicate that a Ä value of

0.1 yields the most effective attack, achieving the lowest mIoU.

value of 4/255. This investigation allows us to discern the

optimal range for Ä. The mIoU percentage results for dif-

ferent Ä values in the T-RA are presented in Tab. 3. Addi-

tionally, Fig. 4 illustrates the visual differences in the adver-

sarial examples generated with varying Ä values. The result

shows that the attack generally works well under these Ä
values, and the best-performing value is 0.1.
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Figure 4. Visualization of the segmentation results under different Ä values for the T-RA under a black-box setting (trained ViT-B; tested

on the ViT-H). The attack strength is fixed as ϵ = 4/255. The first column shows the original clean image’s segmentation result. The

second column is a zoomed-in view to highlight the mask on the clean image. The subsequent columns display the segmentation results for

Ä values of 0.01, 0.1, 0.2, and 0.3, respectively. We find that Ä = 0.1 resulting in the most effective degradation of segmentation accuracy.

Ä, ϵ (/255) 0.1, 4 0.1, 8 0.3, 4 0.3, 8

ViT-L mIoU (%) 13.37 4.40 26.80 6.34

ViT-H mIoU (%) 17.70 9.33 30.51 9.84

Table 4. mIoU (%) result of the effectiveness T-RA under a black-

box setting under various ϵ and Ä settings. The attack is trained on

ViT-B and tested on ViT-L and ViT-H, respectively. Bold values

highlight the most successful attack configurations. Note that the

ϵ values are represented as “4” and “8” for brevity, but they corre-

spond to 4/255 and 8/255, respectively.

T-RA on ViT-L and ViT-H. We then extend our investi-

gation of the T-RA to explore its transferability across other

ViT models from SAM [16], namely the 308M parameters

ViT-L and the 636M parameters ViT-H. Given the substan-

tial variance in model size and complexity, from the 91M

parameters ViT-B to these larger architectures, it is impera-

tive to assess the robustness of our adversarial strategy. We

conduct experiments with ϵ values of 8/255 and 16/255, and

Ä parameters set to 0.1 and 0.3. We show the results in

Tab. 4, with the impact of ϵ and Ä settings on the mIoU

across the ViT-L and ViT-H models. The results confirm

the transferability of both models. Also, the transferability

is consistently higher with larger perturbations (ϵ = 8/255).

Density of Attack Points. Recall that our attack samples

attack points from the target region to compute adversar-

ial examples. Here, we focus on T-RA and investigate the

impact of the attack point density on the attack effective-

ness. We define the density using a parameter ¼, which

¼ 50 60 70 80

mIoU (%) 8.97 10.65 11.50 12.69

Table 5. Impact of varying attack point density on the mIoU metric

for the T-RA attack. A lower ¼ represents a higher point density.

represents the number of pixels between consecutive attack

points sampled in both horizontal and vertical directions.

Recall that we sample m × n attack points using a grid.

Formally, m = W
¼

and n = H
¼

. In our experiments, we test

different values of ¼: 50, 60, 70, and 80 pixels. This means

that for a given ¼, an attack point is placed every ¼ pixels

along both axes, forming a grid-like pattern of attack points

within the region. The experiments are carried out using

images with ϵ = 8/255 and Ä = 0.1 to assess the impact of

¼ on the mIoU metric. The results are presented in Tab. 5.

As expected, a higher density of sampled points (i.e., lower

¼) leads to a more effective attack.

6. Cross Model Transferability

In this section, we further evaluate the transferability of our

adversarial examples with a broader set of SAM variants

with different architectures, under the black-box setting.

The adversarial examples are generated with ϵ = 8/255 and

Ä = 0.1 using T-RA, all trained on ViT-B. The testing SAM

models include EfficientSAM (S and Ti) [40], Fast-SAM

(S and X)[47], MobileSAM [43], and HQ-SAM (B, L, and

H) [15]. These testing models vary in architecture and com-

plexity, from lightweight versions like EfficientSAM (Ti) to
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ϵ 2/255 4/255 8/255 16/255

EfficientSAM (S) [40] 11.80 11.50 11.62 11.38

EfficientSAM (Ti) [40] 8.06 7.92 7.75 7.13

Fast-SAM (S) [47] 40.06 35.14 25.74 21.42

Fast-SAM (X) [47] 67.51 60.15 55.38 37.78

MobileSAM [43] 72.92 52.65 57.01 58.40

HQ-SAM (B) [15] 51.58 21.48 2.61 0.01

HQ-SAM (L) [15] 69.25 36.25 22.60 31.47

HQ-SAM (H) [15] 71.01 42.11 29.50 37.10

Table 6. mIoU (%) of transferred attack T-RA with different attack

strength ϵ and a fixed Ä = 0.1 on different SAM variants. All

attacks are trained by the ViT-B model, and then tested on each of

the listed SAM variants under the black-box setting. The lowest

mIoU value (i.e., the most successful attack) for each model is

highlighted in bold.

more robust versions like HQ-SAM (H).

Tab. 6 shows the mean Intersection over Union scores

at different attack strengths. The results confirm the overall

transferability of our attack on these SAM variants. No-

tably, HQ-SAM (B) exhibits a major drop in mIoU at ϵ =
8/255, indicating a high level of susceptibility to our attack.

In contrast, models like MobileSAM maintain higher mIoU

scores, demonstrating some level of resilience to stronger

attacks. In most models, the segmentation capability weak-

ens as the attack strength increases. However, for HQ-

SAM, the weakest segmentation capability is observed at

ϵ = 8/255 in two experimental groups. This is likely due

to the architectural similarities between HQ-SAM and the

original SAM model (see its pattern in Tab. 2), leading to a

similar pattern of vulnerability at this attack strength.

Testing on Real-world SAM Services. We tested our ad-

versarial example on a real-world SAM Service1, under a

black-box setting. Due to limitations in testing through their

web interface, a comprehensive quantitative evaluation was

not feasible. Instead, we hand-picked a few images, gen-

erated adversarial examples with ϵ = 8/255 and Ä = 0.1
on the ViT-B model and uploaded the images to the SAM

service to manually inspect the result. We observed that

online services are indeed more robust (against transferred

attacks): they may have implemented countermeasures or

image preprocessing steps. For example, not all the points

in the attack region can successfully trigger the adversar-

ial effect. We still found some successful images (under

the “point click” prompt). Examples are shown in Fig. 5.

The experiment was conducted ethically: these images were

uploaded to our personal account and immediately deleted

after the tests (i.e., not affecting other users or the service).

1Meta AI SAM: https://segment-anything.com/

Figure 5. Visualization of adversarial examples with ϵ = 8/255
and Ä = 0.1, computed on ViT-B and tested on a real-world SAM

service. The blue dot is the test point and the highlighted area is

the output mask.

7. Conclusion and Future Work

In this paper, we introduce a more practical region-level ad-

versarial attack against Segment Anything Models (SAM).

We show that the proposed methods can effectively gen-

erate transferable adversarial examples that compromise

SAM’s segmentation ability within attacker-defined re-

gions. Through extensive experiments, we demonstrate the

feasibility of region-level attacks in both white-box and

black-box settings and confirm the effectiveness of attacks

on multiple SAM variants. The result calls for more robust

SAM models to withstand such adversarial threats.

Defense and Future Work. Potential defense mecha-

nisms to enhance the robustness of SAM models include

applying adversarial training techniques [23, 34], the use of

input transformation methods to reduce the effectiveness of

adversarial perturbations [11, 18, 37], and the exploration of

novel SAM architectures that are inherently more resistant

to adversarial manipulation [25]. Investigating these de-

fenses and their effectiveness in mitigating the threats posed

by adversarial attacks on SAM models is an important area

for future research.

In this paper, we primarily focus on SAM and its vari-

ants that support point prompts. The transferability and ef-

fectiveness of our approach on other segmentation models

and other prompt types remain to be explored, which can

be a potential direction for future work. In addition, the

real-world impact of our attack may be further influenced

by factors such as image quality, image preprocessing, and

the presence of countermeasures.
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