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Abstract—Real-time data stream processing at the edge is
crucial for time-sensitive tasks within large-scale IoT systems.
Task scheduling plays a key role in managing the Quality of
Service (QoS), necessitating a prioritization system to distinguish
between high and low-priority tasks, thus ensuring efficient
data processing on edge nodes. Existing scheduling algorithms
rigidly prioritize tasks deemed as high-priority, often at the
expense of fairness and overall system efficiency. In this paper,
we propose a Priority-aware Fair Task Scheduling (FTS-Hybrid)
algorithm that addresses these challenges by managing priority-
based task execution in a controlled manner. Our task scheduling
algorithm streamlines resource utilization and enhances system
responsiveness, contributing to low latency and high throughput,
outperforming competing techniques including First-Come-First-
Serve (FCFS), Round Robin (RR), and Priority Scheduling (PS).
We implemented FTS-Hybrid on Apache Storm and evaluated
its performance using an open-source real-time IoT benchmark
(RIoTBench). Experimental results show that the FTS-Hybrid
algorithm reduces task execution latency by 24%, 31%, and 26%
compared with FCFS, RR, and PS, respectively, by strategically
mitigating queuing delays under dynamic workload conditions.

Index Terms—Edge Stream Processing, Fair Scheduling,
Steady State Queuing.

I. INTRODUCTION

The growth of data-intensive applications, including e-
healthcare, home automation, smart cities, industrial opera-
tions, and intelligent driving, demands real-time data stream
processing. This is crucial for prompt responses, particularly
for urgent tasks within large-scale IoT systems. These time-
sensitive applications require real-time response to events and
cannot tolerate the delays incurred in sending data to the cloud
for decision-making. The necessity for immediate decision-
making on-site has prompted researchers to investigate edge
computing’s potential. By positioning services and functions
closer to users, edge computing can enhance quality-of-service
(QoS) through efficient data processing on edge servers [1].

QoS management in edge computing networks involves two
critical variables: the execution order of tasks over time and
the allocation of computing resources to prevent delays [2].
Given the resource scarcity of the edge environment, and the
need to handle numerous tasks, it is desirable to serve tasks
according to their priority [3]. For example in healthcare,
tasks are classified as emergency or non-emergency, with
emergency tasks taking precedence due to their urgency [4].
An efficient workload mix in edge computing is vital for
dynamic applications like smart city monitoring and envi-
ronmental sensing, ensuring prompt responses and optimized

Fig. 1: Edge Stream Processing.

resource usage for effective city management amid evolving
scenarios. Therefore, task scheduling has become a focal point
of research, with various strategies available for both cloud
and edge environments to prioritize tasks according to their
importance [5]. However, existing scheduling algorithms often
overlook fairness and overall system efficiency while rigidly
prioritizing tasks that are of high importance [6].

In this paper, we introduce a Priority-aware Fair Task
Scheduling algorithm (FTS-Hybrid) in which tasks with high
priority receive scheduling preference in a controlled manner
to ensure fair scheduling across all priority levels. Our goal
is to improve task execution latency across all priority levels
by minimizing queuing delays and improving overall system
efficiency. Experimental evaluation using an open-source real-
time IoT benchmark, RIoTBench [7], and a popular stream
processing engine, Apache Storm, demonstrate the effective-
ness of FTS-Hybrid across high, medium, and low-priority
tasks. Additionally, steady-state queuing analysis in Section
III underscores its superiority over traditional methods.

Our key contributions are as follows:

• We introduce the Fair Task Scheduling algorithm (FTS-
Hybrid), designed to prioritize high-priority tasks without
neglecting fairness and overall system efficiency.

• We conduct a comparative analysis of our pro-
posed scheduling algorithm against First-Come-First-
Serve (FCFS), Round Robin (RR), and Priority Schedul-
ing (PS). Results demonstrate improved latency and com-



parable throughput across all priorities.
• We perform steady-state queuing analysis across different

algorithms to compare the average waiting time for tasks
with different priorities.

• Our priority-aware FTS-Hybrid algorithm minimizes
queuing delays and processing bottlenecks during latency
spikes under dynamic workload conditions through intel-
ligent task scheduling. Experiments results show latency
reductions of 24%, 31%, and 26% compared to FCFS,
RR, and PS, respectively.

The rest of the paper is structured as follows. Section II pro-
vides the background and motivation. Section III presents the
design and steady-state queuing analysis. Section IV describes
the testbed setup and experimental evaluation. Related work is
discussed in Section V. Section VI summarizes the findings,
conclusions, and future work.

II. BACKGROUND & MOTIVATION

A. Stream Processing System at the Edge

As shown in Figure 1, Stream Processing Engines (SPEs)
are increasingly employed on IoT Gateways and edge routers
for data processing, capitalizing on the low latency afforded
by their closeness to users and IoT devices. These edge nodes
offer improved computational capabilities over wireless sensor
networks, yet they are limited compared to the resources
available in the Cloud [8]. The SPEs receive data streams from
IoT devices and run domain-specific applications for data pro-
cessing. Each application consists of a Directed Acyclic Graph
(DAG), or topology, comprising spouts and bolts. Spouts read
data from external sources and emit tuples (basic data units)
into the topology for processing. Bolts serve as data pro-
cessing units/operators, enabling a range of tasks from basic
filtering to advanced operations like Machine Learning (ML)-
based classification algorithms. Notable streaming processing
frameworks include Apache Storm, Apache Spark, Flink, etc.
In this paper, we use Apache Storm as it supports real-time
data processing of individual data tuples with minimal delay.

B. Task Priority in Stream Processing System

In the context of edge stream processing, we define a task as
an operation performed on a single data tuple. By default, all
SPEs including Apache Storm process data tuples in the order
of their arrival. However, this can lead to unacceptable queuing
delays for high-priority tasks as shown in Figure 2. Scheduling
tasks based on their priority is crucial for QoS management
in a resource-constrained edge environment. Task priorities
can be defined by users based on time-sensitivity of the data
tuples that need to be processed. However, strict priority
based scheduling can lead to starvation of lower priority tasks
and inefficient resource utilization, specially under dynamic
workload conditions. Therefore, there is a need to devise a
fair scheduling strategy that strikes a balance between task
prioritization and fairness to improve overall system efficiency.

Fig. 2: Input Data Stream with different priorities. Wq1 ,Wq2 ,
Wq3 are expected waiting times in the queue for low, medium
and high priority tasks if they are processed in the order of
arrival.

Fig. 3: FTS-Hybrid task scheduling for edge stream process-
ing. A batch of tasks are scheduled based on their priority
and queue length. Lq1, Lq2, Lq3 are the queue lengths for
low, medium and high priority tasks

III. SYSTEM DESIGN

In this section, we describe our Priority-Aware Fair Task
Scheduling algorithm and present a steady-state queuing anal-
ysis of our edge stream processing system.

A. Priority-Aware Fair Task Scheduling

As shown in Figure 3, our FTS-Hybrid scheduling technique
places incoming data tuples into separate queues based on their
priority. We categorize tasks into low, medium, and high. The
scheduling algorithm is shown in Algorithm 1. For every batch
of input tuples (with fixed batch size), the spout is customized
to emit a minimum number of tuples from each queue starting
from the high-priority queue and moving on to medium and
low-priority queues. The number of tuples emitted is dictated
by the shortest queue length measured among the non-empty
priority queues for a given batch. This process is repeated until
all tuples in the batch are emitted to downstream operators
(bolts) in the application topology. For example, given a batch
size of 10 with a task distribution of 5, 3, and 2 tuples for low,
medium, and high-priority tasks respectively, two tuples are
emitted from each queue since the shortest queue length is 2.



Algorithm 1: FTS-Hybrid task scheduling.
1: Let T ′ denote a stream of tuples with different priorities

coming to an application
2: B is a batch of tuples to be scheduled
3: Qlow is an empty queue for low-priority data
4: Qmed is an empty queue for medium-priority data
5: Qhigh is an empty queue for high-priority data
6: for i = 1 to B do
7: Inspect priority pti of incoming data tuple ti
8: if pti = 1 then
9: Enqueue ti into Qlow

10: else if pti = 2 then
11: Enqueue ti into Qmed
12: else if pti = 3 then
13: Enqueue ti into Qhigh
14: end if
15: end for

16: Lqlow ←

{
∞ if Qlow = ∅
Length of Qlow otherwise

17: Lqmed ←

{
∞ if Qmed = ∅
Length of Qmed otherwise

18: Lqhigh ←

{
∞ if Qhigh = ∅
Length of Qhigh otherwise

19: while Qlow ̸= ∅ or Qmedium ̸= ∅ or Qhigh ̸= ∅ do
20: MinSize = min{Lqlow , Lqmed , Lqhigh}
21: for i = 1 to MinSize do
22: Dequeue a tuple from Qhigh and emit
23: end for
24: for i = 1 to MinSize do
25: Dequeue a tuple from Qmed and emit
26: end for
27: for i = 1 to MinSize do
28: Dequeue a tuple from Qlow and emit
29: end for
30: end while

Updating the queues, the highest priority queue is empty now,
leaving 3 tuples in the low and 1 tuple in the medium priority
queue. Since now the shortest queue length will be 1 hence,
one tuple is emitted from the medium and low-priority queues.
Finally, the remaining tuples in the low-priority queue are
emitted. By processing groups of tuples within a batch in this
manner, we aim to strike a balance between task prioritization
and fairness across all priority levels.

B. Steady State Queuing Analysis

We have implemented FTS-Hybrid on Apache Storm, con-
figured on a single machine to emulate an IoT Gateway,
running the RIoTBench [7] application. Further implementa-
tion details can be found in Section IV-A. In this section,
we perform a steady-state queuing analysis to understand the
long-term behavior of our edge stream processing system. We
employ the M/M/1 queuing model where both interarrival

TABLE I: Mathematical Notations used in Queuing Analysis

Notation Description
QH average number of tuples in the queue for high-priority
sH service time for high-priority
QM average number of tuples in the queue for medium-priority
sM service time for medium-priority
QL average number of tuples in the queue for low-priority
sL service time for low-priority
λi arrival rate for each-priority
R Total residence time of a task in the queue

TABLE II: Analysis of Average residence time in queue

Low Medium High
FCFS 5.7 ms 90 ms 10.5 ms
RR 13.67 ms 13.67 ms 13.67 ms
PS 35.9 ms 35.9 ms 3 ms

times (the time between successive task arrivals) and service
times (task execution time) follow exponential distributions.

The total residence time R for a task of specific non-
preemptive priority(high, medium, low)in the system following
PS is calculated as:

RH = QHsH + sH

RM = QHsH +QLsL + (RH − sH)UH + sM

RL = QHsH +QMsM + (RH − sH)(1− UH)

+ (RM − sM )(1− UM ) + sL

(1)

Here, QHsH , QMsM , QLsL are the additional delays due
to the processing of high, medium, and low-priority tasks
respectively. The fraction of time the server is busy with a
particular priority is

Ui = λi × si, ∀i ∈ {H,M,L} (2)

The total residence time R for a task of specific priority in
the system following RR is calculated as:

RH =
QHsH +QMsM +QLsL

3

RM =
QMsM +QLsL +QHsH

3

RL =
QLsL +QHsH +QMsM

3

(3)

The total residence time R for a task of specific priority in
the system following FCFS is calculated as::

RH =
UMUHs1 + UMs2 + (1− UH)s1

1− UH − UMU2
H

RM =
ULUHs1 + ULs3 + (1− UH)s1

1− UH − ULU2
H

RL =
UHUMs2 + UHs1 + (1− UM )s2

1− UM − UHU2
M

(4)

First, We analyze the effectiveness of three alternative meth-
ods: i) FCFS, as the default in Apache Storm, causes delays
for high-priority tasks due to its disregard for priorities; (ii)
RR, aims for fairness RR treats all tasks equally regardless of
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Fig. 4: Layout of PRED topology.

priority (iii) PS, implements strict priorities, processing higher-
priority tasks before lower-priority ones within data batches.
However, both PS and RR have drawbacks in prioritization.
To address this, the FTS-hybrid algorithm blends RR’s fairness
with PS’s priority focus, minimizing wait times for low and
medium priorities while maintaining timely high-priority task
processing. Experimental results support FTS-hybrid’s effec-
tiveness in achieving this balance (Section IV). For theoretical
analysis in batch of size 10 we consider QH = 2 QM= 3, and
QL = 5, sH = 1ms, sM = 3ms, and sL= 6ms, UH= 0.2, UM=
0.3, UL= 0.5 .Table II compares the average residence times
estimated for tasks with different priorities.

IV. EVALUATION

A. Experimental TestBed

1) Edge node configuration: We set up a prototype testbed
using a single VM equipped with 4 CPU cores and 8 GB RAM
to replicate an IoT Gateway running Ubuntu 20.04.6 LTS. The
VM was hosted in NSF-supported Chameleon Cloud [9]. We
used Apache Storm (Version 2.1.0) to serve as the edge stream
processing engine.

2) Benchmark: We evaluate our proposed method using
the RIoTBench benchmark [7] suite, comprising four ap-
plications: Extract-Transform-Load (ETL), Model Training
(TRAIN), Statistical Summarization (STATS), and Predictive
Analytics (PRED). Due to the space limitation, we only
present our results obtained for the PRED application. Figure 4
shows the application topology.

3) Dynamic Workload Generation: We employed the New
York City Taxi Trips (TAXI) dataset to create a workload that
accurately reflects real-world situations. The dataset consists
of smart transportation data derived from 2 million taxi trips
taken in New York City in 2013. Each trip record encompasses
details like pickup and drop-off dates, taxi and license infor-
mation, start and end coordinates with timestamps, metered
distance, and taxes and tolls paid. To generate a dynamic
workload, we adapted RIoTBench’s input generator function
to produce varying workload intensities.

B. Performance Analysis under Dynamic Workload

For performance evaluation, we measured the 95th-
percentile end-to-end latency and throughput of data tuples
flowing through the stream processing topology under a dy-
namic workload. We measured throughput by counting the

TABLE III: Percentage improvement in latency due to FTS-
Hybrid for different workload distributions.

FTS-Hybrid vs. FCFS RR PS
70% Low, 20% Medium, 10% High

High-priority 24.2% 31.05% 25.8%
Medium-priority 24.1% 31.03% 25.7%

Low-priority 23.8% 30% 25.7%
50% Low, 30% Medium, 20% High

High-priority 33.34% 4.7% 3.4%
Medium-priority 37.1% 4% 2.4%

Low-priority 40.74% 4% 1.9%
33% Low, 33% Medium, 33% High

High-priority 12.39% 14.12% 10.1%
Medium-priority 22.8% 22.6% -5.09%

Low-priority 30.4% 27.13% -15.58%

number of tuples that reach the sink of the application topol-
ogy, shown in Figure 4. We measured latency by assigning
each tuple a unique ID and comparing timestamps at the source
and the same sink used for the throughput measurement.
The performance was periodically measured at one-minute
sampling intervals. Furthermore, we analyzed the impact of
varying the proportion of low, medium, and high-priority tasks
on latency and throughput. Three scenarios were explored:
70% low, 20% medium, and 10% high-priority tasks; 50%
low, 30% medium, and 20% high-priority tasks; and equal
distribution of 33% for each priority level. The first two
scenarios mirror real-world situations where urgent tasks are
relatively scarce compared to non-urgent tasks. The final
scenario was selected as an extreme and improbable situation
to test the limitations of the system.

Our findings, depicted in Fig.5a and Fig.5b, reveal the influ-
ence of workload distribution on 95th percentile latency and
throughput, respectively, under conditions of a batch size of
100. Notably, our algorithm effectively addresses bottlenecks
during latency spikes by optimizing task execution by using
minimum batch from low-priority tasks as well resulting in
efficient processing and reduced wait times across all task
priorities. This improvement is attributed to our algorithm’s
adept management of queue length while scheduling tasks,
crucial for mitigating latency spikes during peak loads. How-
ever, the proposed approach struggles with an equal workload
mix since all queues increase at the same pace, rendering the
shortest queue strategy ineffective. PS works better because
it constantly prioritizes high-priority activities regardless of
queue length.

Table III depicts the percentage reduction in latency due to
FTS-Hybrid over competing scheduling algorithms. In the ma-
jority of applications, high-priority tasks are typically sparse.
Workloads in many applications are dynamic and are subject to
variation over time. Our algorithms also achieve improvement
of approx. 2% in throughout.

C. Batch Sensitivity Analysis

Batching data into larger transactions can notably boost
performance, particularly in high-latency scenarios, depending
on available network resources. While smaller batch sizes en-
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(a) Violin plots illustrate the distribution of 95th percentile latency, captured at one-minute intervals across a span of one hour.
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Fig. 5: The effect of varying the proportion of low, medium, and high-priority tasks on task execution latency and throughput.
A batch size of 100 was used.
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Fig. 6: Impact of batch size on the 95th percentile latency
distribution for high-priority tasks utilizing the FTS-Hybrid
algorithm. The workload mix comprises 70% low-priority,
20% medium-priority, and 10% high-priority tasks.

able faster processing and frequent system updates, excessively
small batches may render priority scheduling ineffective. Con-
versely, larger batches may introduce delays due to increased
processing requirements. Selecting the appropriate batch size
is crucial. Our experimental results in Fig. 6, demonstrate
that increasing the batch size from 10 to 100 can improve
high-priority latency by up to 30% moving beyond this batch
size increases the latency. While our focus is on high-priority

data, similar trends apply to low and medium-priority data. We
opted for a batch size of 100 as it strikes a balance between
prioritization and responsiveness. This can be observed in
Fig.6 by looking at the horizontal median latency line in violin
graphs. The median latency range for batch size 100 lies at
≈ 2000 ms whereas for batch size 500 the range goes to ≈
8000 ms. Nonetheless, in stream processing, batches may not
always reach maximum size before processing begins.

V. RELATED WORK

Edge computing uses priority-based fair scheduling to ef-
ficiently process tasks in hardware-constrained systems. Ro-
drigo et al. [10] proposed a decentralized fair share prioriti-
zation method, adjusting job scheduling based on user quotas
and past resource usage. Chai et al. [11] crafted a dynamic
priority-based computation scheduling algorithm, prioritizing
task processing performance and fairness. Similarly, Paymard
et al. [12] proposed a scheme to jointly optimize computation
and communication resource allocation to maximize profit
and satisfy QoS requirements. Gao and Moh [13] proposed
a joint computation offloading and prioritized task scheduling
scheme, considering energy minimization and dynamic thresh-
old setting. Madej et al. [6] presented different scheduling
techniques, including a hybrid strategy that accounts for fair-
ness among clients and job priorities in edge computing. Sev-



eral studies, such as those by [2], and [14], delve into the de-
velopment of priority-aware task scheduling algorithms. These
algorithms prioritize tasks based on urgency and appropriately
offload data. However, it’s worth noting that these scheduling
techniques do not take into account batch processing. Also,
they do not discuss the impact of varying data ratios for
different priorities. One of the most relevant works we found
in [15], EdgeWise enhances Stream Processing Engine (SPE)
performance by integrating a congestion-aware scheduler with
a fixed-size worker pool, boosting throughput and reducing
delay. However, data priorities and the impact of different data
ratios are not addressed.

Furthermore, innovative task scheduling schemes based on
Bayesian classifiers have been devised to classify tasks into
priority categories and schedule them accordingly, leading to
enhanced completion time and throughput rates [16]. Shahid
et al. [17] proposed a scheduler that organizes data based on
the priority level and applies Bayesian optimization to achieve
an SLO violation of 0% for high-priority data. In [18], authors
propose a task-scheduling and resource allocation method that
prioritizes work based on emergency levels derived from data
collected from patient wearables.

Our approach effectively manages priority-based systems,
preventing extended wait times for low-priority tasks. Dy-
namic emission order adjustment and tuple batching ensure
fair task scheduling and mitigate switching costs, crucial for
scenarios with medium to low-priority users.

VI. CONCLUSION & FUTURE WORK

In this paper, we designed the FTS-Hybrid scheduling
algorithm, focusing on enhancing Quality of Service (QoS) by
improving throughput and latency for tasks of varying priori-
ties. Our prototype was implemented using Apache Storm and
Chameleon Cloud Server. We assessed its performance using
RIoTBench, an open-source real-time IoT benchmark. In com-
parison to state-of-the-art techniques, which often overlook
low and medium-priority tasks, our algorithm targets compre-
hensive improvement across all priority levels. Experimental
results confirmed significant enhancements in both latency and
throughput, marking a notable advancement of QoS in Edge
computing. In the future, we aim to enhance FTS-Hybrid by
monitoring the ratio of high-priority tasks in the workload and
dynamically switching to PS scheduling when necessary. This
adaptive approach will allow the system to respond effectively
to fluctuations in task priorities, ensuring that critical tasks
are prioritized during periods of increased demand. This
adaptability ensures that system performance remains optimal
under varying workload conditions. Furthermore, we also plan
to predict the incoming workload intensity and use machine
learning models to dynamically optimize the suitable batch
size based on a feedback mechanism to further improve our
results.
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