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Abstract—The deployment of a growing number of devices
in Internet of Things (IoT) networks implies that uninterrupted
and seamless adaptation of wireless communication parameters
(e.g., carrier frequency, bandwidth and modulation) will become
essential. To utilize wireless devices capable of switching several
communication parameters requires real-time self-optimizations
at the radio frequency integrated circuit (RFIC) level based
on system level performance metrics during the processing of
complex modulated signals. This article introduces a novel design
verification approach for reconfigurable RFICs based on end-to-
end wireless system-level performance metrics while operating in
a dynamically changing communication environment. In contrast
to prior work, this framework includes two modules that simulate
a wireless channel and decode waveforms. These are connected to
circuit-level modules that capture device- and circuit-level non-
idealities of RFICs for design validation and optimization, such
as transistor noises, intermodulation/harmonic distortions, and
memory effects from parasitic capacitances. We demonstrate this
framework with a receiver (RX) consisting of a reconfigurable
complementary metal-oxide semiconductor (CMOS) low-noise
amplifier (LNA) designed at the transistor level, a behavioral
model of a mixer, and an ideal filter model. The seamless
integration between system-level wireless models with circuit-
level and behavioral models (such as VerilogA-based models)
for RFIC blocks enables to preemptively evaluate circuit and
system designs, and to optimize for different communication
scenarios with adaptive circuits having extensive tuning ranges.
An exemplary case study is presented, in which simulation results
reveal that the LNA power consumption can be reduced up to
16x depending on system-level requirements.

Index Terms—System-level validation, adaptive wireless sys-
tems and circuits, hardware/software co-design, energy-aware
optimization, simulation-based system testing.

I. INTRODUCTION

By 2030, over 50 billion devices will be absorbed into
the Internet of Things (IoT) [1]. The sheer number of IoT
devices implies that continuous and seamless adaptation of
wireless communication parameters (e.g., carrier frequency,
bandwidth and modulation) will become essential. One of the
wireless system design goals is to provide sensing services
for a plethora of applications. However, the implementations
are constrained because sensing and communication circuit
parameters have to be optimized for different frequency bands,
modulation schemes and channel conditions [2]. For this
reason, reconfigurability and self-optimization will be a cor-
nerstone of IoT networking paradigms [3]–[5]. Furthermore,
it becomes increasingly important to jointly simulate circuit
and system level components for design optimization and
validation prior to the fabrication of chips. On the other hand,
conventional radio frequency integrated circuits (RFICs) are
still statically optimized, which does not allow for real-time

self-optimization at the intersection of hardware and soft-
ware. Low-power RFICs are typically designed and optimized
specifically for the worst-case scenario of a given communi-
cation standard, which leads to performance limitations and
excessive power consumption. Furthermore, circuit-level tun-
ing usually optimizes block-level performance. Conversely, in
real systems, the circuit-level linearity and dynamic range re-
quirements strongly depend on the presence of nearby interfer-
ence signals and bias conditions [6]–[10], while slow-varying
aspects such as temperature sensitivity or device-level aging
effects can only be computed and compensated throughout
the device lifetime [11]. Digitally-controlled calibration is a
popular design approach to improve the performance and testa-
bility of mixed-signal integrated circuits [12], [13]. However,
RFIC calibrations of multiple interconnected circuit blocks
typically do not address the interdependence of the circuit-
specific parameters during tuning, which creates limitations
during simulations for design validations. They normally also
do not account for system-level parameters such as symbol
error rate (SER) or throughput, particularly when relying on
single-tone/two-tone signals or other alternative test signals
instead of the actual modulated signals [14]. A comprehensive
survey about the integration of machine learning (ML) into
integrated circuit design has been provided in [15], [16]. The
use of ML during design and optimization can be another
potential method to ensure functionality under consideration
of interdependence between circuit and system parameters.

Considering the above-mentioned challenges and oppor-
tunities, we propose a new RFIC co-design and validation
paradigm at the intersection of hardware and software, which
is summarized in Fig. 1. Our joint simulation framework
considers system-level performance metrics to facilitate the
design of adaptive RFIC circuits. The developed interoper-
ability between different design tools allows to (i) generate
arbitrary modulated waveforms while modeling different wire-
less channel conditions, (ii) utilize foundry-supplied models
that capture transistor-level non-idealities, (iii) simulate both
behavioral analog RFIC blocks and circuit level designs, and
(iv) extract circuit-level and system-level performance metrics.
Furthermore, we introduce simulations with modulated signal
packets and modeled channel impairments to extract system-
level parameters such as bit error rate (BER) and error vector
magnitude (EVM); and accordingly optimize several circuit
conditions (e.g., gain, noise figure and linearity characteris-
tics) for optimization of energy/performance tradeoffs. As a
use-case scenario, we leverage our framework to optimize
a receiver (RX) composed of a reconfigurable complemen-



Fig. 1. Overview of the framework for co-design and optimization of reconfigurable RF circuits and wireless communication systems.

tary metal-oxide semiconductor (CMOS) low-noise amplifier
(LNA) designed at the transistor-level, a behavioral model of
a mixer and an ideal filter model. The simulation results show
that our framework can reduce the LNA power consumption
by up to 16x under varying BER requirements. In general,
the simulation framework can be used as a tool during the
design and validation of adaptive wireless RXs that operate
with dynamically changing requirements.

II. EXISTING WORK AND CURRENT CHALLENGES

The fast-changing IoT ecosystem leads to a very dynamic
nature of the wireless channel that calls for complex hard-
ware and software systems, including adaptive and tunable
transceiver designs. It has been explained in [17] how tunable
and reconfigurable radio frequency (RF) technologies provide
potential solutions for efficient spectrum sharing. In [18], a
simulation-based approach develops a multi-user IoT commu-
nication system by taking into account carrier synchronization
and data broadcasts on multiple channels for several of low-
power devices present in the network. The work in [19]
realized a learning-based RF signal classifier on a field-
programmable gate array (FPGA) to reduce latency and power
consumption, which requires prior knowledge of signals and
spectrum.

Adaptability in the RX front-end opens up the opportunity
to collect and process data from a dynamic wireless chan-
nel. CMOS RFIC prototypes have been designed to enhance
linearity and power handling requirements for cellular ap-
plications [20]. However, RFICs can still be complemented
with real-time adaptation algorithms to optimize transceiver

operation. [21] introduces a real-time two-dimensional real-
time adaptation method to configure a RX for optimum NF and
linearity with a certain power budget and desired signal level.
The design of adaptive wireless RXs with single or multi-
parameter optimization is highly relevant for specific incoming
signals, and requires validating performance for different wire-
less standards, channel conditions, and chip-level performance
variations (e.g., CMOS fabrication process variations). A key
consideration during the design of adaptive RFICs is that
reconfigurability is tightly coupled with power consumption.
In addition, the need for wide tuning range and energy/power
scalable designs calls for the seamless combination of circuit
and system level adjustments. An evaluation of performance
versus power trajectory for RF front-end functional blocks
has been explored in [22]. In addition to determining the
inter-dependencies of circuit parameters for each block in
the RF front-end, the optimization of analog RF circuits
based on feedback control with digitally-controlled features
has been demonstrated [13], [23]–[27], which requires to
design complex control strategies for different conditions in
the presence of channel and device level variations.

The problem of energy efficiency and channel conditions is
conventionally controlled by adaptive modulation and coding
[28], making it harder for the RF front-end to adapt to
any changes in the channel. Integrating tunable RFICs into
spectrum-agile wireless networks can allow to self-optimize
RF circuit parameters to produce a desired output signal within
the optimum power budget based on existing channel condi-
tions. [29] describes a channel-adaptive RX design with pro-



cess variation tolerance. Furthermore, a neural network based
self-learning RF system has been demonstrated in [30], which
is able to reduce power consumption of wireless transceiver
systems by dynamically tuning the circuit components while
monitoring the effects of real-time wireless channel conditions
and the fabrication process variations to produce a desired
BER and threshold EVM. This is achieved with an on-chip
look-up table that requires to be updated based on expected
channel conditions.

The difficulty of simulating the entire system is a major
impediment to verify the merits of the integrated hardware-
software based wireless system. This work aims to design
and validate a joint simulation platform that can address
the inter-dependencies of circuit parameters in the RF front-
end to develop self-optimized wide-range reconfigurable RX
architecture together with wireless network that is capable
of changing communication parameters. Furthermore, this
approach to incorporate and verify system-level performance-
driven tuning features using reconfigurable RFIC blocks is
especially compelling to enhance resilience to sudden changes
in the environment and accordingly optimize to achieve perfor-
mance targets with optimum power consumption. Hence, the
presented simulation framework is expected to ease the adap-
tive design and optimization of closed-loop self-supervised
Internet of Self-adaptive Things with different modulated
signals, wireless channel models and adaptive RFIC designs
together with circuit level non-idealities.

III. OPTIMIZATION FRAMEWORK OVERVIEW

We consider a scenario as depicted in Fig. 1, where we
model multipath effects and dynamic fading along with ar-
bitrary modulated signal packets during the design of ro-
bust RFIC adaptability to receive and process information.
Here, the waveform generation allows to change the modeled
Physical-layer (PHY) parameters (such as modulation scheme,
power carried by the spectrum components, RF sampling
frequency, channel coding and bandwidth). Currently, only the
Signal-to-Noise-Ratio (SNR) is used as a primary indicator of
variable channel conditions. The variable SNR-based model
encompasses several channel impairments such as additive
white Gaussian noise (AWGN), multi-path fading, variable
distance between transmitter (TX) and RX, and path-loss
among other interference as indicated in Fig. 1. The sensitivity
requirement of the RF front-end strongly depends on the SNR.
[31] includes a description of typical SNR values for chan-
nels, where the comparative results with different modulation
schemes provide insights into the expected SNR values for
various channel conditions. It is also envisioned that future
spectrum-agile TXs will lead to more variations of interference
levels, SNR values, and modulation schemes.

As depicted in Fig. 1, the baseband waveform is processed
to infer parameters associated with system-level performance
such as BER, SER, EVM, modulation error ratio (MER) and
packet error rate (PER). This approach is based on the goal
to develop algorithms for accurate data-driven optimization
of RFICs based on system performance. Next, we present an

architecture with a reconfigurable RF front-end circuit that is
evaluated through the simulation framework from this work.

IV. DESIGN AND MODELING OF RF FRONT-END CIRCUITS
WITH DYNAMIC RECONFIGURABILITY

A. Flexible RF Front-end Architecture

Analog RF front-end reconfigurability enhances co-
existence and spectrum sharing in crowded environments [32],
as well as allows to vary parameters such as data rates on
demand [33]. As shown in Fig. 2, the reconfigurable RF RX
front-end in this work consists of a digitally programmable
LNA circuit designed at the transistor-level with tunable bias
current, a behavioral model of a direct down-conversion in-
phase/quadrature (I/Q) mixer stage, and two ideal low-pass
filter (LPF) models in the I and Q paths. Circuit-level sim-
ulations with device-level non-idealities can capture impacts
of frequency response limitations, inter-modulation products,
thermal and flicker noises, parasitic capacitances/resistances,
and higher-order non-linearities of the transistors, that allows
block-level specifications assessment such as gain, noise figure
(NF), input third-order inter-modulation intercept point (IIP3)
and impedance matching conditions. At the same time, the
ability to include some behavioral models of circuit blocks
aids the early design and system-level verification phase. Most
importantly, the accurate transient simulations allow to account
for the impacts of circuit-level imperfections to assess system-
level metrics with changing environment.

To overcome existing inflexible wireless standards, ineffi-
cient spectrum use and potential security threats in the wireless
network, the flexible adaptation of PHY parameters of the
signal proves an effective and long-standing solution. The
work in [34] demonstrated if TXs were allowed to dynamically
switch PHY parameters such as carrier frequency and symbol
modulation, the TXs would become less jamming-prone and
achieve more efficient spectrum occupation. To give an exam-
ple, Fig. 2 shows the selected test signal with a format that
corresponds to the Zigbee PHY packet structure. This signal
with any modeled channel impairments has been applied as
input signal during circuit and behavioral simulations of the
RF front-end. The frame starts with a known preamble for
synchronization, which exhibits high auto-correlation and low
cross-correlation features. The preamble is followed by a start-
of-frame delimiter that marks the beginning of the header.
The header consists of the frame length in bytes and the
modulation code associated with the modulation scheme used.
A data checksum (CSC) is attached to the header and data
parts respectively, such that erroneous frames can be detected
and discarded. The data part of the frame can support a MAC
Protocol Data Unit (MPDU) with a size of up to 28−1 bytes.

As depicted in Fig. 2, the emulated transmitted packets with
added channel noise and imperfections are transferred to the
signal source of a circuit simulator (Cadence Spectre) for the
RF front-end simulation. The model-based design simulator
(Matlab) is capable of saving the raw data in the comma-
separated values (CVS) file format, which has been incorpo-
rated into the circuit simulator by the virtue of a piece-wise



Fig. 2. Co-design simulation platform for wireless systems with dynamically reconfigurable RF front-end circuits.

linear signal source. Thus, the reconfigurability settings and
biasing conditions of the RF front-end blocks can be evaluated
during the circuit design phase to optimize characteristics
such as noise levels, linearity, RX sensitivity and impedance
matching conditions. As mentioned earlier, the mathematical
analysis of the circuit simulator output provides system-level
performance metrics (such as BER, SER, MER, and EVM) for
both circuit and system-level optimization with modulated sig-
nals. Here, the BER is considered as one of the most significant
PHY performance indicators. Since not all inaccuracies lead to
bit flips, EVM is another appropriate measure to quantify the
quality of the received signal after processing in the RF front-
end, which allows to capture important channel and RX non-
idealities [35], [36]. Various imperfections such as changing
channel conditions have impacts on the EVM since they can
cause the received constellation points to deviate from their
original ideal locations.

B. Reconfigurable LNA

A 2.4 GHz single-ended cascode common-source LNA with
inductive source degeneration has been selected as an exem-
plary reconfigurable narrowband LNA design, of which the
bias current is tuned to control performance/power tradeoffs
as shown in Fig. 2. Since the LNA is the first block of the
RF front-end, its performance is particularly crucial when
receiving noisy packets at low power levels. The standalone
LNA was designed in a standard 65nm CMOS technology,
and simulated for bias currents ranging from 31.25 µA to 500
µA. By changing the bias current +/-20% to +/-50% from its
design point (125 µA), the circuit characteristics such as gain,
IIP3, and NF can be adjusted with a corresponding change of
the power consumption that is directly proportional to the bias
current. Fig. 3 summarizes the gain, NF and IIP3 of the LNA
from transistor-level simulations.

Fig. 3. Simulated LNA performance parameters vs. bias current.

C. Mixer and Baseband Signal Processing

To portray the capability of combining transistor-level
schematic simulations (i.e., the LNA) with behavioral blocks
during transient circuit simulations to assess system-level met-
rics under specified/changeable wireless channel conditions,
a direct down-conversion I/Q mixer has been modeled in
VerilogA, followed by two ideal LPFs (one in each RX path).
The mixer model includes variable gain, IIP3 and NF based on



Fig. 4. Results from the simulation with generated QPSK packets: transient RF front-end characteristics and reconstructed constellations.

TABLE I
SYSTEM-LEVEL PERFORMANCE SUMMARY FOR THE RE-CONFIGURABLE RF FRONT-END WITH LNA BIAS TUNING FROM SIMULATIONS WITH A QPSK

BURST (4272 BITS) HAVING A POWER OF -100 DBM.

typical reconfigurable circuit parameters of down-conversion
mixers. In this proof-of-concept, the performance assessment
of the RF front-end was with QPSK-modulated signals and
channel impairments according to the signal generation in Fig.
2.

The channel model accounts for AWGN, path-loss and
generic frequency-selective multi-path fading that can intro-
duce different path attenuation, delay, and Doppler shift. The
baseband demodulator after the LPF is also implemented
mathematically, where according to the decision boundaries
defined by the associated constellation, the I/Q samples are
detected and compared against the ground-truth I/Q samples
to compute the desired system-level parameters. Future work
will be devoted to automatic parameter tuning parameters
in the RF front-end circuits based on the extracted system-
level performance metrics to optimize with varying spectrum
conditions under specified power consumption targets.

V. CASE STUDY:
RECONFIGURABLE RF FRONT-END SIMULATION

This section summarizes results from the use of our co-
simulation framework for the example RF front-end configu-
ration described in the previous section. The simulations were
primarily carried out to evaluate the performance vs. power

trade-offs associated with the reconfigurable LNA design. As
mentioned in the previous section, the complete testbench
used for the simulations includes a VerilogA based mixer
and ideal LPF. The mixer has been modeled with flexible
circuit parameters in which the gain, IIP3 and NF can be
changed as part of the design exploration. In this work, we
have used an ideal behavioral mixer model with a gain of
10 dB, IIP3 of 5 dBm and NF of 10dB for the proof-of-
concept simulations [37]–[39]. The upper left image in Fig. 4
displays the generated QPSK-modulated signal with the packet
structure defined in Fig. 2. A binary ground-truth message is
randomly generated and up-converted to produce the QPSK
modulation with a center frequency of 2.4 GHz. The SNR
of the received signal was selected as 20 dB to emulate
typical wireless network conditions with channel impairments
and distortion [40], [41]. The corresponding waveform of the
generated QPSK signal in Fig. 4 is corrupted by the channel
imperfections and noise, and fed to the RF front-end. The
simulated I/Q signals at the LPF outputs are shown on the
right side of Fig. 4. These I/Q signals are transferred for
mathematical baseband processing using an envelope detector
and moving average filter (as displayed in Fig. 2) during
model-based simulations.

The demodulated I/Q samples are then compared and ver-



ified with the ground-truth data to extract BER, SER, EVM
and MER. The lower values of the BER and SER relust from
high accuracy of demodulation process. In this case, the BER
and SER are in the range of 10−5-10−3 for all LNA bias
current conditions. On the other hand, the MER values are
18.9 dB and 11.2 dB for LNA bias currents of 500 µA and
31.25 µA respectively. The proximity of the MER value to
the specified channel SNR (20 dB) is an indication of a noise
resilient system, which results from the LNA bias with high
current (i.e., high power consumption) to achieve a low NF.
Fig. 4 includes the extracted constellations of the QPSK signal
after the processing by the RF front-end with the highest
and lowest LNA bias currents, which also show the power
vs. performance tradeoff. Table I includes an overview of
the system-level performance for different LNA bias current
settings. We have simulated two QPSK packets (4272 bits)
with randomly generated ground-truth data to evaluate the
high-level system performance with the co-design platform.
It can be seen from Table I that the BER, SER and EVM are
considerably lower for LNA bias currents in the 125 µA to
500 µA range. In addition, no packet errors (PEs) occurred
in the 125 µA to 500 µA bias current range. The simulation
results show robust adaptability, which will be realized with an
application-specific feedback control loop as depicted in Fig.
1. Depending on the application-specific BER requirement and
channel conditions, energy consumption can be significantly
reduced through the 62.5 µA and 31.25 µA bias current
settings.

VI. NEXT STEPS: BEYOND TRADITIONAL WIRELESS
SYSTEM AND RFIC INTEGRATION

We foresee that the research presented in this paper will be
the foundation for the development of reconfigurable RXs with
real-time self-optimization capabilities. The work described in
this article is the first step associated with the co-design and
verification of wireless systems and circuits that can tolerate
and adapt to interference conditions using novel RFIC opti-
mization methods with unprecedented design flexibility based
on specified system-level performance metrics. As depicted
in Fig. 5, we anticipate that the presented co-simulation and
design verification framework will contribute to the devel-
opment of several novel features: (i) ML-based self-decisive
CMOS RF front-ends to adapt changing network conditions,
(ii) development of hardware-software prototypes based on
joint integrated circuit simulations and wireless data collection
for enhanced modeling, (iii) several digitally-controlled tuning
knobs in each analog block as indicated in Fig. 1, and (iv)
collection of waveform datasets through the experimental
testbenches to train ML algorithms. (v) Once the ML algo-
rithms are developed, the deep reinforcement learning (DRL)
agent will be trained to collect data, both experimentally
and synthetically utilizing the proposed framework. During
the data collection, one can deploy the optimal policy on
FPGA-based platforms such as software-defined radios (SDRs)
[42], [43] to meet the challenging time constraints involved,
and to reduce the overall power consumption. The presented

simulation framework features tools to jointly optimize the
power-efficiency of digitally-controlled analog circuits and
the computation resources to implement adaptive ML-based
control. Once the envisioned ML algorithm is developed and
the DRL agent is trained experimentally and synthetically
collected data using the proposed framework, one could deploy
the optimal policy on FPGA-based platforms such as SDRs
[42] so as to meet the challenging time constraints involved.
To further minimize the power consumption introduced by
running the ML method, one can change the operational
frequency or even limit it to the times when the system-level
performance drops below a certain threshold or experiences a
sudden change. The simulation results in Section V show that
the RF front-end in this case study has a sensitivity of -100
dBm. We have presented a case study with a QPSK packet, but
other modulation schemes (e.g. ASK, BPSK) with different
SNR values, data rate, bandwidth, center frequencies can
be employed. The reconfigurable RX design and simulation
approach is intended to facilitate the use of flexible wireless
system parameters by reconfiguring circuit parameters for the
optimum performance and spectrum sharing in real-time.

Fig. 5. Envisioned ML-based real-time RF front-end optimization.

VII. CONCLUSION

This article presented a new co-design simulation platform
to evaluate trade-offs between performance and power con-
sumption by integrating the design and modeling of wireless
systems and reconfigurable RF front-end circuits together. A
main contribution of the integrated framework is to provide
an effective and long-lasting tool for the design of spectrum-
agile RXs with adaptive RFICs for dynamic optimizations
under changing environmental conditions. The execution of
the joint summation taking into account combining dynamic
wireless channel model and reconfigurable RF front-end with
circuit level non-idealities accounts for incorporation of several
modeling and design software to validate the performance.
The reconfigurability of the RF front-end aims to reduce
power consumption significantly based on application-specific



system-level performance targets. However, the primary goal
is to execute the seamless adaptation of the RF front-end by
optimizing its circuit parameters during real-time execution
with spectrum-agile transmission to produce desired end-to-
end system level performance. The integration of digital tuning
capabilities in each of the analog blocks within RFICs will
be particularly useful for realizing future wireless system
paradigms with an unprecedented degree-of-freedom.
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