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Abstract

Symmetric edge polytopes, also called adjacency polytopes, are lattice polytopes

determined by simple undirected graphs. We introduce the integer array giving the

maximum number of facets of a symmetric edge polytope for a connected graph having

a fixed number of vertices and edges and the corresponding array of minimal values. We

establish formulas for the number of facets obtained in several classes of sparse graphs,

and provide partial progress toward conjectures that identify facet-maximizing graphs

in these classes. These formulas are combinatorial in nature, and lead to independently

interesting observations and conjectures regarding integer sequences defined by sums

of products of binomial coefficients.

1 Introduction

Given a finite graph G, there are many ways to construct a lattice polytope using G as input:
graphical zonotopes, edge polytopes, matching polytopes, stable set polytopes, Laplacian
simplices, flow polytopes, and others. Of recent interest is the symmetric edge polytope PG,
introduced by Matsui, Higashitani, Nagazawa, Ohsugi, and Hibi [12]. These are known as
adjacency polytopes in some applied settings [2]. Symmetric edge polytopes are of interest in
several areas, including the study of Ehrhart theory and applications to algebraic Kuramoto
equations. These polytopes have been the subject of intense recent study [1, 2, 3, 4, 5, 10,
11, 12, 15, 17].
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n
m− n+ 1

0 1 2 3 4 5 6 7 8 9 10 11 12

2 2
3 4 6
4 8 12 12 14
5 16 30 36 28 28 28 30
6 32 60 72 72 84 68 68 60 60 60 62
7 64 140 180 216 168 168 196 180 148 148 132 132 124

Table 1: maxf(n,m).

In this paper, we study the number of facets of PG for connected graphs, with an emphasis
on those graphs having few edges. Our study is motivated by the following question: for a
fixed number of vertices and edges, what properties of connected graphs lead to symmetric
edge polytopes with either a large or small number of facets? This leads us to the following
definition.

Definition 1. For n ≥ 2 and m ≥ n− 1, define maxf(n,m) to be the maximum number of
facets of a symmetric edge polytope for a connected graph having n vertices and m edges,
and similarly define minf(n,m) to be the minimum number of facets. For n ≥ 2, we define
Maxf(n) to be the maximum number of facets of a symmetric edge polytope for a connected
graph having n vertices, and similarly define Minf(n) to be the minimum number.

The first few values of maxf(n,m) A360408 are given in Table 1. The first few values of
minf(n,m) A360409 are given in Table 2. The sequence Maxf(n) is given by

2, 6, 14, 36, 84, 216, 504, 1296, . . .

while the sequence Minf(n) is given by

2, 4, 6, 10, 14, 22, 30, 46, . . .

Note that the conjectured sequence A027383 for Minf(n) has been previously studied.
The problem of determining maxf(n,m) and minf(n,m) is challenging, in part due to the
complicated combinatorial structures that describe the facets of PG. Our experimental data
suggest that facet-maximizing graphs can be obtained as wedges of odd cycles; how broadly
this holds for general n and m beyond relatively sparse graphs is not clear. Based on compu-
tational evidence obtained with SageMath [19], we offer the following conjecture regarding
terms of the sequences Maxf(n) and Minf(n) in general (all undefined terms below are defined
in subsequent sections).

Conjecture 2. Let n ≥ 3.

1. For n = 2k + 1, we have Maxf(n) = 6k, which is attained by a wedge of k cycles of
length three.
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n
m− n+ 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2 2
3 4 6
4 8 6 12 14
5 16 12 10 22 26 28 30
6 32 20 18 16 14 42 54 56 58 60 62
7 64 40 32 28 26 24 22 78 102 106 116 118 120 122

Table 2: minf(n,m).

2. For n = 2k, we have Maxf(n) = 14 · 6k−2, which is attained by a wedge of K4 with
k − 2 cycles of length three.

3. For n = 2k + 1, we have Minf(n) = 3 · 2k − 2, which is attained by Kk,k+1.

4. For n = 2k, we have Minf(n) = 2k+1 − 2, which is attained by Kk,k.

The fact that the conjectured max and min values in Cases 1 and 2 of Conjecture 2 are
attained by a wedge follows from Proposition 9 below, while the analogous values for bipartite
graphs in Cases 3 and 4 were established by Higashitani, Jochemko, and Micha lek [10].

It is known that the symmetric edge polytope for every tree on n vertices is combinatori-
ally a cross polytope and thus has 2n−1 facets, hence maxf(n, n− 1) = 2n−1. More generally,
the number of facets for symmetric edge polytopes can be derived using combinatorial tools.
Specifically, a combinatorial description of the facet-defining hyperplanes of PG was given
by Higashitani, Jochemko, and Micha lek [10]. Further, Chen, Davis, and Korchevskaia [1]
give a combinatorial description of the faces of PG that utilizes special subgraphs of G.

It follows from Definition 3 below that symmetric edge polytopes are centrally symmetric
lattice polytopes. Symmetric edges polytopes have also been shown to be reflexive and
terminal [9]. Further, Higashitani [9, Theorem 3.3] proved that centrally symmetric simplicial
reflexive polytopes are precisely the symmetric edge polytopes of graphs without even cycles.
In Case 1 of Conjecture 2, the symmetric edge polytopes arising from wedges of cycles of
length three fall within this family. This is related to a result due to Nill [13, Corollary 4.4]
stating that the maximum number of facets for every pseudo-symmetric reflexive simplicial
d-polytope P is 6d/2 and that the maximum is attained if and only if P is a free sum of d/2
copies of PK3 . Thus, Conjecture 2 aligns with existing results regarding these polytopes.

In this work, we investigate the sequences maxf(n, n) and maxf(n, n + 1). We provide
an exact result for maxf(n, n) and provide partial progress toward a conjectured value of
maxf(n, n + 1). The use of combinatorial tools for this analysis produces independently
interesting integer sequences defined by sums of products of binomial coefficients.

This paper is structured as follows. In Section 2, we provide necessary definitions and
background. In Section 3, we give formulas for the number of facets and discuss facet-
maximizers among some sparse connected graphs, namely graphs on n vertices with n or n+1
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edges where every pair of cycles present is edge-disjoint. In these cases, Theorems 11 and 14
respectively describe facet-maximizing graphs. In Section 4, we discuss facet counts for
graphs constructed from internally disjoint paths connected at their endpoints and give
formulas in Propositions 22 and 24. As a special case of this, we get results about the
number of facets arising from graphs with n vertices and n + 1 edges where the cycles
share at least one edge, and we make progress toward generalizing Theorem 14 to this class
of graphs. In Section 5, we give several conjectures regarding facet-maximizing graphs in
certain families. We also discuss computational evidence supporting these conjectures.

2 Background

Definition 3. Let G be a graph on the vertex set [n] = {1, . . . , n} and edge set E = E(G).
Let ei denote the i-th standard basis vector in R

n and let conv{X} denote the convex hull
of a subset X ⊂ R

n. The symmetric edge polytope for G is

PG := conv{±(ei − ej) : {i, j} ∈ E(G)} .

We denote by N(P ) the number of facets of a polytope P . We denote by both N(PG)
and N(G) the number of facets of PG.

Example 4. Let G be the path with vertices {1, 2, 3} and edges {12, 23}. Then

PG = conv{±(e1 − e2),±(e2 − e3)} ⊂ R
3

is a 4-gon contained in the orthogonal complement of the vector 〈1, 1, 1〉. This polygon has
four 1-dimensional faces. Thus, we have N(PG) = 4.

In general, the machinery used to count the facets of PG are functions f : V → Z on the
set V of vertices in G satisfying certain properties. It is known [10, Theorem 3.1] that the
facets of PG are in bijection with these functions.

Theorem 5 (Higashitani, Jochemko, Micha lek [10]). Let G = (V,E) be a finite simple
connected graph. Then f : V → Z is facet-defining if and only if both of the following hold.

(i) For every edge e = uv we have |f(u)− f(v)| ≤ 1.

(ii) The subset of edges Ef = {e = uv ∈ E : |f(u)−f(v)| = 1} forms a spanning connected
subgraph of G.

As symmetric edge polytopes are contained in the hyperplane orthogonal to the span of
the vector where every entry is one, two facet-defining functions are identified if they differ
by a common constant. The spanning connected subgraphs with edge sets Ef arising in
Theorem 5, called facet subgraphs, have further structure.
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Lemma 6 (Chen, Davis, Korchevskaia [1]). Let G be a connected graph. A subgraph H of G
is a facet subgraph of G if and only if it is a maximal connected spanning bipartite subgraph
of G.

Lemma 6 provides a strategy for identifying the facets of PG combinatorially: first identify
the maximal connected spanning bipartite subgraphs of G, then determine the valid integer
labelings of the vertices. Facet counts for symmetric edge polytopes are known for certain
classes of graphs. A class of particular interest to us is cycles. Let Cn denote the cycle with
n edges and let Qn denote the path with n edges.

Lemma 7. For every m,

N(PCm
) =

{

(

m
m/2

)

, if m is even;

m
(

m−1
(m−1)/2

)

, if m is odd.

Proof. For even m, the facets of PCm
are identified and counted in [2, Proposition 12], and

for odd m in [13, Remark 4.3].

Though the two-cycle is a multigraph (and thus its symmetric edge polytope is not
defined), its facet-defining functions would be exactly the facet-defining functions of a graph
on two vertices with a single edge. This is consistent with the formula in Lemma 7.

For a graph G that is constructed by identifying two graphs at a single vertex, there is a
relationship between the facets of PG and the facets of the subgraphs.

Definition 8. For graphs G and H, let G ∨ H denote a graph obtained by identifying a
vertex in G with a vertex in H. We call G ∨H a wedge or join.

Note that we do not specify a choice of identification points when defining G ∨H, as by
the following proposition every such choice yields a symmetric edge polytope with the same
number of facets.

Proposition 9. For connected graphs G and H,

N(PG∨H) = N(PG) ·N(PH).

Proof. This follows from the fact that PG∨H is the free sum PG ⊕ PH [16, Proposition 4.2]
(also called the direct sum) and the number of facets is multiplicative for free sums [8].

3 Graphs with few edges and disjoint cycles

We consider the symmetric edge polytopes for classes of connected graphs where the number
of edges is small relative to the number of vertices. For every tree T on n vertices, we obtain
N(T ) = 2n−1 using Proposition 9 since T can be constructed as a wedge of n−1 single edges
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Figure 1: C(7, 5).

with an appropriate choice of identification points. Thus, it follows that maxf(n, n − 1) =
2n−1.

Considering next the sequence maxf(n, n), every connected graph with an equal number
of vertices and edges has a unique cycle and hence can be constructed as a wedge of that cycle
with trees. Therefore, we can count the facets of PG for every such graph G and determine
the maximum possible facet number arising from a graph with n vertices and n edges.

Definition 10. Let C(n,m) denote a graph on n vertices obtained by joining an m-cycle
with a path graph on n−m edges.

Theorem 11. For every connected graph H with n vertices and n edges, the number of
facets of PH is less than or equal to the number of facets of PG for G = C(n, n) when n is
odd and G = C(n, n− 1) when n is even. Thus, for odd n we have

maxf(n, n) = n

(

n− 1

(n− 1)/2

)

and for even n we have

maxf(n, n) = 2(n− 1)

(

n− 2

(n− 2)/2

)

.

Proof. A connected graph on n vertices and n edges has a unique cycle of length m for some
3 ≤ m ≤ n. Thus, the graph G is the join of an m-cycle and n−m edges. By Proposition 9,
we have N(G) = N(C(n,m)). For k ≥ 2, we claim

N(C(n, 2k)) < N(C(n, 2k − 1)) < N(C(n, 2k + 1)) . (1)

In other words, if m is even, then N(C(n,m − 1)) is greater than N(C(n,m)). Also, if m
is odd and m ≤ n − 2, the graph C(n,m + 2) exists, and N(C(n,m + 2)) is greater than
N(C(n,m)). With these two statements, we see that N(G) is maximized when G contains
the largest odd cycle possible in a graph with n vertices.

To prove the inequality in (1), let

M =
2n−(2k+1)(2k − 1)!

(k!)2
.
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Figure 2: A graph with N(G) = M(7).

Then, by Lemma 7 and Proposition 9,

N(C(n, 2k)) = N(C2k) · 2n−2k =

(

2k

k

)

· 2n−2k = 4kM,

N(C(n, 2k − 1)) = N(C2k−1) · 2n−(2k−1) = (2k − 1)

(

2k − 2

k − 1

)

· 2n−(2k−1) = 4k2M,

N(C(n, 2k + 1)) = N(C2k+1) · 2n−(2k+1) = (2k + 1)

(

2k

k

)

· 2n−(2k+1) = (4k2 + 2k)M,

and the claim holds.

We next consider the sequence maxf(n, n + 1), which is substantially more challenging
than the previous cases. Every connected, simple graph with n vertices and n+1 edges can
be constructed from a tree on n vertices by adding two edges. Each of these additions induces
a cycle in the graph. For such graphs, we make the following definition and conjecture.

Definition 12. For n ≥ 3, let M(n) be the number of facets of PG where

G :=



















Ck+1 ∨ Ck−1, if n = 2k − 1 and k even;

Ck ∨ Ck, if n = 2k − 1 and k odd;

Ck+1 ∨ Ck−1 ∨ e, if n = 2k and k even;

Ck ∨ Ck ∨ e, if n = 2k and k odd.

Conjecture 13. For all n ≥ 3, we have maxf(n, n+ 1) = M(n).

Graphs with n vertices and n + 1 edges fall into two categories: graphs with exactly
2 edge-disjoint cycles, such as those defined in Definition 15 below, and graphs where the
cycles share one or more edges, such as those defined in Definition 20 below. In this section,
we show that Conjecture 13 is true for the first category.

Theorem 14. For every connected graph H with n vertices and n+1 edges where H contains
two edge-disjoint cycles, we have N(H) ≤ M(n).
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Note that Theorem 14 states that, among connected graphs with n vertices and n + 1
edges containing disjoint cycles, a facet-maximizing family arises by creating a graph that
as closely as possible resembles the wedge of two equal-length odd cycles. The proof relies
on the following definition and lemmas.

Definition 15. Let G(n, i, j) denote the graph Ci ∨ Cj ∨ Qn+1−(i+j). Note that G(n, i, j)
has n vertices and n+ 1 edges.

Lemma 16. If i is even, then

N(G(n, i, j)) < N(G(n, i− 1, j)).

Proof. Note that N(G(n, i, j)) = N(C(n + 1 − j, i) ∨ Cj). Because i is even, applying (1)
and Proposition 9 yields

N(C(n+ 1− j, i) ∨ Cj) < N(C(n+ 1− j, i− 1) ∨ Cj) = N(G(n, i− 1, j)) ,

which completes the proof.

Lemma 17. For i, j,m, ℓ odd with m < i ≤ j < l and i+ j = m+ ℓ, we have

N(Cm ∨ Cℓ) < N(Ci ∨ Cj).

Proof. We show this holds for m = i − 2 and ℓ = j + 2, then the argument follows by
induction. Using Lemma 7 and Proposition 9, we obtain

N(Ci ∨ Cj) = ij

(

i− 1
i−1
2

)(

j − 1
j−1
2

)

and

N(Ci−2 ∨ Cj+2) = (i− 2)(j + 2)

(

i− 3
i−3
2

)(

j + 1
j+1
2

)

.

Letting M = (i− 2)j

(

i− 3
i−3
2

)(

j − 1
j−1
2

)

, we obtain

N(Ci−2 ∨ Cj+2) = 4M · j + 2

j + 1
< 4M · i

i− 1
= N(Ci ∨ Cj).

We also make use of the following theorem.

Theorem 18. For all n, we have 2M(n) ≤ M(n+ 1).
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Proof. Lemma 7 and Proposition 9 imply that

M(n) =















(k + 1)(k − 1)
(

k
k
2

)(

k−2
k−2
2

)

, if n = 2k − 1 and k even;

k2
(

k−1
k−1
2

)2
, if n = 2k − 1 and k odd;

2 ·M(n− 1), if n = 2k.

When n is odd, we have 2 ·M(n) = M(n+1) and we are done. When n is even, we consider
two cases.
Case 1: If n = 2k with k even, then n+ 1 = 2(k + 1)− 1 with k + 1 odd. Therefore, letting

K = (k + 1)

(

k
k
2

)

, we have

M(n) = 2 ·M(2k − 1) = 2(k + 1)(k − 1)

(

k
k
2

)(

k − 2
k−2
2

)

= 2(k − 1)

(

k − 2
k−2
2

)

· K

and

M(n+ 1) = (k + 1)2
(

k
k
2

)2

= K2 .

Since

K = (k + 1)

(

k
k
2

)

=
(k + 1)k
(

k
2

)2 · (k − 1) ·
(

k − 2
k−2
2

)

=
4(k + 1)

k
· (k − 1) ·

(

k − 2
k−2
2

)

≥ 4 · (k − 1) ·
(

k − 2
k−2
2

)

,

we see

2 ·M(n) = 4(k − 1)

(

k − 2
k−2
2

)

· K ≤ K2 = M(n+ 1) .

Case 2: If n = 2k with k odd, then n+ 1 = 2(k + 1)− 1 with k + 1 even. Therefore, letting
K = k

(

k−1
k−1
2

)

, we have

M(n) = 2 ·M(2k − 1) = 2k2

(

k − 1
k−1
2

)2

= 2K2

and

M(n+ 1) = (k + 2)k

(

k + 1
k+1
2

)(

k − 1
k−1
2

)

= (k + 2)

(

k + 1
k+1
2

)

· K .

Since

(k + 2)

(

k + 1
k+1
2

)

=
(k + 2)(k + 1)

(

k+1
2

)2 · k ·
(

k − 1
k−1
2

)

=
4(k + 2)

(k + 1)
· K ≥ 4K ,

we see

2 ·M(n) = 4K2 ≤ (k + 2)

(

k + 1
k+1
2

)

· K = M(n+ 1) .
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With these in place, we can prove Theorem 14.

Proof of Theorem 14. By Proposition 9, every such graph H containing exactly two edge-
disjoint cycles of length i and j satisfies N(H) = N(G(n, i, j)). Thus, it is sufficient to
restrict our attention to G(n, i, j). By Lemmas 16 and 17, we can consider only G(n, i, j)
for i, j odd and as close to i+j

2
as possible. Without loss of generality, suppose i ≤ j.

Case 1: n = 2k − 1 and k even. Note that, since i and j are both odd, we have i ≤ k − 1
and j ≤ k + 1. Also, using Lemma 7 and Proposition 9, we obtain

N(G(n, i, j)) = 2n−(i+j)+1ij

(

i− 1
i−1
2

)(

j − 1
j−1
2

)

= 22k−(i+j) · i!j!
(

i−1
2
!
)2 ( j−1

2
!
)2 .

Similarly,

M(n) = (k + 1)(k − 1)

(

k
k
2

)(

k − 2
k−2
2

)

=
(k + 1)!
(

k
2
!
)2 · (k − 1)!

(

k−2
2
!
)2

=
j!

(

j−1
2
!
)2 ·







k
∏

ℓ=j+1
ℓ even

(ℓ+ 1)ℓ
(

ℓ
2

)2






· i!
(

i−1
2
!
)2 ·







k−2
∏

m=i+1
m even

(m+ 1)m
(

m
2

)2







= 22k−(i+j) · i!j!
(

i−1
2
!
)2 ( j−1

2
!
)2 ·







k
∏

ℓ=j+1
ℓ even

ℓ+ 1

ℓ






·







k−2
∏

m=i+1
m even

m+ 1

m







≥ N(G(n, i, j)).

Case 2: n = 2k − 1 and k odd. Note that, by assumption, we have i ≤ k and j ≤ k. Also,
using Lemma 7 and Proposition 9, we obtain

N(G(n, i, j)) = 2n−(i+j)+1ij

(

i− 1
i−1
2

)(

j − 1
j−1
2

)

= 22k−(i+j) · i!j!
(

i−1
2
!
)2 ( j−1

2
!
)2 .
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Similarly,

M(n) = k2

(

k − 1
k−1
2

)2

=
j!

(

j−1
2
!
)2 ·







k−1
∏

ℓ=j+1
ℓ even

(ℓ+ 1)ℓ
(

ℓ
2

)2






· i!
(

i−1
2
!
)2 ·







k−1
∏

m=i+1
m even

(m+ 1)m
(

m
2

)2







= 22k−(i+j) · i!j!
(

i−1
2
!
)2 ( j−1

2
!
)2







k−1
∏

ℓ=j+1
ℓ even

ℓ+ 1

ℓ






·







k−1
∏

m=i+1
m even

m+ 1

m







≥ N(G(n, i, j)).

Case 3: n = 2k. Using Lemma 7 and Proposition 9, we obtain

N(G(n, i, j)) = 2n−(i+j)+1ij

(

i− 1
i−1
2

)(

j − 1
j−1
2

)

= 2 ·N(G(n− 1, i, j)) .

Also, using Theorem 18 and the previous cases, we obtain

M(n) ≥ 2 ·M(n− 1)

≥ 2 ·N(G(n− 1, i, j))

= N(G(n, i, j)).

Thus, in every case, we have N(G(n, i, j)) ≤ M(n).

4 Graphs with few edges and overlapping cycles

We next consider the family of graphs on n vertices and n + 1 edges that have two cycles
intersecting in at least one edge. Note that the case where two cycles intersect in exactly one
edge was previously studied [1, Section 5]. Theorem 18 allows us to reduce Conjecture 13 to
the case where G has no vertices of degree one, as follows.

Corollary 19. If Conjecture 13 is true for graphs on n vertices, then it is true for graphs
on n+ 1 vertices that have at least one leaf.

Proof. Let G be a graph on n + 1 vertices and n + 2 edges that has a leaf e. Then G \ {e}
is a graph with n vertices and n + 1 edges, and by assumption N(G \ {e}) ≤ M(n). By
Proposition 9 and Theorem 18, we get

N(G) = 2 ·N(G \ {e}) ≤ 2 ·M(n) ≤ M(n+ 1).
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Corollary 19 allows us to restrict our attention to graphs with no leaves. Every graph on
n vertices and n+1 edges with no leaves that contains cycles sharing one or more edges can
be interpreted as three internally disjoint paths connected at their endpoints. We consider
these as a special case of a more general construction.

Definition 20. For a vector m ∈ N
t, let CB(m) denote the graph made of t internally

disjoint paths of lengths m1,m2, . . . ,mt connecting two endpoints.

Note that when t = 3, we obtain the leafless connected graphs with n vertices and n+ 1
edges.

Remark 21. The graphs CB(m) for which all entries of m are the same m ∈ N are sometimes
called theta graphs, denoted by θm,t [6].

Proposition 22. For m ∈ N
t, we may permute the entries so that without loss of generality

we have m1 ≥ m2 ≥ · · · ≥ mt. If all the mi’s have the same parity, then N(CB(m)) is given
by

F (m) =
mt
∑

j=0

(

mt

j

)

[

t−1
∏

k=1

(

mk
1
2
(mk −mt) + j

)

]

.

Proof. Consider CB(m) as consisting of paths Q1, Q2, . . . , Qt having m1 ≥ · · · ≥ mt edges
respectively, as shown in Figure 3. Since all mi are the same parity, it follows that CB(m) is
bipartite. For every facet-defining function f : V → Z, we have |f(u)− f(v)| = 1 for every
edge uv in CB(m) [5, Lem. 4.5]. If we consider the paths as oriented away from the top vertex
toward the bottom vertex, we can view each edge u → v as ascending (f(v)− f(u) = 1) and
label it 1, or as descending (f(v)− f(u) = −1) and label it −1.

We count facets by finding valid labelings of the edges of CB(m) with ±1, that is labelings
such that the sum of the labels on every path is the same. For a labeling of a shortest path
with length mt using j (−1)s and mt − j 1s, the sum of the edge labels is mt − 2j. There
are

(

mt

j

)

labelings of this path with this sum.
To produce a valid labeling of the entire graph with each path sum equal to mt − 2j,

the number of (−1)s, call this number y, on a path of length mk must satisfy the following
equation:

(+1)(mk − y) + (−1)y = mt − 2j

y =
1

2
(mk −mt) + j.

Thus, there are

(

mk
1
2
(mk −mt) + j

)

labelings of a path of length mk with label sum mt − 2j.

Applying this argument to mk for k = 1, . . . , t− 1 gives

(

mt

j

) t−1
∏

k=1

(

mk
1
2
(mk −mt) + j

)

12



Q1 Q2 Qt· · ·

Figure 3: The graph CB(m) for m = (m1, . . . ,mt).

valid labelings of CB(m) with j (−1)s on the shortest path. The result follows by taking
the sum over all j = 0, . . . ,mt.

Note that there is a combinatorial interpretation for F , where we consider the arithmetical
triangle of binomial coefficients vertically centered at the central terms. What F does is select
the mt row of the arithmetical triangle, multiply each entry by the vertically-aligned entries
in rows m1 through mt−1, and sum the resulting products.

For CB(m) = θm,t where all the paths are the same length, this formula simplifies.

Corollary 23. For t ∈ N, we have

N(θm,t) =
m
∑

j=0

(

m

j

)t

.

If the vector m has both even and odd entries, counting the facets of CB(m) becomes
more complicated, but still involves F .

Proposition 24. For m ∈ N
t, permute the entries so that m = (e1, . . . , ek, o1, . . . , oℓ) with

e1 ≥ e2 ≥ · · · ≥ ek even and o1 ≥ o2 ≥ · · · ≥ oℓ odd and k, ℓ ≥ 1 with k + ℓ = t. Also, let
me be the vector obtained by subtracting 1 from every even entry of m, and mo the vector
obtained by subtracting 1 from every odd entry of m.

(i) If all entries of m are at least 2, then

N(CB(m)) =

(

k
∏

j=1

ej

)

F (me) +

(

ℓ
∏

j=1

oj

)

F (mo).

13



(ii) If op+1 = · · · = oℓ = 1 (and op > 1), then

N(CB(m)) =

(

k
∏

j=1

ej

)

F (me) +

(

ℓ
∏

j=1

oj

)

N

((

k
∨

j=1

Cej

)

∨
(

p
∨

j=1

Coj−1

))

.

Proof. Consider CB(m) as in Figure 3. As in the proof of Proposition 22, we will count facets
of PCB(m) by counting valid labelings of the facets subgraphs of CB(m). These subgraphs
are those in which either one edge of every even length path has been removed or one edge
of every odd length path has been removed. We can view these as labelings of CB(m) where
the sum of labels on each Qi is equal, and all edges must be labeled with ±1 except either

A. one edge on each even path is labeled 0, or

B. one edge on each odd path is labeled 0.

In Case A, there are
k
∏

j=1

ej ways to choose the edges to label 0. Having the edge uv labeled 0

indicates that f(u) = f(v) in the corresponding facet-defining function f : V → Z. Thus, we
can view this edge as having been contracted since its endpoints have the same value. The
reduced graph with these edges contracted is CB(me), constructed of paths that all have
odd length. So, by Proposition 22, the number of valid labelings of CB(m) where each even
path has a 0 edge is

(

k
∏

j=1

ej

)

F (me).

In Case B, there are
ℓ
∏

j=1

oj ways to choose the edges to label 0. If every entry of m is at

least 2, the graph produced by contracting these 0 edges is CB(mo), constructed of paths
that all have even length. As above, the number of valid labelings of CB(m) of this type is

(

ℓ
∏

j=1

oj

)

F (mo).

Thus, in Case (i) of the Proposition statement, we have

N(CB(m)) =

(

k
∏

j=1

ej

)

F (me) +

(

ℓ
∏

j=1

oj

)

F (mo).

To complete Case (ii) of the Proposition, note that if we contract an edge on a path of
length 1, the endpoints of the remaining paths are identified, and the reduced graph is a

14



wedge of cycles. In particular, if op+1 = · · · = oℓ = 1 and op > 1, the reduced graph is
(

k
∨

j=1

Cej

)

∨
(

p
∨

j=1

Coj−1

)

. Thus, the number of valid labelings of CB(m) of this type is

N

((

k
∨

j=1

Cej

)

∨
(

p
∨

j=1

Coj−1

))

.

Therefore, in Case (ii) of the Proposition, we have

N(CB(m)) =

(

k
∏

j=1

ej

)

F (me) +

(

ℓ
∏

j=1

oj

)

N

((

k
∨

j=1

Cej

)

∨
(

p
∨

j=1

Coj−1

))

.

Returning to the special case of leafless connected graphs on n vertices with n+1 edges,
specializing to t = 3 provides facet counts for our graphs of interest.

Corollary 25. The number of facets of the symmetric edge polytope for CB(x1, x2, x3) is
computed as follows.

(i) For x1, x2, x3 either all even or all odd, we have

N(CB(x1, x2, x3)) = F (x1, x2, x3) .

(ii) For o1, o2 odd and e1 even, and all at least 2, we have

N(CB(o1, o2, e1)) = e1F (o1, o2, e1 − 1) + o1o2F (o1 − 1, o2 − 1, e1) .

For e1, e2 even and o1 odd, and all at least 2, we have

N(CB(e1, e2, o1)) = o1F (e1, e2, o1 − 1) + e1e2F (e1 − 1, e2 − 1, o1) .

(iii) For e1, e2 even and o1 = 1, we have

N(CB(e1, e2, 1)) = e1e2F (e1 − 1, e2 − 1, 1) +N(Ce1 ∨ Ce2) .

(iv) For e1 even and o1 ≥ 3 odd, we have

N(CB(e1, o1, 1)) = e1F (e1 − 1, o1, 1) + o1N(Co1−1 ∨ Ce1) .

(v) For e1 even, we have

N(CB(e1, 1, 1)) = e1F (e1 − 1, 1, 1) +N(Ce1) .

15
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Figure 4: Some of the facet-defining functions of CB(4, 2, 2) when j = 0.
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Figure 5: Some of the facet-defining functions of CB(4, 2, 2) when j = 1.
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Figure 6: Some of the facet-defining functions of CB(4, 2, 2) when j = 2.
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Example 26. Figures 4, 5, and 6 illustrate some of the facet-defining functions for the
symmetric edge polytope of CB(4, 2, 2). The vertices are labeled with their function values,
and the edges are labeled “ + ” if they are ascending and “ − ” if they are descending.

Using these results, we can make partial progress toward Conjecture 13 in two special
cases, given below in Theorem 27 and Proposition 30.

Theorem 27. For all n ≥ 4, if x1 ≥ x2 ≥ x3 ≥ 1, all xi’s have the same parity, and
x1 + x2 + x3 = n+ 1, then

F (x1, x2, x3) ≤ M(n).

Thus, if x1, x2, x3 are all of the same parity, then Conjecture 13 is true.

Remark 28. The proof of Theorem 27 makes use of the Stirling bounds on n! [18]:
√
2π nn+ 1

2 e−ne
1

12n+1 ≤ n! ≤
√
2π nn+ 1

2 e−ne
1

12n

Proof of Theorem 27. In each of the following cases, we show that the desired inequality
holds for large enough n. For all smaller values of n we have verified that the theorem holds

using SageMath [19]. Throughout the proof, we use the notation
!

≤ to indicate an unproven
inequality we wish to show.
Case 1: Assume n = 2k − 1. In this case, we have x1 + x2 + x3 = 2k and all xi’s are even
by assumption. Thus, we have

F (x1, x2, x3) =

x3
∑

j=0

(

x3

j

)(

x2
1
2
(x2 − x3) + j

)(

x1
1
2
(x1 − x3) + j

)

≤ (x3 + 1)

(

x3
x3

2

)(

x2
x2

2

)(

x1
x1

2

)

.

Subcase 1(a): If k is even, then

M(n) = M(2k − 1) = (k + 1)(k − 1)

(

k
k
2

)(

k − 2
k−2
2

)

.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1) x3!x2!x1!

(

k

2
!

)2 (
k − 2

2
!

)2
!

≤ (k + 1)(k − 1)k!(k − 2)!
(x3

2
!
)2 (x2

2
!
)2 (x1

2
!
)2

. (2)

By the Stirling bounds on n!, it suffices to show that























(x3 + 1)x
x3+

1
2

3 x
x2+

1
2

2 x
x1+

1
2

1

·
(

k
2

)k+1 (k−2
2

)k−1

·e−(x1+x2+x3+2k)+2

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 1

3k
+ 1

3(k−2)























!

≤























√
2π

(

x3

2

)x3+1 (x2

2

)x2+1 (x1

2

)x1+1

·(k + 1)(k − 1)kk+ 1
2 (k − 2)k−

3
2

·e−(x1+x2+x3+2k)+2

·e
1

12k+1
+ 1

12k−23
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1






















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or, equivalently, to show that













(x3 + 1)

·kk+1(k − 2)k−1

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 1

3k
+ 1

3(k−2)













!

≤















√
2π
8

√
x1x2x3

·(k + 1)(k − 1)kk+ 1
2 (k − 2)k−

3
2

·e
1

12k+1
+ 1

12k−23
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1















.

Since 1
12k+1

+ 1
12k−23

> 0 for k ≥ 2, we have

e
1

12k+1
+ 1

12k−23 > 1.

Also, since

−1 ≤ 1

12x
− 2

6x+ 1
≤ 0

for all x ≥ 1, we have

0 ≤ e
1

12x3
− 2

6x3+1
+ 1

12x2
− 2

6x2+1
+ 1

12x1
− 2

6x1+1 ≤ 1

for all x1, x2, x3. Therefore, to show inequality (2), it suffices to show

(x3 + 1)kk+1(k − 2)k−1e
1
3k

+ 1
3(k−2)

!

≤
√
2π

8
(k + 1)(k − 1)kk+ 1

2 (k − 2)k−
3
2
√
x1x2x3

or, rather, to show

(x3 + 1)
√

k(k − 2)e
1
3k

+ 1
3(k−2)

!

≤
√
2π

8
(k + 1)(k − 1)

√
x1x2x3.

Finally, we note the following:

• By assumption, we have x3 + 1 ≤ 2k

3
+ 1 ≤ k + 1, and thus

x3 + 1

k + 1
≤ 1.

• We have

√

k(k − 2)

k − 1
≤ 1.

• We have 0 < e
1
3k

+ 1
3(k−2) < e for k ≥ 3.

• By assumption, we have x1 ≥
2k

3
, and x2, x3 ≥ 2, implying that x1x2x3 ≥

8k

3
.

With this, it suffices to show that

e
!

≤
√
2π

8

√

8k

3
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or, equivalently, that

k
!

≥ 12e2

π
≈ 28.224.

This inequality and the desired inequality hold for all even k ≥ 30.
Subcase 1(b): If k is odd, then

M(n) = M(2k − 1) = k2

(

k − 1
k−1
2

)

.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1) x3!x2!x1!

(

k − 1

2
!

)4
!

≤ (k!)2
(x3

2
!
)2 (x2

2
!
)2 (x1

2
!
)2

. (3)

By the Stirling bounds on n!, it suffices to show























(x3 + 1)x
x3+

1
2

3 x
x2+

1
2

2 x
x1+

1
2

1

·
(

k−1
2

)2k

·e−(x1+x2+x3+2k)+2

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 2

3(k−1)























!

≤























√
2π

(

x3

2

)x3+1 (x2

2

)x2+1 (x1

2

)x1+1

·k2k+1

·e−(x1+x2+x3+2k)

·e
2

12k+1
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1























.

Using the same kinds of computations as the previous case, we see it suffices to show

e2(x3 + 1)(k − 1)2ke
2

3(k−1)
!

≤
√
2π

8
k2k+1√x1x2x3.

Now note the following:

• We have x3 + 1 ≤ 2k

3
+ 1 ≤ k for k ≥ 3 and thus x3+1

k
≤ 1.

• We have e2
(

k − 1

k

)2k

≤ 1 for k ≥ 3.

• We have 1 ≤ e
2

3(k−1) ≤ e for k ≥ 2.

So, it suffices to show that

e
!

≤
√
2π

8

√
x1x2x3,

which, as before, holds for

k ≥ 12e2

π
≈ 28.224
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or all odd k ≥ 29.
Case 2: Assume n = 2k. In this case, we have x1 + x2 + x3 = 2k + 1 and all xi’s are odd by
assumption. Thus, we have

F (x1, x2, x3) =

x3
∑

j=0

(

x3

j

)(

x2
1
2
(x2 − x3) + j

)(

x1
1
2
(x1 − x3) + j

)

≤ (x3 + 1)

(

x3
x3−1
2

)(

x2
x2−1
2

)(

x1
x1−1
2

)

.

Subcase 2(a): If k is even, then

M(n) = M(2k) = 2(k + 1)(k − 1)

(

k
k
2

)(

k − 2
k−2
2

)

.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1) x3!x2!x1!

(

k

2
!

)2 (
k − 2

2
!

)2

!

≤ 2(k + 1)(k − 1)k!(k − 2)!
3
∏

k=1

[(

xi + 1

2
!

)(

xi − 1

2
!

)]

.

(4)

Equivalently, we want

(x3 + 1) x3!x2!x1!

(

k

2
!

)2 (
k − 2

2
!

)2

!

≤ 2(k + 1)(k − 1)k!(k − 2)!
3
∏

i=1

(

xi + 1

2
!

)2 (
8

(x3 + 1)(x2 + 1)(x1 + 1)

)

,

or, equivalently, we want

(x3 + 1) (x3 + 1)!(x2 + 1)!(x1 + 1)!

(

k

2
!

)2 (
k − 2

2
!

)2

!

≤ 16(k + 1)(k − 1)k!(k − 2)!

(

x3 + 1

2
!

)2 (
x2 + 1

2
!

)2 (
x1 + 1

2
!

)2

.

By the Stirling bounds, it suffices to show






(x3 + 1)(x3 + 1)x3+
3
2 (x2 + 1)x2+

3
2 (x1 + 1)x1+

3
2

(

k
2

)k+1 (k−2
2

)k−1

· e−(x3+x2+x1+2k+1)e
1

12(x3+1)
+ 1

12(x2+1)
+ 1

12(x1+1)
+ 1

3k
+ 1

3(k−2)







!

≤







16
√
2π

(

x3+1
2

)x3+2 (x2+1
2

)x2+2 (x1+1
2

)x1+2
(k + 1)(k − 1)kk+ 1

2 (k − 1)k−
3
2

· e−(x3+x2+x1+2k+1)e
1

12k+1
+ 1

12(k−2)+1
+ 2

6(x3+1)+1
+ 2

6(x2+1)+1
+ 2

6(x1+1)+1






.
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After computations similar to those in Case 1, we see it suffices to show

(x3 + 1)
√

k(k − 2)e
!

≤
√
2π

8
(k + 1)(k − 1)

√

(x1 + 1)(x2 + 1)(x3 + 1)

where x1 + 1 ≥ 2k+4
3

and x2 + 1 ≥ 2 and x3 + 1 ≥ 2. It therefore suffices to show

e
!

≤
√
2π

8

√

4

(

2k + 4

3

)

or, equivalently, to have

k ≥ 12e2

π
− 2 ≈ 26.224.

Thus, the desired inequality holds for even k ≥ 28.
Subcase 2(b): If k is odd, then

M(n) = M(2k) = 2k2

(

k − 1
k−1
2

)2

.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1)x3!x2!x1!

(

k − 1

2
!

)4

!

≤ 2(k!)2
(

x3 − 1

2
!

)(

x3 + 1

2
!

)(

x2 − 1

2
!

)(

x2 + 1

2
!

)(

x1 − 1

2
!

)(

x1 + 1

2
!

)

.

(5)

Equivalently, we want

(x3 + 1) x3!x2!x1!

(

k − 1

2
!

)4

!

≤ 2(k!)2
(

x3 + 1

2
!

)2 (
x2 + 1

2
!

)2 (
x1 + 1

2
!

)2 (
8

(x3 + 1)(x2 + 1)(x1 + 1)

)

,

which is equivalent to

(x3 + 1)(x3 + 1)!(x2 + 1)!(x1 + 1)!

(

k − 1

2
!

)4

!

≤ 16(k!)2
(

x3 + 1

2
!

)2 (
x2 + 1

2
!

)2 (
x1 + 1

2
!

)2

.
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By the Stirling bounds, it suffices to show






(x3 + 1)(x3 + 1)x3+
3
2 (x2 + 1)x2+

3
2 (x1 + 1)x1+

3
2

(

k−1
2

)2k

· e−(x3+x2+x1+2k+1)e
1

12(x3+1)
+ 1

12(x2+1)
+ 1

12(x1+1)
+ 2

3(k−1)







!

≤







16
√
2π

(

x3+1
2

)x3+2 (x2+1
2

)x2+2 (x1+1
2

)x1+2
k2k+1

· e−(x3+x2+x1+2k+3)e
2

12k+1
+ 2

6(x3+1)+1
+ 2

6(x2+1)+1
+ 2

6(x1+1)+1






.

After computations similar to those in previous cases, we see it suffices to show

e2(x3 + 1)(k − 1)2ke
2

3(k−1)
!

≤
√
2π

8
k2k+1

√

(x1 + 1)(x2 + 1)(x3 + 1) .

Similar to Case 1, it suffices to show that

e
!

≤
√
2π

8

√

(x1 + 1)(x2 + 1)(x3 + 1)

with x1 + 1 ≥ 2k+4
3

and x2 + 1 ≥ 2 and x3 + 1 ≥ 2. Thus, the desired inequality holds for

k ≥ 12e2

π
− 2 ≈ 26.224,

hence all odd k ≥ 27.

Our second special case concerns a certain family of CB graphs with an even number of
vertices where the two cycles share exactly one edge. We will need the following lemma, the
proof of which follows from straightforward computations after expanding the right hand
sides below.

Lemma 29. If k is even, then

M(2k) =

(

k + 2

2

)(

k

2

)

F (k + 1, k − 1, 1). (6)

If k is odd, then

M(2k) =

(

k + 1

2

)2

F (k, k, 1). (7)

For even k, we have

M(2k − 2) =
k

2(k + 1)
M(2k − 1). (8)

For odd k, we have

M(2k − 2) =
k − 1

2k
M(2k − 1). (9)
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For all k, we have

M(2k − 1) =
1

2
M(2k). (10)

Finally, if k is even, then

N(Ck) =
4

k
N(Ck−1) . (11)

Proposition 30. Let n = 2k ≥ 10.

(i) If k is even, then
N(CB(k, k, 1)) ≤ M(2k).

(ii) If k is odd, then
N(CB(k + 1, k − 1, 1)) ≤ M(2k).

Proof. For even k, we have

N(CB(k, k, 1)) = N(Ck ∨ Ck) + k2F (k − 1, k − 1, 1)

(11),(7)
=

16

k2
N(Ck−1 ∨ Ck−1) +

4k2

k2
M(2k − 2)

Def 12
=

16

k2
M(2k − 3) + 4M(2k − 2)

(10),(8)
=

2

k(k + 1)
M(2k) +

k − 1

k
M(2k)

=
k2 + 1

k2 + k
M(2k) ≤ M(2k).

For odd k, we have

N(CB(k + 1, k − 1, 1)) = N(Ck+1 ∨ Ck−1) + k2F (k − 1, k − 1, 1)

(11), (6)
=

16

(k + 1)(k − 1)
N(Ck ∨ Ck−2) +

4(k + 1)(k − 1)

(k + 1)(k − 1)
M(2k − 2)

Def 12
=

16

(k + 1)(k − 1)
M(2k − 3) + 4M(2k − 2)

(10),(9)
=

2

k(k + 1)
M(2k) +

k

k + 1
M(2k)

=
k2 + 2

k2 + k
M(2k) ≤ M(2k).

23



5 Further conjectures and open problems

Through the course of this study, we observed several patterns that remain as conjectures and
open questions. First, computational evidence suggests interesting structure for the function
F (x1, x2, x3) beyond Theorem 27. We formally record our observations as the following
conjecture, which has been confirmed with SageMath [19] for all n less than or equal to 399.

Conjecture 31. For n = 2k and k ≥ 2 with x1 + x2 + x3 = n+1, the function F (x1, x2, x3)
is maximized at F (n − 1, 1, 1). For n = 2k − 1 and k ≥ 3 with x1 + x2 + x3 = n + 1, the
function F (x1, x2, x3) is maximized at F (n− 3, 2, 2). Further, for every x1 ≥ x2 ≥ x3 ≥ 3 all
even or all odd positive integers, we have

F (x1, x2, x3) ≤ F (x1 + 2, x2, x3 − 2)

and
F (x1, x2, x3) ≤ F (x1 + 2, x2 − 2, x3) ,

when the subtraction by 2 will maintain the inequalities on the xi’s.

For example, the first inequality in Conjecture 31 asserts that for x1 ≥ x2 ≥ x3 ≥ 5 all
of the same parity,

x3
∑

j=0

(

x3

j

)(

x2
1
2
(x2 − x3) + j

)(

x1
1
2
(x1 − x3) + j

)

≤
x3−2
∑

j=0

(

x3 − 2

j

)(

x2
1
2
(x2 − x3 + 2) + j

)(

x1 + 2
1
2
(x1 − x3) + j

)

.

Second, the remaining case for Conjecture 13 is the following.

Conjecture 32. If x1, x2, and x3 have different parities, then N(CB(x1, x2, x3)) ≤ M(n).

Using the recursion given by Corollary 25 and the inequality xi ≤ n, it is straightforward
to deduce that N(CB(x1, x2, x3)) ≤ 6n2M(n). It is not clear to the authors how to obtain a
stronger bound in this case. One direction toward proving Conjecture 32 is the following.

Conjecture 33. For n ≥ 10, the value N(CB(x1, x2, x3)) with x1 + x2 + x3 = n + 1 is
maximized by



















CB(k − 1, k − 1, 2), if n = 2k − 1 and k even;

CB(k, k − 2, 2), if n = 2k − 1 and k odd;

CB(k, k, 1), if n = 2k and k even;

CB(k + 1, k − 1, 1), if n = 2k and k odd.
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WM(7, 2) WM(8, 2)

Figure 7: Two windmill graphs which are not full.

Using SageMath [19], we have computed N(CB(x1, x2, x3)) for all tuples with x1 + x2 +
x3 = n + 1 ≤ 535. All of these values are less than or equal to the number of facets
of our conjectured maximizer for the corresponding n, providing significant support for
Conjecture 33.

Third, when n is even, Proposition 30 gives that the number of facets given by these
conjectured maximizing graphs remains less than M(n). Currently, for odd n we do not
know of an equality or a bound strong enough to accomplish what (6) and (7) give for even
n. Therefore, a similar result for odd n remains unproven. We have verified that such a
result holds for all odd n less than 100,000 via computations with SageMath [19].

Fourth and finally, throughout our investigations we sought examples of graphs having
a high number of symmetric edge polytope facets. Conjecture 2 asserts that graphs appear-
ing as global facet-maximizers for connected graphs on n vertices can be constructed from
minimally intersecting odd cycles, but it is unclear how to prove this. A related problem
would be to prove that the graphs appearing as global facet-maximizers in Conjecture 2 are
facet-maximizers among connected graphs having a fixed number of edges. We explore this
idea a bit further in the special case of the following graphs, which are the conjectured global
facet-maximizers for connected graphs on an odd number of vertices.

Definition 34. Let WM(n, r) denote the windmill graph on n vertices consisting of r copies
of the cycle C3 and n − 1 − 2r edges all wedged at a single vertex. We say a windmill is
full if n is odd and r = n−1

2
. In other words, a full windmill is a wedge of n−1

2
triangles at a

single vertex. Denote by WM(n) the full windmill on n vertices.

Proposition 35. For all odd n, we have

N(WM(n)) = 6
n−1
2

Proof. The windmill WM(n) is a join of n−1
2

3-cycles. By Lemma 7 and Proposition 9, we
obtain

N(WM(n)) = (N(C3))
n−1
2 = 6

n−1
2 .
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Conjecture 36. For odd n, among graphs with n vertices and 3(n− 1)/2 edges, WM(n) is
a facet-maximizer.

To support this conjecture, we used SageMath [19] to sample the space of connected
graphs with n vertices and 3(n−1)/2 edges using a Markov Chain Monte Carlo technique [7,
Section 2]. We then computed N(PG) for each graph G in our sample. The transition
operation we consider is an edge replacement. Starting at a graph G, we produce a new
graph G′ by randomly choosing an edge e ∈ E(G) and a non-edge f ∈ E(G)C . Then, if the
edges (E(G) \ {e}) ∪ {f} form a connected graph, define G′ to be this graph. If the new
graph is not connected, let G′ = G (in other words, sample at G again).

Using this single-edge replacement, the resulting graph of graphs G is regular [7], with
each node having in-degree and out-degree both equal to

3

2
(n− 1)

((

n

2

)

− 3

2
(n− 1)

)

.

Given two graphs G1 and G2 in the space, there is a sequence of edge replacements that
first transforms a spanning tree of G1 into a spanning tree of G2 and then replaces all other
edges in E(G1) \ E(G2) with edges in E(G2) \ E(G1) in some order. Thus G2 is reachable
from G1 and hence G1 is reachable from G2 since all edge replacements are reversible. Thus
G is strongly connected. Finally, it is straightforward to see that G is aperiodic, as it
contains 2-cycles and 3-cycles. Thus, we can conclude that samples from this Markov chain
asymptotically obey a uniform distribution, and we can assume that this process uniformly
samples the space of connected graphs with n vertices and 3(n− 1)/2 edges. We generated
sample families of graphs for all odd n between 5 and 17. The results of our sampling, shown
in Figures 8 and 9, support Conjecture 36 for these values of n.

The complexity of counting facets and determining which graphs are facet-maximizers in
a case as small as graphs with n vertices and n+1 edges was unexpected and indicates that
there are many factors at play. Therefore, counting the facets of symmetric edge polytopes
remains an interesting problem in terms of both establishing formulas and investigating new
techniques.
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[4] A. D’Aĺı, M. Juhnke-Kubitzke, D. Köhne, and L. Venturello, On the gamma-vector of
symmetric edge polytopes, SIAM J. Discrete Math. 37 (2023), 487–515.
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