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Abstract

Deep reinforcement learning (DRL) is playing an

increasingly important role in real-world applica-

tions. However, obtaining an optimally perform-

ing DRL agent for complex tasks, especially with

sparse rewards, remains a significant challenge.

The training of a DRL agent can be often trapped

in a bottleneck without further progress. In this

paper, we propose RICE, an innovative refining

scheme for reinforcement learning that incorpo-

rates explanation methods to break through the

training bottlenecks. The high-level idea of RICE

is to construct a new initial state distribution that

combines both the default initial states and criti-

cal states identified through explanation methods,

thereby encouraging the agent to explore from

the mixed initial states. Through careful design,

we can theoretically guarantee that our refining

scheme has a tighter sub-optimality bound. We

evaluate RICE in various popular RL environ-

ments and real-world applications. The results

demonstrate that RICE significantly outperforms

existing refining schemes in enhancing agent per-

formance.

1. Introduction

Deep reinforcement learning (DRL) has shown promising

performance in various applications ranging from playing

simulated games (Todorov et al., 2012; Mnih et al., 2013; Oh

et al., 2016; Cai et al., 2023) to completing real-world tasks

such as navigating autonomous vehicles and performing

cybersecurity attacks and defenses (Bar-Zur et al., 2023;

Vyas et al., 2023; Anderson et al., 2018; Wang et al., 2023).
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However, training an optimal DRL agent for complex tasks,

particularly in environments with sparse rewards, presents

a significant challenge. Often cases, the training of a DRL

agent can hit a bottleneck without making further process:

its sub-optimal performance becomes evident when it makes

common mistakes or falls short of achieving the final goals.

When the DRL agent hits its training bottleneck, a refine-

ment strategy can be considered, especially if the agent is

already locally optimal. To refine the locally optimal DRL

agent, one method is to analyze its behavior and patch the

errors it made. A recent work (Cheng et al., 2023) proposes

StateMask to identify critical states of the agent using an ex-

planation method. One utility of StateMask is patching the

agent’s error, which fine-tunes the DRL agent starting from

the identified critical states (denoted as “StateMask-R”).

However, such an approach suffers from two drawbacks.

On the one hand, initializing solely from critical states will

hurt the diversity of initial states, which can cause overfitting

(see Appendix D). On the other hand, fine-tuning alone can-

not help the DRL agent jump out of the local optima. These

observations drive us to rethink how to design a proper ini-

tial distribution and apply exploration-based techniques to

patch previous errors.

Another reason behind the training bottleneck can be the

poor choice of the training algorithm. Naturally, to improve

performance, the developer needs to select another DRL

training algorithm to re-train the DRL agent. However, for

complex DRL tasks, re-training the agent from scratch is

too costly. For instance, for AlphaStar (Vinyals et al., 2019)

to attain grandmaster-level proficiency in StarCraft, its train-

ing period exceeds one month with TPUs. Retraining an

agent of this level can incur a cost amounting to millions of

dollars (Agarwal et al., 2022). Therefore, existing research

has investigated the reuse of previous DRL training (as prior

knowledge) to facilitate re-training (Ho & Ermon, 2016;

Fu et al., 2018; Cai et al., 2022). The most recent exam-

ple is Jump-Start Reinforcement Learning (JSRL) proposed

by Uchendu et al. (2023) which leverages a pre-trained

policy to design a curriculum to guide the training of a self-

improving exploration policy. However, their selection of

exploration frontiers in the curriculum is random, which

cannot guarantee that the exploration frontiers have positive
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returns. This motivates us to incorporate explanation meth-

ods to scrutinize the pre-trained policy and design more

effective exploration frontiers.

In this work, we propose RICE1, a Refining scheme for

ReInforCement learning with Explanation. We first lever-

age a state-of-the-art explanation method to derive a step-

level explanation for the pre-trained DRL policy. The expla-

nation method identifies the most critical states (i.e., steps

that contribute the most to the final reward of a trajectory),

which will be used to construct the exploration frontiers.

Based on the explanation results, we construct a mixed ini-

tial state distribution that combines the default initial states

and the identified critical states to prevent the overfitting

problem. By forcing the agent to revisit these exploration

frontiers, we further incentivize the agent to explore starting

from the frontiers. Through exploration, the agent is able to

expand state coverage, and therefore more effectively break

through the bottlenecks of reinforcement learning training.

Our theoretical analysis shows that this method achieves a

tighter sub-optimality bound by utilizing this mixed initial

distribution (see Section 3.4).

In addition, we introduce key improvements to the state-of-

the-art explanation method StateMask (Cheng et al., 2023)

to better facilitate our refining scheme. We reformulate the

objective function and add a new reward bonus for encour-

aging blinding when training—this significantly simplifies

the implementation without sacrificing the theoretical guar-

antee.

Evaluation and Findings. We evaluate the perfor-

mance of RICE using four MuJoCo games and four DRL-

based real-world applications, including cryptocurrency

mining (Bar-Zur et al., 2023), autonomous cyber defense

(Cage Challenge 2) (CAGE, 2022), autonomous driving (Li

et al., 2022), and malware mutation (Raff et al., 2017).

We show that the explanation derived from our new de-

sign demonstrates similar fidelity to the state-of-the-art

technique StateMask (Cheng et al., 2023) with signifi-

cantly improved training efficiency. With the explana-

tion results, we show our refining method can produce

higher performance improvements for the pre-trained DRL

agent, in comparison with existing approaches including

JSRL (Uchendu et al., 2023) and the original refining

method from StateMask (Cheng et al., 2023).

In summary, our paper has the following contributions:

• We develop a refining strategy to break through the

bottlenecks of reinforcement learning training with an

explanation (which is backed up by a theoretical anal-

ysis). We show our refining method performs better

1The source code of RICE can be found in https://

github.com/chengzelei/RICE

than those informed by random explanation.

• We propose an alternative design of StateMask to ex-

plain the agent’s policy in DRL-based applications.

Experiments show that our explanation has compara-

ble fidelity with StateMask while improving efficiency.

• With extensive evaluations and case studies, we il-

lustrate the benefits of using RICE to improve a pre-

trained policy.

2. Related Work

2.1. Explanation-based Refining

Recently, there has been some work that leverages the DRL

explanation to improve the agent’s performance. These ex-

planations can be derived from either human feedback or

automated processes. Guan et al. (2021); Van Waveren et al.

(2022) propose to utilize human feedback to correct the

agent’s failures. More specifically, when the agent fails, hu-

mans (can be non-experts) are involved to point out how to

avoid such a failure (i.e., what action should be done instead,

and what action should be forbidden). Based on human feed-

back, the DRL agent gets refined by taking human-advised

action in those important time steps and finally obtains the

corrected policy. The downside is that it relies on humans to

identify critical steps and craft rules for alternative actions.

This can be challenging for a large action space, and the re-

training process is ad-hoc and time-consuming. Cheng et al.

(2023); Yu et al. (2023) propose to use step-level DRL expla-

nation methods to automatically identify critical time steps

and refine the agent accordingly. It initiates the refining pro-

cess by resetting the environment to the critical states and

subsequently resumes training the DRL agents from these

critical states. Empirically, we observe that this refining

strategy can easily lead to overfitting (see Appendix D). In-

stead, we propose a novel refining strategy with theoretical

guarantees to improve the agent’s performance.

2.2. Leveraging Existing Policy

The utilization of existing policies to initialize RL and en-

hance exploration has been explored in previous literature.

Some studies propose to “roll-in” with an existing policy

for better exploration, as demonstrated in works (Agarwal

et al., 2020; Li et al., 2023). Similar to our approach, JSRL

(Uchendu et al., 2023) incorporates a guide policy for roll-in,

followed by a self-improving exploration policy. Techni-

cally, JSRL relies on a curriculum for the gradual update of

the exploration frontier. However, the curriculum may not

be able to truly reflect the key reasons why the guide policy

succeeds or fails. Therefore, we propose to leverage the

explanation method to automatically identify crucial states,

facilitating the rollout of the policy by integrating these iden-

tified states with the default initial states. In Section 4, we
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Explore trajectoryOriginal trajectoryInitial stateCritical state

Figure 1. Given a pre-trained DRL policy that is not fully optimal (a), we propose the RICE algorithm that resets the RL agent to specific

visited states (a mixture of default initial states and identified critical states) (b), followed by an exploration step initiated from these

chosen states (c).

empirically demonstrate that JSRL performs poorly in our

selected games. Chang et al. (2023) propose PPO++ that

reset the environment to a mixture of the default initial states

and the visited states of a guide policy (i.e., a pre-trained

policy). It can be viewed as a special case in our framework,

i.e., constructing a mixed initial distribution with a random

explanation. However, we claim that not all visited states

of a pre-trained policy are informative and our theoretical

analysis and experiments both show that RICE based on our

explanation method outperforms the refining method based

on a random explanation.

3. Proposed Technique

3.1. Problem Setup and Assumption

We model the problem as a Markov Decision Process

(MDP), which is defined as a tuple ïS, A, P , Ä, R,

µð. In this tuple, S and A are the state and action set,

where each st and at represents the state and action of

the agent at time t. P : S × A → ∆(S) is the state

transition function, R : S × A → R is the reward

function. µ ∈ (0, 1) is the discount factor. For a pol-

icy Ã(a|s): S → A, the value function and Q-function

is defined as V π(s) = Eπ [
∑

∞

t=0
µtR(st, at) | s0 = s]

and Qπ(s, a) = Eπ [
∑

∞

t=0
µtR(st, at) | s0 = s, a0 = a].

The advantage function for the policy Ã is denoted as

Aπ(s, a) = Qπ(s, a) − V π(s). We assume the initial

state distribution is given by Ä: s0 ∼ Ä. The goal of

RL is to find an optimal policy Ã∗ that maximizes its ex-

pected total reward : Ã∗ = argmaxπ Es∼ρ [V
π(s)]. Be-

sides, we also introduce the state occupancy distribution

and the state-action occupancy measure for Ã, denoted

as dπρ (s) = (1 − µ)
∑

∞

t=0
µt Prπ (st = s | s0 ∼ Ä) and

dπρ (s, a) = dπρ (s)Ã(a|s).

In our setting, we have a pre-trained policy denoted as Ã,

which may be sub-optimal. Our objective is to break through

the training bottlenecks of the pre-trained policy with an ex-

planation. Rather than re-training from scratch, we propose

to utilize explanation to take full advantage of the guidance

of the pre-trained policy Ã. Importantly, we do not assume

knowledge of the original training algorithm used for pol-

icy Ã. And we make the following assumptions about the

quality of Ã.

Assumption 3.1. Given a random policy Ãr, we have

Ea∼πr [Aπ(s, a)] f 0, ∀s.

Intuitively, the above assumption implies that taking an

action based on a random policy Ãr will provide a lower ad-

vantage than taking actions based on the policy Ã. This is a

reasonable assumption since Ã is a pre-trained policy, thus it

would perform much better than an untrained (i.e., random)

policy.

Assumption 3.2. The pre-trained policy Ã cover the states

visited by the optimal policy Ã∗:

∥

∥

∥

∥

dπ∗

ρ

dπ
ρ

∥

∥

∥

∥

∞

f C, where C is

a constant.

In other words, Assumption 3.2 requires that the pre-trained

policy visits all good states in the state space. Note that it is

a standard assumption in the online policy gradient learning

(Agarwal et al., 2021; Uchendu et al., 2023; Li et al., 2023)

and is much weaker than the single policy concentrateabil-

ity coefficient assumption (Rashidinejad et al., 2021; Xie

et al., 2021), which requires the pre-trained policy visits all

good state-action pairs. The ratio in Assumption 3.2 is also

referred to as the distribution mismatch coefficient.

3.2. Technical Overview

Recall our goal is to refine the pre-trained DRL agent to

break through the training bottlenecks. At a high level, the

RICE algorithm integrates a roll-in step, where the RL agent

is reset to specific visited states, followed by an exploration
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step initiated from these chosen states. During the roll-in

step, we draw inspiration from established RL-explanation

methods (Puri et al., 2019; Guo et al., 2021; Cheng et al.,

2023) to identify critical states, referred to as exploration

frontiers, within the given policy Ã. As depicted in Figure 1,

when presented with a trajectory sampled from the policy

Ã, we employ a step-level explanation method – StateMask

(Cheng et al., 2023) to identify the most crucial time steps

influencing the final rewards in this trajectory. Subsequently,

we guide the RL agent to revisit these selected states. The

rationale behind revisiting these states lies in their ability to

offer an expanded initial state distribution compared to Ä,

thereby enabling the agent to explore diverse and relevant

states it might otherwise neglect. Additionally, we intro-

duce a mixing of these selected states with the initial states

sampled from Ä. This mixing approach serves the purpose

of preventing the agent from overfitting to specific states.

In Section 3.4, we theoretically show that RICE achieves

a tighter regret bound through the utilization of this mixed

initial distribution.

Then, we propose an exploration-based method to further

enhance the DRL agent’s performance. The high-level idea

is to incentivize the agent to explore when initiating actions

from these frontiers. Intuitively, the pre-trained policy Ã
might converge to a local optimal, as shown in Figure 1.

Through exploration, we aim to expand state coverage by

rewarding the agent for visiting novel states, thereby in-

creasing the likelihood of successfully completing the task.

Specifically, we utilize the Proximal Policy Optimization

(PPO) algorithm (Schulman et al., 2017) for refining the

DRL agent, leveraging the monotonicity of PPO.

3.3. Technique Detail

Step-level Explanation. We leverage a state-of-the-art

explanation method StateMask (Cheng et al., 2023). At a

high level, StateMask parameterizes the importance of the

target agent’s current time step as a neural network model

(i.e., mask network). This neural network takes the current

state as input and then outputs this step’s importance score

with respect to the agent’s final reward. To do so, StateMask

learns a policy to “blind” the target agent at certain steps

without changing the agent’s final reward. Specifically, for

an input state st, the mask net outputs a binary action amt of

either “zero” or “one”, and the target agent will sample the

action at from its policy. The final action is determined by

the following equation

at » amt =

{

at, if amt = 0 ,

arandom if amt = 1 ,
(1)

The mask net is then trained to minimize the following

objective function:

J(¹) = min |¸(Ã)− ¸(Ã̄)| , (2)

Algorithm 1 Training the Mask Network.

Input: Target agent’s policy Ã
Output: Mask network Ã̃θ

Initialization: Initialize the weights ¹ for the mask net Ã̃θ

¹old ← ¹
for iteration=1, 2, . . . do

Set the initial state s0 ∼ Ä
D ← ∅
for t=0 to T do

Sample at ∼ Ã(at|st)
Sample am

t ∼ Ã̃θold(a
m
t |st)

Compute the actual taken action a← at » am
t

(st+1, R
′

t)← env.step(a) and record (st, st+1, a
m
t , R′

t)
in D

end for
update ¹old ← ¹ using D by PPO algorithm

end for

where Ã denotes the policy of the target agent (i.e., our pre-

trained policy), Ã̄ denotes the policy of the perturbed agent

(i.e., integrating the random policy and the target agent Ã
via the mask network Ã̃), ¸(·) is the expected total reward of

an agent by following a certain policy. To solve the Eqn. (2)

with monotonicaly guarantee, StateMask carefully designs

a surrogate function and utilize the prime-dual methods to

optimize the Ã̃. However, we can optimize the learning

process of mask net within our setting to enhance simplicity.

Specifically, we have the following theorem

Theorem 3.3. Under Assumption 3.1, we have ¸(Ã̄) upper-

bounded by ¸(Ã): ¸(Ã̄) f ¸(Ã).

The proof of the theorem can be found in Appendix A.

Leveraging this theorem, we can transform the objective

function to J(¹) = max ¸(Ã̄). With this reformulation,

we can utilize the vanilla PPO algorithm to train the state

mask without sacrificing the theoretical guarantee. How-

ever, naı̈vely maximizing the expected total reward may

introduce a trivial solution to the problem which is to not

blind the target agent at all (always outputs “0”). To tackle

this problem, we add an additional reward by giving an extra

bonus when the mask net outputs “1”. The new reward can

be written as R′(st, at) = R(st, at) + ³amt where ³ is a

hyper-parameter. We present the learning process of the

mask network in Algorithm 1. By applying this resolved

mask to each state, we will be able to assess the state impor-

tance (i.e., the probability of mask network outputting “0”)

at any time step.

Constructing Mixed Initial State Distribution. With the

state mask Ã̃, we construct a mixed initial state distribution

to expand the coverage of the state space. Initially, we

randomly sample a trajectory by executing the pre-trained

policy Ã. Subsequently, the state mask is applied to pinpoint

the most important state within the episode Ä by assessing

the significance of each state. The resulting distribution of

these identified critical states is denoted as dπ̂ρ (s). Indeed,
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Algorithm 2 Refining the DRL Agent.

Input: Pre-trained policy Ã, corresponding state mask Ã̃, default
initial state distribution Ä, reset probability threshold p
Output: The agent’s policy after refining Ã′

for iteration=1, 2, . . . do
D ← ∅
RAND NUM← RAND(0,1)
if RAND NUM < p then

Run Ã to obtain a trajectory Ä of length K
Identify the most critical state st in Ä via state mask Ã̃
Set the initial state s0 ← st

else
Set the initial state s0 ∼ Ä

end if
for t=0 to T do

Sample at ∼ Ã(at|st)
(st+1, Rt)← env.step(at)

Calculate RND bonus RRND
t =

∥

∥

∥
f (st+1)− f̂ (st+1)

∥

∥

∥

2

with normalization
Add (st, st+1, at, Rt + ¼RRND

t ) to D
end for
Optimize Ãθ w.r.t PPO loss on D

Optimize f̂θ w.r.t. MSE loss on D using Adam
end for
Ã′ ← Ãθ

in Section 3.4, we demonstrate that this re-weighting-like

sampling is equivalent to sampling the state from a better

policy Ã̂. We then set the initial distribution µ as a mixture

of the selected important states distribution dπ̂ρ (s) and the

original initial distribution of interest Ä: µ(s) = ´dπ̂ρ (s) +
(1− ´)Ä(s), where ´ is a hyper-parameter.

Exploration with Random Network Distillation. Start-

ing from the new initial state distribution, we continue train-

ing the DRL agent while encouraging the agent to do ex-

ploration. In contrast to goal-conditional RL (Ren et al.,

2019; Ecoffet et al., 2019), which typically involve ran-

dom exploration from identified frontiers, we advocate for

the RL agent to explore novel states to increase the state

coverage. Motivated by this, we adopt Random Network

Distillation (RND) (Burda et al., 2018) which is proved to

be an effective exploration bonus, especially in large and

continuous state spaces where count-based bonuses (Belle-

mare et al., 2016; Ostrovski et al., 2017) can be hard

to extend. Specifically, we directly utilize the PPO al-

gorithm to update the policy Ã, except that we add the

intrinsic reward to the task reward, that is, we optimize

R′(st, at) = R(st, at) + ¼|f(st+1) − f̂(st+1)|
2, where ¼

controls the trade-off between the task reward and explo-

ration bonus. Along with the policy parameters, the RND

predictor network f̂ is updated to regress to the target net-

work f . Note that, as the state coverage increases, RND

bonuses decay to zero and a performed policy is recovered.

We present our proposed refining method in Algorithm 2.

3.4. Theoretical Analysis

Finally, we provide theoretical analysis demonstrating that

our refining algorithm can tighten the sub-optimality gap:

SubOpt := V π∗

(Ä) − V π′

(Ä), (i.e., the gap between the

long-term reward collected by the optimal policy Ã∗ and

that obtained by the refined policy Ã′ when starting from

the default initial state distribution Ä).

In particular, we aim to answer the following two questions:

Q1:What are the benefits of incorporating StateMask to

determine the exploration frontier?

Q2: what advantages does starting exploration from the

mixed initial distribution offer?

To answer the questions, we first show that determining the

exploration frontiers based on StateMask is equivalent to

sampling states from a better policy compared to Ã. Then,

we demonstrate that under the mixed initial distribution as

introduced in Section 3.3, we could provide a tighter upper

bound for the sub-optimality of trained policy Ã compared

with randomly selecting visited states to form the initial

distribution.

In order to answer Q1, we begin with Assumption 3.4 to

assume the relationship between the policy value and the

state distribution mismatch coefficient.

Assumption 3.4. For two polices Ã and Ã̂, if ¸(Ã̂) g ¸(Ã),

then we have

∥

∥

∥

∥

dπ∗

ρ

dπ̂
ρ

∥

∥

∥

∥

∞

f

∥

∥

∥

∥

dπ∗

ρ

dπ
ρ

∥

∥

∥

∥

∞

.

Intuitively, this assumption posits that a superior policy

would inherently possess a greater likelihood of visiting all

favorable states. We give validation of this assumption in a

2-state MDP in Appendix B.1.

We further present Lemma 3.5 to answer Q1, i.e., the bene-

fits of incorporating StateMask to determine the exploration

frontier. The proof of Lemma 3.5 can be found in Appendix

B.2.

Lemma 3.5. Given a pre-trained policy Ã, our MaskNet-

based sampling approach in Section 3.3 is equivalent to

sampling states from a state occupation distribution induced

by an improved policy Ã̂.

In order to answer Q2, we start with presenting Theorem

3.6 to bound the sub-optimality via the state distribution

mismatch coefficient.

Theorem 3.6. Assume that for the refined policy Ã′,

Es∼dπ′

µ

[

maxa A
π′

(s, a)
]

< ϵ. For two initial state dis-

tributions µ and Ä, we have the following bound (Kakade &

Langford, 2002)

V
π∗

(Ä)− V
π′

(Ä) f O(
ϵ

(1− µ)2

∥

∥

∥

∥

∥

dπ
∗

ρ

dπ̂ρ

∥

∥

∥

∥

∥

∞

). (3)
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The proof of Theorem 3.6 can be found in Appendix B.3.

It indicates that the upper bound on the difference between

the performance of the optimal policy Ã∗ and that of the

policy Ã′ after refining is proportional to

∥

∥

∥

∥

dπ∗

ρ

dπ̂
ρ

∥

∥

∥

∥

∞

. With

Assumption 3.4 and Lemma 3.5, we now claim that our re-

fining method with our explanation could further tighten the

sub-optimality gap via reducing the distribution mismatch

coefficient compared with forming an initial distribution by

random selecting visited states, i.e., with a random explana-

tion.

Claim 1. We can form a better (mixed) initial state dis-

tribution µ with our explanation method and tighten the

upper bound of V π∗

(Ä) − V π′

(Ä) compared with random

explanation.

The details of the analysis can be found in Appendix B.4.

Based on Assumption 3.2 and Claim 1, we can learn to

perform as well as the optimal policy as long as the visited

states of the optimal policy are covered by the (mixed) initial

distribution.

4. Evaluation

In this section, we start with our experiment setup and de-

sign, followed by experiment results and analysis. We pro-

vide additional evaluation details in Appendix C.

4.1. Experiment Setup

Environment Selection. We select eight representative

environments to demonstrate the effectiveness of RICE

across two categories: simulated games (Hopper, Walker2d,

Reacher, and HalfCheetah of the MuJoCo games) and real-

world applications (selfish mining, network defense, au-

tonomous driving, and malware mutation) 2. We addition-

ally run the experiments in the three sparse MuJoCo games

introduced by Mazoure et al. (2019). The details of these

applications can be found in Appendix C.2.

Baseline Explanation Methods. Since our explanation

method proposes an alternative design of StateMask, the first

baseline is StateMask. We compare our explanation method

with StateMask to show the equivalence and efficiency of

our method. Additionally, we introduce “Random” as a

baseline explanation method. “Random” identifies critical

steps by randomly selecting a visited state as the critical

state.

Baseline Refining Methods. We compare our refining

method with three baselines. The first baseline is “PPO

2These are representative security applications that have a sig-
nificant impact on the security community (Anderson et al., 2018)
and they represent RL tasks with sparse rewards, which are com-
mon in security applications.

fine-tuning” (Schulman et al., 2017), i.e., lowering the learn-

ing rate and continuing training with the PPO algorithm.

The second baseline is a refining method introduced by

StateMask (Cheng et al., 2023), i.e., resetting to the crit-

ical state and continuing training from the critical state.

The third baseline is Jump-Start Reinforcement Learning

(referred to as “JSRL”) (Uchendu et al., 2023). JSRL in-

troduces a guided policy Ãg to set up a curriculum to train

an exploration policy Ãe. Through initializing Ãe = Ãg , we

can transform JSRL to be a refining method that can further

improve the performance of the guided policy.

Evaluation Metrics. To evaluate the fidelity of the gen-

erated explanation, we utilize an established fidelity score

metric defined in StateMask (Cheng et al., 2023). The idea

is to use a sliding window to step through all time steps and

then choose the window with the highest average impor-

tance score (scored by the explanation method). The width

of the sliding window is l while the whole trajectory length

is L. Then we randomize the action(s) at the selected critical

step(s) in the selected window (i.e., masking) and measure

the average reward change as d. Additionally, we denote

the maximum possible reward change as dmax. Therefore,

the fidelity score is calculated as log(d/dmax)− log(l/L).
A higher fidelity score indicates higher fidelity.

For the applications with dense rewards except the malware

mutation application, we measure the reward of the target

agent before and after refining. In the case of the malware

mutation application, we report the “final reward” as the

probability of evading the malware detector, both before

and after refining. For the applications with sparse rewards,

we report the performance during the refining process.

4.2. Experiment Design

We use the following experiments to evaluate the fidelity

and efficiency of the explanation method, the effectiveness

of the refining method and other factors that influenced the

system performance (e.g., alternative design choices, hyper-

parameters).

Experiment I. To show the equivalence of our explanation

method with StateMask, we compare the fidelity of our

method with StateMask. Given a trajectory, the explanation

method first identifies and ranks top-K important time steps.

An accurate explanation means the important time steps

have significant contributions to the final reward. To validate

this, we let the agent fast-forward to the critical step and

force the target agent to take random actions. Then we

follow the target agent’s policy to complete the rest of the

time steps. If the explanation is accurate, we expect a major

change to the final reward by randomizing the actions at

the important steps. We compute the fidelity score of each

explanation method as mentioned in StateMask across 500

trajectories. We set K = 10%, 20%, 30%, 40% and report

6
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the fidelity of the selected methods under each setup. We

repeat each experiment 3 times with various random seeds

and report the mean and standard deviation. Additionally,

to show the efficiency of our design, we report the training

time of the mask network using StateMask and our method

when given a fixed number of training samples.

Experiment II. To show the effectiveness of the refin-

ing method, we compare the agent’s performance after re-

fining using our method and three aforementioned base-

line methods, i.e., PPO fine-tuning (Schulman et al., 2017),

StateMask’s fine-tuning from critical steps (Cheng et al.,

2023), and Jump-Start Reinforcement Learning (Uchendu

et al., 2023). For this experiment, all the refining meth-

ods use the same explanation generated by our explanation

method if needed, to ensure a fair comparison. Addition-

ally, we conduct a qualitative study to understand how our

refining method influences agent behavior and performance.

Experiment III To investigate how the quality of expla-

nation affects the downstream refining process, we run our

proposed refining method based on the critical steps identi-

fied by different explanation methods (Random, StateMask,

and our method) and compare the agent’s performance after

refining.

Experiment IV. To show the versatility of our method,

we examine the refining performance when the pre-trained

agent was trained by other algorithms such as Soft Actor-

Critic (SAC) (Haarnoja et al., 2018). First, we obtain a

pre-trained SAC agent and then use Generative Adversarial

Imitation Learning (GAIL) (Ho & Ermon, 2016) to learn

an approximated policy network. We compare the refining

performance using our method against baseline methods,

i.e., PPO fine-tuning (Schulman et al., 2017), StateMask’s

fine-tuning from critical steps (Cheng et al., 2023), and

Jump-Start Reinforcement Learning (Uchendu et al., 2023).

In addition, we also include fine-tuning the pre-trained SAC

agent with the SAC algorithm as a baseline.

Experiment V. We test the impact of hyper-parameter

choices for two primary hyper-parameters for refining: p
(used to control the mixed initial state distribution) and ¼
(used to control the exploration bonus). For our refining

method, we vary p from {0, 0.25, 0.5, 0.75, 1} and vary ¼
from {0, 0.1, 0.01, 0.001}. By examining the agent’s per-

formance with various ¼ values, we can further investigate

the necessity of the exploration bonus. Additionally, we

evaluate the choice of ³ for our explanation method (used to

control the mask ratio for the mask network). Specifically,

we vary ³ from {0.01, 0.001, 0.0001}.

4.3. Experiment Results

Fidelity and Efficiency of Explanation. We compare the

fidelity scores of our method with StateMask in all applica-

tions and provide the full results in Figure 5 of Appendix

C.3. We observe that the fidelity scores of StateMask and

our method are comparable. Furthermore, We evaluate

the efficiency of our explanation method compared with

StateMask. We report the cost time and the number of sam-

ples when training our explanation method and StateMask

in Table 4 of Appendix C.3. We observe an average of

16.8% drop in the training time compared with StateMask.

The reason is that the training algorithm of the mask net-

work in StateMask involves an estimation of the discounted

accumulated reward with respect to the current policy of

the perturbed agent and the policy of the target agent which

requires additional computation cost. In contrast, our design

only adds an additional term to the reward which is simple

but effective.

Effectiveness of Refining. We compare the agent’s per-

formance after refining using different retaining methods

across all applications with dense rewards in Table 1. The

performance is measured by the final reward of the refined

agent. In most applications, rewards are typically assigned

positive values. However, in Cage Challenge 2, the reward is

designed to incorporate negative values (see Appendix C.2).

We have three main observations. First, we observe that

our refining method can bring the largest improvement for

the target agent in all applications. Second, we find that the

PPO fine-tuning method only has marginal improvements

for the agents due to its incapability of jumping out of local

optima. Third, the refining method proposed in StateMask

(which is to start fine-tuning only from critical steps) cannot

always improve the agent’s performance. The reason is that

this refining strategy can cause overfitting and thus harm the

agent’s performance. We illustrate this problem in greater

detail in a case study of Malware Mutation in Appendix D.

It is also worth mentioning that we discover design flows of

Malware Mutation and present the details in Appendix D.

We also run our experiments of varying refining methods

on selected MuJoCo games with sparse rewards. Figure 2

shows the results of our method against other baselines in

SparseHopper and SparseHalfCheetah games. We observe

that our refining method has significant advantages over

other baselines with respect to final performance and refin-

ing efficiency. Through varying explanation methods, we

confirm that the contribution should owe to our explana-

tion method. We leave the refining results of the Sparse-

Walker2d game and the hyper-parameter sensitivity results

of all sparse MuJoCo games in Appendix C.4.

In addition to numerical results, we also provide a qualita-

tive analysis of the autonomous driving case to understand

how RICE influences agent behavior and performance, par-

ticularly in a critical state, in Appendix C.5. We visualize

the agent’s behavior before and after refining the agent to

show that RICE is able to help the agent break through

7
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Table 1. Agent Refining Performance—“No Refine” indicates the target agent’s performance before refining. For the first group of

experiments (left), we fixed the explanation method to our method (mask network) and varied the refining methods. For the second

group of experiments (right), we fixed the refining method to our method and varied the explanation methods. We report the mean value

(standard deviations) of the final reward after refining. A higher value is better.

Task No Refine
Fix Explanation; Vary Refine Methods Fix Refine; Vary Explanation Methods

PPO JSRL StateMask-R Ours Random StateMask Ours

Hopper 3559.44 (19.15) 3638.75 (16.67) 3635.08 (9.82) 3652.06 (8.63) 3663.91 (20.98) 3648.98 (39.06) 3661.86 (19.95) 3663.91 (20.98)

Walker2d 3768.79 (18.68) 3965.63 (9.46) 3963.57 (6.73) 3966.96 (3.39) 3982.79 (3.15) 3969.64(6.38) 3982.67 (5.55) 3982.79 (3.15)

Reacher -5.79 (0.73) -3.04 (0.04) -3.23 (0.26) -3.45 (0.32) -2.66 (0.03) -3.11 (0.42) -2.69 (0.28) -2.66 (0.03)

HalfCheetah 2024.09 (28.34) 2133.31 (4.11) 2128.04 (0.91) 2085.28 (1.92) 2138.89 (3.22) 2132.01 (0.76) 2136.23 (0.49) 2138.89 (3.22)

Selfish Mining 14.36 (0.24) 14.93 (0.45) 14.88 (0.51) 14.53 (0.33) 16.56 (0.63) 15.09 (0.28) 16.49 (0.46) 16.56 (0.63)

Cage Challenge 2 -23.64 (0.27) -23.58 (0.37) -22.97 (0.57) -26.98 (0.84) -20.02 (0.32) -25.94 (2.34) -20.07 (1.33) -20.02 (0.32)

Auto Driving 10.30 (2.25) 13.37 (3.10) 11.26 (3.66) 7.62 (1.77) 17.03 (1.65) 11.72 (1.77) 16.28 (2.33) 17.03 (1.65)

Malware Mutation 42.20 (6.86) 49.33 (8.59) 43.10 (7.24) 50.13 (8.14) 57.53 (8.71) 48.60 (7.60) 57.16 (8.51) 57.53 (8.71)

Figure 2. Agent Refining Performance in two Sparse MuJoCo Games—For Group (a), we fix the explanation method to our method

(mask network) if needed while varying refining methods. For Group (b), we fix the refining method to our method while varying the

explanation methods.

the bottleneck based on the identified critical states of the

failure.

Refining based on Different Explanations. To examine

how the quality of explanation affects the downstream re-

fining process, we present Table 1. We run our proposed

refining method based on the critical steps identified by

ours and Random. We have two main observations. First,

using the explanation generated by our mask network, the

refining achieves the best outcome across all applications.

Second, using the explanation generated by our explanation

significantly outperforms the random baseline. This aligns

with our theoretical analysis that our refining framework

provides a tighter bound for the sub-optimality.

Refining a Pre-trained Agent of Other Algorithms. To

show that our framework is general to refine pre-trained

agents that were not trained by PPO algorithms, we do ex-

periments on refining a SAC agent in the Hopper game.

Figure 3 demonstrates the advantage of our refining method

against other baselines when refining a SAC agent. Addi-

tionally, we observe that fine-tuning the DRL agent with

the SAC algorithm still suffers from the training bottleneck

while switching to the PPO algorithm provides an opportu-

nity to break through the bottleneck. We provide the refining

curves when varying hyper-parameters p and ¼ in Appendix

C.3.

Impact of Hyper-parameters. Due to space limit, we

provide the sensitivity of hyper-parameters p, ¼, and ³ in

Figure 3. SAC Agent Refining Performance in Hopper Game

—In the left part, we show the training curve of obtaining a pre-

trained policy through the SAC algorithm. In the right part, we

show the refining curves of different methods.

Appendix C.3. We have three main observations.

First, p controls the mixing ratio of critical states (identified

by the explanation method) and the initial state distribution

for refining. The performance is low when p = 0 (all

starting from the default initial distribution) or p = 1 (all

starting from the identified critical states). The performance

has significant improvements when 0 < p < 1, i.e., using a

mixed initial state distribution. Across all applications, we

observe that setting p to 0.25 or 0.5 is most beneficial. A

mixed initial distribution can help eliminate the problem of

overfitting.

Second, as long as ¼ > 0 (thereby enabling exploration),

there is a noticeable improvement in performance, highlight-

ing the importance of exploration in refining the pre-trained

agent. The result is less sensitive to the specific value of
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¼. In general, a ¼ value of 0.01 yields good performance

across all four applications.

Third, recall that the hyper-parameter ³ is to control the

bonus of blinding the target agent when training the mask

network. We vary ³ from {0.01, 0.001, 0.0001} and find

that our explanation method is not that sensitive to ³.

5. Discussion

Applicability. RICE is suitable for DRL applica-

tions that are trained within controllable environment

(e.g., simulators), in order to generate explanations. In fact,

most of today’s DRL applications rely on some form of

simulator for their training. For example, for safety-critical

applications such as autonomous driving, DRL agents are

usually designed, trained, and tested in a simulated environ-

ment first before moving them to real-world testing. Simu-

lation platforms broadly include Carla (Dosovitskiy et al.,

2017) and MetaDrive (Li et al., 2022) which have been used

to facilitate the training of DRL agents (Zhang et al., 2021;

Wang et al., 2023; Peng et al., 2022). Therefore, RICE

should be applicable to such DRL systems (especially dur-

ing their development phase) for refining a pre-trained DRL

agent.

Warm Start vs Cold Start. As is mentioned in Section 3,

our method requires a “warm start” setting, i.e., the agent

has good coverage of the state distribution of the optimal

policy. Even if the agent has good coverage of the state

distribution, it does not necessarily mean that the agent has

already learned a good policy due to the potential of choos-

ing wrong actions (Uchendu et al., 2023). Therefore, the

training bottleneck can still exist under a good coverage of

the state distribution. In contrast, Our method does not work

well in a “cold start” setting, i.e., when the state coverage

of the pre-trained policy is extremely poor. In that case,

step-level explanation methods cannot give useful help and

our method is actually equivalent to the RND method 3.

Critical State Filtering. Though RICE identifies critical

states based on their necessity for achieving good outcomes,

it does not fully consider their importance for further agent

learning. For instance, a state might be deemed critical,

yet the trained agent could have already converged to the

optimal action for that state. In such cases, resetting the

environment to this state doesn’t significantly benefit the

learning process. Future work could explore additional

filtering of critical states using metrics such as policy con-

vergence or temporal difference (TD) errors, which may

help concentrate efforts and accelerate refinement.

3We provide an example of Mountain Car game in Appendix E
to illustrate this limitation.

6. Conclusion

In this paper, we present RICE to break through bottle-

necks of reinforcement learning training with explanation.

We propose an alternative design of StateMask to provide

high-fidelity explanations for DRL agents’ behaviors, by

identifying critical time steps that contribute the most to

the agent’s success/failure. We encourage the agent to ex-

plore starting from a mixture of default initial states and the

identified critical states. Compared with existing refining

strategies, we empirically show that our method brings the

largest improvement after refining with theoretical guaran-

tees.
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Impact Statement

This paper presents work whose goal is to advance the field

of reinforcement learning with explanation. There are many

potential social impacts of our work. Our approach provides

a feasible solution to break through the training bottlenecks

of reinforcement learning with explanation, which is an

automatic process and saves manual effort.

However, it is also worth noting the potential negative soci-

etal impacts of our work. Some of the real-world applica-

tions we select such as malware mutation can create attack

examples that may bring additional ethical concerns. In the

realm of security research, the ultimate goal of these tasks

is to generate stronger testing cases to enhance the defense,

and it is standard practice. Take malware mutation as an

example, the produced samples can be used to proactively

improve the robustness and effectiveness of malware de-

tection systems (e.g., through adversarial training), thereby

benefiting cybersecurity defense (Yang et al., 2017).
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A. Proof of Theorem 3.3

Based on the Performance Difference Lemma (Kakade & Langford, 2002), we have

¸(Ã̄)− ¸(Ã) =
1

1− µ
Es∼dπ̄

ρ
Ea∼π̄(·|s)A

π (s, a) , (4)

where Ã is the policy of the target agent, Ã̄ is the perturbed policy, Ä is the initial distribution, and µ is the discount rate.

Note that the perturbed policy Ã̄ is a mixture of the target agent’s policy Ã and a random policy Ãr (i.e., Ã̄(·|s) = Ã̃(ae =
0|s)Ã(·|s) + Ã̃(ae = 1|s)Ãr(·|s)). Denote the probability of the mask network outputting 0 at state s as Ã̃(ae = 0|s) =
À(s) and the probability of the mask network outputting 1 at state s as Ã̃(ae = 1|s) = 1 − À(s) Given the fact that

Aπ (s, Ã(·|s)) = Ea∼π(s)A
π(s, a) = 0, we have

¸(Ã̄)− ¸(Ã) =
1

1− µ
Es∼dπ̄

ρ
Ea∼π̄(·|s)A

π (s, a)

=
1

1− µ
Es∼dπ̄

ρ

∑

a

Ã̄(a|s)Aπ (s, a)

=
1

1− µ
Es∼dπ̄

ρ

∑

a

À(s)Ã(a|s)Aπ (s, a) +
1

1− µ
Es∼dπ̄

ρ

∑

a

(1− À(s))Ãr(a|s)Aπ (s, a)

=
1

1− µ
Es∼dπ̄

ρ
À(s)Ea∼π(·|s)A

π (s, a) +
1

1− µ
Es∼dπ̄

ρ
(1− À(s))Ea∼πr(·|s)A

π (s, a)

=
1

1− µ
Es∼dπ̄

ρ
(1− À(s))Ea∼πr(·|s)A

π (s, a) f 0.

(5)

Therefore, we show that ¸(Ã̄) is upper bounded by ¸(Ã) given Assumption 3.1.

B. Theoretical Guarantee

B.1. Validation of Assumption 3.4 in a 2-state MDP

In a 2-state MDP, we have two different states, namely, sA and sB . The state distribution of any policy Ã follows

dπρ (sA) + dπρ (sB) = 1. As such, the set of feasible state marginal distribution can be described by a line [(0, 1), (1, 0)]
in R

2. Let’s denote vector s = [sA, sB ]. The expected total reward of a policy Ã can be represented as ¸(Ã) =<
dπρ (s), R(s) > (Eysenbach et al., 2021), where R(s) = [R(sA), R(sB)]. Figure 4 shows the area of achievable state

distribution via the initial state distribution Ä (highlighted in orange).

It should be noted that not all the points in the line [(0, 1), (1, 0)] corresponded to a valid Markovian policy. However, for

any convex combination of valid state occupancy measures, there exists a Markovian policy that has this state occupancy

measure. As such, the policy search occurs within a convex polytope, essentially a segment (i.e., , marked in orange) along

this line. In Figure 4, we visualize R(s) as vectors starting at the origin. Since V π̂(Ä) g V π(Ä), We mark dπ̂ρ (s) closer to

R(s) (i.e., the inner product between dπ̂ρ (s) and R(s) and is larger than dπρ (s) and R(s)). The following theorem explains

how we determine the location of the location of dπ
∗

ρ (s) in Figure 4.

Theorem B.1 (Fact 1 (Eysenbach et al., 2021)). For every state-dependent reward function, among the set of policies that

maximize that reward function is one that lies at a vertex of the state marginal polytope.

According to Theorem B.1, dπ
∗

ρ (s) located at either vertex in the orange segment. Since Ã∗ is the optimal policy, it lies

at the vertex that has the larger inner product within R(s). Once the position of dπ
∗

ρ (s) is determined, we can easily find
∥

∥

∥

∥

dπ
∗

ρ
(s)

dπ̂
ρ
(s)

∥

∥

∥

∥

∞

f

∥

∥

∥

∥

dπ
∗

ρ
(s)

dπ
ρ
(s)

∥

∥

∥

∥

∞

based on Figure 4.

B.2. Proof of Lemma 3.5

Proof. Since our explanation method provides the importance of each state, we could view the sampling based on the state’s

importance as a reweighting of the state occupancy measure. Mathematically, it can be expressed as dπ̂ρ (s) = dπρ (s)w(s),
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Figure 4. Visualization of state occupancy measures with respect to different policies and the reward function in a 2-state MDP.

where Ã̂ is the equivalent policy of reweighting the original policy Ã and w(s) is the weight provided by the mask network.

Although the mask network takes the current input state as input, it implicitly considers the current action as well, as detailed

by StateMask (Cheng et al., 2023). Consequently, a more accurate formulation is dπ̂ρ (s, a) = dπρ (s, a)w(s, a), where w(s, a)
represent the weight assigned by mask network.

Recall that our proposed explanation method is to randomize actions at non-critical steps, which essentially considers the

value of Qdiff = Qπ(s, a) − Ea′∈A[Q
π(s, a′)]. In fact, a larger Qdiff indicates current time step is more critical to the

agent’s final reward. Our mask network approximates the value of Qdiff via the deep neural network to determine the

importance of each step, which implies w(s, a) ∝ Qdiff ∝ Qπ(s, a).

Next, we aim to prove that our MaskNet-based sampling approach is equivalent to sampling from a better policy Ã̂.

First, the equivalent policy Ã̂ after reweighting can be expressed as

Ã̂(a|s) =
dπ̂ρ (s, a)

dπ̂ρ (s)
=

dπρ (s, a)w(s, a)

dπ̂ρ (s)
= w(s, a)Ã(a|s)

dπρ (s)

dπ̂ρ (s)
. (6)

Further , we would like to show that if w(s, a) = f(Qπ(s, a)) where f(·) is a monotonic increasing function, Ã̂ is uniformly

as good as,or better than Ã, i.e., V π̂(s) g V π(s).

Proposition B.2. Suppose two policies Ã̂ and Ã satisfy g (Ã̂(a|s)) = g(Ã(a|s)) + h (s,Qπ(s, a)) where g(·) is a monotoni-

cally increasing function, and h(s, ·) is monotonically increasing for any fixed s . Then we have V π̂(s) g V π(s), ∀s ∈ S.

Proof. For a given s, we partition the action set A into two subsets A1 and A2.

A1 ≜ {a ∈ A|Ã̂(a|s) ⩾ Ã(a|s)} .

A2 ≜ {a ∈ A|Ã̂(a|s) < Ã(a|s)} .

Thus, ∀a1 ∈ A1, ∀a2 ∈ A2, we have

h (s,Qπ(s, a1)) = g (Ã̂(a1|s))− g(Ã(a1|s))

g 0

g g (Ã̂(a2|s))− g(Ã(a2|s))

= h (s,Qπ(s, a2)) .

(7)

Let h (s,Qπ(s, a)) = Qπ(s, a). We can get Qπ(s, a1) g Qπ(s, a2) which means we can always find q(s) ∈ R such that
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Qπ(s, a1) g q(s) g Qπ(s, a2), ∀a1 ∈ A1, ∀a2 ∈ A2. Thus,

∑

a∈A

Ã̂(a|s)Qπ(s, a)−
∑

a∈A

Ã(a|s)Qπ(s, a)

=
∑

a1∈A1

(Ã̂ (a1|s)− Ã(a1|s))Q
π (s, a1) +

∑

a2∈A2

(Ã̂ (a2|s)− Ã(a2|s))Q
π(s, a2)

g
∑

a1∈A1

(Ã̂ (a1|s)− Ã (a1|s)) q(s) +
∑

a2∈A2

(Ã̂ (a2|s)− Ã (a2|s)) q(s)

= q(s)
∑

a∈A

(Ã′(a|s)− Ã(a|s))

= 0.

(8)

Let V0(s) = V π(s). And we denote the value function of following Ã̂ for l steps then following Ã as Vl(s) =
Ea∼π̂(.|s)

[

Es′,r|s,a (r + µVl−1 (s
′))
]

if l g 1.

First, we observe that
V1(s) = Ea∼π̂(.|s)

[

Es′,r|s,a (r + µV π(s′))]

=
∑

a∈A

Ã̂(a|s)Qπ(s, a)

⩾
∑

a∈A

Ã(a|s)Qπ(s, a)

= V0(s).

(9)

By induction, we assume Vl(s) g Vl−1(s). Given that

Vl+1(s) = Ea∼π̂

[

Es′,r|s,a (r + Vl (s
′))
]

,

Vl(s) = Ea∼π̂

[

Es′,r|s,a (r + Vl−1 (s
′))
]

,

we have Vl+1(s) g Vl(s).

Therefore, we can conclude that Vl+1(s) g Vl(s), ∀l g 0. We have V∞(s) g V0(s) which is V π̂(s) g V π(s).

Based on the Proposition B.2, if we choose g as a logarithmic function and h = log(w(s, a)) + log(dπρ (s))− log(dπ̂ρ (s)),
we can easily verify that our MaskNet-based sampling approach is equivalent to sampling from a better policy Ã̂.

B.3. Proof of Theorem 3.6

Proof. Given the fact that the refined policy Ã′ is converged, (i.e., the local one-step improvement is small

Es∼dπ′

µ

[

maxa A
π′

(s, a)
]

< ϵ), we have

ϵ >
∑

s∈S

dπ
′

µ (s)
[

max
a

Aπ′

(s, a)
]

g min
s

(

dπ
′

µ (s)

dπ∗

ρ (s)

)

∑

s

dπ
∗

ρ (s)max
a

Aπ′

(s, a)

g

∥

∥

∥

∥

∥

dπ
∗

ρ

dπ′

µ

∥

∥

∥

∥

∥

−1

∞

∑

s,a

dπ
∗

ρ (s)Ã∗(a|s)Aπ′

(s, a).

(10)

Based on the Performance Difference Lemma (Kakade & Langford, 2002), for two policies Ã∗, Ã′ and a state distribution Ä,

the performance difference is bounded by

V π∗

(Ä)− V π′

(Ä) =
1

1− µ
Es∼dπ∗

ρ
Ea∼π∗(.|s)

[

Aπ′

(s, a)
]

. (11)
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Then we have

ϵ > (1− µ)

∥

∥

∥

∥

∥

dπ
∗

ρ

dπ′

µ

∥

∥

∥

∥

∥

−1

∞

(

V π (Ä)− V π′

(Ä)
)

. (12)

Therefore, we have

V
π
∗

(Ä)− V
π
′

(Ä) ≤
ϵ

1− µ

∥

∥

∥

∥

∥

dπ
∗

ρ

dπ
′

µ

∥

∥

∥

∥

∥

∞

. (13)

Due to dπ
′

µ (s) g (1− µ)µ(s), we further obtain

V
π
∗

(Ä)− V
π
′

(Ä) ≤
ϵ

(1− µ)2

∥

∥

∥

∥

∥

dπ
∗

ρ

µ

∥

∥

∥

∥

∥

∞

. (14)

Since µ(s) = ´dπ̂ρ (s) + (1− ´)Ä(s) g ´dπ̂ρ (s), we have

V
π
∗

(Ä)− V
π
′

(Ä) ≤
ϵ

(1− µ)2

∥

∥

∥

∥

∥

dπ
∗

ρ

´dπ̂ρ

∥

∥

∥

∥

∥

∞

. (15)

In our case, ´ is a constant (i.e., a hyper-parameter), thus we could derive that

V
π
∗

(Ä)− V
π
′

(Ä) ≤ O(
ϵ

(1− µ)2

∥

∥

∥

∥

∥

dπ
∗

ρ

dπ̂ρ

∥

∥

∥

∥

∥

∞

), (16)

which completes the proof.

B.4. Analysis of Claim 1

Recall that Lemma 3.5 indicates that our MaskNet-based sampling approach is equivalent to sampling states from a better

policy Ã̂ compared with a random explanation sampling from the policy Ã, i.e., ¸(Ã̂) g ¸(Ã). Let us denote the new initial

distribution using our MaskNet-based sampling approach as µ. By Assumption 3.4, we have

∥

∥

∥

∥

dπ
∗

ρ

dπ̂
ρ

∥

∥

∥

∥

∞

f

∥

∥

∥

∥

dπ
∗

ρ

dπ
ρ

∥

∥

∥

∥

∞

. Using

our explanation method introduces a smaller distribution mismatch coefficient than using a random explanation method.

Therefore, we claim that using our explanation method, we are able to form a better initial distribution µ and tighten the

upper bound in Theorem 3.6, i.e., enhancing the agent’s performance after refining.

C. Details of Evaluation

C.1. Implementation Details

Implementation of Our Method. We implement the proposed method using PyTorch (Paszke et al., 2019). We implement

our method in four selected MuJoCo games based on Stable-Baselines3 (Raffin et al., 2021). We train the agents on a server

with 8 NVIDIA A100 GPUs for all the learning algorithms. For all our experiments, if not otherwise stated, we use a set of

default hyper-parameters for p, ¼, and ³ (listed in Appendix C.3).

We implement the environment reset function similar to Ecoffet et al. (2019) to restore the environment to selected critical

states. This method is feasible in our case, as we operate within simulator-based environments. However, in the real world,

it may not be always possible to return to a certain state with the same sequences of actions due to the stochastic nature

of state transition. It’s important to note that our framework is designed to be versatile and is indeed compatible with a

goal/state-conditioned policy approach such as Ecoffet et al. (2021). Given a trajectory with an identified most important

state, we can select the most important state as the final goal and select the en-route intermediate states as sub-goals. Then

we can train an agent to reach the final goal by augmenting each state with the next goal and giving a goal-conditioned

reward once the next goal is reached until all goals are achieved.

Implementation of Baseline Methods. Regarding baseline approaches, we use the code released by the authors or

implement our own version if the authors don’t release the code. Specifically, as for StateMask, we use their released open-

sourced code from https://github.com/nuwuxian/RL-state_mask. Regarding Jump-Start Reinforcement

Learning, we use the implementation from https://github.com/steventango/jumpstart-rl.
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C.2. Extra Introduction to Applications

Hopper. Hopper game is a captivating two-dimensional challenge featuring a one-legged figure comprising a torso, thigh,

leg, and a single supporting foot (Erez et al., 2012). The objective is to propel the Hopper forward through strategic hops by

applying torques to the three hinges connecting its body parts. Observations include positional values followed by velocities

of each body part, and the action space involves applying torques within a three-dimensional action space. Under the dense

reward setting, the reward system combines healthy reward, forward reward, and control cost. Under the sparse reward

setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 0.6 in our experiments. The

episode concludes if the Hopper becomes unhealthy. We use “Hopper-v3” in our experiments.

Walker2d. Walker2d is a dynamic two-dimensional challenge featuring a two-legged figure with a torso, thighs, legs, and

feet. The goal is to coordinate both sets of lower limbs to move in the forward direction by applying torques to the six hinges

connecting these body parts. The action space involves six dimensions, allowing exert torques at the hinge joints for precise

control. Observations encompass positional values and velocities of body parts, with the former preceding the latter. Under

the dense reward setting, the reward system combines a healthy reward bonus, forward reward, and control cost. Under

the sparse reward setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 0.6 in our

experiments. The episode concludes if the walker is deemed unhealthy. We use “Walker2d-v3” in our experiments and

normalize the observation when training the DRL agent.

Reacher. Reacher is an engaging two-jointed robot arm game where the objective is to skillfully maneuver the robot’s

end effector, known as the fingertip, towards a randomly spawned target. The action space involves applying torques at

the hinge joints. Observations include the cosine and sine of the angles of the two arms, the coordinates of the target,

angular velocities of the arms, and the vector between the target and the fingertip. It is worth noting that there is no sparse

reward implementation of Reacher-v2 in Mazoure et al. (2019). The reward system comprises two components: “reward

distance” indicating the proximity of the fingertip to the target, and “reward control” penalizing excessive actions with a

negative squared Euclidean norm. The total reward is the sum of these components, and an episode concludes either after 50

timesteps with a new random target or if any state space value becomes non-finite. We use “Reacher-v2” in our experiments.

HalfCheetah. HalfCheetah is an exhilarating 2D robot game where players control a 9-link cheetah with 8 joints, aiming to

propel it forward with applied torques for maximum speed. The action space contains six dimensions, that enable strategic

movement. Observations include positional values and velocities of body parts. Under the dense reward setting, the

reward system balances positive “forward reward” for forward motion with “control cost” penalties for excessive actions.

Under the sparse reward setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 5
in our experiments. Episodes conclude after 1000 timesteps, offering a finite yet thrilling gameplay experience. We use

“HalfCheetah-v3” in our experiments and normalize the observation when training the DRL agent.

Selfish Mining. Selfish mining is a security vulnerability in blockchain protocols, identified by Eyal & Sirer (2018).

When a miner holds a certain amount of computing power, they can withhold their freshly minted blocks from the public

blockchain, thereby initiating a fork that is subsequently mined ahead of the official public blockchain. With this advantage,

the miner can introduce this fork into the network, overwriting the original blockchain and obtaining more revenue.

To find the optimal selfish mining strategies, Bar-Zur et al. (2023) proposed a deep reinforcement learning model to generate

a mining policy. The policy takes the current chain state as the input and chooses from the three pre-determined actions,

i.e., adopting, revealing, and mining. With this policy network, the miner can obtain more mining rewards compared to

using heuristics-based strategies.

We train a PPO agent in the blockchain model developed by Bar-Zur et al. (git, d). The network architecture of the PPO

agent is a 4-layer Multi-Layer Perceptron (MLP) with a hidden size of 128, 128, 128, and 128 in each layer. We adopt a

similar network structure for training our mask network. The whale transaction has a fee of 10 with the occurring probability

of 0.01 while other normal transactions have a fee of 1. The agent will receive a positive reward if his block is accepted and

will be penalized if his action is determined to be unsuccessful, e.g., revealing a private chain.

In our selfish mining task (Bar-Zur et al., 2023), three distinct actions are defined as follows:

Adopt l: The miner chooses to adopt the first l blocks in the public chain while disregarding their private chain. Following

this, the miner will continue their mining efforts, commencing from the last adopted block.

Reveal l: This action becomes legal when the miner’s private chain attains a length of at least l. The consequence of this
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action may result in either the creation of an active fork in the public chain or the overriding of the public chain.

Mine: This action simply involves continuing with the mining process. Once executed, a new block is mined and subsequently

added to either the private chain of the rational miner or to the public chain, contingent on which entity successfully mined

the block.

CAGE Challenge 2. To inspire new methods for automating cyber defense, the Technical Cooperation Program (TTCP)

launched the Autonomous Cyber Defence Challenge (CAGE Challenge) to produce AI-based blue teams for instantaneous

response against cyber attacks (CAGE, 2022). The goal is to create a DRL blue agent to protect a network against a red

agent. The action space of the blue agent includes monitoring, analyzing, decoyApache, decoyFemitter, decoyHarakaSMPT,

decoySmss, decoySSHD, decoySvchost, decoyTomcat, removing, and restoring. Note that the blue agent can receive a

negative reward when the red agent gets admin access to the system (and continues to receive negative rewards as the red

agent maintains the admin access). We use CAGE challenge 2 for our evaluation.

We choose the champion scheme proposed by Cardiff University (git, c) in CAGE challenge 2 (git, b). The target agent is a

PPO-based blue agent to defend a network against the red agent “B-line”. The trail has three different lengths, i.e., 30, 50,

and 100. The final reward is the sum of the average rewards of these three different lengths.

The action set of the blue agent is defined as follows.

Monitor: The blue agent automatically collects the information about flagged malicious activity on the system and reports

network connections and associated processes that are identified as malicious.

Analyze: The blue agent analyzes the information on files associated with recent alerts including signature and entropy.

DecoyApache, DecoyFemitter, DecoyHarakaSMPT, DecoySmss, DecoySSHD, DecoySvchost, DecoyTomcat: The blue agent

sets up the corresponding decoy service on a specified host. An alert will be raised if the red agent accesses the decoy

service.

Remove: The blue agent attempts to remove red from a host by destroying malicious processes, files, and services.

Restore: The blue agent restores a system to a known good state. Since it significantly impacts the system’s availability, a

reward penalty of -1 will be added when executing this action.

Autonomous Driving. Deep reinforcement learning has been applied in autonomous driving to enhance driving safety.

One representative driving simulator is MetaDrive (Li et al., 2022). A DRL agent is trained to guide a vehicle safely and

efficiently to travel to its destination. MetaDrive converts the Birds Eye View (BEV) of the road conditions and the sensor

information such as the vehicle’s steering, direction, velocity, and relative distance to traffic lanes into a vector representation

of the current state. The policy network takes this state vector as input and yields driving actions, including accelerating,

braking, and steering commands. MetaDrive employs a set of reward functions to shape the learning process. For instance,

penalties are assigned when the agent collides with other vehicles or drives out of the road boundary. To promote smooth and

efficient driving, MetaDrive also incorporates rewards to encourage forward motion and the maintenance of an appropriate

speed.

We select the “Macro-v1” environment powered by the MetaDrive simulator (Li et al., 2022). The goal of the agent is to

learn a deep policy to successfully cross the car flow and reach the destination. We train the target agent and our mask

network by the PPO algorithm following the implementation of DI-drive (drive Contributors, 2021). The environment

receives normalized action to control the target agent a = [a1, a2] ∈ [−1, 1]2. The action vector a will then be converted to

the steering (degree), acceleration (hp), and brake signal (hp).

Malware Mutation. DRL has been used to assess the robustness of ML-based malware detectors. For example, Anderson

et al. (2018) propose a DRL-based approach to attack malware detectors for portable executable (PE) files. We use the

“Malconv” gym environment Raff et al. (2017) implemented in (git, a) for our experiments. We train a DRL agent based on

Tianshou framework (Weng et al., 2022). The input of the DRL agent is a feature vector of the target malware and outputs

the corresponding action to guide the malware manipulation. We present the action set of the MalConv gym environment in

Table 2 for ease of comprehension in the case study section. A big reward of 10 is provided when evading detection.

The reward mechanism of the “Malconv” environment is as follows. Initially, the malware detection model will provide

a score sc0 of the current malware. If sc0 is lower than some threshold, the malware has already evaded the detection.

Otherwise, the DRL agent will take some mutation actions to bypass the detection. At step t, after executing the agent’s
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Table 2. Action set of the MalConv gym environment.

Action index Action meaning

0 “modify machine type”

1 “pad overlay”

2 “append benign data overlay”

3 “append benign binary overlay”

4 “add bytes to section cave”

5 “add section strings”

6 “add section benign data”

7 “add strings to overlay”

8 “add imports”

9 “rename section”

10 “remove debug”

11 “modify optional header”

12 “modify timestamp”

13 “break optional header checksum”

14 “upx unpack”

15 “upx pack”

Table 3. Hyper-parameter choices in Experiment I-V. “Selfish” represents Selfish Mining. “Cage” represents Cage Challenge 2. “Auto”

represents Autonomous Driving. “Malware” represents Malware Mutation.

Hyper-parameter Hopper Walker2d Reacher HalfCheetah Selfish Cage Auto Malware

p 0.25 0.25 0.50 0.50 0.25 0.50 0.25 0.50

¼ 0.001 0.01 0.001 0.01 0.001 0.01 0.01 0.01

³ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

action, the malware detection model will provide a new score sct. If sct is lower than some threshold, the mutation is

successful and a big reward of 10 will be given. Otherwise, the reward will be sc0 − sct. The maximum allowed number of

steps is 10.

C.3. Additional Experiment Results

Hyper-parameter Choices in Experiment I-V. Table 3 summarizes our hyper-parameter choices in Experiment I-V. For all

applications, we choose the coefficient of the intrinsic reward for training the mask network ³ as 0.01. The hyper-parameters

p and ¼ for our refining method vary by application.

Fidelity Scores in Experiment I. Figure 5 shows the fidelity score comparison across all explanation methods. We have

three key observations. First, We observe that our explanation method has similar fidelity scores with StateMask across all

applications, empirically indicating the equivalence of our explanation method with StateMask. Second, we observe that our

explanation method and StateMask have higher fidelity scores than random explanation across all applications, indicating

that the mask network provides more faithful explanations for the target agents.

Efficiency Comparison in Experiment II. Table 4 reports the efficiency evaluation results when training a mask network

using StateMask and our method. We observe that it takes 16.8% less time on average to train a mask network using our

method than using StateMask, which shows the advantage of our method with respect to efficiency.

Comparison with Self-Imitation Learning. We compare RICE against the self-imitation learning (SIL) approach (Oh

et al., 2018) across four MuJoCo games. We present the results presented in Table 5. These experiment results demonstrate

that RICE consistently outperforms the self-imitation learning method. While self-imitation learning has the advantage

of encouraging the agent to imitate past successful experiences by prioritizing them in the replay buffer, it cannot address

scenarios where the agent (and its past experience) has errors or sub-optimal actions. In contrast, RICE constructs a mixed

initial distribution based on the identified critical states (using explanation methods) and encourages the agent to explore the

new initial states. This helps the agent escape from local minima and break through the training bottlenecks.

Impact of Other Explanation Methods. We investigate the impact of other explanation methods (i.e., AIRS (Yu et al.,

2023) and Integrated Gradients (Sundararajan et al., 2017)) on four Mujoco games. we fix the refining method and use
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Figure 5. Fidelity scores for explanation generated by baseline methods and our proposed explanation method. Note that a higher score

implies higher fidelity.

Table 4. Efficiency comparison when training the mask network. We report the number of seconds when training the mask using a fixed

number of samples. “Selfish” represents Selfish Mining. “Cage” represents Cage Challenge 2. “Auto” represents Autonomous Driving.

“Malware” represents Malware Mutation.

Applications Hopper Walker2d Reacher HalfCheetah Selfish Cage Auto Malware

Num. of samples 3× 105 3× 105 3× 105 3× 105 1.5× 106 1× 107 2443260 32349

StateMask 15393 2240 8571 1579 9520 79382 109802 50775

Ours 12426 1899 7033 1317 8360 65400 88761 41340

different explanation methods to identify critical steps for refinement. The results are reported in Table 6. We observe that

using the explanation generated by our mask network, the refining achieves the best outcome across all four applications.

Using other explanation methods (Integrated Gradients and AIRS), our framework still achieves better results than the

random baseline, suggesting that our framework can work with different explanation method choices.

Sensitivty of p and ¼ in Hopper game with an imitated PPO agent. We report the sensitivity of hyper-parameters p and

¼ in Hopper game with an imitated PPO agent in Figure 6. We observe that in general, a mixture probability of p = 0.25 or

p = 0.5 is a better choice. An RND bonus can facilitate the agent with faster refinement.

Sensitivity of Hyper-parameters p and ¼. We provide the sensitivity results of p in all applications in Figure 7. We

observe that generally a mixture probability of p = 0.25 or p = 0.5 is a good choice. Additionally, recall that we need to

use the hyper-parameter ¼ to balance the scale of the “true” environment reward and the exploration bonus. We test the

sensitivity of ¼ from the space {0.1, 0.01, 0.001}. Figure 8 reports the agent’s performance after refining under different

settings of ¼. We observe that our retaining method is insensitive to the choice of ¼. The agent’s performance does not vary

a lot with different settings of ¼. But ¼ = 0.01 gives the best performance in all applications except selfish mining.

Sensitivity of ³. Recall that under certain assumptions, we are able to simplify the design of StateMask. We propose

an intrinsic reward mechanism to encourage the mask network to blind more states without sacrificing performance. The

hyper-parameter ³ is then introduced to balance the performance of the perturbed agent and the need for encouraging

blinding. We test the sensitivity of ³ from the space {0.01, 0.001, 0.0001} and report the fidelity scores under different

settings of ³ in Figure 9. We observe that though the value of ³ varies, the fidelity score does not change much.

C.4. Evaluation Results of MuJoCo Games with Sparse Rewards

Results of SparseWalker2d. First, we compare our refining method with other baseline methods (i.e., PPO fine-tuning,

StateMask-R, and JSRL) in the SparseWalker2d game. Figure 10 shows that our refining method is able to help the DRL

agent break through the bottleneck with the highest efficiency compared with other baseline refining methods. Additionally,

by replacing our explanation method with a random explanation, we observe that the refining performance is getting worse.
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Figure 6. Sensitivity results of hyper-parameters p and ¼ in Hopper game with an imitated PPO agent. We vary the hyper-parameter ¼

from {0, 0.1, 0.01, 0.001} and record the performance of the agent after refining. A smaller choice of ¼ means a smaller reward bonus

for exploration.
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different ¼, and record the performance of the agent after refining. When p = 0, refining starts from the default initial states of the
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20



RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

10 3 10 2 10 1

Hopper

3650

3655

3660

Pe
rfo

rm
an

ce

10 3 10 2 10 1

Walker2d

3965

3970

3975

3980

10 3 10 2 10 1

Reacher

4.0

3.5

3.0

10 3 10 2 10 1

HalfCheetah

2110

2120

2130

2140

10 3 10 2 10 1

Selfish Mining
15.0

15.5

16.0

16.5

Pe
rfo

rm
an

ce

10 3 10 2 10 1

Cage Chllenge 2

28

26

24

22

20

10 3 10 2 10 1

Safe Driving

10

12

14

16

10 3 10 2 10 1

Malware Mutation

48

50

52

54

56

58

p=0 p=0.25 p=0.5 p=0.75 p=1

Figure 8. Sensitivity results of hyper-parameter ¼. We vary the hyper-parameter ¼ from {0.1, 0.01, 0.001} and record the performance of
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Table 5. Performance comparison between Self-Imitation Learning (SIL) and RICE on four MuJoCo tasks.

Method Hopper Walker2d Reacher HalfCheetah

SIL 3646.46 (23.12) 3967.66 (1.53) -2.87 (0.09) 2069.80 (3.44)

Ours 3663.91 (20.98) 3982.79 (3.15) -2.66 (0.03) 2138.89 (3.22)

Table 6. Performance comparison when using different explanation methods across four MuJoCo tasks.

Task Random Explanation Integrated Gradients AIRS Ours

Hopper 3648.98 (39.06) 3653.24 (14.23) 3654.49 (8.12) 3663.91 (20.98)

Walker2d 3969.64 (6.38) 3972.15 (4.77) 3976.35 (2.40) 3982.79 (3.15)

Reacher -3.11 (0.42) -2.99 (0.31) -2.89 (0.19) -2.66 (0.03)

HalfCheetah 2132.01 (0.76) 2132.81 (0.83) 2133.98 (2.52) 2138.89 (3.22)

Sensitivity of p and λ. We report the sensitivity of hyper-parameters p and λ in the three MuJoCo games with sparse

rewards in Figure 11, Figure 12, and Figure 13. We have the following observations: First, generally, a mixed probability p

within the range of 0.25 and 0.5 would be a good choice. Second, the refining benefits from the exploration bonus in the

sparse MuJoCo games. Third, PPO fine-tuning cannot guarantee that the refined agent can achieve a good performance.

Especially in SparseWalker2d game, we observe that ppo fine-tuning cannot break through the training bottleneck of the

DRL agent.

C.5. Qualitative Analysis

We do a qualitative analysis of the autonomous driving case to understand how RICE impacts agent behavior and performance.

We visualize the agent’s behavior before and after refining the agent. Figure 14(a) shows a trajectory wherein the target

agent (depicted by the green car) fails to reach its destination due to a collision with a pink car on the road. Given the

undesired outcome, we use our method to identify the critical steps that contribute to the final (undesired) outcome. The

important steps are highlighted in red color. Our method identifies the important step as the one when the green car switches

across two lanes into the lane of the pink car. The critical state is reasonable because this early step allows the green car to

switch lanes to avoid the collision. Based on the provided explanation, we apply our refining method to improve the target

agent. The trajectory after refining is shown in Figure 14(b). It shows that after refining, the refined agent (the green car)

successfully identifies an alternative path to reach the destination while avoiding collision.

D. Case Study: Malware Mutation

D.1. Design Intuitions

First, we use malware mutation as a case study to confirm our design intuitions before the proposed refining method. Recall

that the refining method contains three important ideas. First, we integrate the explanation result (identified critical step)

into the refining process. Second, we design a mixed initial state distribution to guide the refining of the target agent. Third,

we encourage the agent to perform exploration for diverse states during the refining phase. In the following, we create

multiple baselines by gradually adding these ideas to a naive baseline to show the contribution of each idea. We also provide

evidence to support our stance against overfitting. Table 7 summarizes the results.

To start, the original agent is trained for 100 epochs until convergence. We test the target agent for 500 runs, resulting in

an average evasion probability of 33.8%. To extract behavioral patterns, we perform a frequency analysis on the mutation

actions taken by the agent across all 500 runs. As shown in the first row of Table 7, there is a clear preference for A4

(i.e., “add bytes to section cave”). A complete list of the possible actions (16 in total) is shown in Table 2 (Appendix).

Continue Learning w/o Explanation. The most common refining method is to lower the learning rate and continue

training. We continue to train this target agent using the PPO algorithm for an additional 30 epochs and evaluate its

performance over 500 runs. This yields an average evasion probability of 38.8% (second row in Table 7). It is worth noting

that A4 (i.e., “add bytes to section cave”) remains the most frequently selected action.

Leverage Explanation Results for Refining. Subsequently, we assess the refining outcome by incorporating our

explanation result into the refining process. Specifically, we initiate the refining exclusively from the critical steps identified

by the explanation method. For this setting, we do not perform exploration.
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Figure 10. Agent Refining Performance in the SparseWalker2d Games. For the left figure, we fix the explanation method to our method

(mask network) if needed while varying refining methods. For the right figure, we fix the refining method to our method while varying the

explanation methods.

Table 7. Malware Mutation Case Study—We evaluate the evasion probability of the agent under different settings and count the

corresponding action frequencies.

Refine Setting Test Setting Action Frequency Evasion

Original agent w/o refinement From default initial S {A4: 4,914, A9: 5} 33.8%

Continue training From default initial S {A4: 2,590, A7: 55, A1: 99, A9: 95} 38.8%

Refine from critical states
From critical states {A12: 2,546, A5: 138, A4: 32, A9: 8} 50.8%

From default initial S {A12: 4,728, A5: 62} 36.2%

Refine from mixed initial state dist. From default initial S {A4: 1,563, A12: 1,135, A5: 332, A6: 12} 58.4%

Refine from mixed initial state dist. + exploration From default initial S {A5: 2,448, A7: 165, A12: 138, A4: 6} 68.2%

During the test phase, we explore two testing settings. First, we artificially reset the test environment to start from these

critical steps. We find that evasion probability surges to 50.8%. A12 (i.e., “modify timestamp”) becomes as the most

frequently chosen action. This indicates the refined agent learns a policy when encountering the critical state again. However,

for more realistic testing, we need to set the test environment to the default initial state (i.e., the correct testing condition).

Under this setting, we find the evasion probability diminishes to 36.2%. This stark contrast in results shows evidence of

overfitting. The refined agent excels at solving the problem when starting from critical steps but falters when encountering

the task from default initial states.

Impact of Mixed Initial State Distribution. Given the above result, we further build a baseline by refining from the

proposed mixed initial state distribution (i.e., blending the default initial state distribution with the critical states). For this

setting, we also do not perform exploration. Through 500 runs of testing, we observe a notable improvement, with the

average evasion probability reaching 58.4% (from the previous baseline’s 36.2%). Furthermore, the action frequency pattern

has also undergone a shift. It combines the preferred actions from the two previous refining strategies, highlighting the

frequent selection of both A4 and A12.

Impact of Exploration. Finally, we explore the impact of exploration. This baseline represents the complete version

of our proposed system by adding the exploration step and using the mixed initial distribution. We notice that the

average evasion probability across 500 runs has a major increase, reaching 68.2%. The most frequent action now is A5

(i.e., “add section strings”). A4 and A12 are still among the top actions but their frequencies are lowered. This shows the

benefits of exploring previously unseen states and diverse mutation paths. In return, the refined agent is able to get out of the

local minima to identify more optimal policies.

D.2. Discovery of Design Flaws

Additionally, our explanation results have led to the discovery of design flaws in the malware mutation application (Raff

et al., 2017). We will further explain how we use RICE to identify these problems.

Questions and Intuitions. When using RICE to explain the malware mutation process, we observe a scenario where the

agent constantly chooses the same action “upx pack” in multiple consecutive steps. According to the agent, these actions
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Figure 11. Sensitivity results of hyper-parameter ¼ in SparseHopper game. We vary the hyper-parameter ¼ from {0, 0.1, 0.01, 0.001} and

record the performance of the agent after refining. A smaller choice of ¼ means a smaller reward bonus for exploration.
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Figure 12. Sensitivity results of hyper-parameter ¼ in SparseWalker2d game. We vary the hyper-parameter ¼ from {0, 0.1, 0.01, 0.001}
and record the performance of the agent after refining. A smaller choice of ¼ means a smaller reward bonus for exploration.
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Figure 13. Sensitivity results of hyper-parameter ¼ in SparseHalfCheetah game. We vary the hyper-parameter ¼ from {0, 0.1, 0.01, 0.001}
and record the performance of the agent after refining. A smaller choice of ¼ means a smaller reward bonus for exploration.

receive a similar reward. However, RICE (our mask network) returns different “explanations” for these steps (i.e., they have

highly different importance scores). According to RICE, only the first action holds a high importance score, while the other

consecutive actions barely have an impact on the final reward (i.e., they appear redundant). This raises the question: why

does the agent assign a similar reward to these consecutive steps in the first place?

Another interesting observation is from refining experiments. We find that PPO-based refining cannot yield substantial

improvements. While we have expected that these methods do not perform as well as ours (given our exploration step),

the difference is still bigger than we initially expected. This motivates us to further examine the reward function design to

explore whether it has inadvertently discouraged the DRL agent from finding good evasion paths.

Problems of Reward Design. Driven by the intuitions above, we examined the reward design and identified two problems.

Firstly, the reward mechanism is inherently non-Markovian which deviates from the expectation of a typical reinforcement

learning (RL) framework. In typical RL settings, rewards are contingent on the current state s and the next state s′. However,

the current design computes the reward based on the initial state s0 and the subsequent state s′. Consequently, this may

assign an identical reward for the same action (e.g., “upx pack”) in consecutive steps. This non-Markovian nature of the

reward mechanism can mislead the DRL agent and hurt its performance.

Second, we find that the intermediate rewards exhibit unusually high sparsity, i.e., many intermediate rewards tend to have

a value close to zero, which poses a significant challenge for the PPO algorithm to learn a good policy based on such

intermediate rewards. Agents refined with these methods can be easily trapped in local minima.

Fixing the Problematic Reward Design. Based on these insights, we fix the bugs in the reward design with two simple

steps: (1) We make the reward function Markovian, which depends only on the current state and the next state. (2) We

perform scaling on the intermediate reward with a coefficient of 3. After that, we re-run an experiment to evaluate the

correctness of our modifications. We train a DRL agent for 100 epochs with the same parameters under the new reward

design and test its performance over 3 trials of 500 runs. The experiment shows that the evasion probability of the agent

under the new reward design jumps from 42.2% (using the old reward function, see Table 1) to 72.0%, which further

confirms our intuitions. This case study illustrates how developers can use RICE to debug their system and improve their

designs.
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Figure 14. (a): In the original trajectory, the target agent (the green car) eventually collides with the pink car, which is an undesired

outcome. Each time step is marked with a different color: “yellow” indicates the least important step and “red” represents the most

important step. (b): We highlight the critical states identified by our explanation method and the corresponding outcome after refining.

Using our explanation method, the target agent (the green car) successfully avoids collision.

Figure 15. Refining performance with our method and RND method in MountainCarContinuous-v0 game. The state coverage of the

pre-trained policy is limited to a small range around the initial point.

E. Limitation

We use the continuous “Mountain Car” environment (mou) as a negative control task to illustrate a scenario where RICE

does not work well. In this “extreme” case, Assumption 3.2 is completely broken since the state coverage of the pre-trained

agent is limited to a small range around the initial point. In this experiment, we train a target agent using Proximal Policy

Optimization (PPO) for 1 million steps. The results show that the policy performance remained poor, with the agent

frequently getting trapped at the starting point of the environment. In such cases where the original policy fails to learn

an effective strategy, the role of explanations becomes highly limited. Since RICE relies on the identified critical states to

enhance the policy, if the policy itself is extremely weak (i.e., not satisfying Assumption 3.2), then the explanations will not

be meaningful, which further huts the refinement. In the case of the Mountain Car experiment, RICE essentially reduces to

being equivalent to Random Network Distillation (RND) due to the lack of meaningful explanation. We show the result

when refining the pre-trained agent using our method and RND in Figure 15.
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